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Quantum computation is the unique reversible circuit model

for which bits are balls

Marius Krumm'? and Markus P. Muller'3

The computational efficiency of quantum mechanics can be characterized in terms of the qubit circuit model, which is defined by a
few simple properties: each computational gate is a reversible transformation in a connected matrix group; single wires carry
qguantum bits, i.e. states of a three-dimensional Bloch ball; states on two or more wires are uniquely determined by local
measurement statistics and their correlations. In this paper, we ask whether other types of computation are possible if we relax one
of those characteristics (and keep all others), namely, if we allow wires to be described by d-dimensional Bloch balls, where d is
different from three. Theories of this kind have previously been proposed as possible generalizations of quantum physics, and it has
been conjectured that some of them allow for interesting multipartite reversible transformations that cannot be realized within
quantum theory. However, here we show that all such potential beyond-quantum models of computation are trivial: if d is not
three, then the set of reversible transformations consists entirely of single-bit gates, and not even classical computation is possible.
In this sense, qubit quantum computation is an island in theoryspace.
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INTRODUCTION

Since the discovery of quantum algorithms that outperform all
known classical ones in certain tasks,' improving our under-
standing of the possibilities and limitations of quantum computa-
tion has become one of the central goals of quantum information
theory. While it is notoriously difficult to prove unconditional
separation of polynomial-time classical and quantum computa-
tion,? an approach that is often regarded more tractable is to
analyze how certain modifications of quantum computing affect
its computational power. For instance, one may consider
restrictions on the set of allowed quantum resources, and ask
under which condition the possibility of universal quantum
computation is preserved despite the restriction. Notable results
along these lines, among many others, include the
Gottesman-Knill theorem,*™ insights on the necessity of con-
textuality as a resource for magic state distillation,® or bounds on
the noise threshold of quantum computers.’

In a complementary and in some sense more radical approach,
going back to Abrams and Lloyd,® one considers modifications of
the quantum formalism itself and studies the impact of those
modifications on the computational efficiency, resembling strate-
gies of classical computer science such as the introduction of
oracles.’ For example, it has been shown that availability of closed
timelike curves leads to implausible computational power,'® that
stronger-than-quantum nonlocality reduces the set of available
transformations,’'™ ' that tomographic locality forces computa-
tions to be contained in a class called AWPP,'>'® and that in some
theories (satisfying additional axioms) higher-order interference'”
does not lead to a speed-up in Grover's algorithm.'® Further
examples can be found, e.g., in refs. 1972

In this paper, we consider a specific modification of the
quantum formalism that is arguably among the simplest and most
conservative possibilities. This modification dates back to ideas by
Jordan et al,”® and it has several independent motivations as we
will explain further below. This generalization keeps all character-
istic properties of quantum computation unchanged, but modifies
a single aspect: namely, it allows the quantum bit to have any
number of d > 2 degrees of freedom, instead of standard quantum
theory’'s d=3 (or the classical bit's d=1). It has been con-
jectured®* that the resulting theories allow for interesting “beyond
quantum” reversible multipartite dynamics, which would make
the corresponding models of computation highly relevant objects
of study within the research program mentioned above. However,
here we show that, quite on the contrary, these models are so
constrained that they do not even allow for classical computation;
hence, in Aaronson’s terminology, the d =3 case of the standard

qubit circuit model can be seen as an “island in theoryspace”.?®

RESULTS

The results of this paper are organized as follows:

At first we motivate and explain the framework: In “Framework:
Single gbits” section, we define single bits that generalize the
qubit (“gbits”), and afterwards in “Framework: Gbit circuits”
section, we give three postulates that allow us to reason about
circuits that are constructed out of n of these gbits. We formulate
the problem that is addressed in this work and describe how it
relates to earlier results in the literature in “d = 3 equals quantum
computation, and relation to earlier work” section. In “Main result”
section, we state our main result: namely, while our principles
uniquely determine quantum computation in the case that the
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Fig. 1 The circuit model that we consider in this paper. We have an
arbitrary finite number n of wires (here n =4), and each wire carries
a “gbit” which is a state in a d-dimensional Bloch ball state space.
Initially, a product state is prepared (encoding, for example, the
classical input to the algorithm), then a finite number of gates G; is
applied, each acting on an arbitrary number of gbits, and finally
local measurements are performed. We assume that the G; are
elements of an (arbitrary unspecified) closed connected matrix
group, and that the global state of n wires is uniquely determined by
the statistics and correlations of single-wire measurements (“tomo-
graphic locality”). If d=3, i.e, if the gbits are qubits, it has been
shown in ref. *® that these assumptions uniquely characterize
unitary quantum computation as the only computationally non-
trivial theory. Here we analyze the case d#3, and prove that—
despite conjectures to the opposite’*—the corresponding models
do not allow for any non-trivial computation at all. We do not
assume that wires can be swapped, or that all transformations can
be composed out of two-gbit transformations. See the main text for
details
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single gbits have d =3 degree of freedom, any other value of d
does not even allow for classical computation.

Framework: Single gbits

In both classical and quantum computation, we can restrict our
attention to the circuit model (as in Fig. 1) where each of the wires
(the single systems that enter and exit logical gates) corresponds
to a two-level system. Quantum two-level systems (qubits) are
different from classical ones (bits): they allow for a more complex
behavior which encompasses phenomena like coherent super-
position, interference, or uncertainty relations. Yet, both classical
and quantum bits can be formalized in a unified way that we now
describe (for both single and multiple bits, i.e., circuits, we follow
the construction and notation from ref. 29).

To any d € N, we associate a “generalized bit” (gbit) that has
the d-dimensional Bloch ball, B¢ = {d@ € RY||d| < 1}, as its state
space. Every vector d in the Bloch ball B9 corresponds to a possible
state of the generalized bit. Two-outcome measurements are

described by vectors b € R? with ‘5’ = 1, such that the probability

of the first outcome if performed on state @ is (1+d - b)/2, and
that of the second outcome is (1 — @ - b) /2. In the following, it will
be convenient to use the notation v(d) = (1,d)" € R, such that

—

these two probabilities become Jv(d) - v(£b). Reversible trans-
formations of states are given by d—Rd, where ReSO(d) is a
rotation matrix. These transformations map states to states and
can be inverted (by applying R™"), hence we can interpret them as
closed-system time evolutions or, equivalently, reversible gates on
single generalized bits.

For d=3, this formalism recovers the qubit of standard
quantum theory:® as is well-known, every 2 x 2 density matrix p
can be written in the form

p=(1+d, 8)/2,

where G = (ox,oy,oz) denotes the Pauli matrices. It is automatic
in this representation that trp = 1, and positivity p = 0 is equivalent
to |dy| < 1. Hence the set of states of a quantum bit can be
represented by the Bloch ball B3. This representation has the
important property that statistical mixtures correspond to convex
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combinations: if a state p is prepared with probability p and
another state p’ is prepared with probability 1 — p, then the total
state pp+ (1 —p)p’ corresponds to the Bloch vector
Gpp+(1-p)or = PAp + (1 — p)dy. This statistical interpretation of
convex mixtures is also taken for balls of other dimensions d =3,
hence these Bloch balls can be regarded as state spaces of
generalized probabilistic theories."'

In the d =3 case, projective measurements are represented by
unit vectors b, |b| = 1, with outcome probabilities (1+d - b)/2 as
described above. Unitary transformations U on states, acting as
p—UpU', are described in the Bloch ball picture by orthogonal
maps Ry, RjRy =1, such that dyyy = Ryd,. More general
measurements (positive operator-valued measures) or transforma-
tions (completely positive maps) can also be described in the
Bloch ball representation, but they are not needed in what follows
and therefore omitted.

The simplest case of d =1 corresponds to the classical bit: there
are two possible configurations, d = +1 and d = —1, and further
states that represent classical uncertainty about the configuration.
Namely, if we have +1 with probability p (and thus —1 with
probability 1 — p), this corresponds to the state pd + (1 — p)d in
the interior the one-dimensional “Bloch ball”.

There is one peculiarity in the d =1 case: instead of SO(1) ={1},
we should allow the group O(1)={—1, 1} as Bloch ball
transformations such that also the bit flip is allowed.

What is the significance of the d-dimensional Bloch balls if d is
neither one nor three? These gbits have appeared in various
places in quantum information theory and the foundations of
quantum mechanics. Historically, they have first shown up as
precisely those two-level state spaces that can be described as
(formally real, irreducible) Jordan algebras,® a natural algebraic
generalization of standard quantum theory. In fact, quantum
theory with real amplitudes, i.e., over the field R instead of C, has
a (d=2)-dimensional Bloch ball as its “quantum bit”, and the
bits of>” quaternionic®® and octonionic quantum theory corre-
spond to BY for d = 5 and d = 9, respectively. Furthermore, the fact
that a two-level system should have a Euclidean ball state space
can be derived from a variety of different sets of natural
assumptions. In many reconstructions of quantum theory from
physical or information-theoretic principles,®*™° this fact is
derived as a first step. For example, postulating that the group
of reversible transformations acts transitively on the pure states
implies that the pure states must all lie on the unit hypersphere of
an invariant inner product. If some points on the sphere were not
valid states, then there would exist additional measurements that
would violate further natural postulates like Hardy's*? “Subspaces”
axiom. This argumentation or others along similar lines**~*° lead
to Euclidean balls as the most natural state spaces of a generalized
bit.

A more geometrical motivation can be found by considering
spin-1 particles (compare, e.g., to ref. **): under rotations SO(3),
they transform via SU(2). The density matrix transforms under the
adjoint representation, which means that the Bloch vectors
transform via the same rotation as in physical space. Therefore,
the Bloch vector b can be seen as defining an oriented axis in
physical space. The model considered in this paper is a direct
generalization of the Bloch ball and this interpretation to arbitrary
spatial dimensions. Indeed, the possibility that space might have
more than three dimensions has appeared in a large variety of
physical theories*'™° It has also been argued that these
generalized bits can be interpreted as “information quasiparticles”
in some sense.”’ In summary, these gbits are among the simplest
and most natural generalizations of the classical bit and the qubit
of quantum mechanics.
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Framework: Gbit circuits

To describe circuit computation, we need to define the state
space, measurements, and transformations of several gbits. In
standard quantum theory, where the gbits are qubits, there is a
unique definition of these notions: the states of n qubits are
exactly the (2") x (2") density matrices, the reversible transforma-
tions are the unitaries, and the measurements are described by
collections of projection operators. Similar definitions apply to n
classical bits. But if the gbits are Bloch balls of dimension
d ¢ {1,3}, then it is apriori unclear what the composite state
space should be.

Since we would like to be as general as possible, we will not
make any attempt to fix the composite state space from the
outset. Instead, we will work with a small set of principles that the
composite n-gbit system is supposed to satisfy. While these
principles will constrain the n-gbit state space, it is by no means
obvious that they determine it uniquely. However, we will show
below that they are indeed constraining enough to allow us to
derive the full set of states and transformations.

An important principle is the no-signaling principle:"’ the
outcome statistics of measurements on any group of gbits does
not depend on any other operations (e.g., measurements) that are
performed on the remaining gbits. This is a physically well-
motivated constraint that lies at the heart of what we mean by
“different wires” (i.e., subsystems) of the circuit in the first place.

This principle is satisfied by classical as well as quantum
computation, and so is our second postulate of tomographic
locality:>**® every state on n gbits is uniquely characterized by the
statistics and correlations of the local gbit measurements. In other
words, a global n-gbit state is nothing but a catalog of
probabilities for the outcomes of all the single-gbit measurements
and their correlations.

It is not only classical and quantum theory that satisfies the
principle of tomographic locality, but also more general probabil-
istic theories like boxworld.'? If this principle was violated, then a
collection of gbits would in some counterintuitive sense be “more”
than a composition of its building blocks. Even though this
formulation makes tomographic locality sound very natural, there
are simple examples of theories that violate it. One such example
is given by quantum theory over the real numbers R.*>° This is
because observables of two single real qubits do not linearly
generate all observables of two real qubits. In particular, if o, is the
Pauli matrix with purely imaginary entries, then o, is not a real
qubit observable, but 0, ® o, is a real two-qubit observable.
Intuitively, it represents a novel “holistic” degree of freedom that
cannot be constructed out of local degrees of freedom and their
correlations.

Not only is the postulate of tomographic locality very intuitive,
but it is also very powerful: it allows us to represent states of n
gbits as tensors.!! That is, even if we do not know what the set of
n-gbit states is, we know that every such state can be written as an
element of the linear space (R%")™" (in the quantum case, where
d =3, this amounts to the 4"-dimensional real linear space of
Hermitian (2") x (2") matrices; for real bits, it is the 2"-dimensional
space that contains the probability vectors over 2" configurations).
In particular, an n-gbit product state with local Bloch vectors
di, ... dyn is represented by

v(ah 7an) = (1761)T® ® (17an)T7

and all other states w are vectors on the same space (but not of
this product form). Tomographic locality then amounts to the fact
that all these states are uniquely determined by the numbers

—n g g T
27"v( by, ... ,bp) w,

which are the outcome probabilities of local gbit measurements
corresponding to the Bloch vectors by, ... , b, on the state w. This
mathematical property has many intuitively appealing
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consequences that are not otherwise guaranteed, e.g., the
property that products of pure states are pure. It is also the
reason why the mathematical literature has focused almost
entirely on this notion of composite state space (cf, e.g., ref. 5Ny,
it leads to notions of “tensor products” of ordered linear spaces
that allow one to prove general statements that are otherwise
unavailable. In the context of this paper, it would seem extremely
difficult to make any meaningful statements whatsoever if not
even the linear space on which the global states live could be
fixed from the outset.

We need one further ingredient to arrive at a model of
computation, namely a set of reversible transformations. In
analogy to standard quantum computation (where these are the
unitaries), we postulate that the transformations form a closed
connected matrix group, and thus Lie group, G: they form a group
since they can be composed; they must be linear maps since if we
prepare a state w with probability p and w’ with probability (1 — p),
they must act on the components of the convex combination pw
+ (1 — p)w’ individually, to be consistent with the probabilistic
interpretation.'’ Moreover, it is physically meaningful to model
the group as closed since whenever we can approximate a
transformation to arbitrary accuracy by gates, it makes sense to
declare this transformation as in principle implementable.

This postulate is almost, but not quite, satisfied by classical
computation, i.e,, the d = 1 case. As Bennett has shown,>? classical
computation can be made fully reversible, at only marginal cost of
space or time resources. There are finite universal gate sets
(including, e.g., Toffoli gates) that generate the full group of
permutations of the 2" configurations of the n bits. These
permutations therefore constitute the reversible transformations
of the classical bits, and they form a closed matrix group of linear
maps. This group, however, is discrete and not connected.

This discreteness is already reflected in the fact that the one-
dimensional “Bloch ball” is discrete, i.e., has only a finite number
(two) of pure states. Since the set of classical configurations (pure
states) of n bits is discrete, the group of reversible transformations
must also be discrete. In the case d =2 to which we thus restrict
our attention in the following, however, even single bits (Bloch
balls) contain a continuous manifold of pure states. In order to
allow every pure state to evolve into every other (which we would
expect to be crucial for the exploitation of the full computational
potential), it is therefore necessary that the reversible transforma-
tions form a continuous group G—in more detail, that G is a matrix
Lie group such that its connected component at the identity is
non-trivial. It then makes sense to consider continuous time
evolution that implements elements of this connected component
(as it is the case in quantum theory), and to disregard the
mathematical possibility of having additional disconnected
components. This motivates the assumption that G is connected.

All gates in a circuit will be elements of G. This group must in
particular contain the local qubit rotations: for ReSO(d), write

R(1,d)":= (1,Rd)", then the subgroup of local transformations is
Gioc == {R1 ® Ry ® ... ®Rq|Ri € 50(d)}.

Note that we have used tomographic locality in deriving this
prescription: since a local transformation acts like a product of
transformations on the product states, it must act like this on all
other states too since they live on the vector space that is spanned
by the product states. Tomographic locality hence enforces that
we can represent any linear map X : ([RE(‘””)Q"H (R“””)m as a
tensor with n upper and n lower indices; that is,

. (3 2\ x(z 3
Xog g = (€, ©... ®8,) X(E ® ... ®&,),
where 0<a; B;<d, and &, denotes the y-th unit vector, e.g,

€ = (1,0, ... ,O)T. This is in contrast to Bloch vectors b € RY,

where we use the notation RY 5 b = &, = (1,0, ... ,O)T.
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We demand that G C G, but do not make any further
assumptions on G. In particular, we do not assume that the n gbits
have physically identical roles: our assumptions allow in principle
composite state spaces of n gbits that are not symmetric with
respect to permutations of the gbits. Hence we are also not
assuming that gbits can be reversibly swapped, or that other
natural choices of transformations such as extensions of classical
reversible gates (like CNOT) can necessarily be implemented.
Therefore, our framework does not rely on the same set of
assumptions as the circuit framework of symmetric monoidal
categories®® that is often used in the quantum foundations
context.

For any Bloch ball dimension d, there is a trivial computational
model: namely the choice that G = Gioc. This describes a theory
where the only possible reversible transformations are indepen-
dent local transformations of the single gbits. Such a model does
not even allow for classical gates like the CNOT; it only admits
gates and computations that evolve the gbits independently from
each other without ever correlating them, i.e., products of single-
gbit gates. A state space that is compatible with this choice of
global transformations is simply

conv{(1,a1)T®... ®(1,an)T|a,eBd},

i.e., all convex combinations of product states. This is a state space
that does not contain entanglement.

d =3 equals quantum computation, and relation to earlier work

For the case of the standard qubit, i.e., of d =3, it has been proven
in ref. 2° that there is only a single possible non-trivial (GiocS G)
theory that satisfies the assumptions from above: namely,
standard quantum theory over n qubits, with the (2")x(2")
density matrices as the states, and the projective unitary group
G=PU(2") of transformations. That is, the postulates on
composition of gbits from above, together with the structure of
the single qubit, are sufficient to determine qubit quantum
computation uniquely.

While this result is interesting in its own right, it is also the main
motivation for the present work: if quantum computation is
characterized by such a simple list of principles, then maybe one
obtains other interesting models of computation by slightly
tweaking one of the postulates. Since large parts of the
mathematical structure are determined by the postulates on
composition (no-signaling and tomographic locality), the most
promising road towards modifying the setup and also keeping
important mathematical tools seems to be to modify the structure
of the single qubit—and technically as well as conceptually (as
explained in “Framework: Single gbits” subsection), the most
natural way to do this is by changing the dimension of the Bloch
ball d.

In the special case of n=2 gbits, the consequences of the
above postulates have been explored in refs. *>°. There it has
been proven that the only consistent choice of transformations for
Bloch ball dimension d# 3 is given by the trivial choice G = Gjq..
However, computation is typically taking place on a large number
n > 2 of gbits, and the techniques of refs. ***> cannot readily be
generalized to n > 2.

In fact, it has been suggested in ref. <" that it is essential for
Bloch ball dimensions d=4 to allow for genuine m-partite
interaction of the gbits, where m>d — 1 = 3. Without a conclusive
proof or explicit construction of the state space, the authors
conjectured that interesting multipartite reversible dynamics is
possible for such systems. In contrast to quantum theory, this m-
partite dynamics would not be decomposable into two-gbit
interactions. While tomographic locality has not been assumed in
ref. 2%, it is an important first step to check their conjecture under
this additional assumption. In fact, it has been argued in ref. °° that
in the context of spacetime physics (the Bloch balls are interpreted

24
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in ref. >* as carrying some sort of d-dimensional spin degrees of
freedom), tomographic locality is to be expected due to
arguments from group representation theory.

This gives us another, independent motivation to ask the main
question of this paper: if d# 3 and n is any finite number of gbits,
then what are the possible theories that satisfy the assumptions of
“Framework: Gbit circuits” subsection?

Main result

The main result of this work is an answer to the question posed at
the end of the previous section:

Theorem 1. Consider a theory of n gbits, where single gbits are
described by a (d = 2)-dimensional Bloch ball state space, subject to
the single-gbit transformation group SO(d). As described above, let
us assume no-signaling, tomographic locality, and that the global
transformations form a closed connected matrix group G. If d# 3,
then necessarily G = Go, i.e., the only possible gates are (indepen-
dent combinations of) single-gbit gates. No transformation can
correlate gbits that are initially uncorrelated; hence not even classical
computation is possible.

Theorem 1 will be proved in “Methods” section.

DISCUSSION

Given a few simple properties that turn out to characterize qubit
quantum computation, we have considered a natural modifica-
tion: allowing the single bits to have more or less than the qubit’s
d =3 degrees of freedom. We have analyzed the set of possible
reversible transformations in the resulting theories, under the
conjecture®* (and in hopes) of discovering novel computational
models that differ in interesting ways from quantum computation.
Unfortunately, it turns out that the resulting models do not allow
for any non-trivial reversible gates whatsoever. This reinforces
earlier intuition® that quantum theory, or in this context quantum
computation, is an “island in theoryspace”.

While we have made an effort to be as careful and parsimonious
in our assumptions as possible, it is still interesting to ask whether
there are any remaining “loopholes” that could in principle leave
some wiggle room for non-trivial beyond-quantum computation:
can any of the assumptions of “Framework: Gbit Ccircuits”
subsection be dropped or weakened, while insisting that single
bits are described by Bloch balls? We discuss several options in the
Supplementary Material; in short, the most promising (but
difficult) approaches would be to drop tomographic locality,
and/or to drop reversibility or continuity of transformations. Both
options present formidable mathematical challenges and are
therefore deferred to future work.

The “rigidity” of quantum theory, i.e., the difficulty of modifying
it in consistent ways, has been recognized in different contexts for
a long time, see, e.g. Weinberg's proposal of a nonlinear
modification of quantum mechanics,>’ and Gisin's subsequent
discovery®® that this modification allows for superluminal signal-
ing. The research presented in this paper and in other work (like
refs. >*°) makes this intuition more rigorous by specifying which
combinations of principles already enforce the familiar behavior of
quantum theory. These insights also illuminate our understanding
of quantum computation, since they tell us which physical
principles enforce its properties, and/or which other theoretical
models of computation are plausibly conceivable.

Finally, it is interesting to speculate that the result of this paper
is indirectly related to spacetime physics. After all, it is the fact that
a qubit is represented as a 3-ball B3, with SO(3) as its
transformation group, which allows for spin-1/2 particles that
couple to rotations in three-dimensional space. Given the
popularity of approaches in which spacetime emerges in some

Published in partnership with The University of New South Wales



way from an underlying quantum theory,®'®* this observation can

perhaps be regarded as more than a coincidence. In fact, it has
been argued more rigorously that the structures of quantum
theory and spacetime mutually constrain each other.2*>%6%75 This
suggests a slogan that also fits some other ideas from quantum
information:%” the limits of computation are the limits of our
world.

METHODS

We will now prove this result for the case d = 4. The proof in the d = 2 case
uses similar techniques, but differs in several details for group-theoretic
reasons. It will hence be deferred to the Supplementary Material.

Generator normal form for all dimensions d =2

As a first step, we will consider the generators of global transformations
and show that there exists at least one that is of a certain normal form. This
part of the proof is valid for all dimensions d > 2. A large part of this first
step follows the construction in ref. %5, and extends it to arbitrary
dimensions.

Let G € G be a transformation of the composite system. Suppose we
prepare n gbits initially in states with Bloch vectors dj, ... ,dp, evolve the
resulting product state via G, and perform a final local n-gbit measurement
with Bloch vectors by, ... , b,. The probability that the all the n outcomes
on the n gbits are “yes” is

- - S\ T o N
2”’v(b1,b2, 7bn) GV(G],CIZ7 ,a,,) € [0,1]4

Let us consider a group element G = e with X € g (the corresponding Lie
algebra) and € € R and expand:

R . 2
V<b1, ,bn>T(1 +€X+%X2 +(’)(e3)>v(51. 73,,) € [0,2’7].

rom now on we restrict ourselves to unit length Bloch vectors, i.e., |di| =
bj =1 for all j, . We obtain

— —_ Iné g T —_ — —
Cldy] == V<_a17b27-~7bn) Xv(dy,dz, ... ,dn) =0

since the zeroth order is zero which is a local minimum as a function of €
(see Fig. 2 for further explanation). Thus the second order contribution has
to be non-negative:

- SN T
v(=a162, ... .B1) Xu(@1,ds, ... ,dn) 20,

or more generally with the roles of qubits 1 and k exchanged,

- - SN\ T
V(b1, 7bk717—ak7bk+1, b,,) sz(61, ,3,,) > 0. (1)

X —a

eX[LLE
6 —
(R0 ]
——
/' b4
Fig.2 We are using configurations like this one to derive constraints
on the generators X € g. In the special case € = 0, the transformation
exp(eX) reduces to the identity. Hence, if we prepare the first wire in
the (pure) state with Bloch vector d;, and perform a final
measurement of that wire with Bloch vector —dj, the corresponding
outcome will have probability zero, regardless of which local
measurements we choose for the other wires. But probability zero
is a local minimum, which implies that the derivative of this
probability with respect to € must be zero (yielding C[d;] = 0), and

the second derivative must be non-negative (yielding constraint (1)
in the case k=1)

[11
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Other first and second order constraints are

V(@ s, ... ,dn) Xv(dr,da, ... ,dn) =0, b

V(ahaz, ,an)szv(ahﬁz, 76,7) <0 (3)

for analogous reasons as above (since 5,- = dj for all j yields probability one
for € = 0, which is the global and thus a local maximum). For fixed Bloch
vectors dy, ... ,dn, bz, ... , by, define W§ as

b Q) Qe () o ()

The equation C[g;] = 0 implies W + W) — WP — W! =0, and C[-&] =0
implies W3 — W) + W? — W/ = 0. Thus, W/ = W3 and W = W? forall i= 1.

. 1N
Since the vectors (6) linearly span all of R9*", we get

iay ... ap _ 00y ... ap
Xig, 5, =Xom, 6y )

iay ... an _ y0ay.. a
Xom, 8 =Xia s, (©)

foralli=1and all a, ..., ap, B ..., B, = 0. Similarly, C[\/% &+ E,)] =0 for
i#j, i, j=1 yields

1 1 1.0 1 1 1. 1
— WP — W — W — — W0 — W — W =0.
V2 V2 o2 2% a2 2
Using the results on W/ and W? further above, this reduces to
—%W{—%W}:O,and thus

iay ... ap __ ja ... ap
Xie, e = Xig, g, @)

foralli,j=1anday, ..., a, B -.., B = 0. While we have derived (5), (6), and
(7) for the first gbit, analogous equations hold for all other gbits with labels
2,...,n

Let us denote by A the antisymmetric (d + 1) x (d + 1)-matrices of the
form

1 ;
W8+75W3+ Wl —

A= AA:

and by B the symmetric (d + 1) X (d + 1)-matrices of the form

o[ 6"\ | .
= beR?

—

bl 0

B:=<{ B;

Furthermore, let Z := R - 1, i.e,, all multiples of the (d + 1) X (d + 1) identity
matrix. The sets A, B and Z are real linear matrix subspaces. Note that
these three spaces are pairwise orthogonal with respect to the
Hilbert-Schmidt inner product (X, Y):= tr(X"Y). The matrix W defined in
(4) must then be an element of A® B @ Z due to the identities for its
components that we have derived above. More generally, since the same
identities hold for every index ie{1, ..., n} for the tensor X, we obtain
Xe(AaB@I)®. Since X € g was arbitrary, this tells us that

gC (A®B®I)*".
The Lie algebra of the local transformations is
Goc =ARTR ... ®T+1RARTI® ... T+ ... +1R10 ... TR A,

writing “+" instead of “@"” for readability. We can write the space (A @
B®TI)®" in a somewhat different form. To this end, consider strings of
symbols x€{A, B, I}, for example, x=ABAI (if n=4), and denote the
corresponding tensor product matrix spaces by S,; for this example,
S=A®B®A®I. Then S, L S, for x=y (with respect to the
Hilbert-Schmidt inner product), and

(APBeI)*" = & S,

xe{AB,}"

Now let X € g\gj,. be an arbitrary generator which is not in the local Lie
algebra (here we explicitly make the assumption that such an X exists).
Since X#0, there must exist x such that O,(X)=0 for the orthogonal

npj Quantum Information (2019) 7
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projection @y into S,, and since X ¢ g, at least one of those x must satisfy
X @{AIL.LIAL. I, ..., I... IA}.

Reordering the gbits, we may assume that x = A™B"/", where n, + ng+
n;=n and one of the following three cases applies:

(i) na=0,
(i) na=1and ng=1,
(i) na>2,

Since S, has an orthonormal basis of matrices of the form
Az ® ... ®A;ﬂA ®B1® ... ®B,, ®1%", where all Az € A and B € B,
there must exist some matrix M, of that form (i.e, My € Sy) such that
<X, MX>¢0. By moving constant scalar factors into the A-terms, we may
assume that there are unit vectors 5; such that B; = BE, fori=1, ..., ng. But
since f?BBf?T = Bg; for all Re SO(d), there are orthogonal matrices i?,- such
that Rib; = & = (1,0, ... ,O)T for all i, and the local transformation T :=
1M QR @ ... @ Ry, @ 197 satisfies

M =TMT ' =TMT =A; @ ... ®A; ®B"™ ®1°",
NA

where B:=B;,. Set X':=TXT', then since T € Gioc C G, and since the
adjoint action of Gy, preserves g, we have X €g\g,, and
(X', M) = tr(TXT ' TM,T~") = (X, My)=0. Similar argumentation allows
us to bring the Az into a standard form. Since the d x d-matrices A; are

antisymmetric, one can infer from the results in refs. 17:27.28 that there are
orthogonal transformations R;e SO(d) such that

o A
Ao
o A
RART = - o (deven),
0 A,
*/\J}z 0
0
o A
Y o
o A
_)\<2"> 0 (d odd).
o A
;
VI

To save space, we will use the following notation in the remainder of the

aper, where 0 = 0 1),
paper, ={_1 of

/\gi)o@Agi)o@ (deven),

(d odd).

_ . @AS}ZG

RAR' = . . .

o 0 aNoolon ... oo
2

Now consider the corresponding (d+ 1) X (d + 1)-matrices ARART, for
which we will introduce the following notation. By A;, denote the matrix for
which only the jth block is non-zero, with A; = 1. That is, for even d, we have
the (d + 1) x (d + 1)-matrices

Al =011 D0D 022 @ ... B0ys2,
Ay =01x1 D 02x2 DD 022 B ... DO02x2,
Adj2 = 0151 B 022D ... D0xx2® O,

npj Quantum Information (2019) 7

and for odd d, we have an extra initial zero, namely
Al =002D0D02:2 D ... D02,
Ay =002D 02D 0DB 0202 D ... D 0sx2,

Ad-1)2 = 0222 @ 022 ® ... B 022 0.

The local transformation T := R, ® ...

(pwe)e

where the )\} are real numbers. Set X” := TX'T~, then since T € Gioc C G,

we have X" € g\g,., and (X", My) = tr(TX'T'TM,T~") = (X', M, )#0.

In summary, we have shown that if there exist any nonlocal generators
at all, then there is one (denoted X”) that has non-zero overlap with a
matrix M,€S, of the simple form (8).

Next we will show that this implies that g = g, for all Bloch ball
dimensions d = 4.

® R, ®1%M © 157 satisfies

) B@cng ® 1>¢n/ (8)

Proof of Theorem 1 for d>4
We now use Schur's Lemma to construct orthogonal projectors (with

respect to the Hilbert-Schmidt inner product) onto the subspaces of
A @ B®Z. First, define

oM ;:/ RMR'dR (Me Ao BeT),
50(d)

then O,[M] =0 for all M € A& B and ®[M] =M for all M € Z. Since these
subspaces are orthogonal with respect to the Hilbert-Schmidt inner
product, @, is the orthogonal projector onto the subspace Z of AG B® T
(we are not interested in its action on matrices that are not in the space
A®BaI).
Forj=1, ...,

G := (R € SO(d)|RE = &),

d, consider the stabilizer subgroup

where & denotes the jth standard unit vector in RY. Every G; is isomorphic
to SO(d — 1) whose fundamental representation is irreducible (note that
this is not true for d = 3; this causes the crucial difference to ref. 2°). Set

og][/v/];:/ RMR R (Me AsBaT),
G

. 1 1
then q)é‘[M}:fso(dq) 2 S M< : 51
Schur's Lemma implies that @z is the orthogonal projector onto
span(B) @ Z. Hence ®g:=®; — ®; is the orthogonal projector onto
span(B).

Finally, we will

Ablocks := span{A, ...,

) dS, and, similarly as above,

construct the orthogonal projector onto
A;}, where z=d/2 if d is even and z=(d — 1)/2 if

d is odd. To this end, define the SO(2)-matrix R(6) := CO.S 9 singd
—sin® cos O
and set
1y
R(61)

R(917927~~~ ,91) = . 5

R(6:)
where y=1if d is even and y = 2 if d is odd. Furthermore, define ®’[M] as

21 d0, [ d6, 27 d6, . - 1
— — ... MR -
[ G [ SERe . MRG0
Using the identities
o R(6) %2 = o
21 myy M2 My +my My —my
RO ( )R _gy#— 1( )
JoR®) my My 0% 2\ —mi+my my +my

m m
_ WK 1 12)}
mz My

we can evaluate the action of @' as follows. First, any given (d + 1) X (d +
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1)-matrix M can be written in the block matrix form
Moo Mo,

M=
My M,

where Mo is a y x y-matrix, all M;; for i, j= 1 are 2 x 2-matrices, and the
other matrices are y X 2 and 2 X y-matrices. Then, the action of @’ becomes

Moo 0 0
G)/[M] _ 0 W[M'H]
: . 0
0 0 W[Mz,z]

Hence @' is an orthogonal projection that acts as the identity on Z (i.e., ®’
(1)=1), and it projects A into its subspace Apjocks- Furthermore, if d is
even, then @’ annihilates B, and if d is odd, then @' projects B into its
subspace span(B). Thus, for d even, the orthogonal projector onto Apjocks IS
Dy:=0'— O, and for d odd, it is Oy:= D' — O, — Op. Note that all these
statements are only claimed to hold for the case that the maps are applied
to operators in A B T.

The projectors ®,, ®z and ©4 map the Lie algebra g into itself, if we apply
different products of those projectors to the n sites. For example, consider
the special case n=1. Then Z € g implies ®[Z] € g since g is closed with
respect to conjugations by elements of G and integrals. Similarly,
Oz [Z] €g, and since g is a linear space, we also have
Op[Z] = O, [Z] — By[Z] € g, and similarly for the projector O,. If n > 2, then
we can successively apply the projectors to one of the sites, using the fact
that tensoring local rotations with identities gives local transformations in
Gioc. Thus, if we define

0:= 0™ @ O™ @ 0",

then Y:= ®[X"] is another valid generator, Y € g. Furthermore, O[M,] = M,,
hence

O¢<XH’MX> = <X//7(D[MX]> = (G)[ //]1MX> =

and thus Y =0 (we have used that @ is an orthogonal projection and thus
in particular self-adjoint with respect to the Hilbert-Schmidt inner
product). In particular, Y € Im(®) = A, ® span(B)®™ ® T°™. Conse-
quently, there are real numbers A; Jn, SUch that

(Y, My) )

z
Z A/W---- JnAAll . ®AjnA X B®ns ® 180
Jisee dng =1

Now we apply the identities A/A, = —&P; and B? = Py, where

Pg = 1252 ® O(g—1)x (d—1)»
P1 = 0yxy © 12x2 ® O0z(z-1)x2(z-1)»
Py = 0yxy ® 022 @ 122 D 022-2)x 2(2-2)
and so on, up to P,. This gives us

Y2 = (=)™ Z )\jwa.MIJ,-‘ ® ...

Jro g

0N, @n,
®an,1®PBB®1 g (10)

Suppose that n, is even so that (—1)™ = 1. We will now show that
constraint (3) gets violated. To this end, fix some 9, ... ,ng such that

j o #0. For i=1, ..., ns choose some unit vector @ € R? such that

-
)
1
d;
(3) (
that <J > 1 (1 ) = 2. Altogether, we obtain
a; di
v(@, ... ,d,) " Y?v(d

which violates constraint (3). Thus ny must be odd, and (—
Recall constraint (1) in the special case k= 2:

V(E'h*az,gg,...,

< ) for all other j, we automatically get

Ql =

>>O For i=ns+1, ..., na+ng set d :=&, then

> = 2. Finally, for i=n,+ng+ 1, choose d; arbitrarily such

Qi_.

,dn)>0

H"=-1.

S\ T
b,,) Y2V(@1,ds, ... ,d) > 0 (1)
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for all unit vectors 6,-,5,— € RY. For all i € [na + ng + 1,n]\{2}, choose

7
5,—,5,- such that <g ) 1 (; >>O (simply avoid the choice d; = —b).
j i
Similarly, for all i€ [na + 1,na + ng]\{2}, choose &,b; such that
T

(g) PB< ! >>O We will now distinguish two cases for nj,.

1

First, consider the case n, = 1. Since our original generator X was chosen
nonlocal, it follows that ng > 1, as explained in “Generator normal form for
all dimensions d= 2" subsection. Thus, the second tensor factor in (10)

must be Pz We will now choose d,=2¢€, which implies that
T
1 1 . i N
< g ) PB(E > = 1. But then we may still choose bq,d; arbitrarily,
—uz 2
and by choosing these two unit vectors suitably from the subspace Im(P,-] ),

T

we may generate an arbitrary sign for (B] ) P, <E1 > Thus, we can
1 1

break constraint (11) by a suitable choice of these two unit vectors, which

yields a contradiction.

Second, suppose that ny >3 (we already know that n, must be odd).

.
Then we can choose @, such that < 15 ) P;, 61 = —1. We have even
—u2 2

more freedom than in the previous case: for all i € [1,n4]\{2}, we can
choose b;, ,d; from the subspace Im(P ) such that we get an arbitrary sign

for every (g) P; <;> This also leads to a violation of constraint (11),
! 1

and we obtain a contradiction as well.

This means that our initial assumption must have been wrong—namely,
that there exists a generator in g\g,.. We conclude that instead this set
must be empty, hence § = gjoc- But since G is compact and connected, it
follows from ref. °® [Theorem VII.2.2 (v)] that G cannot be larger than Gio.
This proves our main result, Theorem 1, for Bloch ball dimensions d = 4.
The proof for d =2 is given in the Supplementary Material.
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