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Quantum network routing and local complementation
F. Hahn1, A. Pappa1,2 and J. Eisert1

Quantum communication between distant parties is based on suitable instances of shared entanglement. For efficiency reasons, in
an anticipated quantum network beyond point-to-point communication, it is preferable that many parties can communicate
simultaneously over the underlying infrastructure; however, bottlenecks in the network may cause delays. Sharing of multi-partite
entangled states between parties offers a solution, allowing for parallel quantum communication. Specifically for the two-pair
problem, the butterfly network provides the first instance of such an advantage in a bottleneck scenario. In this paper, we propose a
more general method for establishing EPR pairs in arbitrary networks. The main difference from standard repeater network
approaches is that we use a graph state instead of maximally entangled pairs to achieve long-distance simultaneous
communication. We demonstrate how graph-theoretic tools, and specifically local complementation, help decrease the number of
required measurements compared to usual methods applied in repeater schemes. We examine other examples of network
architectures, where deploying local complementation techniques provides an advantage. We finally consider the problem of
extracting graph states for quantum communication via local Clifford operations and Pauli measurements, and discuss that while
the general problem is known to be NP-complete, interestingly, for specific classes of structured resources, polynomial time
algorithms can be identified.
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INTRODUCTION
Quantum communication schemes over optical networks neces-
sarily suffer from transmission losses and errors. For this reason, in
order to achieve the vision of secure quantum communication
over arbitrary distances, several schemes have been proposed that
are based on entanglement swapping and purification.1–5 How-
ever, such existing “quantum repeater” approaches are based on
sharing and manipulating close to maximally entangled “EPR”
pairs between the nodes. A lot of emphasis has been put onto
identifying efficient ways of achieving this task,2,3,6,7 amounting to
challenging prescriptions. Yet, for multi-partite quantum networks
going beyond point-to-point achitectures, much less is known
about how to meaningfully manipulate resources. This is
particularly unfortunate since a number of protocols have been
devised for tasks like secret sharing,8,9 quantum voting10 and
quantum conference key agreement,11–13 that exploit the genuine
multi-partite character of a quantum network, having the vision of
a quantum internet in mind.14 In fact, one could argue that the
true potential of quantum communication is expected to lie in
such multi-partite applications beyond point-to-point
architectures.
Specifically in multi-partite quantum networks, it could well be

preferable that the involved processes are run offline, i.e., before a
request for communication is received. However, methods like the
ones described in ref. 15 require big quantum memories, as well as
a high channel capacity. Consequently, network efficiency is
limited by the memory capacities of the quantum repeater
stations,16 as well as by possible bottlenecks imposed by the
quantum network architecture. In this context, new questions of
quantum routing emerge. We use the term quantum routing as
referring to the task of manipulating entangled resources in multi-

partite quantum networks between arbitrary nodes, not necessa-
rily making use of local knowledge only, as is common in classical
routing, but allowing for global classical communication. The key
question in this framework is how to optimally establish
communication between distant nodes using the intermediate
nodes of a quantum network.
In this work, we consider methods for sharing entanglement

between nodes of a network that are favorable in terms of
memory and channel capacity. We start from the same setting
where nodes connected via optical links share maximally
entangled qubit pairs. By suitable entanglement swapping
steps,7,17,18 the resulting state is a graph state.19,20 Methods for
purifying any graph state via measurements and classical
communication have been studied21 and applications in quantum
networks considered.22,23 Setting up the shared quantum state
before the actual request for communication is preferable in terms
of efficiency, but also allows for detection and prevention of
channel and node failure.
For a given graph state and a request for communication

between two distinct nodes, a straightforward solution would be
to find a shortest path between the nodes, create a “repeater” line
(by isolating the path from its environment), and then perform
measurements on the intermediate nodes, thereby creating an
EPR pair between the two. However, this approach is far from
optimal since it requires measuring a large number of nodes and
therefore diminishes the secondary use of the residual quantum
state. Here, we propose another method that requires at most as
many measurements as this “repeater” protocol, in general leaving
a larger part of the graph state intact, while simultaneously solving
bottleneck issues in the network. The method is based on local
complementation19,24 and is already underlying in the prominent
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bottleneck example of the butterfly scheme.25,26 The lack of
studies in this area is due to the fact that local complementation
does not provide an advantage in classical network coding, since
there is no classical equivalent to the application of local Clifford
operations in order to achieve serviceable long-range correlations.
Finally, we turn towards the problem of extracting graph states
from given larger graph states via local Clifford operations and
Pauli measurements. Using known results from graph theory,27–30

we discuss that while the general problem is known to be NP-
complete,31 for specific classes of more structured resources,
polynomial time algorithms can be found. All our schemes are
based on local complementation, but are genuinely quantum in
the way that multi-partite quantum graph states are manipulated.
A graph G= (V, E) consists of a finite set of vertices VD! N and a

set E � V ´ V of edges. The set of all vertices that have a shared
edge with a given vertex a is called the neighborhood of a and
denoted by Na. Graphs have an adjacency matrix with entries

ΓGð Þi;j :¼
1; if ði; jÞ 2 E

0; if ði; jÞ =2 E

�
; (1)

associated with them. In this work, we only consider simple
graphs, i.e., graphs that do not contain edges connecting a vertex
to itself, or multiple edges between the same pair of vertices. For
any G, a graph state vector |G〉 can be defined as follows; first, a
qubit in jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

is prepared for each of the vertices
in V. Subsequently, a controlled-Z operation is applied to each pair
of qubits that is adjacent in G. The resulting graph state is

jGi :¼
Y
ði;jÞ2E

CZi;jjþi�V : (2)

It is important to stress that graph states do not have to be
prepared in this fashion. In fact, we here anticipate the states to be
prepared from EPR pairs and entanglement swapping in a
quantum network. Note that local Pauli measurements on a
graph state result in a different graph state up to local unitary
corrections (cf. Proposition 7 in ref. 19). Here, we will omit these
local corrections for the sake of clarity.
In this work we will make use of a graph transformation called

local complementation. By τa(G) we denote the graph that results
from locally complementing G with respect to the vertex a.

Definition 1. (Local complementation). A graph G= (V, E) and
vertex a∈ V define a graph τa(G) with adjacency matrix

ΓτaðGÞ :¼ ΓG þ Θa mod 2; (3)

where Θa is the complete graph of the neighborhood Na.

Local complementation on a graph is equivalent to applying
local Clifford gates on the respective graph state.32 In particular,
the graph state that results from local complementation with
respect to node a of the graph state vector |G〉, is defined by
jτaðGÞi :¼ Uτ

ajGi, where Uτ
a :¼ ðiXaÞ1=2ð�iZNaÞ1=2. It is possible to

verify whether two graph states can be transformed into each
other via sequential local complementations in polynomial time.33

Note that we aim at achieving deterministic transformations to the
desired final states in routing, we do not consider stochastic
operations, which is an interesting problem in its own right,34 but
leads to exponentially small probabilities of success in the large
system size limit. As we only consider local Clifford operations and
Pauli measurements, the resulting states remain graph states and
can be described in terms of the pre-measurement graph with the
help of local complementations and Z-measurements.20

RESULTS
Reducing the number of measurements
We have already argued that sharing graph states between the
nodes of a network allows for quicker communication with less
requirements for channel capacity and memory than sharing EPR
pairs between nodes. However, it is not known, given a shared
graph state, what the optimal technique for entanglement sharing
between nodes that are not connected via physical links is. In the
following, we will prove that a “repeater” method is not optimal
regarding the number of measurements to be performed. Having
a significantly reduced number of measurements is extremely
useful in quantum networks, since it allows us to “extract” more
entanglement from the shared graph state.
The repeater protocol entails first isolating a path between two

nodes a and b and then connecting a to b by measuring the
intermediate nodes of the path. This can be optimized by
selecting the shortest path connecting a to b that has the
minimum combined neighborhood. Every node that lies in the
union of neighborhoods of this path but not on the path itself is
then Z-measured. This isolates the path from the rest of the graph
creating a repeater line. Finally, every intermediate vertex on the
line is X-measured yielding the EPR pair between the two nodes.
The X-protocol is following a different approach. First, the

intermediate vertices along the same shortest path between a and
b are X-measured. Subsequently, the neighborhoods of the two
nodes are Z-measured (except the nodes themselves), creating the
desired EPR pair between a and b.
We specifically prove the following theorem in the Supplemen-

tary Information.

Theorem 1. (Creating maximally entangled pairs). We can create
an EPR pair between two nodes a and b of an arbitrary graph state
using the X-protocol with at most as many measurements as with
the repeater protocol.

The proof compares the number of measurements required
when running the two different algorithms. Note that both
protocols work because X-measurements on a shortest path
create an edge between the first and the last node of the path on
the underlying graph. The X-protocol decreases the number of
measurements used in standard repeater scenarios, when we
know a pair of nodes that intends to communicate (in this case a
and b). In particular, it allows for a larger part of the graph state to
remain intact for future use. Figure 1a, b visualizes how the X-
protocol for a 9-qubit cluster state allows us to communicate
between the nodes 1 and 9 while keeping a residual graph state
for simultaneous communication between any pair of nodes in {3,
4, 7, 8}. Here, the residual graph state can be turned into the
desired second EPR pair by two measurements. Note that if we
would first isolate the path between nodes 1 and 9 and then apply
standard repeater protocols, the distillation would require the
measurement of at least six nodes and thereby render the
extraction of a second EPR pair impossible (cf. Fig. 1c–e).
It is also beneficial to compare our protocol to the standard

entanglement swapping methods based on directly sharing EPR
pairs over the underlying network. To build the graph states of Fig.
1b over the underlying grid network using entanglement
swapping, we need 12 EPR pairs, which is the same number
required to build the cluster state in Fig. 1a. The crucial difference
is that, while the cluster state can accommodate more commu-
nication requests, the direct generation of the graph states in Fig.
1b via entanglement swapping limits the communication
scenarios that we can implement.
The following lemma enables the visualization of entanglement

generation. The proof is given in Supplementary Information.
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Lemma 1. (Equivalence of measurements). X-measurements along
a shortest path between two nodes are equivalent to performing a
series of local complementations on the path, followed by Z-
measurements on the intermediate nodes.

Lemma 1 allows us to transform the problem of establishing
entanglement between nodes into finding suitable graphs by
successive local complementations of the network graph. These

repeated local complementations generate an orbit, the LC-orbit.24

If the only request for communication is between two nodes, then
a shortest path with minimal neighborhood is chosen, in order to
minimize the number of measurements. However, if the problem
at hand is to connect more than one pair of nodes, the local
complementation path will be chosen differently, according to the
resulting graph. Even if not at first apparent, this is the strategy for
the well-known butterfly network scheme.25,26 The butterfly

Fig. 1 An EPR pair and a residual graph state (b) are distilled from a cluster state with 9 qubits (a) using the X-protocol (orange) on the path (1,
2, 5, 6, 9). Note that the combined neighborhood of nodes 1 and 9 is just the set {1, 9} after the qubits corresponding to nodes 2, 5, 6 are X-
measured. The X-protocol in terms of local complementations is visualized in Fig. 3. The repeater protocol (blue) on the same path isolates the
path (c) yielding the EPR pair between nodes 1 and 9 (d) after the measurement of the intermediate nodes 2, 5, 6

Fig. 2 Establishment of two EPR pairs. Starting from the butterfly network (a), we perform consecutive local complementations on nodes 1
(b), 3 (c), and 4 (d). The qubits 3 (e) and 4 (f) are measured in order to establish EPR pairs between nodes {1, 6} and {2, 5}
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network as a graph state is visualized in Fig. 2a, where in order to
create EPR pairs between nodes {1, 6} and {2, 5} (cf. Fig. 2f), X-
measurements are done on nodes 3 and 4. Via Lemma 1 this is
equivalent to finding a graph in the LC-orbit of the butterfly,
where edges (1, 6) and (2, 5) exist, and no edge between sets {1, 6}
and {2, 5} exists. This graph is found via consecutive local
complementations on nodes 1, 3 and 4 (Fig. 2b–d). A Z-
measurement on nodes 3 and 4 allows to extract the two required
EPR pairs (Fig. 2e, f). Note that without the second request for
connection of nodes 2 and 5, the algorithm might have chosen
another path to do X-measurements. Similarly, the sequence of
subfigures in Fig. 3 demonstrates the equivalent process for the 9-
qubit cluster state. In this sense, local complementation allows to
bypass bottlenecks.

Bottleneck quantum networks
The butterfly network is of particular interest regarding quantum
computing; in ref. 35 it was shown that any two-qubit unitary
operation can be deterministically implemented over such a
scheme. Concerning network efficiency, we say that a network has
a bottleneck with respect to a given communication request if all
possible routing solutions involve overlapping paths between at
least two pairs of nodes. In quantum networks a bottleneck is
equivalent to requiring more than one EPR pair per physical link
when trying to establish long distance quantum communication
via teleportation. For example, we observe that one of the
butterfly’s edges becomes a bottleneck when we aim to build
repeater lines to create entanglement between nodes {1, 6} and {2,
5} in Fig. 2a. The X-protocol solves the above communication task
bypassing the bottleneck in the network. We can further show
that the butterfly network is uniquely minimal with respect to the
number of nodes. The following two propositions formalize this
fact, and their proof is by exhaustive search.

Proposition 1. (No bottleneck). There is no 5-node graph state that
has a bottleneck for simultaneous communication between two pairs
of nodes and that can be solved using local Cliffords and a Pauli
measurement of a single node.

Proposition 2. (Bottleneck). There are only four 6-node graph states
that have a bottleneck for simultaneous communication between
two pairs of nodes and that can be solved using local Cliffords and
Pauli measurements.

The four 6-node graph states that have a bottleneck for
simultaneous communication between two pairs of nodes and
that can be solved using local Cliffords and Pauli measurements
are obtained by relabeling the butterfly network (cf. Fig. 2a).
Specifically, if we intend to establish EPR pairs between nodes {1,

6} and {2, 5}, we obtain the four graphs by exchanging labels
within the sets {3, 4} and {1, 6}. Note that in allowing arbitrary local
Cliffords and Pauli measurements we considered a wider class of
possible algorithms than just the aforementioned X-protocol.

Obtaining GHZ and other multi-partite resources
As a further aspect, we now turn to the key question of how to
extract resource states such as GHZ states from a given graph
state. The more general question, whether from a given graph
state vector |G〉 we can extract another graph state vector |H〉 via a
sequence of local measurements, has recently been proven to be
NP-complete.31 This was done by solving a well-known problem in
graph theory called the VERTEX-MINOR problem, which asks
whether from a graph G, another graph H can be extracted via a
sequence of (i) local complementations and (ii) deletion of
vertices. Note that the NP-completeness of deciding whether
graph H is a vertex-minor of G has been proven for labeled graphs,
which are relevant for communication scenarios, since the nodes
are distinct.
Having said that, there are polynomial-time algorithms that

solve the problem for important instances. A first relevant instance
involves GHZ states,36,37 which are essential resources for multi-
partite schemes in quantum networks beyond point-to-point
architectures, such as quantum secret sharing.8,9 Building upon the
method described in Theorem 1, we can show the following
corollary.

Corollary 1. (Extraction of GHZ3 states). We can always distill a 3-
partite GHZ state between arbitrary vertices of a connected graph
state in polynomial time.

In order to obtain a 3-partite GHZ state, we use a slightly altered
version of the X-protocol. The proof examines different cases
corresponding to distinct relative positions of the three vertices
within the graph and is given in the Supplementary Information.
We now propose a sufficient criterion in order to extract 4-partite
GHZ states; note that the extraction of a complete graph of four
nodes (which is a graph representing a GHZ4) is thought to be
difficult in general.38

Proposition 3. (Extraction of GHZ4 states).We can distill a 4-partite
GHZ state from a graph state when the underlying graph has a
repeater line as vertex-minor, which contains all four nodes of the
final GHZ state and at least one extra node between two pairs of the
nodes.

The required criterion is very likely to be fulfilled for simple
network architectures, over which the graph state will be shared.
Figure 4 demonstrates this for a short-distance square-grid

Fig. 3 An EPR pair and a residual graph state are distilled from a cluster state with 9 qubits (a) using the X-protocol on the path (1, 2, 5, 6, 9).
This is visualized by considering (b) local complementations with respect to nodes 1, 2, 5, 6, 1, followed by (c) the deletion of nodes 2, 5, 6 on
the graph that describes the graph state
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network, which is used to share a cluster state. Here, Fig. 4c
visualizes the minimal repeater line that is described in Proposi-
tion 3. The proof of said proposition is given in the Supplementary
Information.
A more general result using the notion of rank-width is based

on refs. 31,39–42. The rank-width k of a graph G is the minimum
width of all its rank decompositions. This amounts to k being the
smallest integer such that G can be related to a tree-like structure
by recursively splitting its vertex set so that each cut induces a
matrix of rank at most k. The rank-width is bounded iff the clique-
width is bounded.43 Graphs with rank-width at most one are those
where all connected induced subgraphs preserve distance.27

Observation. (Extraction of graph states from graph states with
bounded rank-width). For a graph state vector |G〉 with an
underlying graph of bounded rank-width, there exists a poly-time
algorithm that decides if a graph state vector |H〉 can be extracted
from |G〉 using local Clifford operations and Z-measurements, and
gives the sequence of operations to be applied.

For a graph G, there exist algorithms with runtime O(|G|3)30 that,
for a fixed k, either give a rank decomposition of width at most
24k or reply that the rank-width is larger than k. Then, when such a
rank decomposition is given, for a fixed graph H, a linear time
algorithm can test whether H is a vertex minor of G and return the
sequence of local complementations and vertex deletions to be

applied.39 The local complementations on G correspond to local
Clifford operations on |G〉. The vertex deletions correspond to
measuring the relevant qubits of the resulting graph state in the Z-
basis, which finally yields the graph state vector |H〉. Many
structured graphs have bounded rank-width, e.g., highly sparse
random graphs44 and graphs with bounded tree-width.45 For
those graphs, the above observation readily applies, and it can be
decided whether resource states can be extracted.

DISCUSSION
In this work, we have discussed the manipulation of multi-partite
entangled resources for applications in quantum routing and
quantum communication across quantum networks. We have
seen that via local complementation, quantum routing schemes
with a reduced number of measurements outperforming standard
repeater schemes can be found, bottlenecks in quantum networks
can be treated and the question of extracting multi-partite
resources largely addressed.
It is important to stress that, while these algorithms are classical,

they apply to true multi-partite entangled quantum states and can
potentially be used to achieve parallel quantum key distribution
and notions of conference key agreement. It is worth examining
how to extend the proposed methods in order to achieve
teleportation of quantum states from one set of nodes (sources) to
another (sinks), a problem analogous to the k-pair problem in

Fig. 4 Prototypical extraction of a GHZ4 state. In order to distill a GHZ4 state between the nodes 1, 2, 4 and 5 of a 12 qubit cluster state (a), we
Z-measure three nodes (b) and X-measure the four remaining intermediate nodes, thus isolating a repeater line (c) in accordance with
Proposition 3. We then perform consecutive local complementations on nodes 2 (d), 3 (e), and 4 (f). Node 3 is finally Z-measured (g) to
establish the desired GHZ4 state
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classical network routing. To some extent, such schemes have
been studied in the butterfly setting7,46–50 when bipartite
entangled states are shared, and in the more general setting,26

by establishing a connection with measurement-based quantum
computation.51–53 However, using linear codes (as in ref. 26) to
map the network has a shortcoming; they require the generation
of two-colorable graph states at each node, and it is not
straightforward to see how to make this mapping to a given
network structure, where each node holds a single qubit. A
possible solution would be to extend the methods in this work,
and to use local complementation and graph transformations in
order to address this problem for specific network architectures.
Finally note that since every stabilizer state is equivalent to some

graph state,54 the methods laid out here are also expected to be
useful in the design of quantum error correcting codes. In
conclusion, further studies of manipulating multi-partite
entangled resources for quantum routing seem to be urgently
needed, especially in the light of the rapid experimental progress
on quantum networks.
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