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Single cell-transcriptomic analysis
informs the lncRNA landscape in
metastatic castration resistant
prostate cancer
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Christopher A. Maher 2,8

Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of prostate cancer. Although
long-noncoding RNAs (lncRNAs) have been implicated in mCRPC, past studies have relied on bulk
sequencing methods with low depth and lack of single-cell resolution. Hence, we performed a
lncRNA-focused analysis of single-cell RNA-sequencing data (n = 14) frommCRPCbiopsies followed
by integration with bulk multi-omic datasets. This yielded 389 cell-enriched lncRNAs in prostate
cancer cells and the tumor microenvironment (TME). These lncRNAs demonstrated enrichment with
regulatory elements and exhibited alterations during prostate cancer progression. Prostate-lncRNAs
were correlated with ARmutational status and response to treatment with enzalutamide, while TME-
lncRNAswere associatedwithRB1deletions and poor prognosis. Finally, lncRNAs identified between
prostate adenocarcinomas and neuroendocrine tumors exhibited distinct expression andmethylation
profiles. Our findings demonstrate the ability of single-cell analysis to refine our understanding of
lncRNAs in mCRPC and serve as a resource for future mechanistic studies.

lncRNAs areRNA transcripts longer than 200 nucleotides without evidence
of codingpotential1. Recentworkhas implicated lncRNAs invarious stepsof
the metastatic cascade with a wide array of mechanisms, such as through
transcriptional and epigenetic regulation, as well as sequestration and
modification of RNA transcripts or proteins1.Moreover, multiple upstream
mechanisms have been demonstrated to alter lncRNAs in cancer via
somatic alterations, epigenetic and transcriptional regulation, and alter-
native splicing1.

Prostate cancer is the most common malignancy for men in the US2.
The Androgen Receptor (AR) plays a major role in regulating prostate
cancer progression and treatment response and is consequently the target of
many pharmacologic agents3. However, several lncRNAs have also recently
been implicated in the biology of this disease. These include genes such as
DANCR, DRAIC, PCAT29, PCAT19, and PCAT14, all of which have been

shown to be regulated by the AR, and are important regulators of prostate
cancer cell proliferation, division, migration, and invasion4–8. The lncRNAs
PCA3 and lncRNA-ATB have also been implicated in epithelial-to-
mesenchymal transition causing prostate cancer cells to lose features of
epithelial cells such as cell–cell adhesion and polarity and gain more inva-
sive, migratory, and anti-apoptotic properties4,9. In addition, GAS-5 has
been described as a lncRNA regulated by the mTOR pathway and controls
both cellular apoptosis and the binding ofAR toDNA4.Hence, lncRNAs are
key players in many of the mechanisms associated with tumorigenesis in
prostate cancer.

Within prostate cancer, while ~78% of men will be diagnosed with
localized disease, 12% and 5% will be diagnosed with regionally dis-
seminated and distant disease, respectively10. Metastatic castration-resistant
prostate cancer (mCRPC) is an aggressive form of prostate cancer that
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develops after metastatic spread as well as resistance to androgen ablation
and carries a poor prognosis2. Various lncRNAs have also been demon-
strated to regulate disease processes in mCRPC. These include PCGEM1
whichhas been shown to increase expressionofAR splice variants,HOTAIR
which leads to increasedAR expression andmay contribute to enzalutamide
resistance, andMALAT1 and SCHLAP1, which have been demonstrated to
be upregulated in mCRPC and interact with EZH2 and the SWI/SNF
complex, respectively, to promote prostate cancer cell invasion4,11,12. Thus,
while many lncRNAs have emerged recently within the context mCRPC, a
vast majority remain uncharacterized and underappreciated in their roles
within this disease.

Previous studies have leveraged integrative genomic analyses to elu-
cidate the genomic and epigenomic drivers of mCRPC, such as the occur-
rence of mutations in the AR region, genes associated with RB1 biallelic
inactivation, and the presence of hypomethylated regions in prostate
cancer-specific genes13–15. In addition, recent studies using single-cell tran-
scriptomics (scRNA-seq) have analyzed genes associatedwith the treatment
ofmCRPCwith enzalutamide, a commonly used AR signaling inhibitor for
patientswith late-stagedisease16. Studieshave also analyzed genes associated
with small cell neuroendocrine prostate cancer (SCNC), an aggressive his-
tologic variant that arises due to shifts in lineage plasticity during
treatment16. Lastly, recent work has demonstrated the existence of an
immunosuppressive tumor microenvironment (TME) to preclude anti-
tumor immunity within mCRPC17. Therefore, strategies to integrate mul-
tiple “-omics” datasets specific to mCRPC have the potential to also benefit
our understanding of lncRNAs in prostate cancer.

Despite the emerging roles of lncRNAs inmCRPC, the existing studies
have several limitations. First, many of these studies have focused on indi-
vidual lncRNAs with few focusing on a comprehensive characterization of
the universe of lncRNAs associated with various aspects of this disease6,7,12.
In addition, all of the systematic studies have relied on bulk RNA-
sequencingdata,which represents an admixed signal that fails to capture the
gene expression heterogeneity between cancer cells and the TME18,19. In
doing so, such analyses can lead to erroneous conclusions on the processes
that are regulated by lncRNAs. Lastly, previous work on lncRNAs in
mCRPC has not integrated single-cell expression data with other data
modalities such as genomic, epigenomic, and clinicopathologic features to
provide insight on the upstream and downstream mechanisms of lncRNA
transcriptomic aberrations. Therefore, the goals of this study were to inte-
grate multiple mCRPC-specific datasets with scRNA-seq data to char-
acterize lncRNAs expressed in mCRPC cell types, their association with
genomic and regulatory features, and relationship to tumor progression,
genomic status, treatment resistance, survival outcomes, and histologic
transformation.

Results
lncRNAs are enriched in prostate cancer cells and the TME
in mCRPC
Wesought to identify lncRNAs enrichedwithin cancer cells and theTME in
mCRPCbasedongene expressionby analyzing single-cell RNA-sequencing
data from2170 cells derived from15 biopsies at bone, lymphnode, and liver
metastatic sites from 14 mCRPC patients profiled in ref. 16. We reasoned
that based on the high average depth (mean depth of 1.5 million reads per
cell) of sequencing coupled with the representation of various metastatic
sites, treatment histories, and histologic variants, this dataset would provide
substantial cell diversity and sequencing coverage for lncRNA analysis in
mCRPC and the TME. Accordingly, this scRNA-seq dataset demonstrated
expression of ~70% of annotated lncRNAs with lncRNAs exhibiting lower
expression values when compared to protein-coding genes (Supplementary
Fig. 1a, b).

To annotate lncRNAs enriched in various cellular compartments
within mCRPC, we labeled cells based on the clustering and annotation
performed in the original study,which revealed clusters of prostate cancer,
monocyte/macrophage, NK/T, B, neutrophil and erythroid cells. Subse-
quently, a computational pipeline was used to derive lncRNAs associated

with each major cell type and filter lncRNAs that demonstrated low
expression and poor cell specificity (“Methods”, Fig. 1a). This yielded 389
cell-enriched lncRNAs of which 91 were enriched in prostate cancer cells
(pca-lncRNAs) and 298 were enriched in the TME cells (tme-lncRNAs)
(Fig. 1b and Supplementary Table 1). These candidates were validated
using two additional scRNA-seq datasets, one from 9 bone lesions from
metastatic CRPC patients in ref. 17 and another from 11 tumors from
primary prostate cancer patients in refs. 17,20. In total, 61 genes from our
list of cell-enriched lncRNAs were expressed in these datasets and upon
grouping of cell types, we found similar trends in cell specificity thereby
validating many of these identified lncRNAs (Fig. 1c). We also compared
the cell specificity of the top enriched lncRNAs with protein-coding genes
within the original scRNA-seq dataset using similar criteria for cell
enrichment, which demonstrated that the most enriched lncRNAs had
comparable cell specificity to themost enrichedprotein-coding genes (Fig.
1d). We also identified lncRNAs that were known to be cell-type specific
including SCHLAP1 enriched in prostate cancer cells (Fig. 1e,
avg_log2FC = 4.3, FDR = 5.6 × 10−73) and SMIM25 enriched in mono-
cyte/macrophage cells (Fig. 1e, avg_log2FC = 6.71,
FDR = 1.7 × 10−137)18,21. In summary, our analysis of single-cell tran-
scriptomic data revealed cell-enriched lncRNAs in mCRPC, validated
across independent datasets, that could be used for further
characterization.

mCRPC-associated lncRNAs have a distinct genomic and reg-
ulatory landscape
After identifying lncRNAs strongly associated with prostate cancer cells in
mCRPC, we investigated genomic aberrations in these genes to assess the
contribution of somatic mutations in lncRNA alterations. We found 13/91
(14.3%) pca-lncRNAs had at least one somatic mutation using whole-
genome sequencing data from a cohort of 444 mCRPC patients in refs.
22–24. Most genes exhibited copy number variants (CNVs) at low fre-
quencies (mean = 5.4%) in this cohort, with the exception of PCAT1 being
amplified in 24%of patients in this study (Fig. 2a).A similar trendwas noted
for pca-lncRNAs in TCGAprimary prostate cancer data from ref. 25 as well
(Supplementary Fig. 2a). While genomic amplification could contribute to
the over-expression of PCAT1 in mCRPC, studies have also attributed this
to co-amplifications with the nearby oncogene MYC13. Analysis of tme-
lncRNAs revealed similarly low frequencies of CNVs with the exception
PVT1, which again can be attributed to its proximity with MYC amplifi-
cations (Supplementary Fig. S2b).

Due to the non-focal nature of CNVs and the paucity of mutations
targeting lncRNAs, we reasoned that changes in the regulatory landscape
may better explain the differences in expression of cell-enriched lncRNAs.
To evaluate this hypothesis, we sought to first characterize the regulatory
landscape of cell-enriched lncRNAs. We first extracted promoter
sequences for pca- and tme-lncRNAs and performed a differential motif
search to identify putative transcription factor binding sites enriched in
either prostate or TME cells, followed by filtering for transcription factor
genes enriched in these respective cell types. This analysis identified
several known transcription factors motifs in pca-lncRNAs and impli-
cated inmCRPCbiology, such asAR,FOXA1,NKX3.1 and theETS family
of proteins (Fig. 2b). Next, regulomic data derived frommCRPC biopsies
profiled by Zhao et al.14 and Severson et al.26, such as ChIP-sequencing
data for AR and FOXA1 transcription factor binding sites as well as
H3K27ac peaks and hypomethylated regions (HMRs), which denote
regulatory elements, was assessed for overlap with cell-enriched lncRNAs.
We found a strong, significant enrichment for pca-lncRNAs (AR: 60.4%,
FOXA1: 49.5%,H3K27ac: 74.7%,HMR: 75.8%,) and aweaker enrichment
for tme-lncRNAs (AR: 48.3%, FOXA1: 34.2%, H3K27ac: 53.4%%, HMR:
63.8%) overlapping these regulatory features (Fig. 2c). In addition, we
analyzedmethylationprofiles frommCRPCandbenign prostate tissue for
these regions near transcriptional start sites. This demonstrated a large
decrease in methylation for regulatory elements in pca-lncRNAs (mini-
mum total methylation difference =−30%) when compared to tme-
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lncRNAs (minimum total methylation difference =−13.3%) and a
background set of lncRNAs (minimum total methylation difference =
−8.65%, Fig. 2d). A similar trendwas also noted for cell-specific lncRNAs
between mCRPC and primary prostate cancers (Supplementary Fig. 2c).

The correlation between methylation and gene expression at H3K27ac
and HMR regions showed the largest anticorrelation for pca-lncRNAs
(H3K27ac: mean Pearson correlation =−0.53; HMR: mean Pearson
correlation =−0.55) and a weaker anticorrelation for tme-lncRNAs

B lineage erythroid monocyte/
macrophage

neutrophil NK/T tumor

Z score

Fig. 1 | Discovery and validation of prostate and TME-enriched lncRNAs.
a Schematic of lncRNA discovery and validation from scRNA datasets, followed by
integrationwithmCRPC datasets. bHeatmap of Z-scores of log2 TPM expression of
prostate (91) and TME (289)-enriched lncRNAs. c Validation of common cell-
enriched lncRNAs in discovery set from ref. 16 (right) with scRNA-seq datasets from
ref. 17 (left) and ref. 20 (middle). lncRNAs and their corresponding clusters are listed
as rows on the right side of each plot with cell types labeled as columns on the bottom
and are grouped based on cell lineage. Cells in ref. 17 are grouped as such: Tumor as
tumor; Mature B, mem B, Pro B, and immature B cells as B lineage; CTL1/2, NK,

NKT, CD4+ /CD8+ naive, Treg Active/Inactive, and Th1/17 as NK/T cells;
Mono1/2/3, TAM, TIM, mDC, Monocyte progenitor as monocyte/macrophages;
and erythroid as erythroid. This dataset did not contain neutrophils. Cells in ref. 20
are grouped as such: Epithelial as tumor; B and Plasma cell as B lineage; T cell as NK/
T, and Myeloid as both neutrophil and monocyte/macrophage. This dataset did not
contain erythroid cells. d Top two enriched lncRNAs in each cell type vs. top two
enriched protein-coding genes. e UMAP plots of SCHLAP1 enriched in prostate
cancer cells and SMIM25 enriched in monocyte/macrophages.
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lncRNAs (H3K27ac: mean Pearson correlation =−0.50; HMR: mean
Pearson correlation =−0.47) (Fig. 2e). Lastly, we used EpiMap data of
H3K27ac profiling from various cell lines to characterize regulatory ele-
ments identified inmCRPC27. H3K27ac peaks near tme-lncRNAs showed
strong enrichment in data derived from epithelial, B- and T-cell lines,
which is consistent with the role for these lncRNAs in immune cells
(Supplementary Fig. S2d). In contrast, peaks near pca-lncRNAs were
highly enriched in epithelial, reproductive and gastrointestinal cell lines,
which is a similar finding as demonstrated in prior literature (Supple-
mentary Fig. S2d)28. Taken together, these results indicate the presence of
key regulatory elements, namely transcription factor binding sites, histone
acetylation peaks, and HMRs, that are enriched and functionally impor-
tant for dictating gene expression primarily of pca-lncRNAs.

lncRNAs exhibit cell-specific expression changes during tumor
progression
To assess lncRNAs associated with prostate cancer progression, we per-
formed differential expression analysis comparing bulk RNA-Seq data
between primary prostate cancers in ref. 25 (TCGA, n = 333)25 and
mCRPC (n = 74). Differentially expressed lncRNAs were subsequently
categorized as either enriched in prostate cancer cells or TME cells based
on the aforementioned single-cell analysis. This revealed several known
and underappreciated lncRNAs that have significantly altered expression
during tumor progression in a cell-specific fashion (Fig. 3a and Supple-
mentaryTable 2). For example, we found the pca-lncRNAs SCHLAP1 and
PCAT14, both known to be enriched in prostate cancer cells, to exhibit
upregulation (logFC = 1.28, FDR = 1.63 × 10−2) and downregulation

Fig. 2 | Epigenomic features are enriched and functionally important inmCRPC-
associated lncRNAs. a Mutational landscape of pca-lncRNAs with at least one
somatic mutation in mCRPC in refs. 22–24. b Transcription factor binding site
(TFBS) motifs in pca- (n = 91) and tme- (n = 289) lncRNAs after filtering for
protein-coding genes in prostate/TME cell types. c Enrichment of overlap for AR,
FOXA1, and H3K27ac ChIP-seq and HMRs in prostate (n = 91), TME (n = 289),

and remaining lncRNAs in hg38 (n = 16173).”*” denotes significant overlap and
“ns” denotes nonsignificant overlap14,26. d Sum of methylation differences of reg-
ulatory elements in prostate, TME, and remaining lncRNAs in hg38 downsampled
to 91 genes betweenmCRPC and benign prostate14. eCorrelation of H3K27ac/HMR
methylation and RNA expression in prostate (n = 28), TME (n = 27), and remaining
lncRNAs in hg38 (n = 439) with statistically significant associations14.
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(logFC =−3.77, FDR = 1.83 × 10−20), respectively, in metastases com-
pared to primary tumors. This recapitulates similar findings for these
lncRNAs in previous studies6,12. Several underrecognized associations
were also detected such as an increase in NK/T-cell-enriched lncRNAs
MIAT (logFC =2.1, FDR = 1.94 × 10−25) and CYTOR (logFC = 3.33,

FDR = 2.86 × 10−84) in mCRPC samples. Based on further sub-setting of
single cells from mCRPC biopsies, these genes were found to be enriched
in CD8+ PDCD1+ T cells amongNK/T-cell lncRNAs (Fig. 3b). Further
supporting this, a strong positive correlation was observed in bulk
sequencing data between MIAT and CYTOR expression with genes

Fig. 3 | Single-cell analysis informs bulk expression analysis of lncRNAs asso-
ciated with prostate cancer progression. a Heatmap of differentially expressed
lncRNAs in bulk RNA-seq for n = 333 primary prostate and n = 74mCRPC samples
with significantly upregulated genes in red and downregulated genes in blue25. Cell
types associated with each gene are shown on the left side. Samples are ordered
column-wise with normal adjacent prostate, primary prostate cancer, and mCRPC
from left to right. Samples in primary prostate cancers are ordered by increasing
Gleason Score and for mCRPC by the genomic status of theAR region. bDot plot of

differentially expressed NK/T-lncRNAs and T-cell subtypes in scRNA-seq data.
c Correlation between expression of MIAT and CYTOR with exhausted T-cell
markers from in ref. 16 in bulk mCRPC RNA-seq data16. d Methylation of differ-
entially methylated regions (x axis) nearby differentially expressed (y axis) lncRNAs
in mCRPC vs. primary prostate cancer14. e Gene plot of SCHLAP1 overlaid with
HMRs (red), H3K27ac (black), AR binding sites (green), and differentially methy-
lated regions (DMRs) (purple) between mCRPC vs. primary prostate cancer14,26.
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associated with a dysfunctional T-effector cell phenotype (Pearson cor-
relation 0.66, P = 2.2 × 10−10, Fig. 3c). This result is consistent with an
earlier study implicating these lncRNAs in immune infiltration within the
TME29. Likewise, our study associates these genes with immune

checkpoint signaling in prostate cancer due to the integration of single-cell
analysis29.

To further explore potential mechanisms of lncRNA dysregulation
during prostate cancer progression, we annotated differentially expressed

Fig. 4 | Pca-lncRNAs are associated with AR amplifications and treatment with
enzalutamide. a Volcano plot of differentially expressed lncRNAs in tumors with
AR region amplifications v/s wild-type in bulk RNA-seq data from n = 64
mCRPCs16. bGene plot ofCOLCA1with HMRs (red), H3K27ac (black), AR (green)
and FOXA1 (yellow) binding sites, and DMRs (purple) in mCRPC vs. benign
prostate14,26. c Heatmap of AR-upregulated pca-lncRNAs in baseline and

progression biopsies for matched patient samples in laser-capture microdissected
(LCM) RNA-seq data13,30. d Correlation of AR-upregulated pca-lncRNAs with AR
gene expression (blue) andAR activity (red) in LCMRNA-seq data30. eExpression of
AR-upregulated pca-lncRNAs in LCM RNA-seq data for AR+ /NE- to AR-/NE-
converters (n = 3) with paired T test P value above30.
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lncRNAs with nearby differentially methylated regions identified in a prior
report from ref. 14 between mCRPC and primary prostate cancer14. A
majority of genes that were upregulated in metastases were also found to
have decreased levels of CpG methylation nearby (Fig. 3d), suggesting
methylation could be major mechanism of lncRNA regulation in mCRPC.
Several of these included both pca-lncRNAs as well as tme-lncRNAs, sug-
gesting that a variety of cell-enriched lncRNAs exhibit alterations in

methylation as a result of tumor progression. For example, SCHLAP1 was
found to contain decreased regions ofmethylation near regulatory elements
for transcription factor binding, which may explain its upregulation in the
metastatic setting (Fig. 3e). Taken together, via integration of multi-omic
bulk and single-cell transcriptomic data we delineated cell-specific changes
in lncRNA expression and a potential link to methylation during prostate
cancer progression.

Fig. 5 | TME-lncRNAs are upregulated in tumors with RB1 loss and are asso-
ciated with poor outcomes. aDifferential expression analysis of lncRNAs in n = 64
bulk RNA-seq mCRPC biopsies between samples with biallelic inactivation of RB1
vs. monoallelic/wild-type RB113. Genes are highlighted based on their enrichment in
cell types from single-cell analysis. bMotif enrichment for all upregulated lncRNAs
(red) and tme-lncRNAs (blue) inRB1-deleted tumors. cHallmarkMSigdb pathways
correlated with all upregulated lncRNAs (red) and tme-lncRNAs (blue) in RB1-

deleted tumors from scRNA-seq data. d Correlation of upregulated tme-lncRNAs
with the Hallmark TNFA Signaling pathway and the upregulated genes in the RBS
signature from ref. 15. e Forest plots of univariate (top) and multivariate (bottom)
analysis ofn = 59mCRPC sampleswith bulk RNA-seq forRB1 loss upregulated tme-
lncRNAs and overall survival. f Forest plots of univariate (top) and multivariate
(bottom) analysis of n = 59 mCRPC samples with bulk RNA-seq of RB1 loss
downregulated pca-lncRNAs and overall survival.
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Prostate-enriched lncRNAs are associated with AR amplifica-
tions and are correlated with enzalutamide treatment
The AR is a major driver of prostate cancer progression and treatment
response and AR signaling inhibitors are commonly used for patients with
mCRPC30,31. Thus, we sought to understand the role of AR signaling in
lncRNA expression. We performed differential expression analysis of bulk
RNA-seq data between mCRPC biopsies with AR region amplifications
relative to wild-type tumors determined via whole-genome sequencing
from ref. 13. This revealed several lncRNAs upregulated with AR amplifi-
cations with many of them enriched in prostate cancer cells (Fig. 4a and
Supplementary Table 3). When applying this methodology to protein-
codinggenes in this dataset,we recoveredmany establishedAR-upregulated
pca- protein-coding genes such as SLC45A3 and TMEFF2 (Supplementary
Fig. 3a)14. Our results also recapitulated known AR-upregulated pca-
lncRNAs such as PCAT14 (Fig. 4a)32. Moreover, this analysis yielded AR-
upregulated pca-lncRNAs, such as COLCA1, which has only recently been
implicated in prostate cancer33. Analysis of COLCA1 at the gene level
demonstrated several AR and FOXA1 binding sites within regulatory ele-
ments near its gene body, suggesting its regulation by AR and AR co-
regulators (Fig. 4b). Similarly, another example of an underappreciated
lncRNAa that potentially contributes to mCRPC is TP53TG1. This pca-
lncRNA was upregulated in mCRPCs with AR amplifications and was
downregulated upon enzalutamide treatment. Furthermore, its promoter
containsmultiple regulatory elements andARbinding sites (Supplementary
Fig. S3b). Prior literature has demonstrated an oncogenic role for TP53TG1
in pancreatic ductal adenocarcinoma, retinoblastoma, and nasopharyngeal
carcinoma34–36, and future work will be needed to validate the function of
this lncRNA in mCRPC.

Using our list of AR-upregulated pca-lncRNAs, we next sought to
validate the association of androgen signaling with pca-lncRNA expression
and further explore this relationship in the context of AR directed therapies.
To do this, we analyzed data from a recently published RNA-seq dataset
with biopsies taken from 21 mCRPC patients at baseline and during pro-
gression with enzalutamide profiled in refs. 30,31. Although the number of
lncRNAs profiled in these studies was limited, we found that expression of
AR-upregulated pca-lncRNAs that weremeasured in this dataset, including
PCAT14 and COLCA1, varied across patient biopsies with three major
clusters containing either high, moderate, or low expression of these genes,
respectively (Fig. 4c). These genes were subsequently found to contain
positive correlations with both AR gene expression (Pearson correla-
tion=0.4) and AR regulon activity (Pearson correlation = 0.52) asmeasured
by the VIPER algorithm in the original studies (Fig. 4d)30. Based on this
association with AR signaling, we reasoned that patients who responded to
enzalutamide treatment (defined by a 50% decrease in PSA at 12months in
the original studies) should downregulate the expression ofAR-upregulated
pca-lncRNAs when compared to patients who failed to respond to treat-
ment.Weobserveda trending decrease inpca-lncRNAexpression (pairedT
test P value = 0.057, Supplementary Fig. 3c) and a significant decrease in
AR-upregulated protein-coding gene expression (paired T test P value =
0.0017, Supplementary Fig. 3d) in patients responding to treatment.

These studies also identified three patients whose tumors developed
treatment resistance due to alterations in lineage plasticity from an
AR+ /NE− phenotype to an AR-/NE- status, suggesting alterations in AR
target gene expression. Using our methodology, expression of AR-
upregulated pca-lncRNAs (paired T test P value = 0.073, Fig. 4e) showed a
strong trend towards decreased expression, which was similar to the findings
with AR-upregulated pca-protein-coding genes (paired T test P value = 0.22,
Supplementary Fig. 3e) and theARVIPER score (pairedT testP value = 0.13,
Supplementary Fig. 3f) from the original studies30, suggesting that lineage
plasticity due to treatment resistance may also alter the landscape of AR-
regulated lncRNAs. In summary, we found that AR amplifications are
strongly associated with expression of pca-lncRNAs, which led to the iden-
tification of androgen-regulated lncRNAs.Moreover, these genes were found
to be associated with response to enzalutamide and may exhibit alterations
during lineage shifts as a result of treatment resistance.

TME-lncRNAs are enriched in RB1 loss tumors and are asso-
ciated with poor overall survival
Previous studies have found mutations in the tumor suppressor gene
RB1 to be associated with poor overall survival across multiple tumor
types and within mCRPC15,37–40. Moreover, prognostic signatures
have been defined to detect genes that exhibit transcriptomic per-
turbations in tumors with RB1 deficiency, but these have not focused
on the role of lncRNAs15. To define lncRNAs associated with RB1 loss,
we performed differential expression analysis of bulk RNA-seq data
between mCRPC biopsies with biallelic inactivation of RB1 relative to
monoallelic and wild-type tumors determined via whole-genome
sequencing from ref. 13 (Supplementary Table 4). Upon annotating
lncRNAs to their respective cell types, it was found that many upre-
gulated lncRNAs were not enriched in a particular cell type, likely
reflecting non-cell-specific proliferative pathways that typically
increase upon RB1 inactivation. However, a subset of upregulated
lncRNAs were annotated as mostly immune cell-specific tme-
lncRNAs, suggesting a link to immune infiltration in RB1 deficient
tumors (Fig. 5a). In contrast, downregulated genes consisted of pca-
lncRNAs associated with androgen signaling. Similar findings were
found for protein-coding genes in this dataset (Supplementary
Fig. 4a).

For downstream analysis, we focused on upregulated tme-lncRNAs
enriched in components of the immune system (NK/T, monocyte/macro-
phage, neutrophil, B lineage cells) and removed erythroid progenitor-
enriched lncRNAs due to their tendency to overlap with genes associated
with proliferative pathways. Differential motif analysis found that lncRNAs
upregulated in RB1 loss tumors showed enrichment for E2F/SP1 tran-
scription factors (SP1 FDR = 3.2 × 10−18, E2F4 FDR = 9.8 × 10−10), con-
sistent with the role of RB1 in cell cycle regulation. However, immune-
specific tme-lncRNAs were enriched for motifs specific to immune cells,
such as the IRF family of transcription factors (IRF8 FDR = 1.6 × 10−3, Fig.
5b).Moreover, pathway analysis in scRNA-seqdata revealed that this subset
of genes was highly correlated with immune and inflammatory pathways
(Hallmark TNFA signaling Pearson correlation=0.80) and distinct from the
pathways seen with the entire gene set, which consisted of epithelial-to-
mesenchymal transition (Pearson correlation = 0.88), G2M (Pearson cor-
relation=0.78) and E2F (Pearson correlation = 0.72) signatures classically
associated with RB1 deficiency (Fig. 5c)15. Similar results were also seen for
protein-coding genes and their corresponding pathways associated with
RB1 deletions (Supplementary Fig. 4b). This association with immune and
inflammatory signatures was also seen using bulk RNA-seq data (Hallmark
TNFA signaling Pearson correlation = 0.55, Fig. 5d). Furthermore, we
compared the expression of this subset of tme-lncRNAs with a previously
published tumor-intrinsic signature of genes associated with RB1 loss and
poor outcomes from ref. 15.We found a strong positive correlation between
these two gene sets, suggesting that RB1 loss-associated genes are correlated
with reciprocal changes in the immune microenvironment of mCRPCs
(Pearson correlation = 0.59, Fig. 5d).

To understand the contribution of cell-specific lncRNAs towards the
prognostic relevance of this existing signature of RB1 loss, we tested the
association of signature activity of these tme-lncRNAs with overall survival
in mCRPC patients using outcomes data from ref. 15 (“Methods”). This
demonstrated a statistically significant relationship in both univariate and
multivariate analysis of poor overall survival with increased tme-lncRNA
signature activity (univariate: HR = 1.4, CI = 1.1–1.8, P value = 0.001;
multivariate: HR = 1.43; CI = 1.09–1.9; P value = 0.011 Fig. 5e). Notably, we
confirmed that protein coding genes upregulated in RB1 loss and enriched
in the TME also associated with poor patient outcome (Supplementary Fig.
4c). Further, this association with poor outcomes was not observed for pca-
lncRNAs or pca-protein-coding genes that were downregulated in RB1 loss
tumors in both uni- and multi-variable analysis (Univariate: HR = 0.91,
CI = 0.75–1.1, P value = 0.349; Multivariate: HR = 0.96. CI = 0.73–1.3. P
value = 0.794 Fig. 5f; Supplementary Fig. 4d). Therefore, our findings sug-
gest that specifically immunologic pathways, as detected by cell-enriched
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lncRNAs, are correlatedwith established transcriptomic aberrations inRB1-
deleted tumors and contributes to the association of these genes with poor
overall survival, highlighting the importance of the TME in mCRPCs with
this genomic alteration.

Histologic transformation induces expression of lncRNAs in
prostate cancer cells
Given the presence of a small cell neuroendocrine carcinoma (SCNC)
biopsy in the He et al. dataset, we investigated the differences in lncRNA

expression between small cell carcinomas and prostatic
adenocarcinomas16. Differential expression analysis using this dataset
revealed multiple genes upregulated in the SCNC sample that could not
be assigned to a cell type based on our current list of cell-specific lncRNAs
(Fig. 6a and Supplementary Table 5). Analysis of these genes solely in the
SCNC sample revealed that most are unique to prostate cancer cells and
were likely overlooked due to the paucity of samples containing SCNC
features in this dataset (Fig. 6b). Several genes in this list have established
associations with neuroendocrine features, such as the lncRNA RMST

Fig. 6 | Small cell neuroendocrine prostate cancers express unique prostate-
enriched lncRNAs. a Differential expression analysis of lncRNAs in adenocarci-
nomas vs. small cell neuroendocrine (SCNC) carcinomas in scRNA-seq16.
b Heatmap for expression of SCNC-lncRNAs in SCNC cells. c Hallmark MSigDB
Pathways associated with adeno- and SCNC-lncRNAs in scRNA-seq. dMethylation
for HMRs near SCNC-lncRNAs and adeno-lncRNAs in n = 5 SCNC vs. n = 95

adenocarcinoma samples with paired T test P value above14. e Correlation of ref. 19
and single-cell-derived SCNC/adeno-lncRNA signatures with neuroendocrine
markers from ref. 43. f ROC curve analysis of ref. 19 and single-cell-derived SCNC/
adeno-lncRNA signatures for tumor histology in n = 71 adenocarcinoma and n = 3
NEPC bulk RNA-seq samples. AUC values are given on the right-hand side.
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(avg_log2FC = 4.63, FDR = 1.52 × 10−100) in this gene set has been
implicated in medullary thyroid cancer, a rare neuroendocrine tumor41.
RMST is upregulated in SCNC cells and its promoter contains several
regulatory elements that potentially control its gene expression in
mCRPC (Supplementary Fig. 5a).

Subsequent pathway association analysis revealed that SCNC-enriched
lncRNAs (SCNC-lncRNAs) were strongly associated with sonic hedgehog
signaling (Pearson correlation=0.82), which has been described in the
literature42, while adenocarcinoma-enriched lncRNAs (adeno-lncRNAs)
were associated with androgen signaling (Pearson correlation=0.72, Fig.
5c)42. As methylation differences have been known to contribute sig-
nificantly to neuroendocrine prostate cancer43, we examined hypomethy-
lated regions near genes deregulated between the two histologic variants
using data from ref. 14 It was subsequently found that while SCNC-
lncRNAs displayed similar methylation values across histologic variants (t
test P value = 0.23, Fig. 5d), adeno-lncRNAs showed highly divergent
methylation profiles (t test P value = 0.003, Fig. 5d).

Next, as other groups have developed signatures of neuroendocrine
prostate cancer19,43, we sought to compare our single-cell-derived signature
against these. Using bulk RNA-seq data, we found a significant level of
positive correlation between our SCNC-lncRNA signature with an estab-
lished set of SCNC markers based on protein-coding genes from ref. 43
(Pearson correlation=0.45, Fig. 5e)43. This was comparable to a previously
published SCNC-lncRNA signature derived without single-cell analysis by
Ramnarine et al.19 (Pearson correlation=0.40). However, when performing
AUC analysis to discriminate histologic variants in a validation cohort of 3
SCNC and 71 CRPC-adenocarcinomas using bulk RNA-seq data, our sig-
nature had high sensitivity and specificity for detecting neuroendocrine
histology and outperformed the previously published lncRNA signature
(Single-cell signature AUC= 0.96, Ramnarine et al. signature AUC= 0.53,
Fig. 5f). These findings suggest that our signature of SCNC/adeno-lncRNAs
is strongly associated with the underlying biology of SCNC and detects
prostate cancer cell-specific shifts in the lncRNA landscape during histo-
logic transformation.

Discussion
In this study, we used single-cell transcriptomic data frommCRPCbiopsies
coupled with a computational pipeline to identify cell-enriched lncRNAs
within prostate cancer cells and the TME. In doing so, we recovered known
and discovered many lncRNAs expressed specifically in prostate cancer or
TME cells that had previously been masked by bulk sequencing data in
prostate cancer. This allowed us to uncover previously underappreciated
associations between these genes and regulatory elements, tumor progres-
sion, genomic status, and histopathologic variants.

We believe that this is a unique study in that we perform an mCRPC-
specific characterization of the lncRNA landscape, as well as utilize single-
cell transcriptomic data to yield insights into the cell-specific nature of
lncRNAs in this disease. In this analysis, we identified pca-lncRNAs such as
PART1, which has been implicated in oncogenesis due to its effects on cell
proliferation and invasion44. This analysis also identified tme-lncRNAs in
mCRPC, such as SMIM25 in monocytes, which has been shown to be a
monocyte-specific marker with studies implicating it in autoimmune dis-
eases and antigen processing and presentation across various tumor
types45,46. The lncRNA PVT1was found to be specific to T cells and studies
have shown it to influence metabolic pathways in T cells in the context of
autoimmunity, as well as antigen processing and presentation throughout
several cancers46,47. B-cell-specific lncRNAs included LINC00926 with lit-
erature pointing to its role in B cells through its functions on cell junction,
protein kinase, and RAS pathways within the TME48. Lastly, we identified
FAM157C in neutrophils, which has been demonstrated to promote gran-
ulocyte proliferation49.

In this study, we were also able to map the regulatory landscape in
mCRPC-associated lncRNAs, whichwas crucial sincewe found evidence of
aberrations in regulatory elements due to DNAmethylation across prostate
cancer progression and histologic variants. Upon coupling the results of our

single-cell analysis with bulk RNA-seq data for prostate cancer progression,
we were able to map out cell-specific alterations in lncRNA expression that
had eluded prior investigations. We found well-described changes in pca-
lncRNAs such as downregulation of PCAT14 and upregulation of
SCHLAP1 in metastatic samples6,12. Moreover, we discovered changes in
NK/T-lncRNAs in themetastatic setting,with data suggesting an increase in
CD8+ PDCD1+ T cells that harbor an exhausted T-cell phenotype based
on the expression ofCYTOR andMIAT. Prior work has suggested a role for
these lncRNAs in theTMEwithMIATbeingdemonstrated to correlatewith
infiltrating immune cells in breast cancer29. However, future studies will
need to be conducted to better establish the mechanistic role of these
lncRNAs in dysfunctional T cells.

Pca-lncRNAs were found to be strongly associated with AR region
amplifications and AR signaling, which recapitulated previously char-
acterized genes such as PCAT1432. Our analysis also identified androgen-
regulated lncRNAs such as COLCA1, which was correlated with AR geno-
mic status and contained AR binding sites at nearby regulatory elements,
suggesting its potential importance in this disease. Prior work on COLCA1
has implicated it in susceptibility to colorectal cancer50. Moreover, a recent
study has also demonstrated AR binding sites in the promoter region of
COLCA1, but future work will need to establish a role for this gene in
prostate cancer33. When comparing patient biopsies treated with enzaluta-
mide in laser-capture microdissected RNA-seq data, we found a trending
decrease in expression of pca-lncRNAs in responders to treatment as well as
in three patients whose tumors converted from an AR+ /NE- to an AR-/
NE- status. Priorworkon these three patients has suggesteda role for lineage
plasticity with a significant downregulation of AR activity and AR gene
expression30. While it is plausible that AR-regulated lncRNAs should also
exhibit a concomitant decrease in expression during lineage plasticity, more
samples with deeper sequencing to effectively capture the space of pca-
lncRNAs and detect differences at lower expressionmagnitudes are needed
to further establish these findings.

Next, we analyzed lncRNAs associated with RB1 biallelic inactivation
and found many genes to be correlated with proliferative signatures that
have been demonstrated in other studies15. However, by coupling these
genes with our results from single-cell analysis, it was discovered that a
subset of genes was enriched in immune cells, suggesting a relatively
underexplored role for immune signaling in these tumors. Other studies in
ovarian, bladder, and localized prostate cancer have pointed to similar
conclusions in that tumors with RB1 deletions were found to harbor a
distinct immune profile due to the presence of tumor-infiltrating
lymphocytes51–54. This subset of tme-lncRNAs was correlated with a pre-
viously published tumor-intrinsic transcriptomic signature of RB1 loss,
suggesting that proliferative pathways in cancer cells may lead to con-
comitant changes in the immune microenvironment15. Furthermore, these
lncRNAs were found to be associated with poor overall survival, indicating
that immune signaling may partially explain the prognostic value of RB1
deletions in mCRPC. Hence, our single-cell analysis of lncRNAs adds a
further level of understanding to the biological processes, namely immune
and inflammatory signaling, that are associated with existing RB1 loss sig-
natures. Future single-cell analysis ofmCRPCswith genomic aberrations in
RB1 can allow for a higher-resolution understanding of the immune
microenvironment changes in these tumors.

Our final vignette examined the lncRNA landscape in SCNC and found
numerous prostate cancer cell-specific changes in lncRNA expression. The
utility of single-cell analysis was evident from the finding that our SCNC/
adeno-lncRNA signature had high sensitivity/specificity in discriminating
tumor pathologies and was strongly associated with markers of neuroendo-
crine differentiation and hedgehog signaling. Several genes in our signature
have been studied in the context of neuroendocrine differentiation. These
include RMST, which has been shown to be associated with medullary
thyroid cancer, a rare neuroendocrine tumor, and HOXB-AS3, which has
been demonstrated to exhibit high expression in neuroendocrine cells during
spinal cord development41,55. Future work will be required to better establish
these links between our single-cell-derived lncRNAs and SCNC pathology.
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In conclusion, we performed an integrative analysis of single-cell
transcriptomic and bulk multi-omic data from mCRPC biopsies to char-
acterize the lncRNA landscape of this disease. Our findings revealed a dis-
tinctionbetweenpca- and tme-lncRNAs, aswell as enrichmentof regulatory
elements in these genes. Differential gene expression analysis of mCRPCs
and primary prostate cancers revealed several known and underrecognized
lncRNAs that exhibited cell-specific expression changes with tumor pro-
gression as well as alterations in DNA methylation. AR region amplifica-
tions were found to be associated with pca-lncRNAs, which showed a
trending decrease in expression in responders to enzalutamide and may be
associated with lineage plasticity during treatment resistance. Tumors with
RB1 biallelic inactivation were found to upregulate expression of TME-
enriched lncRNAs, which were correlated with a tumor-intrinsic signature
of RB1 loss and also associated with poor outcomes. Lastly, we discovered
SCNC-lncRNAs that were correlated with established neuroendocrine
markers and strongly capable of distinguishing prostate cancer histology.
Our findings demonstrate the utility of single-cell analysis to refine our
understanding of lncRNAs inmCRPCandnominate potentialmechanisms
of actions based on cell-type enrichment. These results will serve as a
resource to guide future mechanistic work to explore the biology of these
lncRNAs within their appropriate cell types and contribute to the under-
standing of lncRNAs in the disease processes underlying mCRPC.

Methods
Single-cell RNA-seq prostate cancer datasets
To characterize lncRNAs in mCRPC cancer cells and the tumor micro-
environment, we utilized published single-cell transcriptome sequencing
data from mCRPC and primary tumors. These included sequencing data
fromHeet al. (lymphnode, boneand livermetastases,n = 14)16,Kfoury et al.
dataset (bone metastases, n = 9)17, Chen et al. dataset (lymph node metas-
tases, n = 2)56, and Song et al. (primary tumors, n = 11)20 (Fig. 1a).

Bulk genomic, transcriptomic, methylome, transcription factor,
and clinical outcomes mCRPC datasets
Whole-genome sequencing data were analyzed from ref. 22 (n = 444) and
ref. 13 (n = 101). DNAmethylation data (n = 100) were obtained from ref.
14 at dbGAP (phs001648) and bulk RNA-sequencing data (n = 74) at
EGAS00001006275. Overall survival data with clinical covariates for these
mCRPC samples was downloaded from ref. 15 (n = 100). Laser-capture
microdissection RNA-sequencing data with associated metadata was
obtained from ref. 30 (n = 22). Chromatin Immunoprecipitation (ChIP)-
sequencing datasets for AR, FOXA1, andH3K27ac were obtained from ref.
26 (n = 4). RNA-sequencing count data from TCGA primary prostate
cancer samples (n = 333) and normal adjacent tissue (n = 50) and the
associated metadata were downloaded from ref. 25.

Discovery and validation of cell-specific lncRNAs in mCRPC
and TME
To identify lncRNAs with cell-type-specific expression in mCRPC prostate
cancer cells and the TME, we performed differential expression analysis
using the Seurat package to compare lncRNA expression across cell types
using data from refs. 16,57. TPM normalized data from He et al. were log-
transformed and merged with metadata labels. Subsequently, differential
gene expression analysis for lncRNAs contained in CellRanger GRCh38-
2020-A was performed by using the Seurat package R function Fina-
lAllMarkers and filtered for genes detectable in at least 10% of cells with an
adjusted P value of less than 10% and average log2 fold change greater than
1. This yielded a candidate list of cell-enriched lncRNAs57.

To ensure that cell-enriched lncRNAs identified in ref. 16were not also
enriched in adifferent cell type not profiled in ref. 16, additionalfilteringwas
performed. TwoothermCRPCscRNA-seqdatasetswere used forfiltering16.
Raw count data from ref. 17were logCPMnormalized followed bymerging
with metadata labels17. Similar differential gene expression analysis for
lncRNAs was performed on this dataset. For each cell type in the candidate
list, cell-enriched lncRNAswere filtered if they were found to be enriched in

different cell types in ref. 17 than their original designation. A similar
approachwas used after downloadingmarker genes from ref. 56 by filtering
and removing cell-enriched lncRNAs corresponding to cell types unique to
this dataset56. This yielded a final list of cell-enriched lncRNAs including
lncRNAs enriched in prostate cancer cells (pca-lncRNAs) and lncRNAs
enriched in the TME cells comprising of various immune cells (tme-
lncRNAs). A similar approachwas also used for protein-coding genes in ref.
16 to derive a final list of cell-enriched protein-coding genes in prostate
cancer cells and TME cells.

For orthogonal evidence of cell specificity, we used scRNA-seq data
from refs. 17,20. Similar differential expression was performed to identify
cell-enriched lncRNAs in the Kfoury et al. and Song et al. datasets. Cell-
enriched lncRNAs in these two datasets were used to confirm cell-type-
specific expressionof thenominated cell-enriched lncRNAs identified in ref.
16. Due to platform differences, only a subset (15.7%) of cell-enriched
lncRNAs identified in ref. 16 was profiled in the Kfoury et al. and Song et al.
datasets and used for this orthogonal validation16,26,27.

Motif analysis
Promoters formotif analysis of prostate- and TME-enriched lncRNAswere
extracted using the promoters function in the EnsDb.Hsapiens.v86 R
package58. Next, the getSeq function was used in the BSgenome.Hsa-
piens.UCSC.hg38 R package59. Fasta files were uploaded to https://meme-
suite.org/meme/tools/centrimo to perform differential motif analysis60.
Motif enrichment was set to “Anywhere” and the HOCOMOCO Human
motif database was used. Motifs in Fig. 2b were further filtered for tran-
scription factor protein-coding genes enriched in prostate and TME cell
types using the FindMarkers R function with cutoffs of genes being
detectable in at least 10% of cells with an adjusted P value of less than 10%
and average log2 fold change greater than 1.

Enrichment of regulatory elements with lncRNAs
For AR, FOXA1, and H3K27ac, ChIP-seq data from ref. 26 was used with
replicates being concatenated and merged using bedtools merge26,61. UCSC
liftover was used to convert coordinates toHg3862. Hypomethylated regions
(HMRs) from ref. 14 were also obtained from the supplementary data14.
Overlap of ChIP-seq and HMR data with lncRNA gene body Hg38 coor-
dinates was performed using the subsetByOverlaps R function and
enrichment was assessed using Fisher test followed by FDR correction63.

Methylation profiles of regulatory elements with lncRNAs
The DMR bedgraph file between mCRPC and benign prostate was used
from ref. 14 and converted to BigWig format using the UCSC bed-
GraphtoBigWig tool62. Next, ChIP-seq and HMR bed files were subset to
include regions within a 20-kilobase window around lncRNA TSSs using
the promoters function in the EnsDb.Hsapiens.v86 R package58. Deeptools
functions ComputeMatrix and PlotProfile were used to plot the sum of
DMR methylation differences within this subset of regions for prostate,
TME, and a background set of lncRNAs64. All sets of lncRNAs were
downsampled to 91 to match the number of prostate-enriched lncRNAs
and remove any bias due to the size of the gene set.

Correlation of methylation and expression for lncRNAs
Results from correlation analysis in ref. 14 was obtained from the supple-
mentary data14. For both HMRs and H3K27ac regions with significant
Spearman correlation between methylation and gene expression after FDR
correction, the results were subset to only include lncRNAs. Regions were
grouped if they demonstrated associationswith either any of the 91 prostate,
289 TME, or the remaining 16173 lncRNAs. If multiple regions existed, the
one with the lowest associated P value was retained.

Differential expression analysis
The R packages EdgeR and Limma were used to perform differential
expression analysis in bulk RNA-seq for the comparison between TCGA
primary prostate cancer vs. WCDT mCRPC samples, as well as within

https://doi.org/10.1038/s41525-024-00401-3 Article

npj Genomic Medicine |            (2024) 9:14 11

https://www.omicsdi.org/dataset/dbgap/phs001648
https://meme-suite.org/meme/tools/centrimo
https://meme-suite.org/meme/tools/centrimo


mCRPC samples forAR region amplification vs. wild-type andRB1 biallelic
inactivation vs.monoallelic/wild-type tumor biopsies, using count datawith
tumor purity as a covariate65. For differential expression analysis in scRNA-
seqdata, theR functionFindMarkers fromthe Seurat packagewasusedwith
samples grouped by “liver” to assess lncRNAs associated with SCNC
histology57. Significance thresholds for expression analysis was an absolute
average log2 fold change greater than 1 and adjusted P value less than 10%,
except for the analysis ofAR region amplification which used an adjusted P
value less than 25% to detect known AR-regulated lncRNAs and protein-
coding genes.

Methylation analysis
Differentially methylated regions (DMRs) for mCRPC vs. primary prostate
cancer andmCRPC vs. benign prostate as well as HMRs for mCRPCs were
obtained from refs. 14,66. HMRs and DMRs were annotated to lncRNAs
using the nearest function63. HMR signatures were scored using the com-
bined z-score approach67 and associated with tumor histology for 5 SCNC
and 95 adenocarcinomas in ref. 14 and compared using paired T test.

Single-cell RNA-seq pathway association analysis
scRNA-seq data from ref. 16 was processed as described in “Discovery and
validation of cell-specific lncRNAs”16. Expression matrices were converted
to pseudo-bulk data for each sample biopsy. The signature activity of
lncRNA signatures and MSigDB Hallmark pathways for each sample was
extracted using the combined z-score approach67 and correlated against
eachother usingPearson correlation coefficients (PCCs). PCCswere ranked
in decreasing order to identify the top correlated pathways with lncRNAs.
MSigDB Hallmark Pathways were identified in the R package msigdbr68.

Bulk RNA-seq pathway association analysis
Bulk RNA-seq data for 74 mCRPC samples in the form of count data was
filtered for lowly expressed genes and log CPM normalized, all using the R
package edgeR65. Signature activity of lncRNA signatures calculated using
the combined z-score approach67 was correlated against known pathway
gene sets for genes usingPCCs.MSigDBHallmarkPathwayswere identified
in the R package msigdbr68. Exhausted T-cell markers were used as
described in ref. 16 and include the following: PDCD1,HAVCR2,TOX,TI-
GIT,ICOS, FASLG, LAG3, ENTPD1,ITGAE. Neuroendocrine prostate
cancer gene sets were obtained from refs. 19,43. Genes upregulated in RB1
loss tumors were obtained from ref. 15.

The area under the curve analysis
Bulk RNA-seq data for 74 mCRPC samples was processed as described in
“Bulk RNA-seq pathway association analysis.” The single-cell signature of
tumor histology was derived by identifying differentially expressed genes
between adenocarcinomas and the small cell carcinoma sample from ref. 16
as described in “Differential expression analysis”16. These differentially
expressed lncRNAswereused as our signature.Apreviouslypublished setof
122neuroendocrineprostate cancer lncRNAswas obtained fromrefs. 19,69.
Signature activity of both signatures in bulk mCRPC RNA-seq data was
extracted using the combined z-score approach67. Samples were grouped
based on histology from the associated clinicopathologicmetadata in ref. 13
with threemCRPC tumors labeled as “CRPC-small cell” and the remaining
71mCRPC tumors “CRPC-adeno”. AUC analysis was performed using the
roc function in the pROC R package69.

Survival analysis
Bulk RNA-seq data for 74 mCRPC samples was processed as described in
“Bulk RNA-seq pathway association analysis”with genomic annotations for
RB1 derived from ref. 13 Overall survival and clinical covariates were
obtained fromref. 15. In total, 59 sampleswerematchedamong thesedatasets
and used for survival analysis. For univariate analysis, overall survival from
thedate of diagnosiswas regressedonto the signature activity calculatedusing
the combined z-score approach67 ona continuous scale ofRB1 loss-associated
TME (NK/T, monocyte/macrophage, neutrophil, and B lineage cells) or

prostate-enriched lncRNAs using Cox-proportional hazard modeling with
the survival R package70. Multivariate analysis was performed similarly with
additional covariates for serum LDH, PSA, ALP, and hemoglobin con-
centrations, along with ECOG performance status and the presence of visc-
eralmetastases andenzalutamide resistance.Analysis forprotein-codinggene
sets associated with RB1 deletions was done using a similar approach.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
DNA methylation is available at dbGAP (phs001648) and bulk RNA-
sequencing data at EGAS00001006275. All other data analyzed during this
study are included in the following published articles and their supple-
mentary information files13–17,20,22,25,26,30,56.

Code availability
All analysis scripts can be found at https://github.com/ChrisMaherLab/
scRNA_PCa.
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