npj | Science of Learning

BRIEF COMMUNICATION

www.nature.com/npjscilearn

W) Check for updates

Trajectories of performance change indicate multiple
dissociable links between working memory and fluid

intelligence

1 2

Aaron Cochrane®'® and C. Shawn Green

Many areas of psychology assume that performance on tasks of interest is stable through time. Here, using time-sensitive modeling
of working memory task performance, we show not only was this assumption incorrect, but that certain components of the
performance trajectory (e.g., final task performance; rate of change) were independently predictive of fluid intelligence. This fact
has clear implications for theoretical frameworks linking working memory and fluid intelligence, and beyond.
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Many theories in experimental psychology are paradigmatically
grounded in inferences derived from participants’ performance
aggregated across many trials of one or more tasks. Here we
consider one well-known example relating fluid intelligence
(Gf), which encompasses the ability to think abstractly and to
learn independently of previous experience, with working
memory (WM)'=3.

Previous work in the domain has utilized methods and analytic
approaches that assume not only that the constructs of interest
(e.g., WM) are reasonably stable through time, but also that
performance on the tasks indexing the given constructs is likewise
stable. Indeed, to our knowledge, all previous work examining the
relations between WM and Gf has aggregated participant data
over trials (e.g., calculating percent correct or d-prime). In
performing such an aggregation-based analysis it is assumed
either: (A) that participants’ ability to complete the task remains
stationary throughout the task (i.e., that data across trials is
independently and identically distributed; iid); or (B) that any
systematic changes in performance that occur are irrelevant with
respect the construct of interest. If these assumptions are not met,
then the previously observed links between WM and Gf are, at a
minimum, underspecified.

If individuals’ performance on WM tasks changes through time
(which as we will see below, it does, even across less than 100
trials of experience), what might be possible reasons for the
previously observed links between aggregated WM performance
and measures of Gf? One is that Gf shares processing constraints
with WM'=3, leading to correlations between Gf scores and WM
performance that are stationary across the measured timescale. A
second possibility is related to the idea that Gf reflects “the ability
to learn”*’. This might predict that correlations would be
observed between Gf scores and the rate of change in WM
performance. Finally, Gf may relate to the ability to perform novel
tasks well from the very first attempt, manifesting as correlations
between Gf scores and initial measured cognitive task perfor-
mance®. While these possibilities are neither exhaustive nor
necessarily independent, each is supported by previous work
and theory, and all three are confounded by the aggregation of
performance over time (see Fig. 1).

Here we tested these potential explanations for links between
WM and Gf task performance. Eighty-seven participants com-
pleted standard measures of Gf (matrix reasoning) and of WM
(digitized Corsi). We then modeled WM task performance as a
continuous function of time (via a nonlinear mixed-effects
Bayesian regression) in order to assess participants Initial
Accuracy, Rate of Change, and Final Accuracy®; see Supplementary
Information for model specification. The extent to which these
components were related to matrix reasoning task performance
was then assessed.

In examining the links with Gf, initial WM accuracy had no
convincing evidence for a relation with Gf (BFjg3=0.18). In
contrast, both rate of change on the WM task (r(85) = —0.30, Cl =
[—0.49, —0.08], BF,o43 = 2.05) and final accuracy (r(85) = 0.33, Cl =
[0.11,0.52], BFjog3 = 2.99) showed evidence of relations to Gf (see
Fig. 2; the same pattern holds when calculating Spearman p). In a
confirmation of these effects’ independence, a regression model
was run containing main effects for both predictors (rate of
change and final accuracy), and each remained reliable when
controlling for the other (rate of change b= —0.111, Cl =[-0.213,
—0.008], AR?>=0.046; final accuracy b= 0428, Cl=[0.112,745],
AR? =0.073; note that these results remain when using robust
regression to minimize the influence of high-leverage datapoints,
or when including starting accuracy as a covariate; see Supple-
mentary Note 1).

The present results provide new insight into the mechanistic
bases of previously observed correlations between WM and Gf.
The relationship between final estimated WM accuracy and Gf
supports the prevailing view in the literature that the associations
between Gf and WM are strongly rooted in relatively stable
processing characteristics that vary between individuals. Addi-
tional support for this view is found by the strong relationship
between estimated final WM accuracy and overall accuracy
(i.e, with the typical measure that would be used in the field;
the relation between overall and final WM accuracy: r(85) = 0.96,
C1=1[0.93,0.97], BFjog3 = 89.19). This statistical near-isomorphism
supports the interpretation that, throughout our results, ending
accuracy is an index of stable performance and can be interpreted
as a proxy for the standard overall-accuracy measure (i.e., that the
standard method of analysis is largely capturing the variance that
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Fig. 1

Example data. WM data from three participants were selected specifically to visualize certain problems with typical aggregation-based

measures. Panel A shows the participants’ similar overall average accuracy. An analysis relating overall WM performance to Gf would expect
similar levels of Gf in these participants. Yet, when examining the participants’ trajectories of performance on the WM task (B), they evince
“same overall performance” in quite different ways. They differ markedly in initial accuracy (C), rate of change (D), and in final accuracy (E). As
such, more detailed theories linking WM and Gf would not make identical predictions for the three participants.

would be expected by theories of working memory, particularly
with larger numbers of trials). Yet the present study also provided
novel evidence for an independent link between Gf and the rate
of change within WM tasks, with change occurring in less time (i.e.,
steeper trajectories) being associated with higher Gf. This, along
with the lack of evidence for a correlation between the rate of
change and overall WM accuracy (BFjoq3 = 0.26), further supports
the independence of the two links between WM and Gf.
Interestingly, there was no reliable support for links between Gf
measures and initial WM accuracy in the current data. This has
particularly pertinent implications for research batteries with
shortened tasks (i.e., shorter WM tasks will tend to load less
strongly on the measures of interest; see also Supplementary Note
2, Supplementary Fig. 4, and Supplementary Table 2).

The work here opens new directions in examining WM/Gf links.
For example, our experimental design precluded time-sensitive
analyses of Gf, and linking the dynamics of WM with those of Gf
will be a topic of further study. We conclude by suggesting that
the implications of the approach used here, both in terms of
theory and in terms of practice, are much broader than the
examination of WM and Gf. Indeed, there are many areas of
cognitive psychology that have relied overwhelmingly upon
aggregation-based statistics. The foundations of major frame-
works are thus predicated on the not-closely-tested belief that
performance on key tasks is stable through time. If, for instance,
correlations across tasks in the literature have been partially driven
by dynamics of change, it would necessitate a reinterpretation of
those frameworks. Although researchers sometimes attempt to
address this problem by removing some trials as “practice trials,”
this (A) simply replaces one assumption of stationarity with
another (often in a somewhat unprincipled way, as it is unclear
how many trials should be removed to ensure that performance in
the remaining sample is stationary), and (B) as our results here
show, is actually discarding signal, not noise. However, while our
results suggest that researchers should avoid discarding trials
whenever possible, the use of time-sensitive analyses on pilot data
may provide empirical support for timescales of change within a
given task and therefore what amount of practice would be
appropriate if it were to be implemented (i.e, where most
participants have reached reasonably stable performance).
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To address such issues future work in this domain, and many
other areas of experimental psychology, may benefit from a time-
sensitive understanding of cognitive task performance.

METHODS

Overview

Procedures were approved by the UW-Madison Institutional Review Board,
and all participants provided informed consent prior to participation. Two
types of tasks were completed in a dimly-lit room by each participant
(recruited from Introduction to Psychology courses; n =87, m,ge = 19.1
years, sd.ge = 0.73, 50 female; see Supplementary Fig. 1). Gf scores were
calculated by independently z-scoring, and then averaging the percent
correct, on two measures of matrix reasoning'®'". WM was assessed using
68 trials of a digitized forward spatial span similar to a Corsi-block-tapping
task (note that some participants received explicit feedback on this task
while others did not; this confirmed the robustness of our results to
feedback-related factors). Tasks were presented in an Internet browser
using Qualtrics.

Procedure

The experimenter, who was blind to the hypotheses of the study, initiated
the computerized tasks on Dell desktop computers running Windows 7.
The experimenter was blind to the presence or absence of feedback to the
participant. No other persons were in the room as the participant
completed the tasks. All stimuli were presented, using the Qualtrics survey
software, in Google Chrome on Dell 22-inch monitors. All instructions were
provided in writing via Qualtrics. Tasks were designed to last approxi-
mately 45 min total (see Supplementary Fig. 1). The two task types, WM
(spatial span) and Gf (two matrix reasoning assessments) were counter-
balanced pseudorandomly across participants, and an order effect was
included as a covariate in the model of change over time (see
Supplementary Table 1).

Within the spatial span task (similar to “Corsi block-tapping” or the recall
component of “symmetry span”'?7'%), at the beginning of each trial, a
display of 12 empty squares was randomly placed within an invisible 5x5
grid in the center of the screen. After 500 ms, one square would fill with
color for .5 s before returning to an empty outline. Immediately a different
square would fill with color, and so on until the trial’s set size was reached.
A sequence of random non-repeating target locations was defined
through these color changes. After the sequence participants used their
mouse to reproduce the sequence of targets. In the feedback-present
condition, participants were provided with the percent correct they
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Fig. 2 Correlations between Gf and two components of participants’ working memory trajectories. Components were the final accuracy
(r=0.33, BFjog3 = 2.99) and rate of change (r = —0.30, BFjg3 = 2.05). Shaded area indicates 95% CI.

received on each trial; in the feedback-absent condition, they were not
given any information about their performance. Set sizes were blocked in
groups of four in the following order: four of set size 6, four of set size 8,
four of set size 5, and four of set size 7. This series of 16 trials was repeated
four times. There were two very easy catch trials of set size 3 in between
the first and second blocks and between the third and fourth blocks for a
total of 68 trials. There was a break between the second and third blocks
(i.e, halfway through the task). Participants were not informed of the set
size on any trial. Identical trial orders of set sizes ensured that participants’
experience in the task was comparable and variations in change over time
would not be due to variations in histories of trial difficulties.

Analyses

Chance accuracy on matrix reasoning tasks was defined as failing to be
significantly above the guessing rate of 12.5%, utilizing a one-tailed
binomial test. This translated to excluding participants who scored 3 or
lower on the Sandia matrices'® or 4 or lower on the UCMRT'". Chance
performance (set at a 50% criterion) was also assessed on spatial
span catch trials of set size 3, however, no participants were excluded
by this criterion.

WM performance was modeled in a nonlinear Bayesian model using
the R package brms'>. Fixed effects of task presentation order and the
presence of feedback were included (and were confirmed to be not
reliable on their own or in interactions with other effects), as well as
random effects for each participant’s initial accuracy, rate of change in
accuracy (a time constant and inverse of speed), and asymptotic accuracy
(see Supplementary Information). From this model, mean parameter
estimates of participant-level initial, rate, and final accuracy were
extracted and used in further analyses. Correlations used bootstrapped
confidence intervals and were reported with the log (base 3) of the Bayes
Factor, such that conventional thresholds for evidence in favor of a
hypothesis would be +1.

Spatial span nonlinear model

See Supplementary Note 3 for the model formula. Data was fully
disaggregated when fit (i.e.,, every mouse click was a separate line in the
data set, with accuracy being 0 or 1). Set size was mean-centered (at 6.5) in
order to have all other effects estimated at this intermediate value. Starting
and asymptotic accuracy parameters were estimated on inverse-logit
scales in order to provide unbounded parameter ranges associated with
bounded ranges of predicted accuracies. This, in effect, provided
parameter-level generalized mixed-effects models accounting for the
systematic change in accuracy due to set size differences (i.e., participant-
level psychometric functions; see Supplementary Table 1 and Supplemen-
tary Figs. 2, 3). Rate parameters were estimated on a binary log scale and
included an additive offset of 2 (see Supplementary Note 3) in order to
avoid allowing the rate [50%-of-change time constant] to have impossibly
small values. This constraint assists in model convergence. Note that, while
previous research has addressed putatively separable components of
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learning (e.g., linear, log-linear, or log—log growth curve models), the fully
nonlinear model implemented here prevents the conflation of compo-
nents of learning inherent in many other forms of learning estimates.

The model was estimated using a Bernoulli objective function (i.e.,
“family”). All priors were default where possible, and otherwise were
minimally informative; we note that the between-participants results of
interest were reliant solely on default priors. The model was run for 4
chains, with 5,000 iterations per chain and the first 3,000 iterations per
chain discarded as warm-up. As is clear in the model formula, the primary
nonlinear formula involves an exponential change in accuracy as a
function of trial number. This curve is bounded between 0 and 1 by the
parameters’ generalized linear models (i.e., logistic regression for
asymptote and start parameters; in addition, the rate parameter was
estimated as a time constant on a binary log scale).

After model sampling was completed, point estimates for each
parameter were extracted from the model (i.e, means of the distributions
of participant-level estimates using the brms::coef function). This method
paralleled the standard approach in individual-differences studies, in which
task-level aggregation (e.g., using mean accuracies or psychometric
function thresholds) is followed by cross-task tests of relations.

Exclusions

Initial recruitment targets were 50 retained participants per feedback
condition. The feedback-present group initially included 55 participants;
12 were excluded for chance performance on the UCMRT? 6
were excluded for chance performance on Sandia matrices®, and 0 were
excluded for chance performance on set-size-3 spatial span. The
feedback-absent group initially included 53 participants®; were excluded
for chance performance on the UCMRT, 1 was excluded for chance
performance on the Sandia matrices, and none were excluded for
chance performance on set-size-3 spatial span. This left 42 participants
in the feedback-present group and 45 participants in the feedback-
absent group. Participants were recruited from a college population.
While this reduced the heterogeneity of the population (and thus the
extent to which the results can be extrapolated), this sampling strategy
was preferred given that our primary research questions were to
examine the extent to which our novel analysis approach provided new
insight into questions that had overwhelmingly been addressed
previously in similar populations (and thus, if we had utilized a different
population it would have been unclear whether our results spoke to the
previous work). Our results indicate that future work in a more
heterogenous sample would be beneficial—particularly in low perfor-
mers (where low rates of change could easily mask what would
eventually be high asymptotic performance).

Power

Power to detect correlations was calculated, and with 87 participants we
had 80% power to detect correlations of at least 0.295. Correlations thus
had well over 80% power to detect correlations of 0.48, which has been
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reported as the average correlation between WM and Gf (Ackerman, Beier,
& Boyle, 2005).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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