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A Bayesian analysis of classical shadows
Joseph M. Lukens 1✉, Kody J. H. Law2 and Ryan S. Bennink3

The method of classical shadows proposed by Huang, Kueng, and Preskill heralds remarkable opportunities for quantum estimation
with limited measurements. Yet its relationship to established quantum tomographic approaches, particularly those based on
likelihood models, remains unclear. In this article, we investigate classical shadows through the lens of Bayesian mean estimation
(BME). In direct tests on numerical data, BME is found to attain significantly lower error on average, but classical shadows prove
remarkably more accurate in specific situations—such as high-fidelity ground truth states—which are improbable in a fully uniform
Hilbert space. We then introduce an observable-oriented pseudo-likelihood that successfully emulates the dimension-
independence and state-specific optimality of classical shadows, but within a Bayesian framework that ensures only physical states.
Our research reveals how classical shadows effect important departures from conventional thinking in quantum state estimation, as
well as the utility of Bayesian methods for uncovering and formalizing statistical assumptions.
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INTRODUCTION
Measurement and characterization of quantum systems comprise
a long-standing problem in quantum information science1.
However, the exponential scaling of Hilbert space dimension with
the number of qubits makes full characterization extremely
challenging, inspiring a plethora of approaches designed to
estimate properties of quantum states with as few measurements
as possible, such as compressed sensing2,3, adaptive tomogra-
phy4–6, matrix product state formulations7, permutationally
invariant tomography8,9, and neural networks10–12. Very recently,
a groundbreaking approach known as classical shadows was
proposed and analyzed13. Building on and simplifying ideas from
“shadow tomography”14, the classical shadow was shown to
provide accurate predictions of observables with a fixed number
of measurements, including simulated examples for quantum
systems in excess of 100 qubits13. Astonishingly simple, the
classical shadow is formed by collecting the results of random
measurements on a repeatedly prepared input state, and inverting
them through an appropriate virtual quantum channel.
However, several features of the classical shadow remain

enigmatic, including its highly nonphysical nature, optimality with
respect to alternative cost functions, and relationship to more
conventional likelihood-based tomographic techniques. One such
method, Bayesian mean estimation (BME)15, provides a concep-
tually straightforward path to estimate a quantum state given
measured data, making use of prior knowledge, and providing
meaningful error bars for any experimental conditions. BME
appears particularly well-suited for contextualizing classical
shadows, since it returns a principled estimate under any number
of measurements (even zero), and is optimal in terms of
minimizing average-squared error16.
In this work, we directly compare the estimates of classical

shadows and BME for identical simulated datasets. For particular
observables with relatively improbable values from the perspec-
tive of BME, shadow is found to reach the ground truth with
significantly fewer measurements. However, after properly refor-
mulating the problem under test for consistency with the Bayesian
prior, the situation reverses, with BME returning estimates

possessing lower error on average. In the latter portion of our
investigation, we seek to construct a BME model emulating the
key features of the classical shadow, but with positive semidefinite
states as support. While complicated by the shadow’s nonphysical
nature, we ultimately propose an observable-oriented pseudo-
likelihood that rates quantum states by their observable values
with respect to those of shadow. Our pseudo-likelihood success-
fully mimics the dimension independence of shadow, with the
advantage of delivering entirely physical estimates for any
number of measurements.

RESULTS
Problem formulation
For our analysis, we invoke the setup of the original classical
shadow proposal13. Consider a D-dimensional Hilbert space
occupied by a ground truth quantum state ρg that can be
repeatedly prepared. On each preparation m, ρg is subjected to a
randomly chosen D × D unitary Um and one measurement is
performed in the computational basis, leaving result bmj i.
Defining ψmj i ¼ Uy

m bmj i, the classical snapshot associated with
measurement m follows as M�1ð ψmj i ψmh jÞ, where Mð�Þ is the
quantum channel defined by averaging over all possible unitaries
and outcomes.
We assume the Um are drawn from the set of D × D Haar-

random unitaries, in which case M�1ð ψmj i ψmh jÞ ¼ ðDþ 1Þ
ψmj i ψmh j � ID , with ID the D × D identity matrix13. (This channel
holds for the more restricted class of random Cliffords as well17,18.)
Averaging over M measurements yields the shadow estimator

ρs ¼
Dþ 1
M

XM
m¼1

ψmj i ψmh j � ID: (1)

(In what follows, the phrases “classical shadow,” “shadow
estimator,” and simply “shadow” refer interchangeably to this
estimator, as well as the procedure more generally.) In this form,
the simplicity of ρs is evident: it is merely a scaled and recentered
average of all observed outcomes. Interestingly, though, ρs is in
general not positive semidefinite; for M < D, ρs possesses at least
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D−M eigenvalues equal to −1. Accordingly, in the targeted
regime for classical shadows of M≪ D, ρs is highly nonphysical.
Understanding the impact of the shadow estimator’s negativity is
a central goal of the present study. Finally, defining λ as the
expectation of the observable Λ (λ ¼ TrρΛ), the shadow estimate
thereof follows as

λðsÞ ¼ Tr ρsΛ; (2)

to be compared to the ground truth λðgÞ ¼ Tr ρgΛ.
As an aside, we note that ref. 13 employed an additional

statistical technique, “median of means,” to reduce the impact of
outliers by partitioning the M outcomes into K subsets and taking
the median as the estimate λ(s). In the interests of simplicity and
ease of comparison, we focus on K= 1 in Eq. (1). We expect the
benefits of selecting K > 1 would prove similar in both the shadow
and Bayesian cases19, but work on this is beyond the scope of the
present investigation.
In the Bayesian paradigm, the same set of measurement

outcomes D ¼ f ψ1j i; ψ2j i; :::; ψMj ig is related to a possible density
matrix ρ(x) via a likelihood consisting of the product of
probabilities set by Born’s rule:

LDðxÞ ¼
YM
m¼1

ψmjρðxÞjψmh i; (3)

that is, LDðxÞ / PrðDjρÞ—the probability of receiving the dataset
D given quantum state ρ. Some prior distribution π0(x) is also
assumed, defined for parameters x such that ρ(x) is always
physical: trace-1, Hermitian, and positive semidefinite. Then the
posterior describing the distribution of x given the observed data
D ensues from Bayes’ rule:

πðxÞ ¼ 1
Z LDðxÞπ0ðxÞ: (4)

Note that the randomness of the chosen unitaries Um does not
enter the Bayesian model; only the outcomes ψmj i play a role. The
selection of unitary Um is independent of the (unknown) density
matrix, i.e., Pr(Um= U∣ρ)= Pr(Um= U); thus any probabilities would
cancel out through the normalization factor Z in Eq. (4).
Intuitively, in the Bayesian view, the experimenter knows the
unitaries exactly post-experiment, regardless of how they were
chosen, so imposing uncertainty on them in the estimation
process proves superfluous. Consequently, while the uncertainty
of BME depends strongly on the variety of measurements chosen,
the theory does not, a conspicuous departure from shadow where
the distribution of Um enters directly through the inverted
quantum channel M�1ð�Þ.
Formally, the posterior distribution in Eq. (4) completes the

Bayesian model. From this, one can estimate any function of ρ(x),
including uncertainties, since the full probability distribution π(x)
is available. The ability to quantify uncertainty in a single,
consistent framework is an extremely attractive feature of
Bayesian methods in general. In the present work, however, the
goal is to compare Bayesian tomography with the classical
shadow—which is itself a point estimator—so we focus on BME
specifically, which for some observable Λ returns the point
estimator defined as

λðBÞ ¼ Tr ρΛh iρ
¼ R

dx πðxÞ Tr ρðxÞΛ
¼ Tr

R
dx πðxÞρðxÞ� �

Λ
� �

¼ Tr ρBΛ;

(5)

where the last two lines follow, respectively, from the linearity of the
trace operation and defining the Bayesian mean ρB= ∫dx π(x)ρ(x).
This convenient simplification, in which the Bayesian mean of a
quantity is simply its value at ρB, holds for linear functions of ρ, which
includes all quantum observables and which we focus on in this

article. In addition, selection of the mean as our particular Bayesian
point estimator for comparison is motivated by the fact that it
minimizes the mean-squared error (MSE) averaged over all possible
states and outcomes. Specifically, λ(B) defined above is the function of
D such that

λðBÞ ¼ argmin
λðDÞ

Z
dD
Z

dx πðx;DÞ λðDÞ � Tr ρðxÞΛ½ �2; (6)

with πðx;DÞ the joint distribution over data and parameters16.
This optimality is nonasymptotic, holding for any number or
collection of unitaries {U1, U2, ..., UM}. Considering the widely
different expressions for ρs [Eq. (1)] and ρB [Eq. (5)], we found it
remarkable just how well ρs performed in ref. 13 in light of BME’s
optimality in Eq. (6); it was this feature which initially inspired us
to develop a thorough comparison between shadow and BME.
So while focusing on the Bayesian mean point estimator
admittedly underutilizes the full depth of Bayesian methods, it
provides a direct path for side-by-side comparison with classical
shadows, along with a quantitative optimality condition.
In general, comparing the performance of estimators derived

from classical (frequentist) statistics—like ρs—with those from
Bayesian methods proves tricky business, since they view
uncertainty in functionally different ways. Therefore, we adopt a
pragmatic view which aligns with the interests of experimentalists:
perform experiments, compute the associated shadow and BME
estimators, and calculate their error with respect to actual values.
While the final step is not always possible in practice, it is in
numerical simulation, where the ground truth ρg is known exactly.
Doing so enables us to illuminate the advantages and disadvan-
tages of both approaches on equal footing. We employ the
approach described in the “Methods” section for obtaining
simulated datasets D.

Picture 1: fixed ground truth
As our first benchmark, we compare the performance of ρs and ρB
in estimating three rank-1 observables, of which fidelities and
entanglement witnesses form an important and experimentally
relevant subset. Specifically, we consider ground truth ρg ¼ 0j i 0h j
and observables Λn ¼ ϕnj i ϕnh j (n= 0, 1, 2) where

ϕ0j i ¼ 0j i

ϕ1j i ¼ 1ffiffi
2

p 0j i þ 1ffiffiffiffiffiffiffiffiffiffiffi
2ðD�1Þ

p PD�1

j¼1
jj i

ϕ2j i ¼ 1j i:

(7)

These possess ground truth values equally spaced within the

physically allowed range for trace-1, rank-1 observables: λðgÞ0 ¼ 1,

λ
ðgÞ
1 ¼ 1

2, and λ
ðgÞ
2 ¼ 0. The shadow estimator is readily obtained

from Eq. (1), so we compute ρs for all M ∈ {1, 2, ..., 1000}, where M
defines the set containing the first M measurements:
D ¼ f ψmj i; m ¼ 1; 2; :::;Mg.
On the other hand, ρB requires evaluation of the high-

dimensional integral ∫dx π(x)ρ(x). To that end, we summon
Markov chain Monte Carlo (MCMC) methods, several of which
have been explored in the context of quantum state estimation,
including Metropolis–Hastings15,20, Hamiltonian Monte Carlo21,
sequential Monte Carlo (SMC)22, and slice sampling23,24; we select
the preconditioned Crank–Nicolson (pCN) algorithm25 applied to
quantum state estimation in ref. 26. Finally, because of our
assumed pure state ground truth, we take as prior all pure states
ρ ¼ ψj i ψh j uniformly distributed on the complex D-dimensional
unit hypersphere. Numerically, the parameters x reduce to a D-
dimensional complex column vector, so we have
π0ðxÞ / exp � 1

2 x
yx

� �
, ρðxÞ ¼ xxy

jxj2, and dx ¼QD
l¼1 dðRexlÞdðImxlÞ

with xl denoting a single component of x.
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The use of pure states is not central to the BME formalism
whatsoever, but does permit us to simulate in higher dimensions
than otherwise possible. With pure states only, our parameteriza-
tion entails 2D real numbers, compared to 2D2+ D for mixed
states. As an example, for D= 256, the pure state prior, and
likelihood of Eq. (3), each MCMC chain takes ~10 min to converge
on our desktop computer, which for the 400 settings involved in
Fig. 1b amounts to ~2.5 days. Based on previous studies26, the
mixed state version would therefore have been completely
unfeasible at this dimension with our computational resources,
likely taking weeks (or more) to complete. (Incorporating some of
the methods suggested in ref. 26 in further research, such as
embedding within SMC samplers and parallelization, should
permit the extension to significantly larger D and mixed states.)
With pure states, then, we can focus more directly on dimensional
scaling and the statistics from many trials.
For each trial, we perform BME for eight collections of

measurements M ∈ {1, 50, 100, 200, 400, 600, 800, 1000}. We keep
R= 210 samples from each chain of length RT, where we select the
thinning factor T empirically to obtain convergence. (See
“Methods” for more details on the MCMC chains, including
convergence metrics and marginal distributions.) Figure 1 plots
the estimates for all 50 trials obtained by both shadow and BME
for D= 32 (Fig. 1a) and D= 256 (Fig. 1b). A thinning value of T=
29 (T= 212) is used for D= 32 (D= 256). Each column corresponds
to a particular expectation value λn; the bottom row shows the
MSE with respect to the ground truth, averaged over all trials
defined as jλð�Þn � λðgÞn j2

D E
trials

with ⋅= s for the shadow and ⋅= B
for BME. The classical shadows show wide variation for low M,
including highly nonphysical estimates (λðsÞn >1 or < 0), but they
converge to ground truth values rapidly, with nearly identical rates
for all observables and dimensions. This is confirmed quantita-
tively in the MSE curves that attain values of ~10−3 by M= 1000
for all cases.
The behavior proves vastly different for BME. While physical

estimates are always returned, the number of measurements
needed to reach the ground truth varies strongly both with
observable λn and with dimension D. Intriguingly, shadow shows
significantly lower MSE for λ0 and λ1, widening as D increases. On
first glance, this presents a paradox: Eq. (6) implies that λðBÞn should
possess the lowest possible MSE for any n and M, and yet λðsÞn
convincingly surpasses it these cases. Yet this dilemma can be
resolved by studying the prior π0(x). When the Bayesian model
assigns equal a priori weights to all possible states—a sensible
choice for an uninformative prior—this by implication makes
observable values such as λðgÞ0 ¼ 1 highly unlikely, since only one
state in the domain attains this. On the other hand, expectations
for any rank-1 projector Λ on the order of λ � 1

D are to be expected

initially since
R
dx π0ðxÞTr ρðxÞΛ ¼ 1

D. This manifests itself in Fig. 1
in BME’s much lower MSE for λ2, whose ground truth value λ

ðgÞ
2 ¼

0 is much more probable. Thus, by running 50 repeated trials with
the same ground truth ρg ¼ 0j i 0h j, the situation over which we
average does not accurately reflect the uninformative prior; the
conditions for BME optimality are not met.

Picture 2: random ground truth
To accurately reflect uninformative prior knowledge, we therefore
must prepare random ground truth states in our simulations. To
do so, we leverage the equivalence between (i) randomly
prepared input states with a fixed observable—the situation of
interest—and (ii) random selection of an observable for a fixed
input. Consider the expectation of observable Λ, where the
quantum state is rotated by some random unitary U:

Tr ðUρUyÞΛ� � ¼ Tr ρðUyΛUÞ� �
: (8)

Thus, one can emulate the effect of a randomized state by
randomly rotating the observable and evaluating it on a fixed
state. Practically speaking, we are free to employ the same
simulated datasets and estimators ρs and ρB above, but select at
random a different projector Λ ¼ ϕj i ϕh j for each trial. This is
equivalent to performing all trials with a random ground truth, but
a fixed observable. We call this randomized evaluation “Picture 2”
to distinguish it from the fixed ground truth case above (Picture 1).
Results appear in Fig. 2 for (a) D= 32 and (b) D= 256. The first

column plots the ground truth value λ(g) for each trial, the next
three columns plot the shadow and BME estimates for increasing
numbers of measurements, and the final column presents the MSE
with respect to the ground truth. Now BME returns much more
accurate estimates than shadow on average, and the paradox
regarding Bayesian optimality is solved: the Bayesian mean gives
the lowest MSE as long as the prior accurately reflects the true
uncertainty of the system under test. Accordingly, this BME study
clarifies an underlying assumption in selecting observables in
Picture 1: being able to “guess” an observable with such high
overlap to the ground truth suggests that one is not really
operating under the neutrality implied by a uniform prior; an
informative prior would more accurately reflect the situation.
This observation brings to light an interesting question of

motivation in a given quantum experiment. In the sense of
ensuring that any estimate is adequately justified by the data, the
idea of “baking in” a prior favoring some subset of quantum states
is undesirable. And yet, in many situations the researcher does
have strong beliefs—or at least hopefulness—about the state
being prepared, and wants to verify this by computing an
observable, such as fidelity, where it is desired that λ(g) ~ 1. In this
case, one wishes to validate such high values quickly with few

Fig. 1 Comparison of shadow and BME estimates of λn (Picture 1). a D= 32 case. b D= 256 case. Results from 50 trials for each dimension
are plotted, assuming a fixed ground truth state 0j i.
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measurements, but likely does not care so much about how well
the procedure can estimate the ground truth when it is low (e.g.,
when λðgÞ � 1

D), since this situation suggests a poorly prepared
state anyway. Accordingly, the felt cost is stronger when error is
higher for situations with λðgÞ � 1

D than when λðgÞ � 1
D, which is not

captured by the standard MSE, as expressed in Eq. (6). And as
shown in our tests here, it is precisely these improbable situations
wherein shadow excels over BME. Thus, our simulations reveal one
surprising reason classical shadows are so powerful: they perform
well within those subspaces of the entire Hilbert space that are of
interest to a high-fidelity system.

Emulating classical shadows with BME
The dimension independence and rapid convergence of classical
shadows for cases of interest indicate the value of a Bayesian
version with similar features, both to gain further insight into
shadow itself and to improve thereon by ensuring only physically
acceptable states. A simple approach for custom Bayesian models,
gaining traction in “probably approximately correct” (PAC)
learning27, proposes use of a pseudo-likelihood that rates a
prospective state’s suitability through a cost function, instead of a
full likelihood based on a physical model. In quantum state
tomography in particular, quadratic costs of the form k ρ� ~ρk2F
have been explored20,26, where ~ρ signifies some point estimator
and k AkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
TrAyA

p
the Frobenius norm. Therefore, to obtain a

physical state with properties similar to ρs, we first suggest the

pseudo-likelihood

LDðxÞ ¼ exp � K
2
k ρðxÞ � ρsk2F

	 

: (9)

The constant K establishes the relative weight of prior and
likelihood. Previously, we suggested K=M for reasonable
uncertainty quantification26; here we consider K=MD to impart
dimension independence. (Incidentally, we have found no
significant modifications to the results below when testing with
K≫MD.)
Figure 3a, b shows the BME results obtained for D= 32 and D=

256, respectively, where we again return to Picture 1 with fixed
ground truth for all trials. For the tests here, thinning of T= 28

(T= 210) is used for the D= 32 (D= 256) MCMC chains. Compared
to the shadow results of Fig. 1, the BME predictions still do not
reach ground truth values for λ0 and λ1 efficiently. This proves
intriguing, since k ρ� ρsk2F with ρ ¼ ψj i ψh j is minimized precisely
by states for which ψjρsjψh i is large. So if λðsÞ0 ¼ gjρsjgh i � 1 (cf.
Fig. 1), it is odd that predictions using a BME value maximizing
ψjρsjψh i looks so different for D= 256. The origin of this
discrepancy, however, lies in ρs’s nonphysicality.
Plotting the average overlap between shadow and Bayesian

samples (Tr ρBρs) in Fig. 3c, d, we find that ρB overlaps with ρs
more strongly than the ground truth ρg ¼ gj i gh j. Because ρs is not
positive semidefinite, Tr ρBρs>1 for all cases examined. Thus, the
BME procedure succeeds in finding states with strong overlap to
the shadow, but the closest physical state to ρs is not the ground
truth, even though gjρsjgh i � 1. Intuitively, this nonphysicality

Fig. 3 Bayesian inference results utilizing the pseudo-likelihood in Eq. (9). a D= 32 case. b D= 256 case. The overlap with shadow, Tr ρBρs is
plotted in c for D= 32 and d for D= 256.

Fig. 2 Estimating rank-1 observable Λ for randomly chosen ground truth states (Picture 2). a D= 32 case. b D= 256 case. The first four
columns show λ values for each trial; the last column plots MSE with respect to ground truth over all trials.
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helps explain why observables with highly improbable values
from the Bayesian view are estimated so much more efficiently
with shadow. For a parameterization over physical states and rank-
1 observable Λ, only a single state in the Hilbert space attains λ=
1, and since this represents the maximum value possible for any
valid quantum state, it can only be approached from below. On
the other hand, a continuum of shadow estimators ρs permit λ= 1,
for ρs is constrained only by Hermiticity and unit trace—not
positive semidefiniteness. Therefore, the estimate λ(s) can err on
either the high or low side (cf. Fig. 1), pulling the shadow more
rapidly to the ground truth in these extreme cases.
This discloses the second central finding of our investigation:

the nonphysicality of ρs is not a deficiency, but rather critical to
obtaining dimension independence. Thus, the key features of the
shadow are not necessarily translated onto physical projections
like the BME model here or, for that matter, alternative projected-
least-squares approaches28,29. (As an additional check, we
performed the algorithm of ref. 28 to determine the closest
physical density matrix to ρs, finding very similar results as Fig. 3.
This indicates that our projection conclusions are not an artifact of
the pure state prior, but hold for general mixed states as well.)
While strange from the conventional wisdom of maximum
likelihood and BME, nonphysical states are actually beneficial for
classical shadows.
Deriving a positive semidefinite model emulating classical

shadows remains an intriguing question, however, to eliminate
unphysical estimates while retaining the favorable scaling
features. With projecting directly onto ρs proving unfruitful to
this end, we note that, indeed, ρs was never intended to serve as
an accurate substitute for the true ρg; instead, it facilitates
estimates of observables13. Accordingly, we propose the “obser-
vable-oriented pseudo-likelihood”

LDðxÞ ¼ exp � K
2

XN�1

n¼0

Tr ρðxÞΛn � λðsÞn
��� ���2

 !
; (10)

where we insert the estimates λðsÞn of N observables from ρs. This
formalism ensures only physical values are returned [through the
prior π0(x)], and rates the fitness of proposed states through their
overlap with respect to shadow’s predictions of observables only.
For dimension independence, we again set K=MD and perform
BME for all simulated datasets and N= 3 above, thinning to T=
210 (T= 213) for D= 32 (D= 256).
The results follow in Fig. 4. Now BME shows very similar

behavior to shadow: the MSE with respect to the ground truth
matches shadow results from Fig. 1 closely, though BME still
outperforms for λ2. Yet unlike shadow, BME here always gives
physically permissible estimates (λðBÞn 2 ½0; 1�). This pseudo-
likelihood therefore attains the goal of a BME model commensu-
rate with classical shadows.

Yet it is important to emphasize that this approach depends
heavily on the quality of the classical shadow. It refines estimates
from the shadow with its positive semidefinite requirement, but it
does not do markedly better at estimating the ground truth state
—at least for arbitrary observables. As an example, we repeat the
inference procedure for an observable-oriented pseudo-likelihood
based solely on Λ1, i.e.,

LDðxÞ ¼ exp � K
2

Tr ρðxÞΛ1 � λ
ðsÞ
1

��� ���2	 

; (11)

which has ground truth value λ
ðgÞ
2 ¼ 1

2. Results for the D= 32 case
appear in Fig. 5, where we plot the Bayesian estimates for all three
observables even though the psuedo-likelihood is based on λ1
only. The estimate λ

ðBÞ
1 closely matches shadow as designed, and

λ
ðBÞ
2 agrees with the ground truth well, due to the fact its value is
highly probable for a uniform prior. But λ

ðBÞ
0 !� 1

4, far from
λ
ðgÞ
0 ¼ 1.
When using the pseudo-likelihood above, all quantum states

with identical overlap to Λ1 are equally probable, of which the
ground truth ρg represents just one possibility. The estimate of λ0
given only λ1 information reflects the inherent uncertainty within
this specification. So to summarize, our observable-oriented
pseudo-likelihood builds physicality into shadow, yet it can only
(in general) accurately predict the N observables injected into it: to
infer quantities beyond these N can prove unreliable.

Highly informative prior
In the above attempts to mimic classical shadows with BME, we
focused on pseudo-likelihoods that explicitly leaned on shadow,

Fig. 4 Bayesian estimation using the pseudo-likelihood of Eq. (10) with N= 3. a Results for D= 32. b Results for D= 256. The MSE values for
shadow from Fig. 1 are reproduced for comparison.

Fig. 5 Bayesian inference results employing the psuedo-
likelihood in Eq. (11), for D= 32. The shadow MSE values from
Fig. 1 are reprinted for clarity.
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either through ρs itself [Eq. (9)] or through a set of shadow-
estimated observables [Eqs. (10) and (11)]. However, rather than
modifying the likelihood (which is based on the physical
considerations of Born’s rule), a conceptually more satisfying
approach would be to modify the prior π0(x) such that any
assumptions within classical shadows can be fully incorporated in
the BME process without explicitly invoking the unphysical state ρs
or quantities derived from it.
Unfortunately, while such a shadow-mimetic prior may certainly

exist, we have been unable to find one. This objective is
complicated by the fact that, even though classical shadows excel
over BME with a uniform prior in estimating observables in
particular regions of the state space, these regions are not readily
defined a priori. These subspaces of high-performance change
depending on the particular observable of interest, despite the
fact that calculation of ρs [Eq. (1)] is independent of the observable
to be estimated from it later. Therefore, we suggest one should
not view the shadow as biasing a prior distribution; rather, it is
working off of an entirely different cost function than MSE [Eq. (6)]
—a cost function which assigns variable weights according to the
ground truth value of the observable. Research into the nature of
this cost optimization would be a fascinating subject for
future work.
In the meantime, however, we briefly explore through example

how highly informative prior distributions in BME can produce
some similar features as classical shadows, albeit only qualitatively.
Suppose that one has strong beliefs that the quantum system
under test consists of an ideal state 0j i, which then experiences
noisy evolution modeled as a simple depolarizing channel, so that
the final quantum state can be expressed as

ρðaÞ ¼ a 0j i 0h j þ 1� a
D

ID; (12)

where a∈ [0, 1] defines the strength of the noise process.
Significantly, this assumption has eliminated the Hilbert space
dimension dependence of the number of unknowns: regardless of
D, only a single parameter a must be inferred. As a natural choice
for simulation, we select the uniform prior π0(a)= 1[0, 1](a) and
consider the full likelihood of Eq. (3), which reduces to

LDðaÞ ¼
YM
m¼1

a 0jψmh ij j2 þ 1� a
D

	 

: (13)

Utilizing this simplified model, we perform MCMC integration to
obtain ρB ¼ 1

Z
R
da LDðaÞπ0ðaÞρðaÞ for all previously examined

cases under Picture 1; the approach is identical to previous MCMC
runs, except (i) thinning was not used to reach convergence in this
one-parameter model, and (ii) the proposal distribution for
uniform random variables in ref. 30 was applied to maintain the
pCN condition. Our findings appear in Fig. 6. Similar to the results

with the observable-oriented pseudo-likelihood in Fig. 4, the BME
estimates converge to the ground truth rapidly in the number of
measurements, remain in the physically allowable range [0, 1], and
show no dependence on dimension D.
These results are obtained without any reference to or reliance

on the classical shadow ρs. Nonetheless, we emphasize that,
despite the extremely high accuracy, these findings build on
strong assumptions about the form of the quantum state [Eq.
(12)], which are not present in ρs. This example highlights,
however, that certain features of ρs—such as dimension
independence—follow automatically from traditional BME as well,
under the conditions of a sufficiently informative prior. Of course,
whether or not such a simple prior is justified in a particular case
depends entirely on one’s trust in the quantum system and the
goals of the experiment; the salient point is that BME can
incorporate these naturally into its formalism.

DISCUSSION
Our numerical investigations here have elucidated two fascinating
features of classical shadows:

1. Classical shadows perform extremely well at predicting
“unlikely” observables, i.e., those which obtain high values
only on a restricted subset of states within the complete
Hilbert space.

2. The nonphysicality of classical shadows is critical to their
dimension independence and accuracy under few
measurements.

These findings do not contradict the optimality of Bayesian
methods expressed in Eq. (6): BME with a full likelihood minimizes
MSE for any number and collection of measurements, provided
the prior distribution accurately reflects the true knowledge
involved. The predictive power of ρs, then, derives from the fact
that the situations in which it is much more accurate that BME are
often of particular interest in practice, such as verification of a
high-fidelity or highly entangled quantum state. Desiring to
extend these features in the Bayesian context, we proposed an
observable-oriented pseudo-likelihood that attains shadow’s
dimension independence and state-specialized accuracy, with
the advantage of guaranteed physicality.
Nonetheless, in all these explorations there remains one

prominent sense, in which classical shadows unquestionably
eclipse BME: computational efficiency. The shadow estimator ρs is
formed directly from measurements for any dimension D; yet
computing ρB requires tedious MCMC methods, with the number
of parameters increasing linearly (quadratically) with D for a pure
(mixed) uniform prior. Here, we considered up to D= 256, a far cry
from the D= 2120 example in ref. 13. Moving forward, it would

Fig. 6 BME findings utilizing a one-parameter density matrix parameterization [Eq. (12)] and full likelihood [Eq. (13)]. a Results for D= 32.
b Results for D= 256. The shadow MSE values from Fig. 1 are plotted again for comparison.
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therefore seem profitable to explore simplified Bayesian models
that maintain a fixed parameter dimensionality even as the Hilbert
space grows exponentially, but that are perhaps not as restrictive
as the example in Eq. (12). For example, if one could specify a prior
and likelihood on an observable λ only, to the effect of
πðλÞ / LDðλÞπ0ðλÞ, the inference procedure would not be limited
directly by exponentially large Hilbert spaces. In this way, Bayesian
methods could be extendable to the types of quantum systems
sought for practically useful quantum computation.
Overall, our analyses have revealed the value of BME as a tool

for shedding light on estimation procedures that formally have no
connection to the Bayesian paradigm. The numerical simulations
here reveal the complementary strengths of classical shadow and
Bayesian tomographic approaches in the efficient estimation of
quantum properties. And so we expect valuable opportunities for
both methods, as quantum information processing resources
continue to mature in size and complexity.

METHODS
Data simulation approach
The method of classical shadows introduced in ref. 13 involves application
of a Haar-random (or effectively Haar-random) unitary U followed by
measurement in the computational basis. We exploit the fact that our
target state is pure to substantially reduce the complexity of simulating
this procedure. In particular, our simulation method requires the
generation of only size-D random vectors rather than D × D random
unitaries.
Without loss of generality, we work in a rotated basis such that the first

basis state coincides with the ground truth: ρg ¼ 0j i 0h j. Then the
probability of observing outcome j depends only on
j jjUj0h ij2 ¼ jUj0j2 ¼ jðUyÞ0j j2. That is, the distribution of outcomes
depends only on the first row of U†. Now, when U is Haar-random, each
individual row and column of U† is a uniformly distributed length-1 vector
u. Furthermore, given any component uj, the remaining components are a

uniformly distributed vector of length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� juj j2

q
. A uniformly random

vector u, corresponding to the first row of U†, may be obtained by
generating D complex normal random values and normalizing them to
yield a unit length vector. An outcome n∈ {0, 1, …, D− 1} is then chosen
with probability ∣un∣2. This selects the nth column of U†. Since this column
(whichever it is) is uniformly distributed, its remaining elements are

uniformly distributed with length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� junj2

q
. The explicit procedure is as

follows:

1. Posit a measurement unitary Uy
m ¼ ½~φ0 � � � ~φD�1�, where each ~φn is a

column vector corresponding to one of the D possible output states.
2. Generate D complex normal samples wn �i:i:d:Nð0; 1Þ þ iNð0; 1Þ and

normalize

un ¼ wnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD�1

n0¼0
jwn0 j2

s :
(14)

These define projections of the unitary’s basis states on the ground
truth: un ¼ 0j~φnh i, or in other words, the elements in the first row of
Uy
m .

3. Select an integer n∈ {0, 1, ..., D− 1} at random with probability ∣un∣2.
This implies that the state ~φn is detected.

4. Generate D− 1 complex normal samples vj �i:i:d:Nð0; 1Þ þ iNð0; 1Þ (j
= 1, 2, ..., D− 1). These set the remaining coefficients of the
detected state ~φn .

5. Finally, take

ψmj i ¼ un 0j i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� junj2PD�1

j0¼1
jvj0 j2

vuuuut
XD�1

j¼1

vj jj i (15)

as the measured state.

Utilizing this method, we performed 50 independent trials with 1000
measurements each, for Hilbert space dimensions D= 32 and D= 256,
giving a total of 100 datasets which are used in all subsequent tests. The

two values of D were selected specifically to clarify how classical shadows
and BME differ in their scaling with dimension.

MCMC convergence metrics
For each MCMC chain of length RT, we retained a fixed number of R=
210 sample density matrices ρr= ρ(xr)—or ρr= ρ(ar) for the parameter-
ization in Eq. (12)—and increased the thinning factor T until
convergence was confirmed; in practice, we did this by successively
doubling T, monitoring the mean of the overlap with the ground truth
1
R

PR
r¼1 gjρr jgh i, and selecting a T value beyond which no discernible

differences in this mean were observed. For each test value of T, we
reran the entire chain with a randomly chosen initial condition, which
provided a safeguard against the possibility of getting stuck in a local
mode. We found the final T value separately for each qualitative regime
(likelihood/prior/dimension). This method was simple and allowed us to
focus on the quantities of interest (Bayesian means of observables)
when gauging convergence. Here, we provide details on the MCMC
chains and their convergence properties, in order to show that this
approach is consistent with findings from other standard convergence
metrics.
All conclusions in this paper depend on estimates of observable values

Λn ¼ ϕnj i ϕnh j, and not the underlying quantum state, so we concentrate
on λ0, λ1, and λ2 only [see state definitions in Eq. (7)]. Considering the
density matrix MCMC samples {ρ1, ..., ρR}, we look at (i) the trace plot λn[r]
(“trace” in MCMC parlance, not matrix trace Tr), (ii) cumulative mean μn[r],
and (iii) sample autocorrelation function (ACF) cn[l], defined as

λn½r� ¼ ϕnjρr jϕnh i
μn½r� ¼ 1

r

Pr
k¼1

λn½k�

cn½l� ¼ 1
C

PR�lmax

k¼1
ðλn½k� � μn½R�Þðλn½k þ l� � μn½R�Þ;

(16)

where n∈ {0, 1, 2}, r ∈ {1, 2, ..., R}, l 2 f0; 1; :::; lmaxg, and C is a normalization
constant such that cn[0]= 1. Of these expressions, the raw trace λn[r] and
autocorrelation cn[l] probe the independence of the samples in the
thinned chain, while the cumulative mean μn[r] is linked to the Bayesian
mean estimator, which follows directly from it according to

λðBÞn ¼ μn½R�: (17)

A total of 3600 separate MCMC chains were required for the BME
results in this paper, one chain for each examined combination of
likelihood LD , prior distribution π0, dimension D, number of measure-
ments M, and simulated experimental trial. In lieu of examining all 3600
chains, we exploit the fact that they can be classified into nine
qualitative regimes, distinguished by LD, π0, and D. Figures 7 and 8 plot
convergence metrics for one example from each regime, after applying
the appropriate thinning value T mentioned in the “Results” section
above; for all cases, lmax ¼ 100. For each example, we utilize the most
extreme case of M= 1000 measurements, because this has the most
strongly peaked likelihood and therefore requires the longest chains to
converge (since the pCN proposal keeps the prior invariant, the
acceptance probability varies more strongly as the likelihood becomes
more peaked). Thus, a value of T that attains convergence for M= 1000
will also realize convergence for M < 1000 cases as well.
Overall, the metrics for all nine examples are consistent with

converged chains: the trace plots do not reveal long-term trends
indicative of correlated points, and the ACFs drop off rapidly with
(thinned) lag l. Some features perhaps indicate larger values of T would
be preferable, such as the slight modulation in the λ0 trace of Fig. 8b or
the slower drop in ACF in Fig. 8c. Yet such refinements would not be
expected to impact the main results, for it is only the final value of the
cumulative mean μn[R], which is utilized in comparing to classical
shadows. The cumulative means are extremely steady, converging well
before r= R for all examples, thus confirming the reliability of the λðBÞn
values reported in Figs. 1–6.

Marginal distributions
For additional insight into the joint posterior behavior of (λ0, λ1, λ2)—
including potential multimodality and correlations—we examine pair-
wise and single marginal distributions of a subset of the MCMC chains
above. We focus on the D= 256 case of Fig. 7a and the D= 32 case in
Fig. 8b, as these show the highest uncertainties. Utilizing kernel density
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estimation in MATLAB31, and discarding a burn-in of ten samples (to
remove the nonstationary initial points evident in the trace plots), we
obtain the probability densities in Fig. 9; the two-dimensional contour
plots show the pairwise marginals, with the corresponding single
marginals appearing to the top and side. All observables follow
unimodal distributions. No strong correlations between λ2 and any
other observables are evident from these plots. λ0 and λ1 show positive
correlations in Fig. 9a, but minimal correlations in Fig. 9b, which can be
explained intuitively via the differences in likelihoods. Case (a)
corresponds to use of a full likelihood [Eq. (3)] so that the state
estimate is gradually moving from ρB ¼ 1

D ID (the prior mean, valid for
M ≈ 0) to ρB ¼ 0j i 0h j (the value as M→∞). Thus, for samples closer to
the limit of ρB ¼ 0j i 0h j, the values of both λ

ðBÞ
0 and λ

ðBÞ
1 are higher—and

vice versa for samples closer to ρB ¼ 1
D ID . On the other hand, the case in

Fig. 9b corresponds to a pseudo-likelihood based on λ1 only [Eq. (11)].
Rather than trending toward the ground truth 0j i 0h j, the estimate
approaches a continuum of states satisfying λ1 � 1

2, but with no
constraint on λ0, thereby eliminating strong correlations between the
two observables.
The fact that the marginals are unimodal, as opposed to multimodal,

is not required for any of the theoretical or numerical conclusions in this
paper: the results and optimality conditions rely on the Bayesian mean,
irrespective of the underlying distribution. However, the unimodality
does indicate our pCN technique26 is well-suited to sampling in this
case. It is well known that random walk MCMC methods, of which pCN is
an example25, struggle to reach stationarity under highly multimodal
probability densities; in such cases, hybrid Monte Carlo32 or population-
based methods, such as SMC33, are known to mix much more efficiently.

Fig. 8 Example MCMC chains. a Pseudo-likelihood of Eq. (10). b Pseudo-likelihood of Eq. (11). c Likelihood of Eq. (13). Three metrics are
plotted separately for each observable λn. The chains in a are examples from Fig. 4 of the main text, those in b from Fig. 5, and those in c from
Fig. 6.

Fig. 7 Example MCMC chains. a Full likelihood of Eq. (3). b Pseudo-likelihood of Eq. (9). The three metrics of interest are plotted separately for
each observable λn. The chains in a are examples from Fig. 1 of the main text, and those in b from Fig. 3.
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Thus, while pCN would have still applied to multimodal observables, the
required values of T—and hence computational time—would have
likely increased significantly.
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