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Parkinson’s disease (PD) has been associated with pathological neural activity within the basal
ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from
people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus
(STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory
features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not
correlate with PD symptoms. STN single-neuron and LFP low-beta (12–21 Hz) power and burst
dynamics showed modest correlations with bradykinesia and rigidity severity, while STN spiketrain
theta (4–8 Hz) power correlated modestly with tremor severity. GPi low- and high-beta (21–30 Hz)
power and burst dynamics correlated moderately with bradykinesia and axial symptom severity.
These findings suggest that elevated single-neuron and LFP oscillations may be linked to symptoms,
though modest correlations imply that the pathophysiology of PD may extend beyond resting-state
beta oscillations.

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by
motor symptoms such as bradykinesia, rigidity, and tremor, as well as axial
symptoms that affect gait andposture1. Thepathophysiology of PDhas been
the focal point of numerous studies, leading to significant insights from
neurophysiological recordings across various basal ganglia structures2.
These investigations have not only provided a deeper understanding of the
circuit dysfunctions contributing toPDsymptoms3, but have also elucidated
functional biomarkers that have been instrumental in optimizing targeted
therapies like closed-loop deep brain stimulation (DBS), which enables real-
time adjustments and a more individualized treatment approach4.

The classic “rate” model of PD has been instrumental in describing
how alterations in neuronal firing rates relate to the disease5–7. This model
attributes the impairment of movement to a series of interconnected neural
dysfunctions, particularly an underactivity of the D1-dopamine-receptor-
mediated direct pathway medium spiny neurons (dMSN) and overactivity
of the D2-mediated indirect pathway medium spiny neurons (iMSN)8–10,
Indeed, various studies in preclinical models have shown decreased dMSN

activity and increased iMSN activity11–15, and further downstream, studies
have found elevated firing rates in the subthalamic nucleus (STN)16–18, and
globus pallidus internus (GPi)19–22, pairedwith decreased rates in the globus
pallidus externus (GPe)19,21–25. However, some evidence from human and
non-human primate studies contradicts the classical PD model, showing
either significant increases in MSN firing26,27, or no change28, as well as no
firing rate change in the substantia nigra pars reticulata (SNr)29. In addition,
while dopaminergic agents (such as levodopa) have been shown to decrease
GPi firing rate, no significant change was observed in the firing of STN or
GPe neurons in response to these agents19,21,30.

A growing body of evidence contends that changes in static firing rates
alone do not fully explain the wide spectrum of symptoms in PD. Instead,
changes in neuronal firing patterns, such as bursting and over-
synchronization of neuronal activity within the basal ganglia play sig-
nificant roles in PD pathophysiology3,31,32. Numerous studies in both
humans and non-human primates indicate changes in bursting activity in
the GPi21,33–36, GPe24, and STN17. Dopamine replacement medication has
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been found to rectify abnormal neuronal bursting in the striatum30 and
pallidum19,21, of non-human primate models of PD, as well as in the human
GPi21. Additionally, synchronized spike firing within the beta frequency
range (15–30Hz) was first observed in the STN of PD patients undergoing
DBS surgery37 and across individual motor cortex neurons in parkinsonian
primates38. Research has also shown that tremor-dominant PD patients
exhibit prominent oscillations at the tremor frequency (4–8Hz) within the
STN39–42. Despite these findings, establishing the link between synchronized
spiking activity and PD has posed significant challenges due to the
ephemeral nature of spiking signals and the general scarcity of synchronous
firing under physiological conditions43.

Beyond single neuron studies, an examination of local field potentials
(LFPs) has significantly advanced our understanding of the neurophysio-
logical mechanisms underlying PD. LFPs represent the aggregate activities
of local neuronal populations, including action potentialfiring, and synaptic
currents44. Research indicates that elevated beta-band frequencies
(13–30Hz) correlate with the hypokinetic symptoms of PD45–54. However, it
is now recognized that the beta activity is divided into twodistinct frequency
bands, each with unique roles55–60. Oscillations in the low beta (12–21Hz)
range are considered to be pathological and prevalent in untreated PD
patients54,61,62. They are more responsive to dopaminergic medication45,63,64,
and correlate more closely with disease severity51. In contrast, high beta has
been hypothesized to be related to interregional coupling65 and has been
linked to the facilitation of motor improvement and force generation7,66–68,
While elevated beta power has long been associated with PD, recent
investigations emphasize the significance of the temporal dynamics of beta
oscillations. Notably, extended periods of heightened beta power (termed
‘beta bursts’), have been associatedwith bradykinesia and increased reaction
times69–72. Treatments like levodopa, electrical stimulation, and neurofeed-
back training can decrease burst duration and reaction times in people with
PD69,70,73. While numerous studies have reported correlations between STN
activity and symptom severity in PD48,50,53,74, investigations within the GPi
havebeen far less extensively studied.To thebest of our knowledge, only one
study has explicitly shown that GPi beta oscillations scale with symptom
severity75, and a related study has correlated HFO power with bradykinesia
during movement76. Other studies concerning GPi activity, but not directly
related to clinical correlations with motor symptom severity, have been
summarized in Supplementary Table 5. Additionally, despite comprehen-
sive LFP research, the intricate relationship between single-neuron oscilla-
tory dynamics and clinical scores has not been studied. This deficiency
marks an important avenue for future research, particularly in exploring
how spiketrain temporal patterns contribute to the beta bursts character-
istic of PD.

In this paper, we interrogate the relationships between PD clinical
features and the spectral and temporal characteristics of single-neuron and
LFPactivities in the STNandGPiof peoplewithPD.We furthermore aimed
to address the gap in the literature concerning limited studies directly
assessing relationships between clinical and neurophysiological features
from single-neuron and LFP features in the GPi. In particular, we leveraged
a large database of intracranial recordings acquired during awake DBS
surgery of the STN and/or GPi in PD, and assessed rate-based and oscil-
latory features of spiketrain activity, as well as introduce a new approach to
analyze the temporal dynamics of spiketrain oscillations to validate the LFP-
derived beta-burst hypothesis at the single-neuron resolution.Wemoreover
perform confirmatory analyses of a similar nature on LFP activity, recorded
simultaneously with our single-neuron data, to unify our understanding of
clinico-physiological correlates of PD across spatiotemporal neural
resolutions77.

Results
Single-neuron clinical correlates within the STN
We found no correlations between rate-based neuronal features within the
STN (firing rate, burst index, coefficient of variation) andUPDRSIII clinical
scores. We observed a slight positive correlation between spiketrain theta
power and tremor severity (rho = 0.1990, P value = 0.0260, BF10 = 1.2980,

BH P value = 0.5610), with anecdotal evidence in favor of the alternative
hypothesis. Similarly, we found a slight positive correlation between low
beta power and bradykinesia severity (rho = 0.2130, P value = 0.0170,
BF10 = 1.8450, BH P value = 0.5610). Other oscillatory power features did
not show any correlations. In terms of temporal burst dynamics of single-
neuron activity within the STN, we found slight positive correlations
between low beta burst duration and both bradykinesia (rho = 0.1760,
P value = 0.0500, BF10 = 0.7500, BH P value = 0.5610) and rigidity (rho =
0.1800, P value = 0.0440, BF10 = 0.8260, BH P value = 0.5610), though
trends were supported by anecdotal evidence for the null hypothesis. Other
oscillatory spiketrain burst dynamic features did not show any correlations.
A results summary is displayed in Fig. 1A, with full statistical table found in
Supplementary Table 3.

LFP clinical correlates within the STN
We observed a slight positive correlation between low beta LFP power and
the total score (rho = 0.2790, P value = 0.0050, BF10 = 6.5540, BH
P value = 0.0550), with moderate evidence in favor of the alternative
hypothesis. Additionally, there was a slight positive correlation between low
beta LFP power and bradykinesia severity (rho = 0.2500, P value = 0.0110,
BF10 = 2.9630, BH P value = 0.0550), with anecdotal evidence for the
alternative hypothesis. For burst dynamics, we found slight positive corre-
lations between low beta LFP mean burst duration and both the total score
(rho = 0.2520, P value = 0.0110, BF10 = 3.0990, BH P value = 0.0550) and
bradykinesia severity (rho = 0.2550, P value = 0.0100, BF10 = 3.3900, BH P
value = 0.0550), with moderate evidence for the alternative hypothesis.
Other oscillatory LFP burst dynamic features did not show any correlations.
A results summary is displayed in Fig. 1B, with the full statistical table found
in Supplementary Table 3.

Single-neuron clinical correlates within the GPi
We found no correlations between rate-based neuronal features within the
GPi (firing rate, burst index, coefficient of variation) and UPDRSIII clinical
scores. We observed a moderate positive correlation between high beta
spiketrain power and axial score (rho = 0.3890, P value = 0.0090,
BF10 = 5.0640, BH P value = 0.4950), withmoderate evidence in favor of the
alternative hypothesis. Moreover, we found slight positive correlations
between low beta spiketrain power and both the total score (rho = 0.3050, P
value = 0.0440, BF10 = 1.3350, BH P value = 0.5569) and bradykinesia
severity (rho = 0.3170,P value = .0360, BF10 = 1.5700, BHP value = 0.5569),
with anecdotal evidence in favor of the alternative hypothesis. Other
oscillatory power features did not show any correlations. In terms of tem-
poral burst dynamics of single-neuron activity within the GPi, we found a
slight positive correlation between low beta burst duration and the axial
score (rho = 0.2830, P value = 0.0630, BF10 = 1.0020, BH P value = 0.5569),
with anecdotal evidence for the alternative hypothesis. We also found a
slight positive correlation between lowbeta burst duration and bradykinesia
(rho = 0.2810, P value = 0.0640, BF10 = 0.9860, BH P value = 0.5569),
though this was supported by anecdotal evidence for the null hypothesis.
Other oscillatory spiketrain burst dynamic features did not show any cor-
relations. A results summary is displayed in Fig. 2A, with full statistical table
found in Supplementary Table 4. Please note that the GPi rate-based and
oscillatory power-based single-neuron correlates with the total UPDRSIII
score were also reported in ref. 78.

LFP clinical correlates within the GPi
We observed moderate positive correlations between high beta LFP power
and the axial score (rho = 0.4640, P value = 0.0090, BF10 = 6.0470, BH P
value = 0.1600) and low beta LFP power and bradykinesia severity (rho =
0.4240, P value = 0.0180, BF10 = 3.3110, BH P value = 0.1600), both with
moderate evidence in favor of the alternative hypothesis. We also found
moderate correlations between low beta LFP power and the axial score
(rho = 0.4040, P value = 0.0240, BF10 = 2.5340, BH P value = 0.1600) and
the total score (rho = 0.3860, P value = 0.0320, BF10 = 2.0250, BH P
value = 0.1600), with anecdotal evidence for the alternative hypothesis. For
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burst dynamics, we foundmoderate positive correlations between high beta
LFPmeanburst durationand the axial score (rho = 0.3490,Pvalue = 0.0550,
BF10 = 1.3060, BH P value = 0.1867) and low beta LFPmean burst duration
and the axial score (rho = 0.3460, P value = 0.0560, BF10 = 1.2750, BH P
value = 0.1867), bothwith anecdotal evidence for the alternative hypothesis.
Other oscillatory LFP burst dynamic features did not show any correlations.
A results summary is displayed in Fig. 2B, with the full statistical table found
in Supplementary Table 4.

Discussion
In an effort to better understand the neuronal underpinnings of PD,
this study explored the relationships betweenUPDRSIII OFF subscores
and electrophysiological characteristics of the STN and GPi in PD

across a substantial patient cohort. To this end, the significance of
uncovering these correlations is twofold. Firstly, they offer deeper
insights into the pathophysiology of PD, and may be able to sub-
stantiate and/or validate “rate” and “oscillation” model theories of the
disorder given the multi-resolution nature of our data (i.e., single-
neuron and LFP activities). Secondly, recognizing specific neuronal
signatures associated with clinical scores may substantiate existing or
motivate novel closed-loop DBS approaches. By placing our findings
within the broader academic landscape, we aim to provide a clearer
perspective on the relationship between clinical symptoms of PD and
their neurobiological counterparts. Noteworthy are the findings related
to GPi, which are far sparser in the literature as compared to themyriad
of previous LFP studies on STN.

Fig. 1 | STN clinico-physiological correlates. AHeatmap shows the Spearman rho
correlations of STN spiketrain features (firing rate, burst index, coefficient of var-
iation, oscillatory power and burst dynamics in the theta, alpha, low beta, and high
beta frequencies) with clinical scores (total, tremor, rigidity, bradykinesia, and axial
UPDRSIII OFF scores). Scatterplots show the top three spiketrain correlations with
clinical scores based on the Spearman rho values. B Heatmap representing

correlations of low and high beta STN-LFP power and burst dynamics with the
aforementioned clinical scores, with scatterplots showing the highest LFP power and
burst correlation with clinical scores based on Spearman rho values. Black squares
indicate significant correlations (uncorrected for multiple comparisons). Asterisks
denote Bayesian evidence in favor of the alternative hypothesis (* anecdotal, **
moderate).
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In our exploration,wedidnotfind any correlations between rate-based
metrics (specifically firing rate, burst index, and coefficient of variation) and
UPDRSIII OFF clinical subscores in both the STN (Fig. 1A) and GPi
(Fig. 2A). This finding challenges the rate and pattern-basedmodels for PD,
and is consistent with the broader debate on the classical PD model79.
Indeed, evidence from 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) treated monkeys contradict the classical model, showing incon-
sistent or unchanged rates post-MPTP despite clinical parkinsonism29,80–82.
Moreover, STNDBS at therapeutic frequencies has been shown to increase
GPi firing rates in parkinsonian monkeys, despite observations of clinical
improvement83. In terms of pattern-based features, though many studies
claim parkinsonism significantly alters single-cell firing patterns, evidence
suggests that these patterns do not always align with motor impairments in
rodent and non-human primate models36,82. Moreover, our recent work in

humans found that neuronal bursting and firing patters show significant
correlations with dystonia symptom severity in the GPi compared with PD,
hinting that such patterns might be more characteristic of hyperkinetic
disorders than of characteristic hypokinetic features of PD78. A plausible
explanation for the lack of significance of neuronal firing features is the
concept that neurons are capable and have been shown to multiplex84,85. As
such, it is possible that the burst patterns observed within the STN or GPi
might arise from a superposition of various frequencies at relative timings,
which presents as a complex pattern, some of which may not relate to PD.
The challenge lies in the overlapping nature of both pathological and
physiological signals in these patterns.Without discerning the origin or type
of input, attributing these patterns solely to PD becomes difficult. In par-
ticular, the burst index may not effectively differentiate between tremor-
related spiketrain bursting and beta-related bursting that is thought to

Fig. 2 | GPi clinico-physiological correlates. A Heatmap shows the Spearman rho
correlations for GPi spiketrain features (firing rate, burst index, coefficient of var-
iation, oscillatory power and burst dynamics across theta, alpha, low beta, and high
beta frequencies) with clinical scores (total, tremor, rigidity, bradykinesia, and axial
UPDRSIII OFF scores). Scatterplots show the top three spiketrain correlations with
clinical scores based on the Spearman rho values. BHeatmap shows correlations of

low and high beta GPi LFP power and burst dynamics with the aforementioned
clinical scores, with scatterplots showing the highest LFP power and burst correla-
tion with clinical scores based on Spearman rho values. Black squares indicate
significant correlations (uncorrected for multiple comparisons). Asterisks denote
Bayesian evidence in favor of the alternative hypothesis (* anecdotal, **moderate).
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underscore akinetic features of PD. This amalgamation could result in these
distinct phenomena being combined, producing a singular, non-specific
metric, potentially blurring the relationshipswith tremor or antikinetic rigid
features. As such, analyzing spiketrain oscillations on a frequency-specific
basis might bring symptom-specific relationships to light.

Our analysis revealed a slight positive correlation between spiketrain
theta oscillatory power and tremor severity in the STN (Fig. 1A). Prior
research has shown that PD patients, when off medication, exhibit oscilla-
tions at theta frequencies (4–7Hz) that are synchronizedwith rest tremor in
both the STN86–88, and the GPi89. Our analysis builds on these findings by
suggesting that theta oscillatory power in the STN also scales with tremor
severity; however, this correlation was not evident in the GPi. Additionally,
our results align with reports that do not associate tremor with OFF med-
ication beta activity90,91, emphasizing that beta oscillatory activity in the STN
may primarily reflect akinetic-rigid symptoms rather than tremor. To this
end, our findings show that elevated STN spiketrain and LFP low beta
power, as well as prolonged low beta burst slightly correlated with brady-
kinesia and rigidity (Fig. 1). Previous STN-LFP research has linked beta
band power to PD symptoms such as rigidity and bradykinesia53,75,92,93, and
abnormal beta bursts were found to correlate with the severity of motor
impairments69,94. Interestingly, one study also found that longer bursts
durations correlated with rigidity-bradykinesia score and shorter bursts
correlated with tremor score with the STN95. Our work reinforces previous
oscillatory PD models and highlights that pathological oscillatory power
and temporal dynamics can also be discerned at the single-neuron level77,96.

Our findings also address a knowledge gap in GPi research, which is
relatively limited97,98, despite its emerging relevance in discussions on closed-
loop GPi-DBS99. We found moderate correlations between low beta power
and bradykinesia, as well surprising correlations between high beta activity
and axial scores (Fig. 2). This could suggest unique neuralmechanisms in the
GPi that may be important for PD-specific manifestations like gait and bal-
ance dysfunction. Indeed, the high beta (21–35Hz) band, previously tied to
interregional coupling, possibly aids motor enhancement and force
generation66–68. However, the connection between axial symptoms and high
beta oscillations in the GPi remains largely unexplored, with one similar GPi
LFP study not showing any correlations with axial symptoms75. One study
observed that high beta activitywasmoreprominent in patientswith postural
instability and gait disorder (PIGD) compared to those with a tremor-
dominant presentation, specifically within the STN100. Our findings may
extend thisobservation to theGPi, indicating thathighbetaoscillationswithin
this region could also be associatedwith PIGD symptoms in PD. The absence
of notable oscillatory burst-relatedfindings in theGPimay be attributed to its
complex role within the basal ganglia network, where the manifestations of
burst dynamics do not parallel those observed in the STN, possibly due to
differences in their neurophysiological responses to PD pathology.

Whencomparingourfindingsonsingle-neurondynamics to those from
LFPstudies,weobserved thatburst durationsweremuch shorter in spiketrain
data. The difference is likely due to the higher spatiotemporal resolution of
single-neuron activity compared to LFPs. Our group has previously
demonstrated that single-neuronburstswithin the STNtypicallyprecedeLFP
oscillations, suggesting that synchronous neuronal bursting within the STN
gives rise to aggregate-level LFP oscillations in PD77. Therefore, while indi-
vidual neuronsmay transition in andoutof their pathological burstingphases
at fast time courses, these transitions are likely to be blurred when averaged
across aggregate populations, resulting in longer burst episodes seen in LFPs.
Another possible explanation is that LFPs represent not only the summed
electrical activity from a population of neurons but also synaptic potentials
and other subthreshold activities that do not necessarily result in spike
output43,101, which could also contribute to burst generation.

The correlations reported in this work were relatively modest, sug-
gesting that while elevated resting-state beta activity is linked to symptoms,
itmightnot fully explain the complexneuronalmechanismsunderlyingPD.
Indeed, beta oscillations in the basal ganglia are not unequivocally con-
sidered as pathological, as evidenced by non-human primate studies102, and
implicated roles in cognition103. In fact, several studies have shown that

~25% of patients did not exhibit pronounced beta activity even though they
experienced symptoms100,104,105.

While our analyses generally highlight convergence in findings between
STN and GPi related to low beta power, some notable differences were also
identified, potentially emphasizing different roles in basal ganglia circuitry
and PD pathophysiology. One such difference is that that single neuron
oscillatory power within the STN appeared to be more closely linked with
tremor compared to the GPi (Figs. 1A and 2A). Research has shown that
while both STN and GPi-DBS effectively suppress tremor, STN DBS offers
quicker initial action tremor improvement, though this advantage dimin-
ishes over time compared to GPi-DBS106. Moreover, research pertaining to
the modulation of axial symptoms such as postural instability and gait
impairment,may spark debatewhen comparing the efficacy ofGPi-DBS and
STN DBS. Some studies indicate STN DBS offers better relief from axial
symptoms thanGPi-DBS107, while othersfindno significant difference in gait
andaxialUPDRSscoreswhenmedications arenot inplaybetween the two108.
However, a meta-regression study suggests that GPi-DBS may in fact be
more effective in preserving axial symptoms over time109,110, Still, the decline
in axial abilities post-DBS canbe attributed tomultiple factors, including (but
not limited to) disease progression and medication adjustments110. Under-
standing the relationship between single-neuron dynamics, oscillatory pat-
terns, andPDsymptomsmayperhaps enhanceour graspon the effectiveness
of GPi vs. STN DBS in managing specific symptoms.

A limitation inherent to our intraoperative studies in humans is the
absence of healthy control data, which hampers our ability to establish
normative baselines. Additionally, the granular details regarding the depth of
recorded neurons were not documented in our current dataset, potentially
obscuringfinernuances inourfindings.Moreover, LFPanalyseswere limited
to beta frequency oscillations, given the frequent use of a 10Hz hardware
one-pole high pass filter in the intraoperative environment, whichwithin the
context of this work, we were not able to retroactively control for. However,
past studies show that LFP in the motor cortico-basal ganglia circuit do not
reflect tremor oscillations as distinctly as single neuron recordings111.
Moreover, while we have removed spiking templates from LFP signals,
contamination of spiking activity cannot be entirely ruled out. However,
some authors suggest that the LFP predominantly results from subthreshold
membrane dynamics rather than spiking activity43,101, and that lower fre-
quency (i.e. beta) contamination is considered minimal112, and thus can be
considered as distinct metrics. Additionally, it has been reported that burst
duration and power in LFP signals may provide equivalent information if
corresponding measures are used113, although we report these as separate
metrics as other authors have50,69,70. Given the potential overlap in various
metrics for assessing oscillatory dynamics, we have also considered a con-
solidated approach in generating an amalgamated oscillatory metric (see
Supplementary Fig. 2 and Supplementary Tables 6 and 7 for statistics). The
inability to use pharmacological agents during our intraoperative human
studies also poses a constraint. Such agents, in controlled settings, could offer
deeper insights into themechanistic aspects of identified neural interactions.
Due to the extensive number of tests conducted, none of our correlations
remain significant after adjusting for multiple comparisons, warranting
cautious interpretationof the results. Finally,while ouruseofmicroelectrodes
affords higher spatial resolution, it may capture a more limited LFP spatial
domain than traditional DBS macroelectrode recordings. A final potential
confounder of our dataset in particular is that the motor symptom assess-
ments were not conducted concurrently with the microelectrode recording,
but were conducted at a pre-surgical timepoint (~35 weeks), which may be
associated to potential variations in in-real-time symptom presentation.

Our research elucidates the clinical and physiological links between
oscillatory characteristics and PD symptoms, demonstrating these asso-
ciations at various spatiotemporal scales within the STN and theGPi. In the
STN, enhanced low-beta oscillations and prolonged burst durations were
associated with bradykinesia and rigidity, while the amplitude of spiketrain
theta oscillation correlatedwith tremor severity.Moreover, ourfindings also
show that the strength of low-beta oscillations in the GPi is associated with
bradykinesia, while high-beta oscillations correlate with axial symptoms.
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Our findings generally underscore the important role of neuronal oscilla-
tions in PDpathophysiology.However, themodest correlations also suggest
that the complexity of PD may extend beyond beta oscillations alone,
indicating that other neural dynamics may contribute to the clinical
manifestations of PD.

Methods
Patient demographics and clinical data
We conducted offline analyses of resting-state intraoperative electro-
physiological data collected from people with PD (43 female; 126 male)
undergoing awake microelectrode-guided placement of DBS electrodes in
STN (n = 125) orGPi (n = 44) after 12-hwithdrawal from antiparkinsonian
medications. The average age at the time of surgery was 60.9 ± 7.5 years,
with an average disease duration of 11.1 ± 4.5 years. Pre-operative clinical
scores of motor symptom severity in the OFF-medication states were
obtained using the Unified Parkinson’s Disease Rating Score Part III
(UPDRSIII), and decomposed into several subscores, including tremor
(sum of items 20–21, assessing kinetic and rest tremor), rigidity (item 22,
assessing neck and limb stiffness), bradykinesia (items 23–26, assessing
slowness of movement), and axial symptoms (items 27–31, assessing gait
and posture), in addition to total motor score (items 18–31). Individual
patient data is available in Supplementary Table 1. A statistics summary of
demographic and clinical data is provided in Supplementary Table 2. Our
study conformed to the guidelines provided by the Tri-Council Policy on
Ethical Conduct for Research Involving Humans. All procedures were
subject to approval by the University Health Network Research Ethics
Board, and each patient gave informed written consent.

Surgery and microelectrode recording procedure
The electrophysiological identification of the STN and the GPi was per-
formed utilizing previously published methods114. Briefly, the anterior
commissure (AC) and posterior commissure (PC) stereotactic coordinates
were identified throughpre-operativeT1andT2magnetic resonance images
(Signa, 3 T). The positions of the STN or the GPi were estimated based on
these coordinates, in conjunction with the Schaltenbrand and Wahren
stereotactic brain atlas (1977).We employed commercial planning software
(Stealth Workstation, Medtronic) to carry out direct visualization of the
target and the trajectory of approach on T1–T2 fused images. Subsequently,
a custom microelectrode recording (MER) setup comprised of two micro-
electrodes (600 μmapart, 0.1–0.4MΩ impedances)which shareda common
ground on a stainless-steel intracranial guide tube were independently
advanced in the brain beginning 10mm above the MRI-planned target.
Upon confirmation of the targeted brain structure, the recordings were
amplified using either the GS3000Guideline System (Axon Instruments) or
the Guideline 4000 LP+ (FHC) and digitized at a rate of ≥10 kHz using a
CED1401 data acquisition system (Cambridge Electronic Design). The data
was then stored for offline analysis, withno interimanalysis performedprior
to full data collection. Instead, each MER was visually inspected for resting
state neuronal segments, and only neurons that strictly adhered to pre-
defined quality metrics (see section below) were considered for analysis.

Offline analysis of single-neuron activity
The single-neuron database included 938MERsegments from the STNand
222 segments from the GPi, which were ≥5 s in duration. For the single-
neuron analysis, we built a custom Python-based graphical user interface to
process each MER segment. The software, along with its instructions and
documentation, is available for download at https://github.com/Toronto-
TNBS/spooky-spikes. Briefly, MER segments were bandpass filtered
(300–3000Hz) using a 4th-order Butterworth filter with zero-phase dis-
tortion. Then, the spike detection threshold was set using a multiple of an
estimate of the standard deviation of the noise115, and each detected spike
was extracted and sorted using K-means clustering with silhouette scoring
to determine the optimal number of clusters (see Supplementary Material
for software details). Only neurons sufficiently isolated with a signal-to-
noise ratio exceeding 4, and those demonstrating less than 1% interspike

interval violations were included. Subsequently, a variety of spiketrain fea-
tures were extracted from each MER segment. These included the median
firing rate, burst index, coefficient of variation, spike-train oscillatory power,
and average oscillatory burst duration across different frequency bands:
theta (4–8Hz), alpha (8–12Hz), low beta (12–21Hz), and high beta
(21–30Hz). The firing rate was calculated as the inverse of the mean
interspike interval distribution (Fig. 3A). The burst index was calculated
using the ratio of means from a two-component Gaussian mixture model
applied to the log interspike interval distribution, amodified approach to the
traditional mode-over-mean interspike interval (ISI) method (Fig. 3A)33.
The robust coefficient of variation was determined by dividing the median
absolute deviation of the interspike interval distribution by its median,
adopting a modified approach from the previously used standard deviation
over mean ISI method (Fig. 3A)116. Oscillatory power was extracted using
Lomb’s periodogram, conducted on the autocorrelation function of single-
neuron segments, as previously described117 (Fig. 3B). We deployed a novel
oscillatory burst detection algorithm to ascertain the duration of time a
neuron spent spontaneously bursting within a specific frequency range
(Fig. 3C). Briefly, the spiketrain of a neuronwas first converted into a binary
sequence and then downsampled to 500Hz. Subsequently, we filtered the
binary sequence into the frequency band of interest, ranging from theta to
high beta using a 4th order zero-phase Butterworth filter, thus converting
the spiketrain into anLFP-like signal. For burst determination,we adopteda
novel method that classifies burst durations when oscillatory activity sur-
passes the overall noise floor within a recording, as employed in ref. 118.
This involved enveloping the filtered binary sequence in each frequency
band using the absolute value of the Hilbert transform. An oscillatory burst
was then identified when its amplitude surpassed a threshold formore than
100ms, defined as four times themedian of averaged peaks from envelopes
of five overlapping 6Hz bands in the low gammaband (45–55Hz) from the
same MER segment. We determined the gamma waveforms using the fil-
tered binary sequence approach. We then extracted the average burst
duration which is the time spent above the determined threshold.

Offline analysis of LFP
We analysed the LFP power in both low and high beta frequency ranges
froma subset ofMERsegments thatwereused in the single-neuron analysis.
This subset comprised of 572 MER segments from the STN (n = 102), and
135 MER segments from the GPi (n = 31). A subset was necessary because
someMER recordings had hardware one-pole high-pass filters of >250Hz,
which precluded LFP analysis. In addition, segments possessing either
multi-unit activity or unfilterable artifacts (typically large cardiac artifacts)
were omitted from the analysis to prevent contamination of the LFP data.
First, we employed the spike-removal technique described in ref. 119, which
involves interpolatingneural spikeswith randomsegments representativeof
general noise in the signal. Then, after spike removal, each MER segment
was low-pass filtered using a 4th order zero-phase Butterworth filter, then
downsampled to 250Hz and z-score normalized. Subsequently, Welch’s
method was applied with the number of samples per segment set to 256.
Each power spectral density was further normalized to the sum of fre-
quencies spanning 45–55Hz. Since ourMERdatawere subjected to a 10 Hz
hardware one-pole high pass filter, we extracted only low- (12–21Hz) and
high- (21–30Hz) beta powers by calculating the sum of the power in these
respective frequency ranges. For burst determination, we utilized a method
that classifies beta bursts when beta activity surpasses the overall noise floor
within a recording, as previously employed50,118,120. Briefly, the rawsignalwas
bandpass-filtered around the frequency band of interest (either low or high
beta band) using a 4th order zero-phase Butterworth filter and envelope
peaks were calculated using the absolute value of the Hilbert transform. A
beta burst was identifiedwhen the amplitude exceeded a threshold formore
than 100ms, and defined as four times the median of averaged peaks from
envelopes of five overlapping 6Hz bands in the low gamma band
(45–55Hz) from the same MER segment. From the analysis, we extracted
LFPpower andburst duration in the lowbeta andhighbeta frequencybands
(see Fig. 4 for details).
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Fig. 3 | Analysis of single-neuron activity from
microelectrode recordings. A A 5-second example
trace illustrates a neuron firing in an irregular pat-
tern. The panel beneath displays the log interspike
interval of the spiketrain, with a double Gaussian
exponential fit applied to quantify the neuron’s fir-
ing patterns. B Four example traces represent neu-
rons oscillating within the theta, alpha, low beta, and
high beta frequency ranges over a 1-s duration. For
each frequency, the corresponding spiketrain auto-
correlation functions span a half-second lag. The
Lomb-Scargle periodogram of the autocorrelation
function is also provided, helping to quantify the
strength of the neuronal oscillation. C An example
trace demonstrates a neuron exhibiting strong low
beta oscillations. Below this, the downsampled bin-
ary sequence of the spiketrain is displayed as a gray
trace. The greenwave represents the low beta filtered
binary sequence, and the black trace illustrates the
Hilbert-transformed waveform of the beta power
amplitude. The horizontal orange line indicates the
burst duration threshold, while the red boxes pin-
point detected bursts.

Fig. 4 | Analysis of LFP activity from microelec-
trode recordings. A The example trace illustrates a
downsampled 5 s MER segment with spikes
removed emphasizing only the LFP. B Shows the
spectrogram of the MER segment. C Shows the
oscillatory dynamic of LFP power, with the green
wave representing the low beta filtered MER signal,
the blue wave represents the high beta filtered signal,
and the red traces depict the Hilbert-transformed
waveforms of the beta power amplitudes. The hor-
izontal black line marks the burst duration thresh-
old, and the red boxes highlight detected bursts.
D Shows the power spectral density of the MER
segment in the decibel scale.
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Statistical analyses
All statistical analyses were conducted in JASP (version 0.18.3). Briefly, we
performed Spearman correlations between each combination of UPDRSIII
clinical scores (total, bradykinesia, rigidity, tremor, axial) and neural fea-
tures. The single-neuron features included the median firing rate for each
patient, as well as the 90th percentile of burst index, coefficient of variation,
oscillatory powers (theta, alpha, low beta, and high beta), and mean burst
durations (theta, alpha, low beta, and high beta) per patient. The LFP fea-
tures included the90thpercentile for both lowandhighbetapowerand their
respective average burst durations. We applied the Benjamini-Hochberg
(BH) method to control for false discovery rates in multiple comparisons,
with the results provided in Supplementary Tables 3 and 4. In addition to
frequentist statistics, we employed Bayesian Spearman correlations to
evaluate the evidence for the presence (alternative hypothesis) or absence
(null hypothesis) of correlations. Since JASP does not natively support
Bayesian Spearman correlations, we first ranked all features and then
applied Pearson’s r to these ranked variables to effectively perform the
Bayesian Spearman correlations using the default prior.

Data availability
The datasets used and/or analysed during the current study available from
the corresponding author on reasonable request.

Code availability
The underlying code for this study is available in the Toronto-TNBS/
spooky-spikes repository and can be accessed via this link https://github.
com/Toronto-TNBS/spooky-spikes.
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