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Electronic landscape of kagome superconductors AV3Sb5
(A=K, Rb, Cs) from angle-resolved photoemission
spectroscopy
Yong Hu 1✉, Xianxin Wu 2✉, Andreas P. Schnyder 3✉ and Ming Shi 1,4✉

The recently discovered layered kagome superconductors AV3Sb5 (A= K, Rb, Cs) have garnered significant attention, as they exhibit
an intriguing combination of superconductivity, charge density wave (CDW) order, and nontrivial band topology. As such, these
kagome systems serve as an exceptional quantum platform for investigating the intricate interplay between electron correlation
effects, geometric frustration, and topological electronic structure. A comprehensive understanding of the underlying electronic
structure is crucial for unveiling the nature and origin of the CDW order, as well as determining the electron pairing symmetry in the
kagome superconductors. In this review, we present a concise survey of the electronic properties of AV3Sb5, with a particular focus
on the insights derived from angle-resolved photoemission spectroscopy (ARPES). Through the lens of ARPES, we shed light on the
electronic characteristics of the kagome superconductors AV3Sb5, which will pave the way for exciting new research frontiers in
kagome-related physics.
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INTRODUCTION
The investigation of quantum physics intertwined with nontrivial
lattice geometries and strong electronic interactions has emerged
as a new frontier in condensed-matter physics. Transition-metal
based kagome materials, owing to their unique correlation effects
and frustrated lattice geometry inherent to kagome lattices, offer a
versatile platform for investigating unconventional correlated and
topological quantum states. Depending on the degree of electron
filling and interaction within the kagome lattice, a wide range of
electronic instabilities has been predicted, including quantum spin
liquid1–3, unconventional superconductivity4–8, charge density
wave (CDW) orders6–8, and Dirac/Weyl semimetals9–11. Particularly
noteworthy are the recently discovered non-magnetic vanadium-
based superconductors AV3Sb5 (A= K, Rb, Cs) (Fig. 1a–d), which
have attracted significant attention due to their fascinating
electronic phenomena12–14. The combination of unconventional
CDW, superconductivity, lattice frustration, and topology has
sparked rapid exploration in this class of materials, leading to the
discovery and investigation of novel electronic phenomena and
properties (Fig. 1e), such as three-dimensional (3D) CDW
order15,16, pair density wave (PDW)17, electronic nematicity18,19,
double superconducting domes under pressure20–22 and giant
anomalous Hall effect23. Furthermore, the 3D CDW order, featuring
an in-plane 2 × 2 reconstruction, exhibits exotic properties
including time-reversal symmetry breaking (TRS)19,24–26, rotational
symmetry breaking17,18,27 (Fig. 1f), and an intriguing intertwining
with unconventional superconductivity26,28.
In this paper, we review the recent advancements in under-

standing the electronic structure, CDW order, and superconduc-
tivity of the kagome superconductors AV3Sb5, derived from angle-
resolved photoemission spectroscopy (ARPES). This paper is
organized as follows. First, we discuss the crystal structure and
band topology of AV3Sb5 from the perspective of density

functional theory (DFT). Second, we review both the theoretical
understanding and experimental evidence of the rich nature of
van Hove singularities (VHSs), key ingredients in the electronic
structure of the kagome superconductors. Third, we present the
spectroscopic fingerprints of the CDW in the electronic structure,
including Fermi surface and band reconstructions in the CDW
phase. In addition, we discuss the nature and origin of the CDW
order. Fourth, we provide an update on the current understanding
of the superconducting gaps of AV3Sb5. Finally, we conclude by
highlighting the remaining issues to be investigated and provide a
future perspective on this research field.

CRYSTAL STRUCTURE AND BAND TOPOLOGY
AV3Sb5 in its pristine phase crystalizes in a layered structure with
the space group P6/mmm (No. 191) (Fig. 1a). It consists of
alternating layers of V-Sb sheets and alkali metal layers. Each V-Sb
sheet comprises a two-dimensional (2D) vanadium kagome net
intertwined with a hexagonal lattice of Sb atoms (Fig. 1b). Figure 1g
displays the bulk Brillouin zone (BZ) and the projected 2D surface
BZ. Examination of the phonon band structure calculated for
CsV3Sb5, as depicted in Fig. 1h, reveals the softening of acoustic
phonon modes near the BZ boundary, specifically around the M
and L points, indicating siginificant structural instabilities29,30.
Consequently, two types of distortions arising from breathing
phonon modes are proposed as potential candidates for the CDW
structures with a 2 × 2 supercell: a star of David (SoD) (Fig. 1c) and
its inverse structure (trihexagonal, TrH) (Fig. 1d).
Investingations of the electronic structure of pristine CsV3Sb5

along high-symmetry directions in the BZ (Fig. 1g), based on DFT
calculations, reveals a diverse non-trivial band topology (Fig. 1j).
The presence of a direct gap (orange/blue shaded area in Fig. 1j)
carrying a non-trivial Z2 topological index suggests the
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emergence of topological surface states (TSSs) within the local
bandgap at the M point12,31. Furthermore, the DFT band
dispersions display characteristic features expected from the
frustrated kagome lattice (Fig. 1k), including a Dirac cone (DC) at
the K point (highlighted by the red arrow in Fig. 1j)12, a flat band30

and VHSs around the M point (indicated by the black arrows and
labeled as VHS1–4). Spectroscopic evidence supporting the
existence of the TSSs, the characteristic Dirac cone, and flat band
in CsV3Sb5 has been obtained through ARPES measurements12,31.
In addition, the DFT calculations reveal the presence of multiple
VHSs in the vicinity of the Fermi level (EF), which have been
recognized as playing a crucial role in the intriguing correlated
phenomena of the kagome metals AV3Sb532–36.

RICH NATURE OF VHSS
The kagome lattice hosts three distinct sublattices, denoted as A,
B, and C (labeled in Fig. 2a). Accordingly, the band structure of the
kagome lattice exhibits two types of VHSs: sublattice-pure (p-type)
and sublattice-mixed (m-type)6,7,35. In the p-type VHS, the Bloch
states near the three M points originate from mutually different
sublattices (Fig. 2b). On the other hand, the m-type VHS is
characterized by eigenstates that are evenly distributed over two
of the three sublattices for each M point (Fig. 2c). With respect to
the band dispersion around the saddle point, VHSs can be
classified into two categories: conventional and higher-order, as
illustrated in Fig. 2d and e37–39. The conventional VHS displays a
saddle-like dispersion (Fig. 2d), leading to a logarithmical
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Fig. 1 Crystal structure and band topology of AV3Sb5. a–d Crystal structure of AV3Sb5 in the normal state [(a) the unit cell; (b) top view
showing the kagome plane], and CDW phase with the candidate SoD (c) and TrH distortions (d). e The novel electronic phenomena found in
CsV3Sb5. f Schematic of time-reversal symmetry breaking and rotational symmetry breaking in the CDW phase. g Schematic of the bulk and
surface Brillouin zones along the (001) surface of CsV3Sb5 with high-symmetry points marked. h DFT calculated phonon band structure for
pritine CsV3Sb5. i Illustration of the interplay among electron-phonon (e-p), electron-electron (e-e) and geometric frustration in CsV3Sb5 (iii).
Adapted from ref. 28. j DFT band structure of CsV3Sb5 along high-symmetry directions, with VHS, DC and flat band highlighted. The direct gap
(yellow/blue shaded area) carries a non-trivial Z2 topological index. The 2D kagome dispersion is highlighted in red. k–m The nearest-
neighbor tight-binding band structure of kagome lattice featuring VHS, DC and flat band (k), nesting wave vectors of a kagome FS at van
Hove filling (l), and loop current order originating from VHS (m).
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divergent density of states (DOS) in 2D. In contrast, the higher-
order VHS exhibits a flat dispersion along one direction (Fig. 2e),
giving rise to a power-law divergent DOS. In the DFT band
structure of CsV3Sb5, VHS1 exhibits a pronounced flatter disper-
sion along the MK direction compared to the orthogonal direction
(Fig. 1j), indicating its higher-order nature38,39. This distinguishes it
from the other three VHSs near EF, which are all of the
conventional type.
Consistent with the theoretical understanding, ARPES measure-

ments have provided compelling evidence, clearly identifying the
VHSs and confirming their corresponding sublattice characters
(Fig. 2f–n). As shown in Fig. 2h and i, the saddle point nature of
the VHS2 and VHS1 is clearly observed through vertically taken
cuts across the KM path (Cuts 1–6, as indicated in Fig. 2g), where
the band bottom of the electron-like band (solid curve in Fig. 2h
and i) exhibits a maximum energy very close to the EF at the M
point (dashed curve). In addition, the hole-like bands (highlighted
by the solid curves in Fig. 2j) have a minimum energy at the M
point, indicating their electron-like nature along the orthogonal
direction. These distinct features illustrate the presence of two
VHSs above and below the DC, referred to as VHS4 and VHS3,
respectively. Notably, VHS1 stands out with a pronounced flat
dispersion that extends over more than half of the KM path
(Fig. 2k). The fitting of the experimental spectrum reveals that the
quadratic term is substantially smaller than the quartic one
(Fig. 2l), highlighting the higher-order nature of VHS140,41.

The sublattice nature of the four VHSs was determined through
polarization-dependent ARPES measurements (Fig. 2f, m and n)40.
Based on the selection rules in photoemission, the orbital
characters of the bands forming the VHSs below EF were
identified, as summarized in Fig. 2k. Specifically, VHS1, VHS2,
and VHS3 were assigned to the dx2�dy2=dz2 , dyz and dxy orbitals,
respectively. These experimental findings align remarkably well
with the orbital-resolved band dispersion calculated for the one
mirror-invariant sublattice40. Moreover, theoretical calculations
reveal that the Bloch states associated with VHS1, VHS2 and VHS3
near the M point, characterized by Ag, B2g and B1g irreducible
representations (irrep.), exclusively originate from this sublattice
and possess inversion-even parity, thereby confirming their p-type
nature. In contrast, the VHS4 band corresponds to the B1u irrep.
(inversion-odd), and VHS4 originates from the other two
sublattices, indicating its m-type nature35,40,41.

BAND RECONSTRUCTIONS IN THE CDW PHASE
The CDW in AV3Sb5 demonstrates intriguing properties, such as
TRS breaking19,24–26 and rotational symmetry breaking
(Fig. 1f)17,18,27. The origin of the CDW order has been theoretically
attributed to two scenarios: phonon softening (Fig. 1g–i)29,30 and
correlation-driven Fermi surface instability, i.e., a loop current
order (Fig. 1k–m)32–36. Despite extensive studies, the mechanism
of the CDW formation remains controversial. The presence of a

a

p-type AA

C B

CB

m-type BCBC

AC AB

ACAB

kx

kyEB

Conventional
VHS

kx

kyEB

Higher-order
VHS

k

-1.0

-0.5

E
 - 

E
F (

eV
)

L

H

dyz

VHS1

VHS3

VHS2

dxz

dx2-y2/dz2

I + II

0

dxy

-1.0

-0.5

0

-1.0

-0.5

0

-1.0

-0.5

0

1.00.50
kx (1/Å)

-1.0

-0.5

0

E
 - 

E
F (

eV
)

-1.0

-0.5

0

E
 - 

E
F (

eV
)

-1.0

-0.5

0

E
 - 

E
F (

eV
)

1.51.00.50
ky (1/Å)

LV

dxy

dxy

LV

dyz

dxz

dx2-y2/dz2

CC
III

dyz

dx2-y2/dz2

LHLH

VHS3

VHS2

VHS1

m

L

H

n

hv

x (y)

y (x)

LH
LV

z

e-

Analyzer slit

Exp. Data
E=M - b2ky

4

-0.2

0

-0.4 -0.2 0
ky (1/Å)

VHS1

-0.5
0.5

0
-0.5

0.5
0

-0.5
0.5

0
-0.5

0.5
0

0

-0.4

-0.8

-1.2

E
 - 

E
F (

eV
)

0

-0.4

-0.8

-1.2

E
 - 

E
F (

eV
)

0

-0.4

-0.8

-1.2

E
 - 

E
F (

eV
)

k// (1/Å)

� K M �

d

f

h

g l

VHS2

VHS1

VHS4

VHS3

DC

flat band

(i)

(ii)

(iii)

(i)

(ii)

(iii)

A
B C

b

1.0

0

k y
 (1

/Å
)

1.00-1.0
kx (1/Å)

DC
c

e

i

j

1st BZ
�
   

K
   

M
   

�
   

EB = EF

Cut#2

C
ut

#1

M
   

1
3
5

2
4
6

� K M Cut#2Cut#1 � M �K

M

M

Fig. 2 Multiple VHSs and the orbital nature of the kagome bands in CsV3Sb5. a Real space structure of the kagome vanadium plane, with
three sublattices marked. b, c Two distinct types of sublattice decorated VHSs, labeled as p-type (b) and m-type (sublattice mixing) (c).
d, e Schematics of the conventional VHS (d) and higher-order VHS (e) in 2D electron system. f Experimental geometry of the polarization-
dependent ARPES. g FS of CsV3Sb5. h–j A series of cuts taken vertically across the KM path, the momentum paths of the cuts (1–6) are
indicated by the red lines in (g). k Experimental band dispersion along the Γ-K-M-Γ direction, as indicted by the red arrows in (g). l Fittings of
the measured dispersion along the KM path. m Band dispersion along the Γ-K-M direction [cut#1, indicated by the red arrow in (g)], measured
with circular (C) (i), linear horizontal (LH) (ii) and linear vertical (LV) (iii) polarizations. n Same data as in (m), but measured along the Γ-M
direction [cut#2, indicated by the red arrow in (g)]. Experimental band dispersions in (g–n) are measured in the normal state. All data are
reprinted with permission from Ref. 40., except (h–j) which is adapted from Ref. 41.

Y. Hu et al.

3

Published in partnership with Nanjing University npj Quantum Materials (2023)    67 



softening acoustic phonon mode around the L point (Fig. 1h)
implies a 3D nature of the CDW order in AV3Sb5. This finding is
substantiated by ARPES measurements42–44, as well as x-ray
diffraction (XRD)15,45–47 and scanning tunneling microscopy (STM)
experiments16, which provide evidence for either a 2 × 2 × 2 or a
2 × 2 × 4 lattice modulation. The spectroscopic fingerprints of the
CDW, specifically the reconstructions of the electronic structure
observed through ARPES42–44,48–50, play a crucial role in under-
standing the nature and distortion pattern of the CDW order, as
well as its interplay with superconductivity.

In-plane band reconstruction
With multiple VHSs located around the M point (Fig. 1j, and Fig. 2),
the 3D CDW in AV3Sb5, featuring an in-plane 2 × 2 modulation,
can induce prominent in-plane electronic reconstructions (Fig. 3).
The in-plane component of the CDW results in the folding of the
pristine BZ into a smaller BZ (Fig. 3a). The CDW-induced band
folding is evident in the measured band structure depicted in
Fig. 3b, where an electron-like band around the Γ exhibits
similarities to the one observed at the M point48. Furthermore, the
momentum distribution curve (MDC) (Fig. 3c) near EF and energy
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distribution curves (EDCs) (Fig. 3d) around the M and Γ points
indicate that the electron-like bands at Γ and M align with the
CDW wavevector Q1 (Fig. 3a and c) and share a similar lineshape
near EF. In addition, a band gap associated with the in-plane CDW
modulation is identified along the Γ-K direction (Fig. 3e)42,48,
which is well reproduced by the DFT calculation considering the
2 × 2 TrH reconstruction (Fig. 3f).
Figure 3g and h compare the constant energy contours

(CECs) obtained at temperatures well above (200 K, Fig. 3g) and
below (20 K, Fig. 3h) the CDW transition temperature (TCDW, 94 K in
CsV3Sb5), revealing notable band reconstructions in both the
circular-shaped pocket near the zone center (Γ point) contributed
by the Sb p-orbitals and the vanadium d-orbital bands. Specifically,
the electron pocket around Γ undergoes doubling, while the
triangle-shaped CECs around K expand in the CDW phase. The
band dispersions along the Γ-K and Γ-M directions, presented in
Fig. 3i and j, demonstrate the contribution of the energy shift of
the VHS bands to the observed band reconstructions42. Moreover,
distinctive anisotropic CDW gaps are observed for the Fermi
surface derived from the vanadium 3d-orbitals (Fig. 3k)48.

Out-of-plane band reconstruction
The out-of-plane component of the 3D CDW also folds the BZ
along the kz direction, leading to an out-of-plane band folding, as
illustrated in Fig. 4a. ARPES measurements confirm the presence
of this out-of-plane band reconstruction, revealing the character-
istic double-band splitting (indicated by the red dashed line and
arrow in Fig. 4b and c) in the CDW state. To gain deeper insights
into the microscopic structure and properties of the 3D CDW,
Fig. 4d presents band structures within a 2 × 2 × 2 CDW
configuration obtained from DFT calculations, considering four
possible configurations: SoD-π, TrH-π, SoD-TrH-π, and SoD-TrH.
Notably, the calculations incorporating the superimposed SoD and
TrH CDW patterns, namely SoD-TrH-π and SoD-TrH (Fig. 4d),
remarkably reproduce the observed double-band splitting fea-
tures along the Γ-K direction. These consistent findings from both
ARPES measurements and theoretical calculations demonstrate
the intrinsic coexistence of SoD and TrH patterns within the CDW
order42,43, emphasizing the 3D nature of the CDW in the CsV3Sb5.
Moreover, doping-dependent measurements indicate a transi-

tion from the alternating SoD- and TrH-like distortions to TrH-π
pattern43, as evidenced by the disappearance of the double-band
splitting along the Γ-K (Fig. 4e). Intriguingly, this structural
transition of the 3D CDW in CsV3Sb5-xSnx occurs near the
maximum of the first superconducting dome (Fig. 4f), implying
that the transition to the TrH-π phase and its competition with
superconductivity might contribute to the suppression of Tc at
intermediate Sn concentrations43. In contrast, this CDW pattern
transition appears to be absent in KV3Sb5-xSnx, which provides a
possible explanation for the lower superconducting transition
temperature (Tc= 0.92 K) and the single superconducting dome as
a function of Sn substitution (Fig. 4g). Taken together, these
doping-dependent results (Fig. 4f and g) offer insights into the
emergence of a double-superconducting dome in the phase
diagram of CsV3Sb520–22,43,51.
It’s worth noting that the band reconstructions observed by

ARPES42,43 may be influenced by factors, such as sample
preparation or specific termination conditions. It seems that these
band reconstructions are more readily observed in Cs-rich samples
or on Cs-terminated surfaces, while they appear to be absent on
Sb-terminated surfaces44,52–54. Nevertheless, the coexistence of
SoD and TrH patterns in the CDW, as deduced from ARPES
measurements, aligns consistently with the findings from XRD45,55,
nuclear quadrupole resonance (NQR)56, and nuclear magnetic
resonance (NMR)57 measurements.

SUPERCONDUCTING GAP
AV3Sb5 exhibits diverse correlated electronic phenomena, includ-
ing CDW, superconductivity, PDW, and electronic nematicity,
reminiscent of the complex competing orders observed in high-
temperature superconductors58. The fascinating coexistence of
these unconventional orders in AV3Sb5 highlights the importance
of investigating superconducting pairing mechanisms within the
realm of kagome superconductors.

Nodeless superconductivity
Determining the superconducting gap symmetry is crucial for
understanding the underlying mechanism of superconductivity. In
CsV3Sb5, evidence such as the presence of a Hebel-Slichter
coherence peak just below Tc in ultra-low field NQR measurement
and a decrease in the Knight shift below Tc, suggests an s-wave
spin-singlet superconductor59. Furthermore, the exponential
temperature-dependent behavior of the magnetic penetration
depth at low temperatures indicates an absence of nodal
quasiparticles60,61. However, observations of V-shaped gaps and
relatively large residual Fermi-level states in STM measure-
ments17,62, along with a finite residual thermal conductivity
toward zero temperature63, point to a nodal superconducting gap.
ARPES is a powerful technique for directly measuring the

momentum-space structure of the superconducting gap64. How-
ever, its application in pristine CsV3Sb5 is challenging due to the
relatively low Tc (2.5 K) and small gap size2,16,17. Nonetheless, by
substituting V with Nb/Ta, the Tc of CsV3Sb5 can be effectively
enhanced to above 4 K65–67. Utilizing ultrahigh-resolution and low-
temperature laser-ARPES, superconducting coherence peaks (Fig.
5a) are observed in EDCs at the Fermi momentum (kF) of the α, β,
and δ Fermi surfaces (Fig. 5b) in Cs(V0.93Nb0.07)3Sb5 at 2 K. The
extracted superconducting gaps from these EDCs, obtained by
fitting to a BCS spectral function, show a nearly isotropic SC gap
structure in the Nd-doped sample (Fig. 5c and d). Similar isotropic
and orbital-independent superconducting gaps are also observed
in Cs(V0.86Ta0.14)3Sb5 (Fig. 5e). The Nb-doped sample exhibits a Tc
of 4.4 K and a TCDW of 58 K, while the Ta-doped sample has a
higher Tc of 5.2 K without a CDW transition. Regardless of the
presence or absence of the CDW, both samples exhibit isotropic
gap structures, suggesting a robust nodeless pairing in CsV3Sb5-
derived kagome superconductors66,68.

Electron-phonon coupling
The presence of robust isotropic superconducting gaps seems to be
consistent with a conventional s-wave pairing mechanism69. This is
further supported by the observed band dispersion kinks
(Fig. 5f–k)48,70,71, which arise from electron-phonon coupling (EPC).
Specifically, both the α band (contributed by Sb-p orbitals) and the β
band (formed by V-d orbitals) exhibit intensity and dispersion
anomalies (Fig. 5f–h). The effective real part of the electron self-
energy (Re Σ) shows a prominent peak at ~32meV on both the α and
β bands (Fig. 5i), confirming the existence of the dispersion kink. In
addition, a 12meV kink is specifically observed on the β band (Fig. 5h
and i). Interestingly, the EPC strength (λ) associated with the 32-meV
kink on the α and β bands displays a nearly isotropic behavior70. The
experimentally extracted λ in CsV3Sb5 falls within the intermediate
range of 0.45–0.6 (Fig. 5j), which is approximately twice as large as
the value predicted by DFT (λDFT ~0.25)29. Moreover, the EPC on the
β band is enhanced to λ ~ 0.75 in the isovalent-substituted
Cs(V0.93Nb0.07)3Sb5 with an elevated Tc (Fig. 5k)70.
After discussing the electronic properties of the recently

discovered kagome superconductors AV3Sb5, including the band
topology, the nature of VHSs, the band reconstructions in the CDW
phase, and the superconducting gap, we now turn our attention to a
number of open issues in our understanding of the kagome systems.
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Origin of CDW and TRS breaking
Two possible scenarios, namely correlation-driven Fermi surface
instability (Fig. 1k–m)32–36 and phonon softening (Fig. 1h and i)29,30,

have been proposed to account for the CDW order in CsV3Sb5. Both
scenarios find support from ARPES experiments, where multiple VHSs
in the vicinity to EF have been observed (Fig. 2). The conventional
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p-type VHS2 bands feature a good Fermi surface nesting (Fig. 3b–d),
with the nesting vector connecting parts of the Fermi surfaces
dominated by different sublattices, which can lead to a 2 × 2 bond
CDW instability. This provides a plausible explanation for the
observed CDW order. In addition, the coexistence of the SoD and
TrH patterns in the CDW order, stemming from the double-band
splitting (Fig. 4), suggests the involvement of phonons in driving the
CDW. However, since phonon-induced CDW alone cannot account
for the observed TRS breaking, EPC and electron-electron interactions
may conspire (Fig. 1i) to generate the unconventional CDW order in
these vanadium-based kagome metals.

The underlying mechanism of superconductivity
While ARPES measurements provide evidence for nodeless
superconductivity and EPC in CsV3Sb5 (Fig. 5), supporting a
conventional s-wave pairing mechanism, these results do not rule
out the possibility of other nodeless pairing states due to the lack
of phase information. Muon spin relaxation (μSR) measurements
suggest the presence of TRS breaking pairing when the CDW
order is eliminated25. The observed isotropic superconducting gap
with TRS breaking seems to be consistent with an (s + is)-wave or
(d + id)-wave pairing, which could arise from the unique
electronic interactions and EPC associated with the sublattice-
dressed VHSs in the kagome lattice. To unravel the precise pairing
mechanism for AV3Sb5, further experimental investigations and
theoretical analysises are still required.

Origin of nematicity
Another intriguing aspect is the origin of the nematicity in AV3Sb5,
which is intertwined with density wave order, similar to the case of
cuprates. Both NMR and STM measurements offer clear indications
of electronic nematicity and its close relationship with the CDW
order. Unlike in a tetragonal lattice, AV3Sb5 does not exhibit a
distinct nematic splitting in its electronic structure, which poses
challenges for direct detection using ARPES measurements alone.
Nevertheless, the combination of ARPES measurements with
theoretical calculations holds promise in unraveling the nature
and underlying mechanism of the nematic order71. In a different
context, the recent synthesis of a new family of titanium-based
kagome superconductors, namely ATi3Bi572, offers an interesting
comparison. In contrast to AV3Sb5, the electronic nematicity in
ATi3Bi5 occurs in the absence of CDW73,74. This provides a unique
platform to investigate pure nematicity within the realm of kagome
superconductors and its interplay with orbital degrees of freedom75.
In conclusion, we have illuminated the recent advancements

achieved through photoemission experiments, shedding light on the
electronic structure of the kagome superconductor AV3Sb5, which
exhibits a spectrum of correlated quantum phenomena. Despite their
contentious origins, it is evident that electronic correlations wield a
dominant influence in driving the intricate behavior witnessed in
AV3Sb5, marking it as a unique member among the recently
discovered kagome metals. These captivating complexities require
further investigations, which may ultimately lead to a deeper
understanding of the fascinating kagome systems, and give fresh
insights into the frontiers of condensed matter physics.
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