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Multivariate genome-wide covariance analyses of literacy,
language and working memory skills reveal distinct etiologies
Chin Yang Shapland 1,2,3✉, Ellen Verhoef 3,4, George Davey Smith 1,2, Simon E. Fisher 3,5, Brad Verhulst6, Philip S. Dale 7 and
Beate St Pourcain 1,3,5✉

Several abilities outside literacy proper are associated with reading and spelling, both phenotypically and genetically, though our
knowledge of multivariate genomic covariance structures is incomplete. Here, we introduce structural models describing genetic
and residual influences between traits to study multivariate links across measures of literacy, phonological awareness, oral
language, and phonological working memory (PWM) in unrelated UK youth (8–13 years, N= 6453). We find that all phenotypes
share a large proportion of underlying genetic variation, although especially oral language and PWM reveal substantial differences
in their genetic variance composition with substantial trait-specific genetic influences. Multivariate genetic and residual trait
covariance showed concordant patterns, except for marked differences between oral language and literacy/phonological
awareness, where strong genetic links contrasted near-zero residual overlap. These findings suggest differences in etiological
mechanisms, acting beyond a pleiotropic set of genetic variants, and implicate variation in trait modifiability even among
phenotypes that have high genetic correlations.
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INTRODUCTION
Within most Indo-European languages, including English, an
alphabetic writing system maps sequences of symbols to the
sounds and meaning of words1. Thus, symbols or graphemes
(letters or groups of letters) represent individual sounds (pho-
nemes). This correspondence of spoken language to printed
words, known as the alphabetic principle, is, in turn, the basis of
phonological decoding skills, which enable the interpretation of
texts through phonetic transformation2. As a consequence, close
and reciprocal interrelationships manifest between phonological
decoding, letter knowledge, and phonological awareness, the
ability to dissect and transform words according to their
phonological structure3. As links emerge and can be used in
real-time to identify printed words, children apply this knowledge
to develop reading and spelling skills1. Fully developed reading
comprehension skills also include the ability to identify and
integrate word meanings along with contextual and world
knowledge to construct the meanings of sentences and larger
discourse structures4. Once mastered, reading has a profound
impact on the acquisition of knowledge, including print expo-
sure5, and, ultimately, on final educational attainment6.
Based on this framework, the “Simple View of Reading”4,7

proposed that reading comprehension is the product of two
independent skill sets, “decoding” and “language comprehen-
sion”, where the latter specifically refers to listening comprehen-
sion7, i.e. the ability to interpret the meaning of words in
grammatical structures (sentences) presented orally7. In younger
children, reading comprehension is thought to be constrained
primarily by decoding abilities, whereas in older children, with a
high level of decoding ability, reading comprehension is mainly a
function of language comprehension8. Other theoretical
approaches, such as the Reading Systems Framework9 implicate

additional general cognitive resources in reading processes, such
as phonological working memory (PWM)10, which is typically
assessed by non-word repetition tasks11. This task requires a
purely sound-based division of non-words along with retention
and later reproduction of the sound sequence10. Like phonological
awareness, PWM contributes substantially to decoding abilities. In
addition, children with language and reading problems have
lower non-word repetition accuracy that may affect receptive
vocabulary development12.
Recent meta-analytic structural equation modeling studies have

reported strong to moderate phenotypic interrelations between
language, literacy, and related traits, such as working memory,
spanning childhood and adolescence13. A considerable part of
these relationships can be attributed to shared genetic factors as
shown by twin research14–22 and by studies of unrelated
individuals using genome-wide genotyping information23. These
findings add to the widely established evidence that these abilities
have moderate to strong heritability from mid-childhood
onwards14,18–26. Such traits include reading (decoding, fluency,
and comprehension)18,19,21–23, spelling18,22,23, phonological aware-
ness20,21,23, language comprehension14,16,23, and PWM (assessed
via non-word repetition tests11)23. Moreover, some developmental
genetic stability has been observed for academic measures of
reading achievement24 and both reading comprehension and
fluency, a composite of decoding accuracy and rate14, despite
children’s increasing proficiency in decoding abilities with age8,
accompanied by developmental genetic stability in oral language
performance14.
This wide-spread evidence of genetic pleiotropy is consistent

with the existence of “generalist genes” that contribute to shared
aspects of cognitive functioning, such as those involved in literacy,
language, working memory and related skills, affecting in
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particular learning abilities27. As hypothesized by a recent
“multiple-deficit theory” model, “generalist genes” may play a
role in increasing liability to developmental disorders, including
reading problems in dyslexia28,29. This is supported by observa-
tional research demonstrating that cumulative risk is the best
predictor for poor language and reading30. However, we lack a
comprehensive map of genetic covariance structures, which
include both these broad connections as well as unique genetic
relationships.
For example, strong genetic links have been identified between

oral language and reading comprehension14,16, while genetic
overlap between oral language and word reading fluency has
been only moderate14–16. Genetic differences may, thus, partially
distinguish meaning-based (i.e. comprehension-related) versus
code-based (i.e. decoding-related) abilities14–16, consistent with
the two etiologically distinct core factors proposed by the “Simple
View of Reading”, potentially shaping detectable overarching
multivariate genetic covariance patterns across domains. Even
within a domain, such as literacy, reading fluency measures may
subtly vary in the level of comprehension- and decoding-related
aspects required and, consequently, differ in trait interrelation-
ships. However, investigations of multiple measures of reading
fluency, allowing inferences beyond measurement-specific limita-
tions, are still outstanding, and shared genetic links with PWM
capturing underlying cognitive resources during mid-childhood
and early adolescence have not yet been characterized.
Importantly, the current understanding of multivariate genetic

covariance across these phenotypic domains has been largely
based on twin analyses14,17–23. While twin studies offer many
advantages, notably the ability to disentangle genetic from shared
environmental and nonshared environmental factors31, they have
also been criticized for their reliance on several assumptions. This
includes, for example, the equal environment assumption for
mono- and dizygotic twins, in particular the equal treatment of
twins, the correct classification of zygosity and the representa-
tiveness of twin studies for the general population31. Investiga-
tions of multivariate genetic structures with independent
approaches, utilizing general population-based samples, have, so
far, been missing.
This study aims to evaluate the genetic relation of reading skills

to abilities that are outside of reading proper but are nonetheless
literacy-related. Reading is a complex trait that builds upon
numerous, interrelated skills that each have a myriad genetic and
environmental causes. As people learn to read they must integrate
these disparate, complex abilities into a fluent, nearly automatic
skill. Understanding how these interrelated skills culminate in an
individual’s ability to read provides a framework for modifying the
way we teach students to read and ultimately allow us to enhance
the effectiveness of the learning process.
Firstly, we model the multivariate genetic covariance across four

phenotypic domains: literacy (assessed by reading fluency and
spelling measures), phonological awareness (phonemic aware-
ness), oral language (listening comprehension), and PWM (non-
word repetition).
Secondly, by modeling genetic data from unrelated individuals,

we use independent methods to confirm and augment knowl-
edge of multivariate genetic architectures identified in twin
studies. Specifically, we bypass twin research-related criticisms
by investigating multivariate genetic trait covariance in unrelated
individuals with genome-wide single nucleotide polymorphism
(SNP) information32, studying youth from The Avon Longitudinal
Study of Parents and Children (ALSPAC) birth cohort33,34. Here, we
fit structural models to genetic relationship-matrices (GRMs),
derived from genome-wide markers, using structural equation
modeling (Genetic-relationship-matrix structural equation model-
ing, GSEM)32. Specifically, GSEM adapts multivariate twin models35

to make them applicable to GRM-based analyses, as originally
proposed for genomic data using uni- and bivariate genomic-

relatedness-based restricted maximum-likelihood (GREML)36,37.
Like GREML36, GSEM dissects phenotypic variation into additive
genetic variance (A) and residual variance (E). However, beyond
estimating SNP-based heritability estimates (SNP-h2) and genetic
correlations, GSEM models aim to identify underlying genetic
factor structures. In addition to fitting independent pathway and
Cholesky decomposition model, we also implement a novel
combined Independent Pathway/Cholesky (IPC) model, enhancing
the interpretability of genetic factor structures without a loss of
model fit in residual factor structures. This approach enables us
ultimately to compare genetic and residual covariance between
traits to illuminate similarities and differences in etiological
relationships between literacy (reading fluency, spelling), phono-
logical awareness, oral language, and PWM.

RESULTS
Univariate and bivariate genetic variance analyses
Variability in reading fluency (non-word-reading speed and
accuracy, word reading speed and accuracy, passage reading
speed and accuracy), spelling, phonemic awareness, listening
comprehension, and non-word repetition during mid-childhood
and adolescence (Table 1) was moderately heritable, confirming
previous reports23,38. Using Genome-wide Complex Trait Analysis
(GCTA) software, GREML-based SNP-based heritability (GCTA SNP-
h2) estimates for reading fluency, spelling accuracy, phonemic
awareness, listening comprehension, and non-word repetition
ranged between 30% (SE= 0.06) and 50% (SE= 0.07) when
assessed in unrelated children and adolescents from the general
population, irrespective of phenotypic transformation (Table 1 and
Supplementary Table 1). All scores were phenotypically (Supple-
mentary Table 2) and genetically (Supplementary Tables 3 and 4)
correlated (Supplementary Fig. 1) ranging between 0.2–0.8 and
0.4–0.98, respectively.

Modeling strategy for multivariate analyses
Using a series of structural equation models, we describe the
multivariate polygenic covariance of reading fluency, spelling,
phonemic awareness, listening comprehension and non-word
repetition abilities. Due to the computational burden of multi-
variate genetic variance analyses, we were not able to fit one large
combined model of all 11 measures in this study. Instead, we
adopted a two-stage approach: First, we fit multiple smaller-scale
multivariate models focussed on literacy measures only with the
aim of identifying proxy measures that sufficiently capture the
observed genetic structures of reading fluency (6 measures) and
spelling (2 measures), which were assessed with multiple
psychological instruments (Stage 1, Supplementary Table 5).
Second, we fitted multivariate genetic models across traits
including the proxy measures of reading fluency and spelling
(identified from Stage 1) as well as phonemic awareness, listening
comprehension and non-word repetition (Stage 2, Supplementary
Table 5).
For each fitted multivariate model during either stage (except

for spelling), three GSEM submodels were examined: (i) a
saturated model (Cholesky decomposition), (ii) an independent
pathway model, and (iii) a hybrid IPC model, involving an
independent pathway model for the genetic covariance structure
and a Cholesky decomposition model for the residual covariance
structure. The model fit was compared using Akaike information
criterion (AIC) and Bayesian information criterion (BIC) fit indices
and likelihood ratio tests (LRT)39. The two spelling measures (Stage
1) were fitted with a Cholesky decomposition model.

C.Y. Shapland et al.

2

npj Science of Learning (2021)    23 Published in partnership with The University of Queensland

1
2
3
4
5
6
7
8
9
0
()
:,;



Single-domain structural models of reading fluency
We started the process of proxy measure identification (Stage 1,
Supplementary Table 5) by structurally modeling the six reading
fluency measures with the aim to identify the proxy measure of
reading fluency: non-word reading accuracy and speed, word
reading speed and accuracy, and passage reading accuracy and
speed, all ascertained in ALSPAC participants between the ages of
9–13 years (Table 1). Following BIC (the more stringent criterion),
the most parsimonious model describing the data was the IPC
model (Fig. 1, Table 2, and Supplementary Tables 6–9). The model
identified evidence for a shared genetic factor (A) across the six
reading fluency measures (Fig. 1), in addition to specific genetic
factors for some of the measures.
For the shared genetic factor (Fig. 1a, b), the strongest factor

loading was estimated for passage reading accuracy, explaining
47% (SE= 0.07) of the phenotypic variation (Supplementary Table
6) and 93% (SE= 0.04) of the SNP-h2 (Supplementary Table 7). The
weakest factor loading was found for word reading speed (Fig. 1a,
b), explaining only 27% (SE= 0.07) of the phenotypic variation
(Supplementary Table 6), but 82% (SE= 0.09) of the SNP-h2

(Supplementary Table 7). Thus, the shared genetic factor captured
the vast majority of genetic variance across all reading fluency
measures, and its factor structure is reflected by near-perfect
genetic correlations (rg) between the different reading fluency
measures (Supplementary Table 8 and Fig. 1c). For example,
passage reading accuracy had rg of 0.97 (SE= 0.02) with non-word
reading accuracy, 0.92 (SE= 0.04) with non-word reading speed,
0.92 (SE= 0.03) with word reading accuracy, 0.88 (SE= 0.05) with
word reading speed, and 0.93 (SE= 0.04) with passage
reading speed.
There was further evidence for measurement-specific factors

describing additional genetic variation underlying non-word
reading speed (passing the nominal p-value threshold only), word
reading speed and accuracy, and passage reading accuracy
(Fig. 1a, b), although the explained phenotypic variation was
small. Word reading speed (age 13) had the strongest
measurement-specific factor loading explaining 6% (SE= 0.03) of

phenotypic variance (Supplementary Table 6), corresponding to
18% (SE= 0.09) of the SNP-h2 (Supplementary Table 7).
To ensure that the conclusion from Stage 2 analysis would be

robust across the choice of the reading fluency measure, we
selected two proxy measures based on the structural model for
reading fluency in Stage 1: (i) passage reading accuracy (age 9),
because it showed the highest common factor loading for
reading, and (ii) word reading speed (age 13), because it showed
the highest measurement-specific genetic factor loading.

Single-domain structural models of spelling
As a second proxy identification analysis in Stage 1, we fitted a
saturated Cholesky model to spelling accuracy scores (Supple-
mentary Table 5) at 7 and 9 years of age (Supplementary Fig. 2
and Supplementary Tables 10–12). This model showed that
genetic factors underlying spelling accuracy at age 7 years can
capture nearly all (94% with SE= 0.09) of the genetic variation for
spelling accuracy at age 9 years (Supplementary Table 11), with rg
of 0.97 (SE= 0.05, Supplementary Table 12). Consequently, the
former measure was selected as a proxy for Stage 2 analysis.

Multi-domain structural models
In Stage 2 analyses, we investigated the multivariate genetic
covariance of literacy skills (reading fluency and spelling),
phonological awareness (phonemic awareness), oral language
(listening comprehension), and PWM (non-word repetition). Each
of the proxy measures for reading fluency was independently
studied. The multi-domain model with passage reading accuracy
(age 9) as proxy for reading fluency was referred to as passage
reading subset (Fig. 2), while the multi-domain model with word
reading speed (age 13) as proxy was referred to as word reading
subset (Fig. 3). For each analysis (Tables 3 and 4), we compared
the fit of a saturated Cholesky decomposition to the fit of an
independent pathway and IPC model.
For the passage reading analysis, the IPC model fitted the data

best, based on AIC, BIC, and LRTs (Table 3 and Supplementary
Tables 13–16). There was evidence for a single shared genetic

Table 1. Description of measures.

Measure Mean age (SE) in years %Males N GCTA SNP-h2 (SE)

P reading a 9 (NARA) 9.88 (0.32) 49.4 5048 0.50 (0.07)

P reading s 9 (NARA) 9.88 (0.32) 49.3 5037 0.45 (0.07)

W reading a 9 (NBO) 9.87 (0.32) 49.6 5574 0.46 (0.06)

W reading s 13 (TOWRE) 13.83 (0.20) 48.5 4131 0.40 (0.09)

NW reading a 9 (NBO) 9.87 (0.32) 49.5 5569 0.32 (0.06)

NW reading s 13 (TOWRE) 13.83 (0.20) 48.4 4121 0.38 (0.09)

Spelling a 7 (NB) 7.53 (0.31) 50.5 5637 0.32 (0.06)

Spelling a 9 (NB) 9.87 (0.32) 49.5 5564 0.38 (0.06)

Phon aware 7 (AAT) 7.53 (0.31) 50.9 5749 0.39 (0.06)

Listening compreh 8 (WOLD) 8.63 (0.30) 50.1 5324 0.32 (0.07)

NW repetition 8 (CNRep) 8.63 (0.30) 50.1 5315 0.32 (0.07)

SNP heritability (SNP-h2) was estimated with Genetic-relationship-matrix Restricted Maximum Likelihood (GREML) analysis using Genome-wide Complex Trait
Analysis (GCTA) software. SNP-h2 are based on rank-transformed residuals.
Measures: P reading a 9 (NARA), passage reading accuracy (NARA II54); P reading s 9 (NARA), passage reading speed (NARA II54); W reading a 9 (NBO), word
reading accuracy (ALSPAC-specific: NBO52); W reading s 13 (TOWRE), word reading speed (TOWRE56); NW reading a 9 (NBO), non-word reading accuracy
(ALSPAC-specific: NBO52); NW reading s 13 (TOWRE), non-word reading speed (TOWRE56); Spelling a 7 (NB), spelling accuracy (ALSPAC-specific: NB23); Spelling a
9 (NB), spelling accuracy (ALSPAC-specific: NB23); Phon aware 7 (AAT), phonemic awareness (AAT57); Listening compreh 8 (WOLD), listening comprehension
(WOLD59); NW repetition 8 (CNRep), and non-word repetition (CNRep11).
AAT Auditory Analysis Test, ALSPAC Avon Longitudinal study of Parents and Children, CNRep Children’s Test of Nonword Repetition, N number of participants
with phenotype data and genetic data, NARA II The Neale Analysis of Reading Ability-Second Revised British Edition, NBO ALSPAC-specific assessment
developed by Nunes, Bryant and Olson, NB ALSPAC-specific assessment developed by Nunes and Bryant, TOWRE Test Of Word Reading Efficiency, PWM
Phonological working memory, WOLD Wechsler Objective Language Dimensions, SE standard error.
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Table 2. Single-domain GSEM model fit comparisons of reading fluency.

Model LL -2LL k AIC BIC Δχ2 to Cholesky Δdf to Cholesky p value

Cholesky −4488.71 8977.41 42 9061.41 9341.84 – – –

IPC −4504.50 9009.00 33 9075.00 9295.34 31.59 9 2.3 × 10−4

IP −4656.96 9313.91 24 9361.91 9522.16 336.50 18 <10−10

5866 participants had phenotype data of this domain and genetic data. The models were compared with likelihood ratio tests, AIC and BIC. The model with
the lowest BIC values is shown in bold and its path diagram is shown in Fig. 1. All analyses are based rank-transformed residualized scores.
AIC Akaike information criterion, BIC Bayesian information criterion, Cholesky Cholesky decomposition (saturated) model, GSEM genetic-relationship matrix
structural equation modeling, IPC joint independent pathway (genetic part)/Cholesky (residual part) model, IP independent pathway model, LL log-likelihood,
k number of parameters.
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Fig. 1 Single-domain structural model of reading fluency. Genetic-relationship matrix structural equation modeling (GSEM) of six reading
fluency measures (N= 5866). The path diagram (a) depicts the genetic factors of the best-fitting model (IPC model) describing variation in
non-word reading accuracy at age 9 (NW reading a 9, NBO), non-word reading speed at age 13 (NW reading s 13, TOWRE), word reading
accuracy at age 9 (W reading a 9, NBO), word reading speed at age 13 (W reading s 13, TOWRE), passage reading accuracy at age 9 (P reading a
9, NARA), and passage reading speed at age 9 (P reading s 9, NARA). The phenotypic variance was dissected into common (AC) and specific
(AS1-AS6) genetic factors, according to an Independent Pathway model, as well as residual factors, based on a Cholesky decomposition (E1-E6;
Factor loadings are not shown, Supplementary Table 6, and Supplementary Fig. 3). Observed measures are represented by squares and factors
by circles. Single-headed arrows (paths) define relationships between variables. Dotted and solid paths represent factor loadings with p > 0.05
and p ≤ 0.05 respectively. The variance of latent variables is constrained to unit variance; this is omitted from the diagram to improve clarity.
The variance plot (b) depicts the standardized genetic variance components for the model in a. The correlogram (c) shows genetic (rg, lower
triangle) and residual (re, upper triangle) correlations for the model in a. Point estimates and their SEs are reported in Supplementary Table 9.
All measures were rank-transformed. IPC model – Combined Independent Pathway/Cholesky model.
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factor across all the abilities studied (Fig. 2a and Supplementary
Table 13), capturing between 13% (SE= 0.04) and 45% (SE= 0.07)
of the phenotypic variance of each trait and, thus, a large
proportion of SNP-h2 (Fig. 2b, factorial co-heritabilities >44%;
Supplementary Table 14). This is reflected in moderate to strong
genetic correlations between traits (rg= 0.49–0.97), even between
passage reading accuracy and listening comprehension (rg= 0.66
with SE= 0.11, Fig. 2c and Supplementary Table 15). The shared
genetic factor explained 27% (SE= 0.05) of the phenotypic
variance for spelling accuracy, 31% (SE= 0.06) for phonemic
awareness and 45% (SE= 0.07) for passage reading, but only 13%
(SE= 0.04) for listening comprehension and 14% (SE= 0.04) for
non-word repetition (Fig. 2b and Supplementary Table 13). This
corresponds to 91% (SE= 0.08), 98% (SE= 0.1), 97% (SE= 0.08),

44% (SE= 0.14), and 53% (SE= 0.14) of the genetic variance for
each measure respectively (Supplementary Table 14). Thus, the
majority of genetic variance across all traits (>90%) is captured by
a shared genetic factor. Additional measurement-specific genetic
influences, reflecting here trait-specific genetic variation, were
estimated for listening comprehension and non-word repetition
(Fig. 2a). These factors explained 17% (SE= 0.06) and 12% (SE=
0.05) of the phenotypic variance respectively (Supplementary
Table 13 and Fig. 2b), corresponding to 56% (SE= 0.14) and 47%
(SE= 0.14) of the SNP-h2 (Supplementary Table 14).
Identified multivariate model structures for the second dataset,

including the reading fluency proxy word reading speed (age 13)
(Fig. 3), assessed ~4 years later than passage reading accuracy
(age 9), confirmed the findings above. Model fitting indices, again,
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(IPC model) describing variation in spelling accuracy at age 7 (Spelling a 7, NB), phonemic awareness at age 7 (Phon aware 7, AAT), listening
comprehension at age 8 (Listening compreh 8, WOLD), non-word repetition at age 8 (NW repetition 8, CNRep), and passage reading accuracy
at age 9 (P reading a 9, NARA). The phenotypic variance was dissected into common (AC) and specific (AS1-AS5) genetic factors, according to
an Independent Pathway model, as well as residual factors (E1-E5), based on a Cholesky decomposition (Factor loadings are not shown,
Supplementary Table 13, Supplementary Fig. 4). Observed measures are represented by squares and factors by circles. Single-headed arrows
(paths) define relationships between variables. Dotted and solid paths represent factor loadings with p > 0.05 and p ≤ 0.05 respectively. The
variance of latent variables is constrained to unit variance; this is omitted from the diagram to improve clarity. The variance plot (b) depicts the
standardized genetic variance components for the model in a. The correlogram (c) shows genetic (rg, lower triangle) and residual (re, upper
triangle) correlations for the model in a. Point estimates and their SEs are reported in Supplementary Table 16. All measures were rank-
transformed. IPC model – Combined Independent Pathway/Cholesky model.
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suggested a marginally better fit of the IPC model, based on AIC,
BIC and LRTs (Table 4 and Supplementary Tables 17–20). Thus,
consistent genetic factor structures between reading fluency,
spelling, phonemic awareness, listening comprehension and non-
word repetition (Supplementary Tables 15 and 19) could be
robustly identified using different multivariate structural models,
irrespective of the genetic composition of the selected reading
fluency measure. However, in contrast to the model for the
passage reading dataset, the shared factor only captured 56%
(SE= 0.14) of the SNP-h2 for word reading speed (age 13), while
the remaining 44% (SE= 0.14) were captured by a trait-specific
factor (Supplementary Table 18). This pattern mirrors the large
specific factor for word reading speed estimated with the Stage 1
reading fluency model (Fig. 1a). Nonetheless, estimated genetic

correlations between word reading speed and other phenotypes
were still moderate to high; they were 0.52 (SE= 0.11) with
listening comprehension, 0.50 (SE= 0.10) with non-word repeti-
tion, 0.72 (SE= 0.10) with spelling and 0.74 (SE= 0.10) with
phonemic awareness (Fig. 3c and Supplementary Table 20).
A sensitivity analysis confirmed that the bivariate genetic

correlations estimated with GSEM and GCTA, were nearly identical
(Supplementary Tables 3 and 4). Furthermore, all multivariate
GSEM-SNP-h2 (Supplementary Tables 8, 12, 15, and 19) were
consistent with univariate GCTA SNP-h2 estimates (Supplementary
Table 1), based on derived 95% confidence intervals (CIs).
Lastly, we compared multivariate genetic and residual trait

correlation patterns as fitted by IPC models. Among reading
fluency measures (Fig. 1c), and extending to spelling accuracy and
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Fig. 3 Multi-domain structural model (Word reading subset). Genetic-relationship matrix structural equation modeling (GSEM) of literacy,
phonological awareness, language and PWM abilities (N= 6383). The path diagram (a) depicts the genetic factors of the best-fitting model
(IPC model) describing variation in spelling accuracy at age 7 (Spelling a 7, NB), phonemic awareness at age 7 (Phon aware 7, AAT), listening
comprehension at age 8 (Listening compreh 8, WOLD), non-word repetition at age 8 (NW repetition 8, CNRep), and word reading speed at age
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Supplementary Table 17, and Supplementary Fig. 4). Observed measures are represented by squares and factors by circles. Single-headed
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phonemic awareness (Figs. 2c and 3c), strong positive genetic
correlations (>0.7) matched modest to strong residual correlations
(0.27–0.80) with the same direction of effects. Residual correlations
among literacy measures, with age differences spanning up to 6
years, were still moderate. For example, residual correlations were
estimated at 0.67 (SE= 0.03) and 0.39 (SE= 0.06) between spelling
accuracy (age 7) and, both passage reading accuracy (age 9)
(Fig. 2c and Supplementary Table 16) and word reading speed
(age 13) (Fig. 3c and Supplementary Table 20) respectively.
Genetic and residual correlation patterns across different domains,
especially listening comprehension and literacy, were more
diverse. While there was evidence for moderate to strong genetic
correlations across all domains, the respective residual correlations
were weak or null (zero within the 95% CIs), as shown in
Supplementary Tables 16 and 20. Especially, the residual correla-
tions between listening comprehension versus passage reading,
spelling accuracy, and phonemic awareness, were low in
comparison to genetic correlations (Fig. 2c); respective residual
correlations were 0.08 (SE= 0.05), 0.02 (SE= 0.05) and 0.11
(SE= 0.07), while corresponding genetic correlations were 0.64
(SE= 0.11), 0.66 (SE= 0.11), and 0.66 (SE= 0.11) (Fig. 2c and
Supplementary Table 16). Likewise, most of the phenotypic
covariance was accounted for by genetic covariance, with
bivariate SNP-h2 estimates consistent with one, based on derived
95% CIs (Supplementary Table 15).

DISCUSSION
By modeling multivariate genetic variance within a population-
representative sample of unrelated youth using genome-wide
markers, we demonstrated that literacy, phonological awareness,
language and PWM abilities share a large proportion of their
underlying genetic variation, but also revealed substantial
differences in their genetic variance composition. These findings
imply a pleiotropic set of common genetic variants that
contributes broadly to performance in these domains and can
be augmented by trait-specific genetic variation. Together with
evidence for discordant genetic and residual covariance patterns,
especially between genetically highly correlated oral language
and literacy abilities, our findings suggest differences in under-
lying etiological mechanisms.
In line with long-established findings from multivariate twin

research14,18,23, we identified an overarching genetic (core) factor
that is not only shared across literacy skills, including non-word,
word, passage reading abilities and spelling, but also with other
abilities such as phonemic awareness, listening comprehension,
and non-word repetition that are foundational for the acquisition
and use of literacy skills. Utilizing passage reading accuracy (age 9)
as a reading fluency proxy, the overarching genetic factor
accounted almost fully (>90%) for the genetic variance in reading
fluency, spelling and phonemic awareness and, to a lesser extent,
for the genetic variance in listening comprehension (44%) and
non-word repetition (53%). The identified shared genetic factor

suggests wide-spread pleiotropy, in support of the concept of
“generalist genes”27 that, here, may capture multiple shared
aspects of cognitive functioning related to decoding abilities. The
shared genetic covariance structures also include genetic overlap
between listening comprehension and reading fluency, and
extend findings from previous twin research15,40 that detect
primarily moderate genetic correlations between oral language
and reading fluency of 0.47–0.58 (across ages 7, 12, and 16
years14). The connection between oral language and reading
fluency may arise due to several processes: Not all words can be
acquired through phonological skills, as predicted by the “Simple
View of Reading”4,7; words with inconsistent orthographic –
phonological mappings need to be memorized or used in
conjunction with contextual cues15. Furthermore, once decoding
skills have been established and well-practiced on reading words,
the orthographic representations of those words become
integrated “lexical representations” directly connected to phono-
logical and semantic knowledge15,41. Likewise, phonological
awareness is no longer simply a predictor of reading ability, but
instead becomes reciprocally shaped by reading experience1,42.
These processes potentially strengthen the covariance between
language, literacy, and phonological awareness with reading
experience, as children accumulate increasingly detailed ortho-
graphic knowledge1.
Multivariate genetic variance models also demonstrated that

non-word repetition, here considered a proxy of PWM, shares
genetic variation with listening comprehension, literacy abilities,
and phonemic awareness. These findings extend twin research
reporting moderate genetic correlations between early-childhood
non-word repetition and a mid-childhood reading composite
measure (rg= 0.44)43 and emphasize the importance of general
cognitive resources across domains during mid-childhood. Based
on the core genetic factor contribution to phenotypic variance
(factorial co-heritabilities), our structural models suggest that
shared etiological processes contribute to nearly half of the
genetic variance for both, PWM and language. Our findings
support also recent investigations of working memory, based on
genome-wide genotyping information from unrelated individuals,
using summary statistics44. This research suggested that both
verbal numerical reasoning and memory-related tasks are related
to an underlying common genetic factor44, which has long been
hypothesized by observational studies45.
The genetic core factor across all domains studied here could

be robustly identified using two diverse reading fluency proxies
ascertained at different developmental stages, spanning mid-
childhood to early adolescence. Longitudinal phenotypic research
has demonstrated that word decoding skills are age-dependent,
shaping the transition of “learning to read” to “reading to
learn”24,46. In contrast, etiological evidence from twin studies has
confirmed a high level of genetic stability for word-level
decoding14, with age-to-age (7–12–16 years) genetic correlations
of 0.72–0.84. Similarly, our findings confirm a high level of

Table 3. Multi-domain GSEM model fit comparisons of passage reading subset.

Model LL -2LL k AIC BIC Δχ2 to Cholesky Δdf to Cholesky p value

Cholesky −8909.53 17819.06 30 17879.06 18082.23 – – –

IPC −8910.21 17820.41 25 17870.41 18039.72 1.35 5 0.93

IP −8961.81 17923.61 20 17963.61 18099.06 104.55 10 <10−10

6453 participants had phenotype data of this domain and genetic data. The models were compared with likelihood ratio tests, AIC and BIC. The model with
the lowest BIC values is shown in bold and its path diagram is shown in Fig. 2. All analyses are based rank-transformed residualized scores.
AIC Akaike information criterion, BIC Bayesian information criterion, Cholesky Cholesky decomposition (saturated) model, GSEM genetic-relationship matrix
structural equation modeling, IPC joint independent pathway (genetic part)/Cholesky (residual part) model, IP independent pathway model, LL log-likelihood,
k number of parameters.
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developmental stability in the genetic structure of reading fluency
using very different methods.
We also observed evidence of at least three instances where

genetic influences reflect specific genetic variation. First, there was
a trait-specific genetic variance contribution to oral language
abilities (here listening comprehension), consistent with the
“Simple View of Reading”4,7 distinguishing language comprehen-
sion from decoding abilities. This provides converging evidence
with recent twin models suggesting a strong patterning of oral
language with reading comprehension, compared to a distinct
and only moderate overlap between oral language with reading
fluency14. Furthermore, word recognition (decoding) and listening
comprehension have been shown to exert independent genetic
influences on reading comprehension16, e.g. children with high
reading accuracy and fluency are not necessarily efficient in
reading comprehension47.
Second, we identified a trait-specific genetic variance contribu-

tion underlying non-word repetition. PWM is thought to consist of
two components; (i) a short-term phonological store, as the non-
word has to remain in memory long enough to identify the
individual phonemes and their sequence, and (ii) an articulatory
rehearsal process, as the non-word has to be rehearsed sufficiently
rapidly and repeatedly to prevent it from decaying over time10.
Thus, while these processes are strongly interlinked with language
and literacy, supported by findings of this study and others44, we
also find evidence for an independent genetic contribution.
Third, the structural model across all domains identified a trait-

specific genetic factor for reading fluency, as proxied by word
reading speed (Fig. 3), but not passage reading accuracy (Fig. 2).
As genetic variance in word reading speed, too, could only
partially be explained by the common genetic factor shared with
other reading fluency measures (82%: Fig. 1 and Supplementary
Table 6, Stage 1 analysis), these genetic contributions are likely to
represent measurement-specific influences. To the best of our
knowledge, there are currently no studies that have directly
examined the genetic links between passage and word reading
fluency. The differences in genetic structures may reflect the fact
that reading accuracy and speed measures, based on grammati-
cally and semantically coherent passages, are likely to be more
influenced by comprehension skills compared to those based on
single-word reading1,48.
Beyond genetic correlations, literacy and phonological awareness

measures were, without exception, also residually intercorrelated.
Residual trait covariance reflects the phenotypic trait covariance that
is not captured by GRMs derived from unrelated individuals. As
weak to strong residual correlations were observed across different
psychological instruments and raters across a window of ~6 years,
correlated assessment-specific error is an unlikely explanation.
Residual correlations may also reflect the influence of rare genetic
variation although this, too, is an unlikely scenario, given the low
power of population-based cohorts to detect rare genetic effects49.
Instead, residual correlations are likely to reflect here shared
environmental factors such as neighborhood, but also the English

schooling system. As such, our findings suggest transferability of
acquired skills across literacy and phonological awareness domains.
This conclusion is strongly supported by twin study findings of bi-
directional effects between reading fluency and reading compre-
hension and overlapping genetic and environmental factors50. In
contrast, residual correlations between oral language versus literacy
or phonological awareness abilities were near zero, despite
moderate genetic relationships. In conjunction with the identified
trait-specific genetic variance contributions for listening comprehen-
sion, these findings provide converging evidence for differences in
underlying etiological mechanisms between oral language versus
literacy/phonological awareness skills. Moreover, they implicate
reduced modifiability of listening comprehension by processes that
shape literacy skills during mid-childhood to early adolescence.
Although the nature of these etiological mechanisms is not yet
known, our findings highlight the importance of studying the scope
of schooling and intervention programs targeting reading and
language.
This study benefits from modeling multivariate genetic trait

covariance using directly assessed genomic data, and likelihood-
ratio-test-based model comparison against a saturated model.
GSEM32, thus, extends GRM-based methods, such as GREML36, by
incorporating models that are popular in multivariate twin studies.
The GSEM approach takes advantage of (i) accurate estimations of
genetic relatedness between unrelated individuals using genomic
data, (ii) similar recruitment conditions for all participants,
including comparable environmental conditions (e.g. UK school-
ing system), and, consequently, and (iii) general population-based
findings through use of the ALSPAC cohort33. A further strength of
this work is the introduction of IPC models that jointly enhance
both the interpretability of model coefficients and the accuracy of
estimates, while incorporating information from all available data.
Importantly, our analyses show that unmodeled shared residual
variation can strongly affect the model fit (LRT-p < 10−10). Thus,
GSEM also complements and extends existing twin research
methodologies by presenting new models to study genetic trait
interrelationships in samples of unrelated individuals with dense
phenotyping information, such as ALSPAC.
Our results should be interpreted in light of several limitations.

First, the abilities studied here were all assessed during mid-
childhood and adolescence. ALSPAC lacks longitudinal informa-
tion on these measures that would allow assessing measurement-
invariant, development-specific genetic variance changes, such as
previously reported for age-dependent word decoding skills24,46.
However, using a latent variable approach, as presented in this
study, still facilitates the identification of shared and specific
genetic variance components. Second, population-level phenom-
ena, such as assortative mating and dynastic effects, can
potentially inflate genetic correlations between assessed mea-
sures and upward-bias SNP heritability, even in seemingly
unrelated individuals51. For example, parents may select each
other based on their compatibility in cognitive skills, which may
create a reading-rich environment for their children. These

Table 4. Multi-domain GSEM model fit comparisons of word reading subset.

Model LL -2LL k AIC BIC Δχ2 to Cholesky Δdf to Cholesky p value

Cholesky −10105.56 20211.12 30 20271.12 20473.96 – – –

IPC −10107.59 20215.19 25 20265.19 20434.22 4.07 5 0.54

IP −10150.18 20300.36 20 20340.36 20475.58 89.23 10 <10−10

6383 participants had phenotype data of this domain and genetic data. The models were compared with likelihood ratio tests, AIC and BIC. The model with
the lowest BIC values is shown in bold and its path diagram is shown in Fig. 3. All analyses are based rank-transformed residualized scores.
AIC Akaike information criterion, BIC Bayesian information criterion, Cholesky Cholesky decomposition (saturated) model, GSEM genetic-relationship matrix
structural equation modeling, IPC joint independent pathway (genetic part)/Cholesky (residual part) model, IP independent pathway model, LL log-likelihood,
k number of parameters.
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phenomena could explain some genetic covariation across
measures in our study. However, population-level biases should
systematically affect all intercorrelated traits and are, thus, unlikely
to account for differences in genetic and residual correlation
patterns between language and literacy measures. Furthermore,
this bias is not unique to GSEM or methods analyzing genetic
covariance structures in unrelated individuals. Violation of the
random mating assumption also introduces bias to genetic
variance estimates in twin studies, although the direction of bias
would be opposite; with an overestimation of the shared
environmental and an underestimation of the shared genetic
effect31. Finally, the lack of independent cohorts with comparable
sets of literacy, phonological awareness, language, and PWM
measures prevents a direct replication of our work, although the
consistency of our findings with existing research study reports
supports the validity of our results.
Modeling multivariate genome-wide genetic covariance, we have

identified an overarching, pleiotropic genetic factor that is shared
among measures of literacy, phonological awareness, language, and
PWM. This core genetic factor is augmented by trait-specific genetic
variance contributions, especially for oral language and PWM.
Together with evidence for distinct genetic and residual covariance
structures across oral language and literacy, our findings suggest a
diverse spectrum of interrelated cognitive skills involving multiple
etiological mechanisms and different levels of trait modifiability
during mid-childhood and adolescence.

METHODS
Cohort description
This study was carried out using longitudinal data from children and
adolescents between 7 and 13 years from the ALSPAC study, a UK
population-based pregnancy-ascertained birth cohort (estimated birth
date: 1991–1992)33,34.
Written informed consent was obtained where appropriate for the use

of data collected via questionnaires and clinics was obtained from
participants following the recommendations of the ALSPAC Ethics and Law
Committee at the time. Consent for biological samples has been collected
in accordance with the Human Tissue Act (2004). Details on the
recruitment of the ALSPAC cohort can be found in Supplementary Note 1.
Please note that the study website contains details of all the data that is

available through a fully searchable data dictionary and variable search
tool: http://www.bristol.ac.uk/alspac/researchers/our-data/.

Phenotype descriptions
Traits in this study included reading fluency (non-word reading speed and
accuracy, word reading speed and accuracy, passage reading speed and
accuracy), spelling (accuracy), phonemic awareness, listening comprehen-
sion, and non-word repetition. These measures were ascertained using
standardized as well as ALSPAC-specific instruments (Table 1). We
excluded ALSPAC measures that were composites of multiple language
and literacy domains (such as e.g. verbal intelligence) or which involved
tiered assessments.

Word reading accuracy age 9 (NBO). To evaluate word reading accuracy,
the child was asked to read aloud a list of 10 real words. Nunes and Bryant
selected these real words, which are a subset of those proposed by Nunes,
Bryant, and Olsen (NBO)52. The reading accuracy score consists of the total
number of items that the child read correctly. The test–retest reliability was
0.80, and the score had a correlation of 0.83 with the Schonell Word
Reading Task53.

Passage reading speed and accuracy age 9 (NARA II). Children’s passage
reading speed and accuracy were assessed with the revised Neale
Analysis of Reading Ability54 (NARA II). A story was given to the child to
read. The tester recorded the time it took the child to read each passage,
and noted any errors made by the child. All scores were standardized by
age. Depending on age at assessment, the parallel form reliability for
accuracy ranged from 0.84 to 0.92 (average 0.89), and from 0.50 to 0.83
(average 0.66) for speed55. Reading speed and accuracy had a

correlation of 0.76 and 0.95 with the Schonell Graded Word Reading
Test53 respectively.

Word reading speed age 13 (TOWRE). The Test of Word Reading
Efficiency56 (TOWRE) was used to assess overall word reading efficiency
using the Sight Word Efficiency sub-scale. The child was given 45 seconds
to read as many words as possible. Words that were skipped or wrong
words were marked by the tester. The reading speed score was computed
as the total number of correct words read by the child. Depending on age
and sub-task, the alternate form reliability for this test ranged between
0.86 and 0.97 (with an average of 0.93), and correlations with the
Woodcock Reading Mastery Tests ranged from 0.89 to 0.94, demonstrating
concurrent validity55.

Non-word reading accuracy age 9 (NBO). The child was asked to read
aloud 10 non-words. These words had been selected from a larger
selection of non-words using an ALSPAC-specific instrument based on the
research conducted by Nunes and colleagues52. The test–retest reliability
of the non-word reading task was 0.73 and the score had a correlation of
0.73 with the Schonell Word Reading Task53. The tester emphasized to the
child that the words were made-up and asked the child to read all the non-
words in the way that they thought they should be read. A total score was
computed as the sum of the number of items read correctly by the child
based on regular symbol-sound correspondences of written English.

Non-word reading speed age 13 (TOWRE). The Test of Word Reading
Efficiency (TOWRE) was also used to assess non-word reading speed
using the Phonemic Decoding Efficiency sub-scale. It is designed as a
relatively pure measure of decoding, independent of meaning. The child
had 45 seconds to read as many non-words as possible. Non-words that
a child skipped or got wrong were marked by the tester. A total score
was computed as the sum of the number of correct non-words read by
the child based on regular symbol-sound correspondences of written
English. The alternate form reliability was 0.94 and the test–retest
reliability ranged between 0.82 and 0.9755. For validity, TOWRE had
correlations with the Woodcock Reading Mastery Tests ranged between
0.89 and 0.9155.

Spelling accuracy age 7 and age 9 (NB). Spelling accuracy was assessed by
asking a child to spell a series of 15 words. The words were chosen
specifically for this age group after piloting on several hundred children
(Nunes and Bryant, ALSPAC-specific measure23). The words included
regular and irregular words of differing frequencies and were put in an
order of increasing difficulty. For each word, the tester first read the word
out alone to the child, then within a specific sentence incorporating the
word, and finally alone again. The child was then asked to write down the
spelling. The spelling accuracy score is computed as the number of words
spelt correctly. The test–retest reliability was >0.7 and scores were 0.91
correlated with the Schonell Spelling Test52.

Phonemic awareness age 7 (AAT). Phonemic awareness was assessed
using the Auditory Analysis Test57 (AAT). The task contained two practice
and 40 test items of increasing difficulty. For each item, the child was first
asked to repeat the word, and then to produce it again but with part of the
word (a phoneme or several phonemes) removed. For example, the word
to repeat initially is “sour” and then the child is asked to repeat it again
without /s/ to which the correct response is “our”. The test assessed seven
omission categories: the omission of a first, medial or final syllable, the
omission of the initial consonant, the omission of the final consonant of a
one-syllable word, and the omission of the first consonant or consonant
blend of a medial consonant. The words from different categories were
mixed. Reliability of the AAT was not assessed in the initial task report57.
However, test criteria of the commercial version of the AAT58 have been
assessed and revealed high internal consistency (0.78). A total score was
computed as the sum of correct responses over all types of omission. The
AAT had a correlation of 0.53–0.84 with the language arts subsets of the
Stanford Achievement Test57.

Listening comprehension at 8 (WOLD). Listening comprehension is a
subtest of the Wechsler Objective Language Dimensions (WOLD)59. A
picture was shown to the participant, and the examiner read aloud a
paragraph about the picture. The participant then answered multiple
open-ended questions on what they have heard. The listening compre-
hension subtest has test-retest reliabilities between 0.83 and 0.88 in
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children aged 6–11 years60 and the correlation with the Peabody Picture
Vocabulary Test-III61 was 0.4462.

Non-word repetition at age 8 (NWR). Children’s short-term memory was
evaluated by a non-word repetition test11. The test contains 12 nonsense
words, for each of 3, 4, and 5 syllables, all conforming to English rules for
sound combinations. The participant was asked to listen to each of these
36 words from an audio cassette recorder and then repeat each word. The
test–retest reliability was 0.8 and NWR scores showed correlations between
0.45 and 0.67 with the digit span test11.

Phenotype transformations
Any children who stopped prematurely during the psychological tests
were excluded from the study. The scores of each test were adjusted for
age, sex, and the two principal components from the genotyping analysis
to correct for population stratification63. The scores from passage reading
measures (NARA) are already age-standardized, and therefore these scores
were not further adjusted for age. All residualized scores were finally rank-
transformed to improve the GSEM log-likelihood estimation assuming
multivariate normality.
SNP-h2 estimates (Supplementary Table 1) and bivariate phenotypic

correlations (based on Pearson correlation coefficients, Supplementary
Table 2) between measures, using both untransformed and rank-
transformed scores, were comparable with each other and with previous
reports23.

Genotyping
ALSPAC children were genotyped using Illumina HumanHap550 quad-chip
platform. The ALSPAC GWAS data were generated by Sample Logistics and
Genotyping Facilities at the Wellcome Trust Sanger Institute and LabCorp
(Laboratory Corporation of America) using support from 23andMe. After
quality control (individual call rate > 0.97, SNP call rate > 0.95, Minor allele
frequency (MAF) > 0.01, Hardy-Weinberg equilibrium (HWE) p > 10−7, and
removal of individuals with cryptic relatedness and non-European
ancestry), genome-wide data were available for 8226 children and
465,740 directly genotyped single-nucleotide polymorphisms (SNPs).
Among those children, 6774 had at least one phenotype observation for
reading fluency, spelling, phonological awareness, language, or PWM
abilities available.

Genetic-relationship matrix structural equation modeling
Multivariate genetic covariance structures were identified using genetic-
relationship matrix structural equation modeling (R:gsem library, version
1.1.0, https://gitlab.gwdg.de/beate.stpourcain/gsem)32. This multivariate
analysis technique combines whole-genome genotyping information with
structural equation modeling techniques applied in twin research to model
multivariate genetic variance using a maximum likelihood approach32.
Thus, within the GSEM framework, genetic and residual variance were
modeled as genetic and residual factors, respectively. More specifically,
GSEM also allows modeling multivariate residual influences, such as those
not captured by genotyped markers, potentially involving rare, non-
additive or un-tagged genetic influences, environmental risk factors, and
random error36. In this study, phenotypic variance for each measure was
dissected into genetic and residual influences (AE model) using a full
Cholesky decomposition and an independent pathway model32,35:

i. The Cholesky decomposition model is a fully parametrized
descriptive model without any restrictions on the structure of latent
genetic and residual influences. This saturated model can be fit to
the data through decomposition of both the genetic variance and
residual variance into as many genetic and residual factors as there
are observed variables.

ii. The independent pathway model specifies a common genetic and a
common residual factor, in addition to trait-specific genetic and
residual influences.

iii. The combined Cholesky decomposition and independent pathway
(IPC) model structures the genetic variance as an independent
pathway model (consisting of common and measurement-specific
influences) and the residual variance as a Cholesky decomposition
model (where the number of residual factors is the same as the
number of observed variables). Supplementary Figure 3 shows an
example of an IPC model with six traits, and Supplementary Fig. 4 an
example of an IPC model with five traits.

The goodness-of-fit of GSEM models to the data was evaluated with
LRTs, AIC and BIC39.
In the present study, we modeled rank-transformed residualized

phenotypes (adjusted for age, sex, and the first two principal components)
as described above. Genetic-relationship matrices were constructed based
on directly genotyped variants in unrelated individuals, using GCTA
software36. Individuals with a relatedness >0.05 (off-diagonals within a
genetic-relatedness matrix) were excluded. Factor loadings were evaluated
using Wald tests.
Multivariate models in unrelated individuals, studying interindividual

genetic variation captured by genome-wide genetic variation, are
computationally expensive32. For example, a 6-factor Cholesky decom-
position model, as fitted within this study, can require 6 weeks computing
time even on a system incorporating at least 4 parallel cores of 3 GHz and
between 50 and 75 Gb memory. Hence, we started the modeling process
by strategically combining similar measures, such as reading fluency or
spelling abilities, to reduce the number of studied instruments by selecting
proxies that most comprehensively capture the shared genetic variance of
an entire domain. The advantage of this approach is that we can control
the extent to which selected proxies represent underlying shared genetic
factors, either fully or along with specific measurement-related influences,
and subsequently assess the stability of the identified genetic structures.
The identified proxy measures in Stage 1 were eventually jointly modeled
with other measures as part of the Stage 2 analysis, with models across
four phenotypic domains: literacy measures, including both reading (non-
word, word, and passage reading speed and accuracy) and spelling,
phonological awareness (phonemic awareness), oral language (listening
comprehension), and PWM (non-word-repetition).
Applying a conservative approach, we also evaluated all derived factor

loadings of the Stage 2 model against an experiment-wide error rate of
0.007, estimated based on the effective number of individually analyzed
phenotypes using Matrix Spectral Decomposition (MatSpD)64, accounting
for all previously conducted statistical assessments. However, a correction
for multiple testing is not directly applicable, as we jointly analyze genetic
trait covariance using GSEM.
Identified structural models were used to estimate SNP-h2 as well as

genetic correlations, factorial co-heritabilities (the proportion of total trait
genetic variance explained by a specific genetic factor), and bivariate
heritabilities (the contribution of genetic covariance to the observed
phenotypic covariance between two measures), as defined here:
Bivariate genetic correlation between phenotypes, measuring the extent

to which two phenotypes 1 and 2 share genetic factors (ranging from −1
to 1), can be derived using estimated genetic variance and covariance65

according to:

rg ¼ σg12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2g1σ
2
g2

q (1)

where σg12 is the genetic covariance between phenotypes 1 and 2, and,
σ2g1 and σ2g2 are the respective genetic variances.
A measure of factorial co-heritability was introduced to assess the

relative contribution of a genetic factor to the genetic variance of a
phenotype, estimated with the gsem package (R:gsem library, version
1.1.0). The factorial co-heritability fg2 is defined as:

f 2g ¼ σ2g it
P

σ2g it
¼ σ2g it

σ2g t
(2)

where σ2g it is the genetic variance of the genetic factor i contributing to
trait t and σ2g t the total genetic variance of trait t, based on standardized
factor loadings. The corresponding SEs were derived using the Delta
method.
Bivariate heritability also known as co-heritability66 was defined as the

ratio of the genetic to the phenotypic covariance between two traits and
estimated using the gsem package (R:gsem library, version 1.1.0).

h2g biv ¼
σg12
σp12

(3)

where σg12 is the genetic covariance, estimated based on unstandardized
factor loadings, and σp12 the phenotypic covariance from observed rank-
transformed measures. The respective SEs were approximated by the SE of
the genetic covariance divided by the phenotypic covariance (as the SE of
the phenotypic covariance is very small).
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Genetic-relationship-matrix residual maximum likelihood
The GCTA software package (v1.25.2)36 can be used to estimate the
proportion of phenotypic variation that is explained by markers on
genotyping chip arrays using GREML36 (AE model). Likewise, bivariate
GREML37 can be applied to estimate genetic covariance and genetic
correlations between two phenotypes.
Univariate and bivariate GREML were carried out as part of sensitivity

analyses.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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