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Free electrons can induce entanglement between photons
Gefen Baranes1, Ron Ruimy1, Alexey Gorlach 1 and Ido Kaminer 1✉

Entanglement of photons is a fundamental feature of quantum mechanics, which stands at the core of quantum technologies such
as photonic quantum computing, communication, and sensing. An ongoing challenge in all these is finding an efficient and
controllable mechanism to entangle photons. Recent experimental developments in electron microscopy enable to control the
quantum interaction between free electrons and light. Here, we show that free electrons can create entanglement and bunching of
light. Free electrons can control the second-order coherence of initially independent photonic states, even in spatially separated
cavities that cannot directly interact. Free electrons thus provide a type of optical nonlinearity that acts in a nonlocal manner,
offering a way of heralding the creation of entanglement. Intriguingly, pre-shaping the electron’s wavefunction provides the knob
for tuning the photonic quantum correlations. The concept can be generalized to entangle not only photons but also photonic
quasiparticles such as plasmon-polaritons and phonons.
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INTRODUCTION
Developed at the beginning of the twentieth century, quantum
mechanics had by now changed the way we see the world. At the
second half of the century, it gave birth to the fields of quantum
optics and quantum information. One of the fundamental
elements of quantum mechanics is the idea of entanglement,
which is a nonlocal quantum correlation between different
particles. This fundamental feature gave rise to numerous ideas
in quantum technologies such as quantum teleportation1,
quantum communication2, quantum cryptography3,4, and quan-
tum computation5–8. Photons are the fastest information carriers,
have a very weak coupling to the environment, and thus are
central to many areas of quantum technologies. Entanglement
between two photonic states is at the core of photonics-based
quantum technologies, such as quantum teleportation9,10, com-
munication11–16, sensing17, imagining18, metrology19, cryptol-
ogy20, and photon-based quantum computers21,22. Therefore,
ways to induce entanglement between photons or create
entangled light sources have numerous applications in modern
quantum technologies.
The conventional approach for creating entangled light uses

linear optical operations such as beam splitters, or optical
nonlinearities such as spontaneous parametric down-conversion.
Linear optical operations23–25 cannot effectively entangle multi-
photon states, and techniques based on nonlinearities26–30 are
limited to specific wavelengths and typically suffer from low
efficiencies. Thus, methods to create multiple-photon entangled
states with non-trivial statistics have practical and fundamental
importance. Our work proposes a way to entangle and bunch
photonic states using free electrons.
The interaction of coherent free electrons with light can be

described using the theory of photon-induced nearfield electron
microscopy31–37. This interaction provides the ability to coherently
shape a free electron’s wavefunction38–40 using femtosecond-
pulsed lasers, as was shown experimentally in ultrafast transmis-
sion electron microscopes (UTEMs)41–43. This phenomenon was
initially observed and described only for classical coherent-state
light. However, recent works brought the electron–light interac-
tion into the field of quantum optics44–46, predicting

theoretically47–49 and demonstrating experimentally50

electron–light interactions with different quantum states of light.
The interaction of a quantum light state and a free electron

exchanges quantum information between the light and the
electron. This idea has opened possibilities for using electrons to
create quantum states of light48, and a proposal to induce
quantum correlations between different electrons interacting with
the same photonic cavity45. Moreover, electrons with wavefunc-
tions that are coherently shaped by light can also create
entanglement of electrons with optical excitations51,52 or directly
between separated qubits53,54. These ideas show how free-
electron interactions open research directions in quantum optics
and quantum information.
However, from a fundamental perspective, all free-electron-

based light-matter interactions so far were proposed to create
entanglement in matter (qubits53, free electrons45) rather than in
light. This has left free-electron approaches outside an entire area
of quantum optics: the creation of entangled light. We propose
the use of free electrons as an approach to address this
fundamental challenge—creating desired states of multiple-
photon entangled light.
Here we show that free electrons can entangle different

photonic states (Fig. 1), even when they are spatially separated
as with two different photonic cavities. Specifically, we find that
post-selection of specific electron energies after the interaction
enables creating even stronger entanglement. Importantly, the
electron measurement enables heralding the successful creation
of entanglement, as well as the bunching and anti-bunching of
light. We find the underlying condition to enable the exchange of
quantum information: the electron’s coherent energy uncertainty
must be smaller than the energy of an individual photon. Using
this condition, we propose a way by which free electrons can
generate second-order correlations in light, making spatially
separated light states bunched or anti-bunched. We propose a
practical scheme—similar to the Hanbury Brown and Twiss (HBT)
experiment55—that can be implemented in current setups (e.g., in
UTEMs). There, we theoretically show how initially independent
(i.e., uncorrelated) light sources can be correlated or anti-
correlated using free electrons.
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Our approach has several attractive features connected with the
nature of free electrons: electrons are ultrafast and thus enable the
creation of quantum correlations between short pulses of light.
Free electrons can also interact with any light frequency, are easy
to detect56 for post-selection and heralding of quantum light, and
their wavefunction can be shaped49,57,58 to provide additional
degrees-of-freedom for controlling quantum correlations. In this
manner, free electrons could be envisioned as carriers of quantum
information, acting as a type of nonlinear optical medium—one
with a nonlocal optical response—with prospects to create
phenomena such as quantum teleportation.
Looking at the bigger picture, our concept is directly applicable

to the interaction of any quantum particle with any bosonic/
photonic quasiparticle (e.g., plasmons, excitons, magnons, and
phonons57). It is exciting to contemplate the broad range of
systems that adhere to the general schemes we propose in Fig. 1;
for example, electron-phonon interactions can be induced with
the exact same formalism (Fig. 1d), creating correlations between
the entropy of phonons even in spatially separated solids,
practically entangling their temperatures too.

RESULTS
Interactions of free electrons with two photonic states
To model quantum electron–light interactions and their quantum
correlations, we define our Hilbert space as the tensor product of He

⊗ Hph and more generally He � Hph1 � Hph2 � ¼ , with He being
the Hilbert space of the electron, and Hphi ; i ¼ 1; 2; ¼ the Hilbert
spaces of each photonic state. To account for the possibility of
multiple electron interactions, we use the density-matrix formalism
that includes mixed photonic states that cannot be described by a
wavefunction. In the case of two photonic cavities, we describe the

initial state using the following density matrix:

ρ ið Þ ¼
X1

k; k0 ¼ �1
n1; n01 ¼ 0

n2; n02 ¼ 0

ρk;n1 ;n2 ;k0 ;n01 ;n02 k; n1; n2j i k0; n01; n
0
2

� �� ¼ ρe � ρph1 � ρph2 ;

(1)

with the final equality based on the (realistic) assumption that the
initial electron and photon states are separable before any
interaction occurs. The basis of the photonic states consists of
the Fock states |n1〉, |n2〉. The basis of the electron state consists of
|k〉, being the state of the electron with energy E0 + ℏωk. The
integer k represents the displacement of the electron energy in
units of the light energy quanta ℏω, relative to the central energy
E0 (known as the zero-loss peak).
We assume that the electron’s central energy is much larger

than the photon energy E0 ≫ ℏω and that the electron energy
uncertainty is smaller than the light quanta. These assumptions
enable defining the electron states |k〉 as discrete. The
assumptions are all satisfied in current electron microscopy
experiments36,41,50,59 that have interactions with photonic
excitations that are typically in the optical range. This is exactly
the case in all theoretical and experimental papers in the
field31,32,37. In the rest of the paper, we use this assumption to
model all electrons as having discrete energies. This way, we
can consider as initial conditions both conventional mono-
energetic electron states |0〉 (“unshaped”, the spectrum con-
tains only a single energy peak), or “shaped” electron states that
appear as coherent superpositions of multiple electron energy
states.
The state of the system after one interaction with an electron is

ρ fð Þ ¼ S2UφS1ρ
ið ÞSy1U

y
φS

y
2; (2)

where Uφ is the free space propagation (FSP) operator which
affects the electron state in the manner of Uφ Ekj i ¼ e�iφk2 Ekj i. φ is
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quantum 
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Fig. 1 Free-electron interactions can create quantum correlations in different setups. The general concept (a) can be implemented for
electron interactions with different systems: photonic crystal cavities (b), silicon-photonic waveguides (c), and even other types of photonic
quasiparticles57 such as phonons (d), which may entangle the temperatures of spatially separated objects. e One specific experimental setup
that can demonstrate the general concept is the ultrafast transmission electron microscope (UTEM), where electrons can interact with
evanescent fields and induce quantum correlations between these fields. Here, the two photonic states are created by having a light pulse
split into two parts that undergo total internal reflection in two locations inside a prism (similar to59). Another relevant scheme was shown
feasible in36 using classical light.
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defined by φ ¼ 2π z
zD
; with z being the propagation distance and

zD ¼ 4πγ30mev3=�hω2. me is the electron mass, v its velocity, and γ0
its Lorentz factor. During FSP, each electron energy component
accumulates phase at a different rate, as was demonstrated inside
electron microscopes and other systems36,60,61. S1 and S2 are the
scattering matrices describing the quantum electron–photon
interaction of swift electrons interacting with phase-matched
bosonic modes45:

Si ¼ exp gQba
y
i � g�Qb

yai
h i

; i ¼ 1; 2: (3)

gQ is the coupling strength, which can be defined as an integral
on the electric field along the electron trajectory (considering the
second quantized field that corresponds to a single photon
excitation)35,45. ayi ,ai are the photonic creation/annihilation opera-
tors of the bosonic modes with quantized energy ℏω; b†,b
describe the translation in momentum (or equivalently energy) of
the electron, which can be defined as b†|k〉 = |k + 1〉, b|k〉 =
|k − 1〉, where the state |0〉 is the state of a monoenergetic
electron with initial energy E0 and |n〉 is a monoenergetic electron
with energy |E0 + nℏω〉. Equivalently, one can write b = exp(iωz/v)
where z is the position operator of the electron in the first
quantization and v is the average velocity of the electron beam57.
We note that the b,b† operators are not fermionic creation and
annihilation operators. Due to the standard approximation used to
derive Eq. (3), these operators commute ([b,b†] = 0), which is
opposite from the case of fermion operators that anticommute.
The required assumptions to derive Eq. (3) is that the initial

electron energy E0 is much larger than ℏω, and that the electron is
paraxial, i.e., the momentum in the transverse direction is
negligible compared to the momentum along the z axis. These
assumptions allow us to: (1) perform the paraxial approximation
and reduce the dynamics of the electron to a 1D problem and (2)
linearize the dispersion relation of the electron around its initial
energy E0, which allows us to relate the momentum translation
operator b to an energy ladder operator with equal energy
spacings. Those assumptions are well justified under the typical
condition inside transmission electron microscopes35,50, and
recently also scanning electron microscopes62. A detailed deriva-
tion and discussion of the assumptions can be found in section 1
of the Supplementary Material of 45.
Because the operators of the light and the electron commute,

[a, b]= 0, we can represent the scattering matrices as a sum of the
multiplication of two commuting operators—one for the light and
one for the electron. Consequently, we develop an efficient
representation of the interaction with multiple cavities:

S2UφS1 ¼
X1
k¼�1

Aφ
k a1; a2ð Þbk ; (4)

Aφ
k a1; a2ð Þ ¼ gkQe

gQj j2 X1
k2¼�1

Fk2 a2ð ÞFk�k2 a1ð Þe�iφ k�k2ð Þ2 ; (5)

Fk að Þ ¼
X1
m2¼0

�1ð Þm2 gQj j2m2am2 ay
� �kþm2

m2!

1
k þm2ð Þ!

" #
: (6)

The Aφ
k operators contain only the photonic creation/annihila-

tion operators ayi ,ai. The complete derivation can be found in
Supplementary Note 1.1.
This approach allows us to investigate and simulate many

interactions of consecutive electrons with one or more photonic
states. Next, we investigate induced correlations between two
states of light for two different options: (1) when not measuring
the electron’s energy and tracing it out after each interaction; (2)
when measuring the electron after the interaction and post-
selecting on certain desired energy values.

Inducing photon correlations using free electrons
In this section, we show how a free-electron interaction can
correlate two states of light even without measuring the electron
state after the interaction (i.e., without post-selection). A strong
entanglement is possible when post-selecting on the electron
energy measurement (shown in the next section). It was shown
that electrons of narrow energy distribution (i.e., a single energetic
state, a Kronecker “delta” electron, described by the zero-loss
energy |E0〉) can induce entanglement between the electron and a
photonic state45. This discovery motivates utilizing electrons to
create quantum correlations between the photonic cavities. In the
language of quantum information, we regard the two photonic
states as the principal system and the electron as the environ-
ment63. Since the electron does not have to be measured
following the interaction, the system is generally an open
quantum system. After each electron passed by, we trace it out
to find the density matrix of the photonic system
ρ

mþ1ð Þ
ph1;ph2

¼ Tre ρ mð Þ� � ¼ P1
k¼�1 kh jρ mð Þ kj i. We then repeat the

calculation with the next electron (an illustration is provided in
Fig. 2a).
The electron index that interacts with the light is represented by

m = 0, 1, 2, .. with m = 0 being the initial state before any
interaction (i.e., |E0〉). The joint photonic state after m consecutive
electrons can be written as an operator-sum representation 63,64:

ρ
mþ1ð Þ
ph ¼ Tre S2UφS1ρ

mð Þ
ph � ϕej i ϕeh jSy1Uy

φS
y
2

h i
¼ P

k
Aφ
k a1; a2ð Þρ mð Þ

ph Aφy
k a1; a2ð Þ

� �
;

(7)

while the Aφk operators, known as operation elements or Kraus
operators, contain only the photonic creation/annihilation opera-
tors ayi ,ai and are defined in Eq. (5). The complete derivation can
be found in Supplementary Note 1.2. Using this approach, one can
describe the dynamics of the principal system (the two states of
light) without explicitly considering the properties of the
environment (the free electrons). This way, we investigate the
photonic states’ properties, such as quantum correlations and
statistics, after many interactions.
We examine the difference between the joint-photonic prob-

ability distribution P(n1,n2) (which is depicted in Fig. 2c) and the
multiplication of the individual photonic probability distributions P
(n1)P(n2). P(n) is defined as the probability to have n photons in the
photonic state. The difference increases with each electron
interaction, indicating correlations between the photonic states
as depicted in Fig. 2d. We can also quantify the correlations using
the quantum mutual information63 between the two states of
light (Fig. 2b), indicating that the photonic states become
dependent on each other and increasingly so following more
electron interactions. Note that these correlations are not
necessarily quantum. Testing whether the correlations are truly
quantum requires different criteria, as discussed below.
To check whether we have entanglement between the two

photonic cavities in this case, we use two criteria from quantum
information: the Peres–Horodecki criterion for entanglement65,66

and the realignment criterion67,68. Both are sufficient but not
necessary conditions for entanglement. Generally, the problem of
verifying entanglement of mixed states is an NP-hard problem69.
Since we are dealing with mixed states in an infinite Hilbert space,
no current criterion can provide necessary conditions for
entanglement. For example, the Peres-Horodecki and realignment
criteria give a near-zero result, meaning that they did not exclude
entanglement, yet they also could not distinguish whether the
correlations in Fig. 2 represent entanglement or just classical
correlations. Thus, further research on the amount of entangle-
ment created by the scheme without post-selection such as we
present here is a formidable task and left for future research. We
show below that modifying the experiment to use electron post-
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selection avoids this inconclusive situation, creating states of light
that are strongly entangled.
A key requirement for the transfer of information between the

cavities is for the electron to undergo a certain distance of FSP
between the interactions. Without this evolution, electrons cannot
mediate any influence of the first photonic state on the second
one. We can explain this lack of influence by noticing that the
absolute value of the electron’s wavefunction is not modulated
after a coherent electron–photon interaction36 and rather requires
FSP for the modulation to arise. Since the electron–light
interaction only depends on the electron’s amplitude (rather than
its phase), the FSP stage is necessary. From a mathematical point
of view, the key to the lack of induced correlations in the case of
no FSP is that S1, S2 commute, [S1, S2] = 0 (see Supplementary
Note 2). Consequently, without FSP, there is complete symmetry
between the two photonic states, and the theory does not change
if one would replace the order of interactions or even if they both
happen simultaneously.
To transfer quantum information between the cavities, we can

shape the electron’s amplitude in a manner that depends on the

first cavity state, imprinting the information on the electron’s
wavefunction, so it is transferred to the second cavity. Returning
to the mathematical point of view, the addition of FSP breaks the
symmetry in the problem, since the FSP operator does not
commute with the S1, S2 operators.
The electron can give/take net energy to the second photonic

state depending on the first photonic state, as shown in Fig. 3. It is
interesting to consider whether such an effect can occur in the
opposite direction, i.e., transferring energy backward through the
induced entanglement. It is not trivial but possible to prove that
regardless of the quantum state of the interacting electron, one
cannot transfer energy backward. For the analytical proof and
more information regarding this subject, see Supplementary Note
3. These results show how a natural arrow of time emerges from
the order of entanglement events. Thanks to the specific
commutation relations, the electron interaction can be described
as occurring first with cavity ph1 and afterward with cavity ph2,
creating a notion of causality as a result of the induced
entanglement.
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Fig. 2 Correlations induced between two photonic states after interacting with free electrons. a Interaction scheme. After each interaction
of an electron and the two photonic states, we trace out the electron. In certain cases, we then input another electron into the system and
repeat. b The quantum mutual information as a function of the number of interactions increases with the number of interactions, indicating
that correlations are induced. c Statistic of two coherent states with α1 = 2 and α2 = 3 after m = 0, 50, 100 consecutive interactions with free
electrons. d P(n1,n2) − P(n1) ⋅ P(n2) after m = 0, 50, 100 consecutive interactions with free electrons increases and indicates correlations. The
coupling strength in figures (b–d) is gQ = 0.1.
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Entanglement between photonic states using post-selection
Strong quantum correlations can be induced by post-selecting on
the electron’s energy after one interaction (as proposed recently
for the generation of entanglement between qubits46.) This
approach allows the creation of quantum entanglement between
many photons and even creating Bell states of light. This can be
realized inside transmission electron microscopes because of the
precision of the electron energy spectrometer that can measure a
single event and distinguish the number of photons exchanged.
We begin with an electron at the zero-loss energy |E0〉 that

interacts with two arbitrary states of light as seen in Fig. 4a. After
one interaction, we measure the electron with a projection
operator of one defined energy, E0− kℏω, where k is an integer.
Using the Ak operators defined above in Eq. (5), the density matrix
of the remaining light state after the post-selection can be
expressed as

ρ
1ð Þ
ph ¼ Aφ

k a1; a2ð Þρ 0ð Þ
ph A

φy
k a1; a2ð Þ

P kð Þ ; (8)

where ρ
0ð Þ
ph ¼ ρ

0ð Þ
ph1 � ρ

0ð Þ
ph2 is the initial density matrix of the two

states of light. The probability to post-select the electron with the
requested energy is (see Supplementary Note 1.3)

P kð Þ ¼ Tr Aφk a1; a2ð Þρ 0ð Þ
ph A

φy
k a1; a2ð Þ

� �
: (9)

After the measurement, the remaining joint light state is a pure
state. In this case, we can quantify the entanglement between the
two states of light by using the entropy of entanglement70,71. The
entropy of entanglement is the von Neumann entropy72 of the
reduced density matrix for any of the subsystems: For a pure state
ρAB = |ψ〉〈ψ|AB, S(ρA) = −Tr(ρA logρA) = S(ρB). In our case, the two
subsystems are the two states of light. If the entropy of
entanglement is non-zero, i.e., the subsystem is in a mixed state,
it indicates that the two subsystems are entangled.
Figure 4 shows that the free-electron interaction can induce

quantum entanglement between any two general states of light,
even ones with multiple photons. In addition, the electron is
heralding the creation of entanglement and its amount when it is
detected, providing a non-destructive measurement method for
heralding of the entangled light. Specifically, when measuring the

electron with electron energy loss spectroscopy, one can tell
precisely which photonic parameters to expect and when the
entanglement is occurring with femtosecond time resolution 31,36.
Let us focus on a particular case of this result—the creation of a

Bell state. An electron with initial energy |E0〉 goes through two
empty cavities and is later measured with energy E0 − ℏω. the
post-selected state of light will be a Bell state ψph

�� � ¼
1ffiffi
2

p ð 0j iph1 1j iph2þ 1j iph1 0j iph2Þ: The probability of achieving this

entangled state is ~2|gQ|
2 for |gQ| ≲ 0.2, and the maximum value of

this probability is P = 0.37, for gQ = 0.7. this value of gQ can
already be achieved in current experiments73. The full derivation
can be found in Supplementary Note 4. Figure 4c, d presents maps
of the post-selection probability and entanglement entropy as a
function of gQ and the number of photons. Such experiments can
be performed in current setups with repetition rates of few MHz50,
with higher repetition rates possible using different ultrafast
microscopy techniques74–76, and with continuous-wave operation
recently shown possible50,77).

Hanbury Brown and Twiss type experiment using free
electrons
Until now, we have seen how one can use free electrons to create
entanglement, with or without post-selecting them. Let us look at
these experiments through the lens of quantum optics by
imagining the following gedanken experiment: the initial photonic
state is sent through a beam splitter into two interaction points
with additional relative phase ϕ. A second-order correlation
between the two light states is detected, using the following
definition of second-order correlations:

g 2ð Þ ¼ n1n2h i
n1h i n2h i ; (10)

where 〈ai〉 = Tr(ρiai), 〈ni〉 = Tr(ρini), 〈n1 n2〉 = Tr(ρ12 n1 n2) This
measurement scheme is analogous to the HBT experiment55,
except for the induced correlations arising from the free electrons’
interactions. In addition, it provides a way to examine how free
electrons can correlate or anticorrelate light.
We can consider the interaction of the same two states of light

with multiple electrons if they arrive as a dilute beam so that we
can neglect the Coulomb interaction between them. Assuming

(i)

(j)

Experiment 1
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Final light state
(a) entangled
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(b)
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Fig. 3 The electron transfers quantum information between photonic cavities. The schemes show two experiments with identical
parameters, except for the first cavity’s initial light state. The first interaction creates a joint entangled state of the electron and the cavity state.
The second interaction transfers information to the second cavity. The first interaction can be understood as shaping of the electron
wavefunction49 that can then alter the statistics of the second cavity. a, b The same initial (unshaped) electron interacts with two cavities. Each
scheme presents a different light state in the first cavity. The initial light statistic in the first cavity: a coherent state with α = 5 (c) or a Fock
state with one photon (d). e, f The electron is shaped by the light state in the first cavity. g, h The light statistic in the second cavity for both
experiments is a Fock state with one photon. It is modified in a way that depends on the state of light in the first cavity. i, j The final light
statistics in the second cavity, plotted after 20 consecutive electron interactions, showing a clear difference that arises from the difference in
light statistics in the first cavity. The interaction strength is gQ= 0.2.

G. Baranes et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2022)    32 



the beam carries m such electrons, and assuming that they are
initially unshaped, the problem turns out to be analytical and
straightforward using the Heisenberg picture. The initial second-

order correlation function is g 2ð Þ
0 ¼ n1n2h i 0ð Þ

n1h i 0ð Þ n2h i 0ð Þ. After m electron

interactions, we achieve the following second-order correlation
(see Supplementary Note 5):

g 2ð Þ
N ¼

g 2ð Þ
0 n1h i 0ð Þ n2h i 0ð ÞþN gQj j2 n1h i 0ð Þþ n2h i 0ð Þþ2Re ay1

D E 0ð Þ
a2h i 0ð Þ


 �
þ 2N � 1ð Þ gQj j2

� 


n1h i 0ð ÞþN gQj j2
� �

n2h i 0ð ÞþN gQj j2
� � :

(11)

This formula shows that even for photonic states that were
initially uncorrelated, i.e., g 2ð Þ

0 ¼ 1, or for empty cavities, con-
secutive interactions can induce second-order correlations
between them (Fig. 5a).
Interestingly, inserting FSP between the two interactions, we

find that the FSP phase plays a similar role to the relative phase
between the states of light (Fig. 5f). Therefore, one can alternate
between these two experimental knobs—creating the delay
between the states of light by altering the actual light path or
delaying the electron between the interactions (FSP). These ideas
provide degrees of freedom to shape the light statistics, induce
second-order correlations, and create anti-bunched light.

Shaping the electron wavefunction to control correlations
We found that the induced correlations strongly depend on the
shape of the electron wavefunctions and the quantum state of the
light. An electron cannot induce quantum correlations when its
coherent energy uncertainty is comparable or bigger than the
photon energy (Fig. 5g, h). This concept is analogous to a similar
uncertainty-width-dependence found in electron radiation
mechanisms78. Electrons of wide coherent energy uncertainty, or
equivalently, “comb” electrons that are made from a series of

energy peaks, ℏω apart, with a constant phase difference between
them (Fig. 5i, as demonstrated recently59), cannot induce second-
order correlations. Instead, their interaction with each cavity is
equivalent to performing a displacement operator on the state of
light in that cavity45,48, maintaining a separable joint state.
In contrast to the interactions of wide-uncertainty electrons,

narrow-uncertainty electrons can be used to control the quantum
state of light and achieve non-trivial photon statistics. When
starting from an initially classical (coherent state) light, the
electron can modify the correlations by creating anti-bunching
(i.e., g(2) < 1). For this to occur, we must set a certain delay that
creates a relative phase difference ϕ between the two states of
light, as shown in Fig. 5e. Another way of achieving the relative
phase needed for anti-bunching is delaying the electron between
the interactions, as shown in Fig. 5f.

DISCUSSION
Our work proposes a way to create entanglement, bunching, and
anti-bunching of light. We predict that coherent free electrons can
entangle two spatially separated states of light, with the electron’s
energy uncertainty altering the level of entanglement. From a
fundamental perspective, this shows that electron–photon inter-
actions can create a type of nonlinearity, which is nonlocal and
creates quantum correlations between separate photonic quasi-
particles. Our proposed concepts can be implemented in state-of-
the-art experiments such as in ultrafast transmission electron
microscopy, which implement coherent electron–photon interac-
tions 31–37,43.
We emphasize that post-selecting on the electron’s energy

enables the creation of strong entanglement of photonic states,
heralded by the measurement of the electron. Furthermore, pre-
shaping of the electron’s quantum state can control the quantum
correlations. This way, one can use the electron to control the
quantum shape of light and modify classical light sources into
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quantum. Our findings provide a step towards a bigger goal:
inventing methods to create many-photon entangled states with
non-trivial statistics. This approach is of fundamental interest for a
wide range of applications of quantum technologies, such as
photonic quantum computing.
We found that the electron can transfer information between

two photonic states through its entanglement with both of them,
in a process akin to quantum-teleportation. This process is
possible only if the distance between the cavities is large enough
such that electron dispersion has time to alter the electron’s
spatial shape. In that case, the order of interactions affects the
result in a way that spawns a natural arrow of time in the problem.
As an example of its consequences, when the distance between
interactions is negligible (equivalent to a simultaneous interac-
tion), the electron cannot exchange any information or energy
between the cavities. The distance between interactions limits the
transfer of information between the cavities.
These results can be extended beyond photonic cavities, for

example, to electron–phonon interactions and to electron–qubit
interactions, generalizing the results of previous works53,54.
Looking forward, we envision future quantum optical experiments
based on networks of electrons and photons, creating high-

dimensional hyper-entanglement that involve cluster states of
spatially separated photonic states.

METHODS
Evolution of the states of light in terms of Kraus maps
This section of Methods presents the formalism developed for the
predictions in the manuscript, evolving the light density matrix without
considering the electron, in the case of a monoenergetic electron with
energy E0. We consider each free electron as the noise and the two states
of light as the system. We then compute the evolution of the system only
with a Kraus map63,64. The evolution of the combined system of the
electron and two photonic states follows the following unitary operators:
S1 and S2 for the electron interaction with the two photonic states, and Uφ

for free-space propagation. As detailed in Supplementary Note 1.1, the
multiplication of these provides:

S2UφS1 ¼
X1
k¼�1

Aφk a1; a2ð Þbk ; (12)

while the Ak operators contain only the photonic creation/annihilation
operators ayi ,ai and defined in Eq. (5); b describes the translation in
momentum (or equivalently energy) of the electron. The light density after
the interaction without measuring the electron (i.e., tracing out the
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electron) is given in terms of the Ak operators:

ρ
mþ1ð Þ
ph ¼

X
k

Aφk a1; a2ð Þρ mð Þ
ph Aφyk a1; a2ð Þ

� �
: (13)

Thus, the Ak operators are the Kraus operators of this problem and obey
the completeness relation:

P1
k¼�1 Aφyk Aφk ¼ I. This method can be used to

evaluate the photonic density matrix after the interaction of one state of
light with a monoenergetic electron, without measuring the electron (i.e.,
tracing out the electron):

ρ
mþ1ð Þ
ph ¼

X1
k¼�1

Fk að Þρ mð Þ
ph Fyk að Þ

� �
: (14)

Moreover, the same method can be used to evaluate the joint state of
the two states of light after the interaction and the post-selection of the
electron’s energy E0 − kℏω:

ρ
mþ1ð Þ
ph ¼ Aφk a1; a2ð Þρ mð Þ

ph Aφ y
k a1; a2ð Þ

P kð Þ ; (15)

while initially ρ
0ð Þ
ph ¼ ρ

0ð Þ
ph1 � ρ

0ð Þ
ph2. The mathematical proof can be found in

Supplementary Note 1.3.

Methods to check entanglement
To check the entanglement in the joint photonic pure state after post-
selecting the electrons, we used the entropy of entanglement71,72. The
entropy of entanglement is an entanglement measure for bipartite pure
states. It is defined via the von Neumann entropy of one of the reduced
states. For a pure state ρAB, the entanglement entropy is given by: S(ρA) =
−Tr(ρA log ρA)=−Tr(ρB log ρB) = S(ρB). We used Eq. (8) to simulate the
final density matrix of light after the post-selection.
To check the entanglement in the joint photonic mixed state after

tracing out the electrons, we used the Peres–Horodecki criterion for
entanglement65,66 and the realignment criterion67. Both are necessary
conditions for the joint density matrix of two quantum systems to be
separable (i.e., not entangled) but not sufficient. To find them, we
numerically calculated the final density matrix of the light joint state, using
Eq. (7), and used the functions IsPPT, Negativity, Realignment, and
TraceNorm in the QETLAB toolbox68.

Heisenberg picture
To calculate the analogy of second-order coherence between two
photonic states, we used the Heisenberg picture. The Heisenberg picture
is a formulation of quantum mechanics in which the operators incorporate
a dependency on time, but the state vectors are time-independent.
Throughout the paper, we used the following identity:

SyaS ¼ aþ gQb; (16)

while S is the scattering matrix describing the quantum electron–photon
interaction; a is the photonic annihilation operator; b describes the
translation in momentum (or energy) of the electron; gQ is the interaction
strength. The full mathematical proof can be found in Supplementary Note
5.1.

Numerical calculation
All the numerical calculations in the main text were performed using
MATLAB and the QETLAB toolbox for quantum entanglements68.
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