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Exposure of subtle multipartite quantum nonlocality
M. M. Taddei 1,2✉, T. L. Silva 1, R. V. Nery1,3, G. H. Aguilar1, S. P. Walborn 1,4,5 and L. Aolita1,6

The celebrated Einstein–Podolsky–Rosen quantum steering has a complex structure in the multipartite scenario. We show that a
naively defined criterion for multipartite steering allows, like in Bell nonlocality, for a contradictory effect whereby local operations
could create steering seemingly from scratch. Nevertheless, neither in steering nor in Bell nonlocality has this effect been
experimentally confirmed. Operational consistency is reestablished by presenting a suitable redefinition: there is a subtle form of
steering already present at the start, and it is only exposed—as opposed to created—by the local operations. We devise protocols
that, remarkably, are able to reveal, in seemingly unsteerable systems, not only steering, but also Bell nonlocality. Moreover, we find
concrete cases where entanglement certification does not coincide with steering. A causal analysis reveals the crux of the issue to
lie in hidden signaling. Finally, we implement one of the protocols with three photonic qubits deterministically, providing the
experimental demonstration of both exposure and super-exposure of quantum nonlocality.
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INTRODUCTION
Three forms of quantum correlation occur in nature—entangle-
ment, Bell nonlocality, and steering. The distinction between them
can be viewed, from an operational perspective, as given by the
level of trust and control that one has on the systems involved.
Entanglement, for instance, is naturally formulated in the so-called
device-dependent (DD) scenario1. There, one assumes that the
system can be completely characterized by the measurement
apparatus, at least in principle. Bell nonlocality, in contrast, takes
place in the device-independent (DI) description2. There, measure-
ment devices are treated as untrusted black boxes whose actual
measurement process is uncharacterized or ignored, relying only
on classical measurement settings (inputs) and results (outputs).
Quantum steering, on the other hand, is a hybrid type of
correlation—intermediate between entanglement and Bell non-
locality—that arises in semi-DI settings3–5. The latter involve both
DD and DI parties, and an example is shown in Fig. 1a for the
tripartite case of two untrusted devices and one trusted one. For
all three types of correlation, the multipartite scenario is
considerably richer than the bipartite one.
Whereas entanglement is a resource for DD applications in

quantum information, Bell nonlocality is the key resource for DI
applications such as DI quantum key distribution6–9, DI-certified
randomness10–13, DI-verifiable blind quantum computation14,15

and DI conference-key agreement16–18, which are typically much
more experimentally demanding than the corresponding DD
protocols. Steering is known to be the crucial resource for key
technological applications in the semi-DI scenario, which are
generally less technically difficult than their DI counterparts, while
requiring less assumptions than the corresponding DD protocols.
These include semi-DI entanglement certification4,5,19,20, quantum
key distribution21,22, certified-randomness generation23, quantum
secret sharing24,25, as well as other useful protocols in multipartite
quantum networks26.
Interestingly, an operational inconsistency has arisen in the fully

DI multipartite scenario27,28. It is rooted in the existence of an

operation local to the AB partition that can create a Bell
nonlocality across AB∣C. The issue, however, is best understood
with the framework of resource theories.
Resource theories constitute formal treatments of a physical

property as a resource, providing a complete toolbox for its
quantification, classification, and operational manipulation (see,
e.g., refs. 29–31). Applied and fundamental interest has motivated
their formulation for entanglement1 and Bell nonlocality27,32–34, as
well as for other relevant quantum properties34–39. Most important
for our discussion is the resource theory of steering40,41. The
cornerstone of any resource theory is the set of its free operations.
These are unable to create the resource: they transform every
resourceless state into a resourceless state. As a concrete example,
free operations for quantum steering include, on the untrusted
side, pre and post-processings of classical variables of the black
boxes and, on the trusted side, local quantum operations and
classical communication to the untrusted parties. It can be
shown40 that these operations cannot create quantum steering
out of unsteerable systems.
A fully DI description is cast in terms of a Bell behavior, given by

a conditional probability distribution of the outputs given the
inputs. Bell locality implies that there exists a local-hidden-variable
model, in which correlations are explained by a (hypothetical)
classical common cause (the hidden variable) within the common
past light-cone of the measurement events42. Any Bell-inequality
violation implies incompatibility with LHV models, i.e., Bell
nonlocality. Bell-local behaviors are, naturally, the resourceless
states of the resource theory of Bell nonlocality. We shall use the
term bilocal to refer to being local with respect to the AB∣C
bipartition. It stands to reason that operations within a given
partition are free. However, a “wiring” between A and B (e.g.,
linking the output of one black box to the input of another as in
Fig. 1b) is confined to AB but can map tripartite Bell behaviors that
are local in the AB∣C partition (i.e., bilocal) into bipartite Bell
behaviors that violate a Bell inequality across AB∣C. The problem,
however, lied in the definition of Bell nonlocality in multipartite
scenarios used previously43.
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According to the traditional definition43, Bell nonlocality across
a system bipartition is incompatible with any LHV model with
respect to it. This includes so-called "fine-tuned” models44 with
hidden signaling. These are LHV models where, for each value of
the hidden variable, the subsystems on each side of the bipartition
communicate, but for which the statistical mixture over all values
of the hidden variable renders the observable correlations non-
signaling. The problem is that the bilocal wiring can conflict with
the hidden signaling in such models, giving rise to a causal loop.
For instance, assume that for a particular tripartite system, there is
only one LHV decomposition, which uses hidden signaling from
Bob to Alice. To physically implement the wiring in Fig. 1b, which
is an example of a free operation allowed within the AB partition,
Bob must be in the causal future of Alice. This, in turn, is
inconsistent with the direction of the hidden signaling. This
explains why apparently bilocal behaviors can lead to Bell
violations after a bilocal wiring. A redefinition of multipartite Bell
nonlocality was then proposed27,28. This considers the correlations
from conflicting bilocal models as already nonlocal across the
bipartition, so that the wiring simply exposes an already-existing
subtle form of Bell nonlocality. We refer to the latter form and
effect as subtle Bell nonlocality and Bell-nonlocality exposure,
respectively.
The redefinition fixed the inconsistency, but also opened

several intriguing questions. First, no experimental observation
of Bell-nonlocality exposure has been reported. Second, even
though steering theory is relatively mature22,45–48, little is known
about steering exposure. Steering features in the semi-DI descrip-
tion, where systems are described in terms of assemblages, given
by quantum states describing the DD subsystems, weighted by
the conditional probabilities describing the DI parties. Operational
consistency relative to steering exposure was considered, in
particular, in a definition of multipartite steering22, but based on
models where each party is probabilistically either trusted or
untrusted. On the other hand, a definition based on multipartite
entanglement certification in semi-DI setups with fixed trusted-
versus-untrusted divisions was proposed in ref. 49. There, bilocal
hidden-variable models with an explicit quantum realization are
considered, which automatically rules out potentially-conflicting
fined-tuned models. Nevertheless, this has the side-effect of over-
restricting the set of unsteerable assemblages, thus potentially
overestimating steering. Third, exposure as a resource-theoretic
transformation is yet unexplored territory. For instance, is it

possible to obtain every bipartite assemblage via exposure from
some multipartite one? What about Bell behaviors? Moreover, is
there a single N-partite assemblage from which all bipartite ones
are obtained via exposure?
These are the questions we answer. To begin with, we show

that, remarkably, exposure of quantum nonlocality is a universal
effect, in the sense that every bipartite Bell behavior (assemblage)
can be the result of Bell-nonlocality (steering) exposure starting
from some tripartite one. This highlights the power of exposure as
a resource-theoretic transformation. However, we also delimit
such power: we prove a no-go theorem for multi-black-box
universal steering bits: there exists no single N-partite assemblage
(with N− 1 untrusted and one trusted devices) from which all
bipartite ones can be obtained through free operations of
steering. Interestingly, in the universal steering exposure protocol,
the starting behavior is not guaranteed to admit a physical
realization, i.e., it may be supra-quantum50–52. Therefore, we also
derive an alternative protocol that—albeit not universal—is
manifestly within quantum theory. Moreover, we show that the
output assemblage of such protocol is not only steerable but also
Bell nonlocal (in the sense of producing a nonlocal behavior upon
measurements by Charlie). This is notable as Bell nonlocality is a
stronger form of quantum correlation than steering. We refer to
this effect as super-exposure of Bell nonlocality. In turn, we provide
a redefinition of (both multipartite and genuinely multipartite)
steering to re-establish operational consistency. Finally, we
experimentally demonstrate exposure as well as super-exposure.
This is done using polarization and path degrees of freedom of
two entangled photons generated by spontaneous parametric
down-conversion, in a deterministic protocol.

RESULTS
Steering and the semi-DI setting
Most of our discussion will be based on the semi-DI setting of Fig.
1a. We will not resort to quantum models of the black boxes; our
definitions are based on the semi-DI setting alone, as befits its
treatment as a resource for quantum tasks. Such systems are fully
described by a Bell behavior PðABÞ :¼ fPa;bjx;yga;b;x;y , with Pa,b∣x,y the
conditional probability of outputs a, b given inputs x, y, for Alice
and Bob, and an ensemble of conditional quantum states ϱa,b∣x,y
for Charlie. These can be encapsulated in a hybrid object known as

Fig. 1 Several hybrid (trusted-untrusted) multipartite scenarios. In the device-dependent (DD) case, measurement devices are well
characterized (trusted), so that a specific quantum state (represented by Bloch spheres) can be attributed to the system. In the device-
independent (DI) case, in contrast, the devices are uncharacterized (untrusted), so that systems are represented by black boxes. Semi-DI
scenarios contain both trusted and untrusted components. There, the joint system is mathematically described by a hybrid object—
intermediate between a state and a Bell behavior—called assemblage, and the type of nonlocality they can feature is called steering. In all three
panels the shaded plane illustrates the bipartition of the trusted subsystem versus the untrusted ones. a An assemblage in the 2DI+1DD
scenario: Alice and Bob rely on a black-box description, whereas Charlie’s system is trusted. All three subsystems are space-like separated.
b Alice and Bob are no longer space-like separated: she communicates her output to him and he uses this to choose his input. This is an
example of a bilocal wiring (local with respect to the bipartition AB∣C). Such operations cannot create any correlations across the bipartition,
but they can expose a subtle form of multipartite quantum nonlocality that otherwise does not violate any Bell or steering inequality across
the bipartition (see text). c A 4DI+1DD assemblage is mapped onto a 2DI+ 1DD one by a bilocal wiring (x2= a3, x3= x4, and
a01 ¼ a1 þ a2 mod 2). Such wirings can implement non-trivial resource-theoretic transformations, but not enough to enable a multi-black-box
universal steering bit, i.e., an N-partite assemblage from which all bipartite ones, e.g., can be reached (see Supplementary Note E).
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the assemblage σ :¼ fσa;bjx;yga;b;x;y , of sub-normalized conditional
states σa,b∣x,y := Pa,b∣x,y ϱa,b∣x,y.
Unlike in Bell nonlocality or entanglement, semi-DI systems

have a natural bipartition: the one separating the trusted devices
from the untrusted ones, AB∣C. This is the bipartition with respect
to which we define steering throughout, unless otherwise
explicitly stated. We assume that σ satisfies the no-signaling
(NS) principle, by virtue of which measurement-outcome correla-
tions alone do not allow for communication. This implies that the
statistics observed by Charlie should be independent of the input
(s) of the remaining user(s). Mathematically, this condition readsX
a;b

σa;bjx;y ¼ ϱðCÞ; 8x; y; (1)

where ϱ(C) is the reduced state on C. Furthermore, we also assume
that Alice and Bob are NS, i.e., choosing their inputs does not
provide them any communication,X

a

σa;bjx;y independent of x; 8b; y; (2)

X
b

σa;bjx;y independent of y; 8a; x: (3)

The definition of steering in the AB∣C partition hinges on the
impossibility of decomposing an assemblage σ as

σa;bjx;y ¼
X
λ

PλPa;bjx;y;λ ϱλ: (4)

Here, Pλ is the probability of the hidden variable Λ taking the value

λ, each PðABÞ
λ :¼ fPa;bjx;y;λga;b;x;y is a λ-dependent behavior, and ϱλ is

the λ-th hidden state for C (locally correlated with AB only via Λ).
However, different approaches have diverging positions on the set

to which the distribution PðABÞ
λ may belong. Possibilities range5

from the full set of valid bipartite distributions to the most
restricted set of factorizable ones (i.e., Pa,b∣x,y,λ= Pa∣x,λPb∣y,λ ∀ a, b, x,
y). In ref. 49, steering is treated as equivalent to entanglement

certification, hence each distribution PðABÞ
λ is required to be

quantum-mechanically realizable. Our operational approach is
defined in terms of assemblages only and aims to use them as
resources, not for inferences on the quantum models that can
produce them. It is thus best to ignore restrictions and consider, as
a starting point, a general probability distribution. As such, σ is
unsteerable if it admits a local hidden-state (LHS) model, defined
by Eq. (4) with general PðABÞ

λ ; otherwise σ is steerable.
Importantly, a non-signaling σ does not imply non-signaling

PðABÞ
λ for each λ (Imposition of the latter would be an additional

requirement, one that is used in ref. 4 for yet another definition of
steering in the literature.) In fact, LHS models can exploit hidden
signaling between Alice and Bob as long as communication at the
observable level (i.e., upon averaging Λ out) is impossible. This
effect is known as fine-tuning44 and will turn out to be critical.

Steering exposure and Bell-nonlocality super-exposure
We begin by an exposure protocol for steering and Bell
nonlocality that is universal in the sense of being capable of
producing any bipartite assemblage (behavior) whatsoever from
an appropriate tripartite assemblage (behavior) originally admit-
ting an LHS (LHV) model. As in ref. 27, we exploit bilocal wirings as
that of Fig. 1b, which makes Bob’s input y equal to Alice’s output
a. This requires that Bob’s measurement is in the causal future of
Alice’s. Indeed, after the wiring, systems A and B now behave as a
single black box with input x and output b. In other words,
exposure is a form of conversion from tripartite correlations into
bipartite ones. Here, we restrict to the case of binary inputs and
outputs (x, y, a, b∈ {0, 1}) for simplicity, where we prove the
following surprising result.

Theorem 1. (Universal exposure of quantum nonlocality). Any
bipartite assemblage σ(target) or Bell behavior P(target) can be obtained
via the wiring y= a on the tripartite assemblage σ(initial) or behavior
P(initial), respectively, of elements

σ
ðinitialÞ
a;bjx;y :¼ 1

2
σ
ðtargetÞ
bjx�a�y

(5)

or

PðinitialÞða; b; cjx; y; zÞ ¼ 1
2
PðtargetÞðb; cjx � a� y; zÞ; (6)

where⊕ stands for addition modulo 2. Moreover, σ(initial) and P(initial)

admit respectively an LHS and an LHV models across the AB∣C
bipartition, for all σ(target) and P(target).

That the initial correlations are mapped to the desired target is
self-evident from Eqs. (5) and (6). What is certainly not evident is
that the initial correlations are bilocal. This is proven in
Supplementary Note A by construction of explicit LHS and LHV
models. When the target assemblage (behavior) is steerable (Bell
nonlocal), exposure of steering (Bell nonlocality) is achieved.
Furthermore, apart from steerable, assemblages can also be Bell
nonlocal in the sense of giving rise to nonlocal behaviors under
local measurements47. Hence, when σ(target) is Bell nonlocal, a
seemingly unsteerable system—i.e., one that admits an LHS
decomposition—is mapped onto a Bell nonlocal one, which is
outstanding in view of the fact that unsteerable assemblages form
a strict subset of Bell-local ones.
The protocol highlights the capabilities of bilocal wirings as

resource-theoretic transformations. Remarkably, such wirings
compose a strict subset of well-known classes of free operations
of quantum nonlocality (across AB∣C): local operations with
classical communication (LOCCs)1 for entanglement, one-way
(1W) LOCCs from the trusted to the untrusted parts40 for steering,
and local operations with shared randomness27,32,33 for Bell
nonlocality. However, there are also limitations to the capabilities
of these wirings. In particular, in Supplementary Note E we prove a
no-go theorem for universal steering bits in the NDI+1DD scenario
[exemplified in Fig. 1c for N= 4]. That is, we show there that there
is no N-partite assemblage, for all N, from which all bipartite ones
can be obtained via arbitrary 1W-LOCCs.
Although the protocol above is universal, it is unclear whether

it can actually be physically implemented in general. This is due
to the fact that the tripartite initial correlations may be supra-
quantum, i.e., well-defined non-signaling correlations that can
however not be obtained from local measurements on any
quantum state50–53. Physical protocols for Bell-nonlocality
exposure were devised in refs. 27,28, but no such protocols have
been reported for steering. Hence, we next derive an alternative
example for both steering exposure and Bell-nonlocality super-
exposure that is manifestly within quantum theory. This also
exploits the bilocal wirings of Fig. 1b, but starting from a
different initial assemblage. We describe the latter directly in
terms of its quantum realization. Consider a tripartite
Greenberger–Horne–Zeilinger (GHZ) state ð 000j i þ 111j iÞ= ffiffiffi

2
p

,
with 0j i and 1j i the eigenvectors of the third Pauli matrix Z. Bob
makes von Neumann measurements on his share of the state for
both his inputs, for y= 0 in the Z+ X basis and for y= 1 in the
Z− X basis, with X the first Pauli matrix. Alice, however, makes
either a trivial measurement, given by the positive operator-
valued measure {1/2, 1/2}, for x= 0, or a von Neumann X-basis
measurement, for x= 1. For the resulting initial assemblage,
σ(GHZ), the following holds (see Supplementary Note B for more
details).
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Theorem 2. (Physically-realizable exposure and super-exposure).
The quantum assemblage σ(GHZ), of elements

σ
ðGHZÞ
a;bjx;y ¼

1
8

1þ ð�1Þbffiffiffi
2

p Z þ xð�1ÞaþyX
� �( )

(7)

admits an LHS model and, under the wiring y= a, is mapped to the
assemblage of elements

σbjx ¼ 1
4

1þ ð�1Þbffiffiffi
2

p Z þ xXð Þ
" #

; (8)

which is both steerable and Bell-nonlocal.

These results require a redefinition of steering in the multi-
partite scenario, since an assemblage can admit an LHS
decomposition and still be steerable. We describe this redefinition,
analogous to the one in ref. 27, before moving on to the
experimental realization.

Consistently defining steering
The existence of subtle steering implies a stark inconsistency
between the naive definition of steering from LHS decomposa-
bility, Eq. (4), and the notion of locality. Since the free operations
that cause exposure are classical and strictly local (fully contained
in the AB partition), it is reasonable that they are unable to create
not only steering but also any form of correlations (even classical
ones) across AB∣C. The alternative left is to redefine bipartite
steering in multipartite scenarios such that, e.g., the assemblages
in Eqs. (5) and (7) are already steerable. Formally, we need to
exclude a subclass of LHS decompositions from the set of
unsteerable assemblages.
To identify that subclass, let us apply the wiring y= a to a

general σ fulfilling Eq. (4). This gives σ(wired), of elements

σ
ðwiredÞ
bjx :¼

X
a

σa;bjx;a ¼
X
λ

Pλð
X
a

Pa;bjx;a;λÞϱλ: (9)

This is a valid LHS decomposition as long as the term within
parentheses yields a valid (normalized) conditional probability

distribution (of B given X and Λ). This is the case if every PðABÞ
λ in

Eq. (4) is non-signaling. In that case, by summing over b and
applying the NS condition, one getsX
a;b

Pa;bjx;a;λ ¼
X
a

Pajx;a;λ ¼NS
X
a

Pajx;λ ¼ 1; (10)

which renders σ(wired) indeed unsteerable. However, this reasoning

can in general not be applied if any PðABÞ
λ is signaling from Bob to

Alice, i.e., if Alice’s marginal distribution for a depends on y (apart
from x and λ). Therefore, we see that the inconsistency is rooted at
hidden signaling. In fact, at the level of the underlying causal model,
the phenomenon of exposure can be understood as a causal loop
between such signaling and the applied wiring (see Fig. 2).
To restore consistency, hidden signaling must be restricted. An

obvious possibility would be to allow only for non-signaling PðABÞ
λ ’s

in Eq. (4). Interestingly, however, this turns out to be over-
restrictive. Following the redefinition of multipartite Bell non-
locality27,28, we propose the following for bipartite steering in
multipartite scenarios.

Definition 1. (Redefinition of steering). An assemblage σ is
unsteerable if it admits time-ordered LHS (TO-LHS) decompositions
both from A to B and from B to A simultaneously, i.e., if

σa;bjx;y ¼
X
λ

PλP
ðA!BÞ
a;bjx;y;λϱλ (11)

¼
X
λ

P0λP
ðB!AÞ
a;bjx;y;λϱ

0
λ; (12)

where each PðA!BÞ
λ is non-signaling from Bob to Alice and each

PðB!AÞ
λ from Alice to Bob. Otherwise σ is steerable.

The validity of both time orderings simultaneously prevents
conflicting causal loops. More precisely, if a wiring from Alice to
Bob is applied on σ, one uses decomposition (11) to argue with

the PðA!BÞ
λ ’s [as in Eq. (10)] that the wired assemblage is

unsteerable. Analogously, if a wiring from Bob to Alice is

performed, one argues using the PðB!AÞ
λ ’s from decomposition

(12). Hence, no exposure is possible for TO-LHS assemblages,
guaranteeing consistency with bilocal wirings (as well as generic
1W-LOCCs from trusted to untrusted parts) as free operations of
steering. We note that, even though this redefinition prevents the
exposure effect from creating steering, the effect still has, as
illustrated by the exposure theorems, a relevant transformation
power, especially when applied to steerable assemblages. As an
example, there are assemblages that can only violate a Bell
inequality across AB∣C after the exposure protocol.
On the other hand, when all λ-dependent behaviors in Eqs. (11)

and (12) are fully non-signaling, then the assemblage is called
non-signaling LHS (NS-LHS). There exist TO-LHS assemblages that
are not NS-LHS, which proves that the latter is a strict subset of
the former. In Supplementary Note C, we provide a quantum and
a supra-quantum example of TO-LHS assemblages that are not
NS-LHS.
This definition based on TO-LHS models is strictly different from

previous definitions of steering in the literature. In ref. 4, PðABÞ
λ from

Eq. (4) is restricted to non-signaling distributions, which coincides

with the NS-LHS definition. In ref. 49 PðABÞ
λ is further restricted to

quantum-realizable bipartite distributions, in what constitutes the

quantum-LHS model, see Fig. 3. A fully factorizable PðABÞ
λ , as

mentioned in ref. 5, represents an even further restriction, and the
corresponding model only allows for classical correlations
between Alice, Bob, and Charlie.
These examples have another consequence for the definition of

steering. At times has the definition of steering been stated as
entanglement that can be certified with the reduced information

Fig. 2 Steering exposure as a causal loop. In the causal network
underlying LHS models, given by Eq. (4), the hidden variable λ
directly influences Charlie’s quantum state ϱ as well as the Alice and
Bob’s outputs a and b, which are in turn also influenced by the
inputs x and y, respectively. Even though the observed assemblage
(after averaging λ out) is non-signaling, the model can still exploit
hidden signaling (i.e., at the level of λ). For instance, for each λ, Alice’s
output may depend (red arrow) on Bob’s input in a different fine-
tuned way such that the dependence vanishes at the observable
level. The wiring of Fig. 1b forces y= a, closing a causal loop that will
in general conflict with the latter dependence for some λ. As a
consequence, the final assemblage resulting from the wiring may
not admit a valid LHS decomposition, exposing steering. Hence, the
exposure can in a sense be thought of as an operational benchmark
for hidden signaling in the LHS model describing the initial
assemblage.
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content of a semi-DI setting19,49. In fact, even with steering
defined independently of entanglement certification, never to our
knowledge had there been an instance of one being present
without the other. We have nevertheless found cases of
entanglement certification in the semi-DI scenario without
steering, dissociating these two notions: the latter is sufficient,
but not necessary, for the former. This is seen from the quantum-
realizable examples of a TO-LHS assemblage that is not NS-LHS in
Supplementary Note C. They can be decomposed as in Eqs. (11)
and (12), but only with distributions PðA;B!B;AÞ

a;bjx;y;λ that are signaling,
hence, not quantum. As such, a quantum system without AB∣C
entanglement is unable to produce such an assemblage, i.e.,
entanglement can be certified in AB∣C. On the other hand, since it
is TO-LHS, the assemblage has no steering in the same bipartition
(details in Supplementary Note C).
Furthermore, the redefinition above automatically implies also a

redefinition of genuinely multipartite steering (GMS). We present
this explicitly in Supplementary Note D. There, we follow the
approach of ref. 49 in that a fixed trusted-versus-untrusted
partition is kept. However, instead of defining GMS as incompat-
ibility with quantum-LHS assemblages (i.e., with λ-dependent
behaviors with explicit quantum realizations) as in ref. 49, we use
the more general TO-LHS ones. This reduces the set of genuinely
multipartite steerable assemblages safely, i.e., without introducing
room for exposure. The dissociation of steering and entanglement
certification also happens in this genuine multipartite case.

Experimental implementation
The exposure procedure was experimentally implemented using
entangled photons produced via spontaneous parametric down-
conversion. The experimental setup is shown in Fig. 4. A photon
pair is generated in the Bell state Φþ�� � ¼ 00j i þ 11j ið Þ= ffiffiffi

2
p

, where
0j i ( 1j i) stands for horizontal (vertical) polarization of the
photons54. The photons in the signal mode (s) pass through a
calcite beam displacer (BD), which creates two momentum modes
(paths) depending on the polarization. This results in a tripartite
GHZ state, where the extra qubit is the path degree of freedom of
the photons in s. Alice’s and Bob’s qubits are the polarization and
path of the photons in mode s, respectively, while Charlie’s qubit is
the polarization of the photons in mode i. Projective

measurements onto all the degrees of freedom required for state
tomography are performed as described below.
To implement the wiring from Fig. 1b, Alice’s polarization

measurements are realized before Bob’s measurements onto the
path degree of freedom. Alice’s results are read from the output of
PBSA, which determines whether D2 (a= 0) or D3 (a= 1) clicks. For
Alice’s trivial measurement (x= 0), crucial for the original
assemblage to be LHS-decomposable, both her wave plates
located before the imbalanced interferometer (represented by Δ)
are kept at 0∘, and H@θ is adjusted to 22.5∘. The role of Δ is to
remove the coherence between horizontal and vertical polariza-
tion components, ensuring that the photon exits PBSA randomly,
independent of the input polarization state. For x= 1, Alice’s wave
plates are set to project the polarization on the X eigenstates, the
interferometer and H@θ (θ= 0∘) play no role. Bob performs his
projective measurements by first mapping the path degrees of
freedom onto polarization using BDs and then projecting the
polarization state using his set of wave plates and PBSs, as was
realized in ref. 55. To reconstruct the assemblage in Eq. (7),
measurements for y= 0 and y= 1 are made in both detectors D2

and D3, varying the angle of the wave plates in Bob’s box. To
collect the data corresponding to the wired assemblage (8) only
the y= 0 measurement is made in D2 (a= 0) and only y= 1 is
made in D3 (a= 1), enforcing that Bob’s input equals Alice’s
output (y= a).
The assemblage σ(GHZ) was obtained experimentally by

performing state tomography on Charlie’s system for each
measurement setting and outcome of Alice and Bob. Sixteen
density matrices (plotted in Supplementary Fig. S1) are obtained
through maximum likelihood, and the assemblage presents a
fidelity-like measure of 98.2 ± 0.2% compared to the theoretical
one (see “Methods”). The experimental wired assemblage is
shown in Fig. 5a, and returns a fidelity of 98.1 ± 0.6% with respect
to the theoretical wired assemblage given in (8).
An exact LHS decomposition of the experimental assemblage is

not feasible due to imperfections and finite statistics—in fact,
assemblages reproducing raw experimental data exactly are not
even physical, since they disobey the NS principle49. To show that
the experimental tripartite assemblage is statistically compatible
with an LHS decomposition, we proceed as follows: First, we
assume the photocounts obtained for each measured projector
are averages of Poisson distributions; with a Monte Carlo
simulation, we sample many times each of these distributions

NS-LHS
TO-LHS
LHS
all NS assemblages

Q-LHS

Fig. 3 Pictorial representation of inner structure of the set of all
non-signaling assemblages in the tripartite scenario. Inclusion is
strict for all depicted subsets: the set LHS of generic local-hidden-
state (LHS) assemblages, the set TO-LHS of time-ordered LHS ones,
the set NS-LHS of non-signaling LHS ones, and the set Q-LHS of
quantum-LHS ones (see Supplementary Note C for details). The
shaded region represents the set of assemblages with subtle
steering. Bilocal wirings can expose such steering by mapping that
region to the set of (bipartite) steerable assemblages.

Fig. 4 Experimental setup. Two crossed-axis BBO crystals are
pumped by a He-Cd laser centered at 325 nm, producing pairs of
photons at 650 nm entangled in the polarization degree of
freedom54. The signal (s) photon is sent through a BD which
deviates only the horizontal-polarization component, producing a
tripartite GHZ state on two photons using polarization and path
degrees of freedom. Idler (i) photons are sent directly to Charlie’s
polarization measurements. Signal photons are first measured in
polarization by Alice, then Bob maps his path qubit onto a
polarization qubit for his measurements. H stands for half-wave
plate, Q for quarter-wave plate, and PBS for polarizing beam splitter.
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and reconstruct the corresponding assemblages. Second, for each
reconstructed assemblage, we find the physical (NS) assemblage
that best approximates it through maximum-likelihood estima-
tion, as well as the best LHS approximation for comparison. As an
initial indication of LHS compatibility, the log-likelihood error of
both approximations is extremely similar, see Fig. 5c. Third, for the
NS approximations, we calculate the LHS-robustness56, a measure
that is zero for all LHS assemblages. For comparison, we repeat the
procedure starting with simulated finite-photocount statistics
from the theoretical LHS assemblage from Eq. (7). In Fig. 5d we
see that the experimental robustness has a sizable zero
component and a distribution fully compatible with that of an
LHS assemblage under finite measurement statistics.
To show that the experimental wired assemblage is steerable,

we tested it on the optimal steering witness W with respect to
assemblage (8) (see Supplementary Notes B). This returned a value
1.015 ± 0.009 ≰ 1 (theoretical: 1.0721≰ 1), where the inequality
violation implies steering, see Fig. 5b. This allows us to conclude
that the bipartite wired assemblage is indeed steerable. The
experimental error was calculated using 500 assemblages also
from a Monte Carlo simulation of measurement results with
Poisson photocount statistics.
Using the same experimental setup, we can also experimentally

demonstrate super-exposure of Bell nonlocality. As argued above,
the initial experimental assemblage is compatible with an LHS
model. Therefore, no matter what measurement Charlie makes,
the corresponding Bell behavior will be compatible with an LHV
model. Hence, we must only show that the experimental wired
assemblage is Bell nonlocal. In ref. 47, a necessary and sufficient
criterion for Bell nonlocality of assemblages was derived: Given
Alice and Bob’s wired measurements (y= a) with input bit x and
output bit b, to maximally violate a Bell inequality, Charlie
performs von Neumann measurements in the 2Z+ X and X bases,
labeled by input bit z, obtaining binary output result c. They thus
obtain 16 probabilities P(b, c∣x, z), which are used to calculate the
Clauser–Horne–Shimony–Holt inequality57. We obtained an
experimental violation of 2.21 ± 0.04≰ 2 (theoretical prediction:
2.29≰ 2), showing Bell nonlocality.
This experiment is sufficient to for a proof-of-principle

demonstration of both exposures of steering and super-

exposure of Bell nonlocality. We note that strict demonstration
of these phenomena in their appropriate DI scenarios requires a
realization with space-like separation between the parties (locality
loophole), as well as high-efficiency source and detectors (fair-
sampling assumption).

DISCUSSION
We have demonstrated that the traditional definition of multi-
partite steering for more than one untrusted party based on
decomposability in terms of generic bilocal hidden-state models
presents inconsistencies with a widely accepted, basic notion of
locality. We have also shown how, according to such definition, a
broad set of steerable (exposure) and even Bell-nonlocal (super-
exposure) assemblages would be created from scratch, e.g., by
bilocal wirings acting on a seemingly unsteerable assemblage, i.e.,
an LHS one. A surprising discovery that we have made is the fact
that exposure of quantum nonlocality is a universal effect, in the
sense that all steering assemblages, as well as Bell behaviors, can
be obtained as the result of an exposure protocol starting from
bilocal correlations in a scenario with one more untrusted party.
This highlights the power of exposure as a resource-theoretic
transformation. However, we also delimit such power: we prove a
no-go theorem for multi-black-box universal steering bits: there
exists no single assemblage with many untrusted and one trusted
party from which all assemblages with one untrusted and one
trusted party can be obtained through generic free operations of
steering. To restore operational consistency, we offer a redefini-
tion of both bipartite steering in multipartite scenarios and
genuinely multipartite steering that does not leave room for
creating correlations from scratch. Finally, both steering exposure
and Bell nonlocality super-exposure have been demonstrated
experimentally using an optical implementation. This is to our
knowledge the first experimental observation of exposure of
quantum nonlocality reported, not only in semi device-
independent scenarios but also in fully device-independent ones,
as originally predicted in refs. 27,28.
Finally, we mention practical implications that our results might

have. Steering in the scenario we work on, with a single trusted
party, has been shown to be particularly relevant for the task of

a b

c d

Fig. 5 Experimental results. Experimental assemblages after y= a wiring. a Real part of Charlie’s conditional density matrices, theoretical
(top) and experimental (bottom). b Steering-witness histogram. The witness value is 1.015 ± 0.009, meaning that the experimental assemblage
is more than one standard deviation above the steering threshold (dashed line). Compatibility of the tripartite experimental assemblage with
the naive (LHS) definition of unsteerability [Eq. (4)]. c Histogram of the error of approximating the tripartite assemblage by an NS and an LHS
assemblage, showing that the error of assuming the LHS decomposition is as small as that of the physically necessary NS assumption. d From
the best NS approximation to the experimental data, histogram of the LHS-robustness, a measure of deviations from the set LHS. Even with all
experimental error, there is only a residual amount of robustness, fully compatible with that of the theoretical LHS assemblage solely under
finite-statistics error. All histograms come from Monte Carlo simulation assuming Poisson distributions.
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quantum secret sharing24,25. In it, the trusted party deals a secret
to the untrusted parties, who must be able to access it only when
cooperating, not independently. A form of steering that is only
observable when such parties cooperate, as in the exposure
protocol, fits this mold quite specifically. This indicates a potential
application of our results, possibly in conjunction with the open
question of other joint operations able to achieve exposure.

METHODS
Experimental assemblages
Let us describe the quantum state and the assemblages produced in our
experiment in more detail. Although we treat two of the qubits as black
boxes, in order to ensure that the resulting assemblage is coming up from
quantum measurements performed onto a GHZ, we first made a state
tomography to determine the tripartite quantum state. This can be done
without adding any optical element to the setup. By varying the angles on
Alice’s quarter-wave plate and half-wave plate before the imbalanced
interferometer, we set her apparatus to make any tomographic measure-
ment in polarization if we set H@θ to 0∘. The tomographic projections for
the path degree of freedom of photons in s and polarization of photons in i
are done using the set of wave plates just before detectors D1 and D2,
respectively. Using the collected coincidence counts we reconstructed the
tripartite quantum state by maximum likelihood. The reconstructed
density matrix is shown in Fig. 6. The experimental state presents fidelity
with GHZ state equals to 0.981 ± 0.004.
Each element of the tripartite assemblage is composed of Charlie’s

conditional quantum state and the conditional probability Pa,b∣x,y for the
black boxes. All sixteen experimental Charlie’s density matrices are shown
in Supplementary Fig. S1 in comparison with the corresponding theoretical
ones. The associated conditional probabilities are also shown.
For the wired assemblage, the expected conditional probability of each

outcome is 1
2; the experimental values are 0.46 ± 0.01, 0.54 ± 0.01, 0.49 ±

0.01, 0.51 ± 0.01 (following the order in Fig. 5a). The imaginary components
of the density matrix average to 0.05 ± 0.02 (theoretical: zero).

Assemblage fidelity
We can see by visual inspection that the experimental and corresponding
theoretical assemblage elements shown in Fig. 5 and Supplementary Fig.
S1 are similar. To quantify this similarity we use a mean assemblage fidelity
between two assemblages σ1= {P1(a∣x)ϱ1(a∣x)} and σ2= {P2(a∣x)ϱ2(a∣x)}
defined by

Fðσ1;σ2Þ ¼ 1
Nx

X
x;a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ðajxÞP2ðajxÞ

p
F ϱ1ðajxÞ; ϱ2ðajxÞð Þ; (13)

where x (a) is a list of inputs (outputs) of all black boxes, Nx is the number
of different measurement choices, and Fðϱ1; ϱ2Þ is the usual fidelity
between two quantum states. The numerical values of assemblage fidelity
in the main text are calculated with this definition. The above-defined
fidelity can be seen as a mean of the fidelities of the quantum parts
weighted by the square root of blackbox probabilities. It has the property
of being 1 if all elements of the two assemblages are equal and vanish if all
quantum states are orthogonal.
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