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Entanglement generation in a quantum network at
distance-independent rate
Ashlesha Patil1✉, Mihir Pant2, Dirk Englund 2, Don Towsley3 and Saikat Guha1

We develop a protocol for entanglement generation in the quantum internet that allows a repeater node to use n-qubit
Greenberger-Horne-Zeilinger (GHZ) projective measurements that can fuse n successfully entangled links, i.e., two-qubit entangled
Bell pairs shared across n network edges, incident at that node. Implementing n-fusion, for n ≥ 3, is in principle not much harder
than 2-fusions (Bell-basis measurements) in solid-state qubit memories. If we allow even 3-fusions at the nodes, we find—by
developing a connection to a modified version of the site-bond percolation problem—that despite lossy (hence probabilistic) link-
level entanglement generation, and probabilistic success of the fusion measurements at nodes, one can generate entanglement
between end parties Alice and Bob at a rate that stays constant as the distance between them increases. We prove that this
powerful network property is not possible to attain with any quantum networking protocol built with Bell measurements and
multiplexing alone. We also design a two-party quantum key distribution protocol that converts the entangled states shared
between two nodes into a shared secret, at a key generation rate that is independent of the distance between the two parties.
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INTRODUCTION
The Quantum Internet will provide the service of generating
shared entanglement of different kinds, between distant end-user
pairs and groups, on demand, and at high speeds. The
entanglement generation rate between two nodes decays linearly
with the transmissivity η of the channel connecting them, which
turns into an exponentially rate-vs.-distance decay over optical
fiber, since η= e−αL for a length-L fiber1. The maximum attainable
rate is � logð1� ηÞ � 1:44η, for η≪ 1, ebits (pure Bell states
shared between two parties) per transmitted optical mode2.
Quantum repeaters need to be inserted along the length of the
optical channel in order to circumvent this rate-vs.-loss
limit3–5. In6, the ultimate capacity of entanglement generation
between two nodes was found, assuming the network nodes were
fully-equipped quantum processors. A consequence of this result
was that multipath routing can improve entanglement rates over
that attainable by routing along one path.
There is a wide variety of repeater and router protocols being

researched using practical devices and systems, most of which use
Bell state measurements (BSMs) as a building block. BSM is a two-
qubit destructive measurement that can fuse two entangled links
(each entangled link being a two-qubit Bell state, each shared
across a network edge) incident at a node, into one entangled link
over a two-hop path. For a linear chain of repeater nodes, where
each repeater is equipped with quantum memories and employs
BSMs and switches, the entanglement rate outperforms what can
be attained with a direct connection connecting the commu-
nicating end parties, but the rate still decays exponentially with
distance, i.e., R ~ e−sαL, with s < 13.
Various genres of quantum repeaters and associated error-

correction codes are under investigation4. For the purposes of our
paper, we will consider the following simple model, and show a
surprising result—that the end-to-end entanglement rate
between two uses Alice and Bob remains constant with increasing
distance when network nodes are able to measure more than two

qubits in a joint projective measurement. In each time slot, each
network edge attempts to establish an entangled link: a Bell state
of two qubits, each residing in a quantum memory at nodes on
either end of the link. In every time slot, each link is established
successfully, i.i.d., with probability p proportional to the transmis-
sivity of the optical link. Subsequently, each node, based on local
link-state information (i.e., which neighboring links succeeded in
that time slot), and knowledge of the location of the commu-
nicating parties Alice and Bob, decides which pairs of successful
links to fuse. The two qubits that are fused with a BSM at a node
are destroyed in the measurement process, while creating an
entangled (Bell) state among the two qubits at the far ends of the
two links, thus creating a 2-hop entangled link traversing two
network edges. A fusion attempt succeeds with probability q. It
was shown recently that with a simple distance-vector fusion rule,
the achievable entanglement generation rate exceeds what is
possible with a fusion schedule along a pre-determined single
shortest path connecting Alice and Bob7. Despite this rate
advantage from multipath entanglement routing, the rate decays
exponentially with the distance L between Alice and Bob, for any
value of p or q less than 1. Interestingly, this exponential scaling of
rate with multipath routing, is at odds with the network’s capacity
proven in6, according to which the end-to-end rate does not even
depend upon the distance between communicating parties. The
protocol we develop in this paper addresses this gap.
In this paper, we develop a protocol that allows nodes to use n-

qubit Greenberger-Horne-Zeilinger (GHZ) projective measure-
ments, i.e., n-fusions, that can fuse n successful links at a node.
When n= 2, the nodes implement a two-qubit BSM. For n= 1, the
nodes implement a single-qubit Pauli measurement. Implement-
ing n-fusion, for n≥3 is in principle no harder than 2-fusions (Bell
measurements) in qubit memories, e.g., color centers in diamond8,
and trapped-ion quantum processors9. We take the success
probability of an n-fusion attempts as q. We report a surprising
result: if we allow even 3-fusions at the repeater nodes, there is a
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non-trivial regime of (p, q) where our protocol generates
entanglement at a rate that stays constant with L. This result
comes from the percolation theory. We prove this is not possible
with any quantum network protocol that only uses Bell measure-
ments if q < 1 (see Supplementary Note 3). Our protocol only uses
local link state knowledge, but requires a single round of classical
communications that adds to the latency of the protocol (but,
does not affect the rate). It can be easily extended to share GHZ
states between multiple users at distance-independent rate. To
achieve this, all the users (recipients of qubits that are part of the
distributed GHZ state) would not perform fusions on their qubits.
We believe such a protocol would also exhibit a percolation like
behavior but with higher percolation thresholds based on a recent
result on percolation between multiple points in a network10.
Finally, we develop a quantum key distribution (QKD) protocol

that allows a pair of users Alice and Bob, situated in a network, to
sift (two-party) secret keys starting from a pre-shared m+ n-qubit
Greenberger-Horne-Zeilinger (GHZ) state, m qubits of which are
held by Alice and n by Bob. It is an extension of the BBM’92
protocol11, a simplification of the E’91 protocol12, which relies on
shared Bell states and measurements by Alice and Bob in a
matching pair of bases. Using our above described quantum
network protocol that employs n-fusions at nodes, we thus have
devised a QKD protocol over a quantum network whose secret
key generation rate is constant with increasing distance between
communicating parties, despite lossy channel segments between
nodes and probabilistic successes of the n-fusions at nodes.
In related work, refs. 13,14 map entanglement spreading in a

network to bond percolation, where multiple copies of imperfect-
fidelity bell pairs across a single link are purified (which succeed
probabilistically) into perfect bell states, which are then connected
using ideal BSMs. However, these papers don’t consider entangle-
ment routing protocols, i.e., algorithms for delivering entangle-
ment among specific parties with nodes acting only with local
link-state information. For the same reason, they also do not
calculate entanglement generation rates. Refs. 15,16 take advan-
tage of percolation theory to evaluate the robustness of quantum
networks that route entanglement using Bell state measurements.
Ref. 17 uses imperfect Bell states and imperfect gates, to grow the
size of entanglement through a succession of self-similar graph
state structures, to establish the desired GHZ state in a quantum
network. The paper doesn’t provide a rate calculation, and does
not use joint three or more qubit projective measurement on the
GHZ basis like we do for our protocol.
In Section Fusing entanglement using GHZ-state projections, we

discuss the elementary multi-qubit projective measurements used
in our protocol. Section The Protocol describes the entanglement
distribution protocol. We also map the problem of distributing
entanglement over a quantum network to a mixed percolation
problem studied in classical statistical mechanics. We discuss the
origin of distance-independence of the shared entanglement rate,
along with numerical calculations of the rate and comparisons
with capacity, in Section Entanglement rates and the improved
variation of the protocol in Section Improved n-GHZ protocol.
Section Quantum key distribution describes the QKD protocol
using GHZ states. We conclude in Section Discussion by
summarizing the results and discussing open questions that can
be studied as immediate extensions and applications of the
proposed protocol.

RESULTS
Fusing entanglement using GHZ-state projections
We use entanglement swapping operations, namely, Bell State
Measurements (BSMs) and n-qubit GHZ projections at network
nodes, for routing entanglement in a quantum network. An
n-qubit GHZ projection is a von Neumann projective

measurement, that projects the n measured qubits into one of
the (2n) mutually-orthogonal n-qubit GHZ states, thereby produ-
cing a (random) n-bit classical measurement result. The well-
known BSM is a 2-qubit GHZ projection. Entanglement swapping
at a quantum (repeater) node extends the range of entanglement
by fusing two Bell states shared across two adjacent edges of the
network.
We refer to n-qubit stabilizer states18 with stabilizer generators

of the form fð�1Þg1X1X2 ¼ Xn; ð�1Þg2Z1Z2; ð�1Þg3Z1Z3; ¼ ;
ð�1ÞgnZ1Zng, gi ∈ {0, 1} as n-GHZs, which includes the case of
n= 2 i.e., Bell states. Xi and Zi are single-qubit Pauli operators for
the ith qubit. We use the (unconventional) notation of an n-star
graph to represent an n-GHZ. This is not a star-topology
commonly-known cluster state19. Furthermore, we refer to a
projective measurement onto the n-GHZ basis as a (n-qubit)
fusion. The size of an n-qubit GHZ state is n. An n-fusion on a set of
GHZ states of size m1,m2, . . . .mn results in a single GHZ state of
size

Pn
i¼1 mi � n, obtained by removing the qubits that are fused

from the original set of qubits and coalescing all the unmeasured
qubits into a single GHZ state, as shown in Fig. 1.
Depending upon the choice of quantum memory and processor

hardware at the quantum repeater node, fusion operations may
be probabilistic. We model the result of a failed fusion attempt as
performing an X-basis measurement on all qubits that were used
as part of the fusion, as shown in Fig. 1. Measuring a qubit of an n-
GHZ state in the Pauli-X basis results in a (n− 1)-GHZ state,
unentangled with the measured qubit, as shown in Fig. 2.

The protocol
In this paper, we study two kinds of quantum networks: a two-
dimensional square-grid, and a configuration-model random
graph with a given node degree distribution20. First, let us
consider a square-grid graph. Each node is a quantum repeater
(blue circles in Fig. 3a) with four quantum memories (black dots in
Fig. 3a) associated with each neighboring edge. Each repeater is
either a ‘consumer’ of entanglement i.e., Alice and Bob, or a
‘helper’ i.e., they help to establish entanglement between the
consumer nodes. In the first time step, each network edge
attempts to establish an entangled link: a Bell state of two qubits,
each residing in a quantum memory at nodes on either end of the
link. Each link is established successfully, i.i.d., with probability p,
which is proportional to the transmissivity of the respective optical
link1,2. The repeater nodes have only local link-state knowledge,
i.e., a repeater knows the success-failure outcomes at each time
slot of its own link generation attempts (across its neighboring
edges). Each repeater is also aware whether it is a consumer or a
helper node, knows the overall network topology, and the
location of the consumer nodes (if it is a helper node). In the
next time step, all helper nodes that have more than one
successfully created link, attempt fusions on the qubits held in
their respective quantum memories tied to a subset of those
successful links. The fusion success probability is taken to be q. A
successful fusion at a repeater creates a Bell pair or a GHZ state
shared between a subset of its neighbors. If a helper node has
only one link success in a time slot, it performs an X-basis
measurement on the corresponding locally-held qubit, which
unentangles and dissociates that qubit from any others in the
network.
We consider three protocols for the square-grid network, which

differ in the operations available at repeater nodes, and allow for
different entanglement generation rates: (1) the 4-GHZ protocol,
(2) the 3-GHZ protocol and (3) the 3-GHZ brickwork protocol.
In the 4-GHZ protocol, a repeater performs a fusion on all

locally-held qubits successfully entanlged with neighboring nodes
at each time step. Hence, the largest measurement in such a
protocol is a 4-GHZ measurement, which is done when all 4 links
are successfully created. In a time step when only 3 or 2 links are
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successful, a 3-GHZ measurement or a 2-GHZ (i.e., Bell) measure-
ment is performed. If only one link is successful, the corresponding
qubit is measured in the X-basis. In the 3-GHZ protocol, the
maximum size of the GHZ projection allowed is limited to 3, which
may be imposed due to hardware constraints. If the number of
successful neighboring links of a helper node is less than or equal
to three, the repeater performs a fusion between the correspond-
ing qubits, i.e., behaves the same as the 4-GHZ protocol. However,
if four neighboring links are successful, the repeater randomly
chooses three qubits and performs a fusion on them. It performs
an X measurement on the fourth remaining qubit if this happens.
Every helper node sends its local link state knowledge, fusion
success outcomes, and X-basis measurement outcomes to the
consumers Alice and Bob using a classical communication overlay
channel. This classical communication time determines the overall
latency of the entanglement generation protocol, but the
entanglement rate is determined by the rate at which each
entangled link is attempted across each network edge.
It is important to note that all Bell state measurements, GHZ

projections and Pauli X-basis measurements across the entire
network are performed during the same time step. This is allowed
because all of these operations and measurements commute with
one another. At the end of this step, the consumers obtain
(potentially more than one) shared m-qubit GHZ state(s) (2≤m≤8
for square grid) with a probability that depends on the network
topology, p, q, and which of the two protocols described above is
used. If the desired shared entangled state is a 2-GHZ or a Bell
state, the consumers can easily convert them-GHZ state into a Bell
pair by locally performing X-basis measurements.
We discuss the rules for the Brickwork protocol in Section

Improved n-GHZ protocol, which instead of being fully rando-
mized as above, imposes some additional structure on which
fusions to attempt, and can outperform the 3-GHZ protocol in
certain regimes.
We also study the n-GHZ protocol for a random graph network,

with an arbitrary node degree distribution pk. Here, pk is the
probability that a randomly chosen node has degree k. In other
words, it is the probability that a randomly chosen quantum
repeater node has k edges. In an n-GHZ protocol, each repeater
performs m-GHZ projections for fusions where m ¼

minðn; no. of successful links at the repeaters Þ i.e., repeaters
can perform up to n-fusions. For the n-GHZ protocol over a
random network, if a degree k helper node has l successful links in
a time slot such that l ≤ n, it performs an l-GHZ fusion. If l > n, it
performs an n-GHZ fusion on the n qubits corresponding to n

Fig. 2 Measuring a qubit in X-basis removes it from the n-GHZ
state. Even though the states are represented using graphs, they are
not cluster states.

Success

Failure

3-fusion

7-GHZ state

Fig. 1 3-fusion on two 3-GHZ states and a 4-GHZ state. Fusion
success creates a 7-GHZ state and failure performs X-basis
measurements on the fused qubits, resulting in two 2-GHZ states
(Bell pairs) and a 3-GHZ state. Even though the states are
represented using graphs, they are not cluster states.

Fig. 3 The schematic of the quantum network during various
stages of the random 3-GHZ protocol. a The quantum network
after link generation. The successfully generated links are shown
using black solid lines. The green triangles and rectangles denote
the successful fusions. Their red counterparts represent the failed
fusion attempts. The quantum memories marked in red perform
X-basis measurements on the qubits held in them. b The three GHZ
states (green, orange, and magenta lines) generated after perform-
ing fusions at the repeaters. b The m-qubit GHZ state shared
between Alice and Bob (orange (m= 2), and magenta (m= 3) lines).
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randomly chosen links (of the l). The remaining steps are same as
the 3- and 4-GHZ protocols described above for the square grid.
Immediately after the time slot when all helper nodes perform

their measurements and sends, via unicast communications, the
requisite classical communication to the consumer nodes, the
network edges re-attempt entanglement generation in the next
time step, and the helper nodes again make their measurements
based on the protocol described above using local link state
information, until the end of the protocol’s duration. The length of
each time step determines the rate of the protocol, whereas the
classical communication time determines the latency. Consumers
hold on to all their qubits for the time required to receive the
classical information regarding the results of measurements made
during a specific time slot from every helper node in the network.
They use the local link state knowledge from the helpers to
determine which one of their qubits (from the corresponding time
slot) are part of a shared entangled state held between Alice and
Bob. In each time slot, Alice and Bob generate 0, 1, 2, 3, or
4 shared GHZ states. Each of those shared GHZ states could have
more than 2 qubits. For example, Alice and Bob could generate
one 3-qubit GHZ state two of whose qubits are held by Alice and
one by Bob, and one 2-qubit GHZ (i.e., Bell) state one qubit of
which is with Alice and the other with Bob.
At this point, Alice and Bob can use their shared entangled state

for a quantum information processing protocol, e.g., QKD,
entanglement enhanced sensing, or distributed quantum com-
puting implemented by a teleported gate. If the protocol requires
a particular n-GHZ state as a resource, it is always possible for Alice
and Bob to correct the state by applying local unitary operations,
or for some protocols such as QKD by correcting the outcome of
the protocol during classical post-processing using the measure-
ment results received from the helpers.

Entanglement rates
We calculate the shared entanglement generation rate for the
square-grid topology of the quantum network under three
different fusion rules (Fig. 3) as a function of link and fusion
success probabilities (p, q) and the distance between the
consumers. We define rate as expected number of n-GHZs
(including Bell pairs) shared between the consumers per cycle.
We can think of the quantum network shown in Fig. 3a as a graph
G(V, E) such that each quantum memory is a vertex v∈ V, and each
link e∈ E is created with probability p (a successfully created link
Bell pair). Fusion operations are then executed at vertices with at
least two neighbors creating a new graph G0ðV 0; E0Þ. In this graph,
v 2 V 0 is a quantum memory that has undergone a fusion
operation. G0ðV 0; E0Þ has additional edges that represent the edges
created between quantum memories at the same repeater due to
successful fusions between vertices (green triangles or rectangles
in Fig. 3a). In addition, consumers Alice and Bob have four vertices
each. They share an entangled state at the end of the fusion stage,
if they belong to the same connected component of graph G0. The
number of GHZ states shared between Alice and Bob equals the
number of disconnected sub-graphs of G0 containing at least one
vertex each from both Alice and Bob. Hence, the maximum value
the rate can take would be 4 m-qubit GHZ states/cycle where m ≤
8 for a square grid network. In the following sections, we compute
and compare the shared entanglement generation rates for the
different protocols over square-grid and random networks. We
refer to the protocol in which repeaters can perform up to n-qubit
GHZ projections as n-GHZ protocol.

Perfect repeaters. We first study the case where repeaters always
successfully perform fusions, i.e., q= 1. In the n-GHZ protocol over
a certain network topology, calculating the probability that the
consumers are a part of the same connected component of
G0ðV 0; E0Þ translates to a bond percolation problem on the

underlying network topology21. The link generation probability p
is equivalent to the bond occupation probability in the percolation
problem. Percolation is a phase transition phenomenon such that
when p < pc (sub-critical regime), where pc is a threshold that
depends on the lattice geometry, the probability that two
randomly chosen sites are connected decays exponentially with
distance between the two sites. On the other hand, if p > pc
(super-critical regime), this probability remains constant with the
distance. This result forms the basis of our protocols to achieve
distance-independent shared entanglement generation rates.
In Fig. 4a, we plot the expected number of GHZ states shared by

the consumers—at different Manhattan distance separations—at
the end of each cycle for the 4-GHZ protocol, as a function of p. As
expected, we see that as p goes above the bond percolation
threshold of the square grid, pð4Þc ¼ 0:5, (a) the rate increases
sharply, and (b) the rate becomes independent of the separation
between the consumers.
The 3-GHZ protocol described above translates to a different

bond percolation problem on the square lattice, where up to 3
occupied bonds incident at a node can be stuck together to form
connected components. For this problem, the bond percolation
threshold pð3Þc � 0:53 (Fig. 4b). For both of these fusion rules at the
repeaters, when p> pð3Þc , the rate doesn’t decay exponentially with
the distance between the consumers, but remains constant
instead.

Imperfect repeaters. Depending on the quantum hardware used
at the repeaters, fusion operations can be probabilistic22. In this
paper, if a repeater fails to perform fusion, it is equivalent to
performing X-basis measurements on the qubits involved in the
fusion. Calculating the probability that a pair of users end up with
shared entanglement when both link generation and fusions are
probabilistic, now, becomes a site-bond percolation problem23

over the underlying network topology lattice (e.g., the square
lattice). Site-bond percolation is the generalized version of a
percolation problem in which sites and bonds are present with
probabilities q and p, respectively. The boundary between the
super- and sub-critical regimes becomes a curve in the (p, q) plane.
For our protocol, the fusion success probability at each repeater
translates to the site occupation probability q. Here, we assume
that all fusion operations succeed with the same probability q. We
analytically calculate the site-bond region for an n-GHZ protocol
over a random graph in Supplementary Note 1. Figure 5(a) shows
the site-bond region for the lattices formed after the fusion step in
3- and 4-GHZ projection protocols on a square-grid network,
simulated using the Newman-Ziff method24 and 3-GHZ protocol
on a constant degree-4 random graph network using the
analytical formula. The site-bond curve gives the percolation
thresholds (pc, qc) of the underlying lattice. The probability that the
two consumers are connected is distance-independent when p >
pc and q > qc. Thus, the link generation and fusion success
probabilities need to lie above the site-bond curve to achieve
distance-independent rate. To demonstrate this, we plot the rate
as a function of distance for three pairs of (p, q) that lie in three
different regions of the site bond curves of the 4- and 3- GHZ
protocols in Fig. 5b.

Rate upper bound. Ref. 6 gave the capacity upper bound for a
quantum network with repeaters that can perform arbitrary
quantum operations, including multi-qubit projective measure-
ments. This work transforms the entanglement routing protocol to
a flow problem. A pair of achievability and converse proofs
established that the capacity of generating entanglement
between two network nodes Alice and Bob is given by the max-
flow (or the min-cut) of the underlying network topology, where
the capacity of an individual link of transmissivity η is �log2ð1�
ηÞ ebits per mode2. This ultimate capacity of a square-grid
network topology with equal link capacities, translates to
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�4log2ð1� ηÞ ebits/mode (see red dashed plot in Fig. 6). This
hence must serve as an upper bound for rates achieved by our
protocol.
The most natural realization of the protocols presented in this

paper would be with single-photon dual-rail (e.g., polarization-
encoded) qubits. For this qubit encoding, if everything else other
than the link loss were ideal (unit-efficiency memory, perfect
detectors, deterministic entanglement sources with no multi-pair
emissions), the success probability of a link, per mode, p= η.
When q= 1, the max-flow is given by 4p (see green dotted plot in
Fig. 6), which serves as an upper bound to the rates achieved by
our specific protocols. To achieve the high rates at low loss
predicted by6, one must use high-order, e.g., continuous-variable
modulation formats.
This upper bound of 4p is clearly independent of the distance

between the consumers Alice and Bob, which is consistent with
our protocol’s having such a property. Ref. 6’s result implies that
this upper bound would be achievable with perfect quantum
memories and perfect BSMs at all nodes. This is simple to see since
the link-level entangled qubit pairs can be stored perfectly for a
long time. So, after k time steps, each link would have
accumulated roughly kp successfully entangled Bell states, at
which point, they can be connected into 4kp end-to-end Bell

states along four edge-disjoint paths connecting Alice and Bob
using BSMs, achieving a rate of 4kp/k= 4p ebits per cycle.
For our protocol, this upper bound is not achievable because

we assume limited memory coherence time (equivalent to the
classical communication latency of a link), limited quantum
processing available at every node, and act without the advantage
of global link-state knowledge. Assuming that the consumers are
far apart, when p < pðlÞc , for l= 3 or l= 4 (depending upon which of
the two protocols is being used), with high probability, they will
not share a connected path. When p> pðlÞc , the consumers will with
high probability, we part of the giant connected component
(GCC), a unique O(N)-size connected component where N is the
total number of bonds in the underlying network. Hence, in this
super-critical regime, at the end of each cycle, with high
probability, the consumers share a perfect GHZ state.
Let us say that the probability of a random node belonging to

the GCC is F(p). In order for Alice and Bob to share a GHZ state at
the end of a cycle, they both have to be a part of the GCC. Hence,
the rate achieved by our protocol is upper bounded by F(p)2 (see
black dash-dotted plot in Fig. 6). Finally, we plot the actual rates

Fig. 5 Rate as a function of positions of p and q inside site-bond
region. a Site-bond percolation regions for the percolation
problems corresponding to the 4-GHZ protocol over square-grid
network, 3-GHZ protocol over square-grid and constant degree-4
random graph networks. The curves represent the critical regime of
percolation. p and q need to lie above the curves for distance-
independent rate. b Rate vs distance for points in three different
regions of the site-bond curve marked in (a) for the square-grid
network. The dashed and solid lines correspond to 4- and random
3-GHZ protocols, respectively.

Fig. 4 Entanglement rate over the square grid network assuming
q= 1. We see that (a) for the 4-GHZ protocol above the threshold
p > pc, the entanglement rate becomes independent of the distance
between communicating parties while it scales with the Manhattan
distance when p < pc; and (b) for the random 3-GHZ protocol, the
threshold pc is higher (0.53 versus 0.5) for the 3-GHZ protocol. The
threshold pc for the 4-GHZ protocol is the standard bond
percolation threshold of the 2D square lattice.
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achieved by our 4-GHZ and 3-GHZ protocols for comparison, in
Fig. 6 (solid magenta and blue dash-dotted, respectively).

Improved n-GHZ protocol
We observe a curious turnaround in the site-bond curves for
the 3-GHZ and some n-GHZ protocols over square-grid and
random networks, respectively. For the 3-GHZ protocol, when
two neighboring repeaters have four link successes each and
they are limited to doing 3-GHZ projections, while one repeater
might sacrifice the shared edge, the other might not as the
repeaters don’t communicate with each other to decide which
links to choose to perform fusion on. It effectively discon-
nected the two repeaters even though they shared a link. This
effect is even more pronounced when q < 1 because a repeater
might choose to fuse with a failed neighboring repeater
instead of a functioning one. This negatively affects the overall
connectivity of the lattice. As a result of the adversarial nature
of the rule, in high p regime, the rate starts decaying with p
when q < 1 (Fig. 7), which shows that the rule is sub-optimal.
The site-bond region for this 3-GHZ fusion rule clearly depicts
this behavior in Fig. 5a. Similar arguments can be made to
explain the turnaround for the n-GHZ protocol for the random
network. In the following sections, we discuss three strategies
to improve the turnaround.

Thinning the network. Let p* be the link generation probability at
which the turnaround occurs. The adversarial behavior of the
protocol is observed only beyond p*. We can get rid of the
turnaround by randomly removing links in the high p regime. We
modify the protocol such that when p > p*, each link is deleted
with probability (p− p*)/p. This makes the effective link generation
probability p* when p > p* as shown in Fig. 5a.

The Brickwork network. The random selection of the links to
fuse degrades the rate when repeaters can fail. To overcome
this issue, we propose a deterministic link selection rule that
doesn’t let neighboring repeaters make conflicting fusions.
Consider the square-grid topology of the quantum repeaters.
This network has two types of links - red and black. Both red

and black links have the same success probability p. Links are
arranged such that the black links form a brickwork lattice.
Each repeater has a maximum three black links and one red
link. In the fusion step of the protocol, a repeater uses the red
link only if it has two or fewer black links, as shown in Fig. 8b.
This protocol is equivalent to percolation over a brickwork
lattice with an extra optional bond at each site. Hence, we
observe in Fig. 9 that the repeater success probability thresh-
old is equal to the site percolation threshold of the brickwork
lattice. And the link success probability is higher than the bond
percolation threshold of the brickwork lattice due to the
additional bond. This fixed selection rule gets rid of the
adversarial nature of the previous protocol without having
neighboring repeaters communicate with each other. Figure 8c
shows the rate vs. link success probability (p) curve doesn’t
decay when the repeaters fail to perform fusions (q < 1).
The brickwork model can be adapted for random graphs as

well by dividing the edges into two categories - black and red.
The lattice formed by the black edges is not a brickwork lattice
in this case. For the n-GHZ protocol over a random network to
make the protocol partially deterministic, each node can have
maximum n black edges and the rest are red edges. If the total
number of edges at a node is less that n, all of them are black.
Each repeater (node) uses the red links for fusion only if it has
less than n black links. We compare the site-bond regions for
the 3-GHZ brickwork protocol for various network topology
with mean degree ≈ 4. We observe that configuration graphs
do better than the square-grid as they offer long-range
connectivity. We notice that although this strategy improves
the site-bond region, it doesn’t remove the turnaround for all
combinations of network topologies and n as shown in
Supplementary Fig. 3. The analytical expression for the site-
bond region of this brickwork-like model for random graphs is
derived in Supplementary Note 2.

Dividing the network. As discussed earlier, the entanglement
generation rate is proportional to the number of disconnected
sub-graphs of the graph generated after fusion (G0ðV ; EÞ) that
are shared between the consumers. In the high (p, q) regime, for
the square-grid network, due to 3-/4-qubit projections, as the
overall connectivity of G0ðV ; EÞ improves, its disconnected sub-
graphs start merging together. Hence, this framework fails to
achieve the maximum rate possible for the underlying network
topology, (4-GHZ states/cycle in our case). When p and q both
equal one, we end up with only one GHZ state shared between
the consumers. This issue can be overcome by dividing the
network into four disconnected sub-graphs such that exactly

Fig. 6 Bounds on the rate. Upper bound to our 4-GHZ protocol’s
rate F(p)2, the actual rate attained by our protocol when nodes use
4-GHZ projections, the actual rate attained by our protocol when
nodes use 3-GHZ projections, upper bound from6 given by the max-
flow, and the ultimate capacity (�4 logð1� ηÞ) as a function of
channel transmissivity η. Alice and Bob are assumed to one hop
away from the diametrically-opposite corner points of a 100-by-100
square grid.
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Fig. 7 Rate vs link success probability for the 3-GHZ protocol over
the square-grid network.
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one quantum memory from each consumer resides in one sub-
graph. The sub-graphs are never allowed to merge into each
other by permanently erasing the edges joining them.

Quantum key distribution
In this section, we briefly discuss a Quantum Key generation
protocol to share a secret key between a pair of users using GHZ
states. This protocol is an extension of the BBM’92 quantum key
distribution protocol11. The protocol consists of the following
steps -

● Step 1: Alice and Bob start with multiple m+ l ≥ 2 qubit GHZ
states such that Alice and Bob have m- and l qubits of the GHZ
state.

ψABj i ¼ 0j i�m
A 0j i�l

B þ 1j i�m
A 1j i�l

Bffiffiffi
2

p

Here, m and l can vary across the collection of shared GHZ states
Alice and Bob possess.
● Step 2: They independently and randomly choose between

the computational basis (0/1-basis) and the Hadamard basis
(+/− -basis) for measurement. Each user measures all their
qubits of the GHZ state using (their) randomly chosen
measurement. Alice and Bob get m− and l - bit results,
respectively, after performing the measurements.

● Step 3: They use a classical channel to inform each other the
basis they have used to measure their respective qubits. The
measurements instances where Alice and Bob used the same
basis are used for key generation. This step is similar to the
BBM’92 protocol.

● Step 4: If both of them used the computational basis in a given
round of the protocol, they get bit string of either all 0’s or all
1’s. In this case, that bit becomes the key. When Alice and Bob
both use the Hadamard basis, they get measurement outcome
bits strings a1a2…am and b1b2…bl, respectively, such that
ða1 þ a2 þ � � � þ amÞmod 2 ¼ ðb1 þ b2 þ � � � þ blÞmod 2.
Here, the key would be the parity of their respective bit strings.

An example of this protocol is shown in Table 1. We leave the
security proof for this protocol as an open question. But we
believe that it can be done as an extension of the security proof
for BBM’92.

Fig. 8 Brickwork protocol. The brickwork protocol over the square-
grid network - (a) The dotted lines show the red and black link
generation attempt. The dotted black lines form a brickwork lattice.
(b) Red links are used for fusion only if there are less than 3 black
links present. (c) Comparison between the 3-GHZ protocol and the
brickwork protocol for q= 0.85 and Manhattan distance = 85 units.
The rate for the brickwork protocol does not degrade when p is high
and q < 1 but stays constant irrespective of distance.
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Fig. 9 Comparison of site-bond regions for various 3-GHZ
protocols. The site-bond region for the 3-GHZ brickwork protocol
for the square-grid, Poisson-degree distributed random graph with
mean degree-4, and constant degree-4 random graph network
topologies.
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DISCUSSION
We have designed a quantum-network-based entanglement genera-
tion protocol, which affords a rate that is independent of the distance
between the users. The protocol only uses local link state information,
and has the aforesaid property of distance-independent entangle-
ment rate in a certain region of the link-level entanglement success
probability p (which is proportional to the link’s optical transmissivity,
and hence range) and an individual repeater’s success probability q
(in performing an n-GHZ projective measurement). This (p, q) region
that achieves distance-independent rate is the site-bond region of a
modified mixed percolation problem, defined on the underlying
network such that the bond and site occupation probabilities are
given by the link generation and repeater success probabilities,
respectively. Our protocol requires only certain local Clifford
operations, Pauli measurements, and classical communications. We
perform multi-qubit projections at each node of the 2D network
making it a multipath routing protocol. It outperforms the multipath
routing protocol that only uses Bell state measurements (BSMs)7. All
BSM based entanglement protocols exhibit rates that decay with
distance even those that use non-local-link state knowledge. To study
our protocol for complex quantum networks, we analytically derived
the site-bond region for a configuration-model random network with
an arbitrary node degree distribution. This shows an excellent match
with the numerically-evaluated site-bond region of our modified
mixed percolation problem using the Newman-Ziff algorithm. We also
discussed a two-party quantum key distribution protocol that can be
implemented using the shared entangled state obtained from the
entanglement generation protocol.
A few other questions that can be solved as an extension of this

protocol are - (1) generating shared entanglement between multiple
consumer pairs simultaneously (2) The repeater failure model we have
assumed here is very simple. One can study more realistic models
repeater failure due to unsuccessful fusions, photon loss, etc. The
effects of noisy quantum state and gate imperfections are to be
explored in the future. This problem would also require entanglement
purification scheduling to achieve good quality entangled states at
the end of the protocol. We do expect, however, that when GHZ

projections are allowed at network node, even if the link-level (Bell
state) entanglement is noisy, i.e., subunity Fidelity, there will still be a
percolation-threshold-like region–between the parameters p (link
success probability), F (fidelity of the individual link level Bell state),
and q (success probability of the GHZ projection at any network
node), when the end to end rate, now defined as the distillable
entanglement rate measured in ebits per second at a target Fidelity,
will go through a phase transition.
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Table 1. Quantum key generation from shared GHZ states using the
protocol described in Quantum key distribution.

Basis Output bits Key

Alice

+/− 1010 0

0/1 0 0

+/− 1101 –

+/− 100 1

0/1 1111 –

0/1 1 1

0/1 00 –

Bob

+/− 0 0

0/1 0 0

0/1 11 –

+/− 010 1

+/− 01 –

0/1 111 1

+/− 110 –

When Alice and Bob both use the 0/1 basis, the secret key bit is the bit
repeated in the output bit string. When both of them use the +/− basis,
the secret key bit is the parity of their respective output bit strings.
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