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Metastatic castration-resistant prostate cancer (NCRPC) is a lethal form of prostate cancer. Although
long-noncoding RNAs (IncRNAs) have been implicated in mCRPC, past studies have relied on bulk
sequencing methods with low depth and lack of single-cell resolution. Hence, we performed a
IncRNA-focused analysis of single-cell RNA-sequencing data (n = 14) from mCRPC biopsies followed
by integration with bulk multi-omic datasets. This yielded 389 cell-enriched IncRNAs in prostate
cancer cells and the tumor microenvironment (TME). These IncRNAs demonstrated enrichment with
regulatory elements and exhibited alterations during prostate cancer progression. Prostate-IncRNAs
were correlated with AR mutational status and response to treatment with enzalutamide, while TME-
IncRNAs were associated with RB1 deletions and poor prognosis. Finally, IncRNAs identified between
prostate adenocarcinomas and neuroendocrine tumors exhibited distinct expression and methylation
profiles. Our findings demonstrate the ability of single-cell analysis to refine our understanding of
IncRNAs in mCRPC and serve as a resource for future mechanistic studies.

IncRNAs are RNA transcripts longer than 200 nucleotides without evidence
of coding potential'. Recent work has implicated IncRNAs in various steps of
the metastatic cascade with a wide array of mechanisms, such as through
transcriptional and epigenetic regulation, as well as sequestration and
modification of RNA transcripts or proteins'. Moreover, multiple upstream
mechanisms have been demonstrated to alter IncRNAs in cancer via
somatic alterations, epigenetic and transcriptional regulation, and alter-
native splicing'.

Prostate cancer is the most common malignancy for men in the US™.
The Androgen Receptor (AR) plays a major role in regulating prostate
cancer progression and treatment response and is consequently the target of
many pharmacologic agents’. However, several IncRNAs have also recently
been implicated in the biology of this disease. These include genes such as
DANCR, DRAIC, PCAT29, PCAT19, and PCAT14, all of which have been

shown to be regulated by the AR, and are important regulators of prostate
cancer cell proliferation, division, migration, and invasion"*. The IncRNAs
PCA3 and IncRNA-ATB have also been implicated in epithelial-to-
mesenchymal transition causing prostate cancer cells to lose features of
epithelial cells such as cell-cell adhesion and polarity and gain more inva-
sive, migratory, and anti-apoptotic properties”’. In addition, GAS-5 has
been described as a IncRNA regulated by the mTOR pathway and controls
both cellular apoptosis and the binding of AR to DNA*. Hence, IncRN As are
key players in many of the mechanisms associated with tumorigenesis in
prostate cancer.

Within prostate cancer, while ~78% of men will be diagnosed with
localized disease, 12% and 5% will be diagnosed with regionally dis-
seminated and distant disease, respectively1 * Metastatic castration-resistant
prostate cancer (mCRPC) is an aggressive form of prostate cancer that
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develops after metastatic spread as well as resistance to androgen ablation
and carries a poor prognosis’. Various IncRNAs have also been demon-
strated to regulate disease processes in mCRPC. These include PCGEM1
which has been shown to increase expression of AR splice variants, HOTAIR
which leads to increased AR expression and may contribute to enzalutamide
resistance, and MALATI and SCHLAPI, which have been demonstrated to
be upregulated in mCRPC and interact with EZH2 and the SWI/SNF
complex, respectively, to promote prostate cancer cell invasion*'""*. Thus,
while many IncRNAs have emerged recently within the context mCRPC, a
vast majority remain uncharacterized and underappreciated in their roles
within this disease.

Previous studies have leveraged integrative genomic analyses to elu-
cidate the genomic and epigenomic drivers of mCRPC, such as the occur-
rence of mutations in the AR region, genes associated with RBI biallelic
inactivation, and the presence of hypomethylated regions in prostate
cancer-specific genes" . In addition, recent studies using single-cell tran-
scriptomics (scRNA-seq) have analyzed genes associated with the treatment
of mCRPC with enzalutamide, a commonly used AR signaling inhibitor for
patients with late-stage disease'’. Studies have also analyzed genes associated
with small cell neuroendocrine prostate cancer (SCNC), an aggressive his-
tologic variant that arises due to shifts in lineage plasticity during
treatment®. Lastly, recent work has demonstrated the existence of an
immunosuppressive tumor microenvironment (TME) to preclude anti-
tumor immunity within mCRPC". Therefore, strategies to integrate mul-
tiple “-omics” datasets specific to mCRPC have the potential to also benefit
our understanding of IncRNAs in prostate cancer.

Despite the emerging roles of IncRNAs in mCRPC, the existing studies
have several limitations. First, many of these studies have focused on indi-
vidual IncRNAs with few focusing on a comprehensive characterization of
the universe of IncRNAs associated with various aspects of this disease™”".
In addition, all of the systematic studies have relied on bulk RNA-
sequencing data, which represents an admixed signal that fails to capture the
gene expression heterogeneity between cancer cells and the TME'™". In
doing so, such analyses can lead to erroneous conclusions on the processes
that are regulated by IncRNAs. Lastly, previous work on IncRNAs in
mCRPC has not integrated single-cell expression data with other data
modalities such as genomic, epigenomic, and clinicopathologic features to
provide insight on the upstream and downstream mechanisms of IncRNA
transcriptomic aberrations. Therefore, the goals of this study were to inte-
grate multiple mCRPC-specific datasets with scRNA-seq data to char-
acterize IncRNAs expressed in mCRPC cell types, their association with
genomic and regulatory features, and relationship to tumor progression,
genomic status, treatment resistance, survival outcomes, and histologic
transformation.

Results

IncRNAs are enriched in prostate cancer cells and the TME

in mCRPC

We sought to identify IncRN As enriched within cancer cells and the TME in
mCRPC based on gene expression by analyzing single-cell RNA-sequencing
data from 2170 cells derived from 15 biopsies at bone, lymph node, and liver
metastatic sites from 14 mCRPC patients profiled in ref. 16. We reasoned
that based on the high average depth (mean depth of 1.5 million reads per
cell) of sequencing coupled with the representation of various metastatic
sites, treatment histories, and histologic variants, this dataset would provide
substantial cell diversity and sequencing coverage for IncRNA analysis in
mCRPC and the TME. Accordingly, this scRNA-seq dataset demonstrated
expression of ~70% of annotated IncRNAs with IncRNAs exhibiting lower
expression values when compared to protein-coding genes (Supplementary
Fig. 1a, b).

To annotate IncRNAs enriched in various cellular compartments
within mCRPC, we labeled cells based on the clustering and annotation
performed in the original study, which revealed clusters of prostate cancer,
monocyte/macrophage, NK/T, B, neutrophil and erythroid cells. Subse-
quently, a computational pipeline was used to derive IncRNAs associated

with each major cell type and filter IncRNAs that demonstrated low
expression and poor cell specificity (“Methods”, Fig. 1a). This yielded 389
cell-enriched IncRNAs of which 91 were enriched in prostate cancer cells
(pca-IncRNAs) and 298 were enriched in the TME cells (tme-IncRNAs)
(Fig. 1b and Supplementary Table 1). These candidates were validated
using two additional scRNA-seq datasets, one from 9 bone lesions from
metastatic CRPC patients in ref. 17 and another from 11 tumors from
primary prostate cancer patients in refs. 17,20. In total, 61 genes from our
list of cell-enriched IncRNAs were expressed in these datasets and upon
grouping of cell types, we found similar trends in cell specificity thereby
validating many of these identified IncRNAs (Fig. 1c). We also compared
the cell specificity of the top enriched IncRNAs with protein-coding genes
within the original scRNA-seq dataset using similar criteria for cell
enrichment, which demonstrated that the most enriched IncRNAs had
comparable cell specificity to the most enriched protein-coding genes (Fig.
1d). We also identified IncRNAs that were known to be cell-type specific
including SCHLAPI enriched in prostate cancer cells (Fig. le,
avg log2FC=4.3, FDR=5.6 x 1077*) and SMIM25 enriched in mono-
cyte/macrophage cells (Fig. le, avg log2FC=6.71,
FDR =17 x 107%)"**", In summary, our analysis of single-cell tran-
scriptomic data revealed cell-enriched IncRNAs in mCRPC, validated
across independent datasets, that could be wused for further
characterization.

mCRPC-associated IncRNAs have a distinct genomic and reg-
ulatory landscape

After identifying IncRNAs strongly associated with prostate cancer cells in
mCRPC, we investigated genomic aberrations in these genes to assess the
contribution of somatic mutations in IncRNA alterations. We found 13/91
(14.3%) pca-IncRNAs had at least one somatic mutation using whole-
genome sequencing data from a cohort of 444 mCRPC patients in refs.
22-24. Most genes exhibited copy number variants (CNVs) at low fre-
quencies (mean = 5.4%) in this cohort, with the exception of PCAT1I being
amplified in 24% of patients in this study (Fig. 2a). A similar trend was noted
for pca-IncRNAs in TCGA primary prostate cancer data from ref. 25 as well
(Supplementary Fig. 2a). While genomic amplification could contribute to
the over-expression of PCATI in mCRPC, studies have also attributed this
to co-amplifications with the nearby oncogene MYC". Analysis of tme-
IncRNAs revealed similarly low frequencies of CNVs with the exception
PVT1, which again can be attributed to its proximity with MYC amplifi-
cations (Supplementary Fig. S2b).

Due to the non-focal nature of CNVs and the paucity of mutations
targeting IncRNAs, we reasoned that changes in the regulatory landscape
may better explain the differences in expression of cell-enriched IncRNAs.
To evaluate this hypothesis, we sought to first characterize the regulatory
landscape of cell-enriched IncRNAs. We first extracted promoter
sequences for pca- and tme-IncRNAs and performed a differential motif
search to identify putative transcription factor binding sites enriched in
either prostate or TME cells, followed by filtering for transcription factor
genes enriched in these respective cell types. This analysis identified
several known transcription factors motifs in pca-IncRNAs and impli-
cated in mCRPCbiology, such as AR, FOXA1,NKX3.1 and the ETS family
of proteins (Fig. 2b). Next, regulomic data derived from mCRPC biopsies
profiled by Zhao et al."* and Severson et al.”’, such as ChIP-sequencing
data for AR and FOXA1 transcription factor binding sites as well as
H3K27ac peaks and hypomethylated regions (HMRs), which denote
regulatory elements, was assessed for overlap with cell-enriched IncRNAs.
We found a strong, significant enrichment for pca-IncRNAs (AR: 60.4%,
FOXA1:49.5%, H3K27ac: 74.7%, HMR: 75.8%,) and a weaker enrichment
for tme-IncRNAs (AR: 48.3%, FOXA1: 34.2%, H3K27ac: 53.4%%, HMR:
63.8%) overlapping these regulatory features (Fig. 2¢). In addition, we
analyzed methylation profiles from mCRPC and benign prostate tissue for
these regions near transcriptional start sites. This demonstrated a large
decrease in methylation for regulatory elements in pca-IncRNAs (mini-
mum total methylation difference =—30%) when compared to tme-
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Fig. 1 | Discovery and validation of prostate and TME-enriched IncRNAs.

a Schematic of IncRNA discovery and validation from scRNA datasets, followed by
integration with mCRPC datasets. b Heatmap of Z-scores of log2 TPM expression of
prostate (91) and TME (289)-enriched IncRNAs. ¢ Validation of common cell-
enriched IncRNAs in discovery set from ref. 16 (right) with scRNA-seq datasets from
ref. 17 (left) and ref. 20 (middle). IncRNAs and their corresponding clusters are listed
as rows on the right side of each plot with cell types labeled as columns on the bottom
and are grouped based on cell lineage. Cells in ref. 17 are grouped as such: Tumor as
tumor; Mature B, mem B, Pro B, and immature B cells as B lineage; CTL1/2, NK,

NKT, CD4 + /CD8+ naive, Treg Active/Inactive, and Th1/17 as NK/T cells;
Mono1/2/3, TAM, TIM, mDC, Monocyte progenitor as monocyte/macrophages;
and erythroid as erythroid. This dataset did not contain neutrophils. Cells in ref. 20
are grouped as such: Epithelial as tumor; B and Plasma cell as B lineage; T cell as NK/
T, and Myeloid as both neutrophil and monocyte/macrophage. This dataset did not
contain erythroid cells. d Top two enriched IncRNAs in each cell type vs. top two
enriched protein-coding genes. e UMAP plots of SCHLAPI enriched in prostate
cancer cells and SMIM25 enriched in monocyte/macrophages.

IncRNAs (minimum total methylation difference=—13.3%) and a
background set of IncRNAs (minimum total methylation difference =
—8.65%, Fig. 2d). A similar trend was also noted for cell-specific IncRNAs
between mCRPC and primary prostate cancers (Supplementary Fig. 2¢).

The correlation between methylation and gene expression at H3K27ac
and HMR regions showed the largest anticorrelation for pca-IncRNAs
(H3K27ac: mean Pearson correlation = —0.53; HMR: mean Pearson
correlation = —0.55) and a weaker anticorrelation for tme-IncRNAs
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Fig. 2 | Epigenomic features are enriched and functionally important in mCRPC-
associated IncRNAs. a Mutational landscape of pca-IncRNAs with at least one
somatic mutation in mCRPC in refs. 22-24. b Transcription factor binding site
(TFBS) motifs in pca- (n =91) and tme- (n = 289) IncRNAs after filtering for
protein-coding genes in prostate/TME cell types. ¢ Enrichment of overlap for AR,
FOXA1, and H3K27ac ChIP-seq and HMRs in prostate (n =91), TME (n = 289),

and remaining IncRNAs in hg38 (n = 16173).”*” denotes significant overlap and
“ns” denotes nonsignificant overlap'**. d Sum of methylation differences of reg-
ulatory elements in prostate, TME, and remaining IncRNAs in hg38 downsampled
to 91 genes between mCRPC and benign prostate'”. e Correlation of H3K27ac/HMR
methylation and RNA expression in prostate (n = 28), TME (n = 27), and remaining
IncRNAs in hg38 (n = 439) with statistically significant associations".

IncRNAs (H3K27ac: mean Pearson correlation = —0.50; HMR: mean
Pearson correlation = —0.47) (Fig. 2e). Lastly, we used EpiMap data of
H3K27ac profiling from various cell lines to characterize regulatory ele-
ments identified in mCRPC”. H3K27ac peaks near tme-IncRN As showed
strong enrichment in data derived from epithelial, B- and T-cell lines,
which is consistent with the role for these IncRNAs in immune cells
(Supplementary Fig. S2d). In contrast, peaks near pca-IncRNAs were
highly enriched in epithelial, reproductive and gastrointestinal cell lines,
which is a similar finding as demonstrated in prior literature (Supple-
mentary Fig. S2d)*. Taken together, these results indicate the presence of
key regulatory elements, namely transcription factor binding sites, histone
acetylation peaks, and HMRs, that are enriched and functionally impor-
tant for dictating gene expression primarily of pca-IncRNAs.

IncRNAs exhibit cell-specific expression changes during tumor
progression

To assess IncRNAs associated with prostate cancer progression, we per-
formed differential expression analysis comparing bulk RNA-Seq data
between primary prostate cancers in ref. 25 (TCGA, n=333)" and
mCRPC (n =74). Differentially expressed IncRNAs were subsequently
categorized as either enriched in prostate cancer cells or TME cells based
on the aforementioned single-cell analysis. This revealed several known
and underappreciated IncRNAs that have significantly altered expression
during tumor progression in a cell-specific fashion (Fig. 3a and Supple-
mentary Table 2). For example, we found the pca-IncRNAs SCHLAPI and
PCAT14, both known to be enriched in prostate cancer cells, to exhibit
upregulation (logFC = 1.28, FDR=1.63x107%) and downregulation
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Fig. 3 | Single-cell analysis informs bulk expression analysis of IncRNAs asso-
ciated with prostate cancer progression. a Heatmap of differentially expressed
IncRNAs in bulk RNA-seq for n = 333 primary prostate and n = 74 mCRPC samples
with significantly upregulated genes in red and downregulated genes in blue”. Cell
types associated with each gene are shown on the left side. Samples are ordered
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differentially expressed NK/T-IncRNAs and T-cell subtypes in scRNA-seq data.

¢ Correlation between expression of MIAT and CYTOR with exhausted T-cell
markers from in ref. 16 in bulk mCRPC RNA-seq data'®. d Methylation of differ-
entially methylated regions (x axis) nearby differentially expressed (y axis) IncRNAs
in mCRPC vs. primary prostate cancer'’. e Gene plot of SCHLAPI overlaid with
HMRs (red), H3K27ac (black), AR binding sites (green), and differentially methy-
lated regions (DMRs) (purple) between mCRPC vs. primary prostate cancer'**.

(logFC = —3.77, FDR = 1.83 x 107*°), respectively, in metastases com-
pared to primary tumors. This recapitulates similar findings for these
IncRNAs in previous studies®”. Several underrecognized associations
were also detected such as an increase in NK/T-cell-enriched IncRNAs
MIAT (logfC =2.1, FDR=1.94 x 107*®) and CYTOR (logFC =3.33,

FDR =2.86 x 10~*) in mCRPC samples. Based on further sub-setting of
single cells from mCRPC biopsies, these genes were found to be enriched
in CD8 4+ PDCD1 + T cells among NK/T-cell IncRNAs (Fig. 3b). Further
supporting this, a strong positive correlation was observed in bulk
sequencing data between MIAT and CYTOR expression with genes
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associated with a dysfunctional T-effector cell phenotype (Pearson cor-
relation 0.66, P=2.2x 107", Fig. 3c). This result is consistent with an
earlier study implicating these IncRNAs in immune infiltration within the
TME”. Likewise, our study associates these genes with immune

checkpoint signaling in prostate cancer due to the integration of single-cell
analysis™.

To further explore potential mechanisms of IncRNA dysregulation
during prostate cancer progression, we annotated differentially expressed
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IncRNAs with nearby differentially methylated regions identified in a prior
report from ref. 14 between mCRPC and primary prostate cancer'’. A
majority of genes that were upregulated in metastases were also found to
have decreased levels of CpG methylation nearby (Fig. 3d), suggesting
methylation could be major mechanism of IncRNA regulation in mCRPC.
Several of these included both pca-IncRNAs as well as tme-IncRNAs, sug-
gesting that a variety of cell-enriched IncRNAs exhibit alterations in

methylation as a result of tumor progression. For example, SCHLAPI was
found to contain decreased regions of methylation near regulatory elements
for transcription factor binding, which may explain its upregulation in the
metastatic setting (Fig. 3e). Taken together, via integration of multi-omic
bulk and single-cell transcriptomic data we delineated cell-specific changes
in IncRNA expression and a potential link to methylation during prostate
cancer progression.
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Prostate-enriched IncRNAs are associated with AR amplifica-
tions and are correlated with enzalutamide treatment

The AR is a major driver of prostate cancer progression and treatment
response and AR signaling inhibitors are commonly used for patients with
mCRPC™". Thus, we sought to understand the role of AR signaling in
IncRNA expression. We performed differential expression analysis of bulk
RNA-seq data between mCRPC biopsies with AR region amplifications
relative to wild-type tumors determined via whole-genome sequencing
from ref. 13. This revealed several IncRNAs upregulated with AR amplifi-
cations with many of them enriched in prostate cancer cells (Fig. 4a and
Supplementary Table 3). When applying this methodology to protein-
coding genes in this dataset, we recovered many established AR-upregulated
pca- protein-coding genes such as SLC45A3 and TMEFF2 (Supplementary
Fig. 3a)'". Our results also recapitulated known AR-upregulated pca-
IncRNAs such as PCAT14 (Fig. 4a)”’. Moreover, this analysis yielded AR-
upregulated pca-IncRNAs, such as COLCAI, which has only recently been
implicated in prostate cancer”. Analysis of COLCAI at the gene level
demonstrated several AR and FOXAL1 binding sites within regulatory ele-
ments near its gene body, suggesting its regulation by AR and AR co-
regulators (Fig. 4b). Similarly, another example of an underappreciated
IncRNAa that potentially contributes to mCRPC is TP53TG1. This pca-
IncRNA was upregulated in mCRPCs with AR amplifications and was
downregulated upon enzalutamide treatment. Furthermore, its promoter
contains multiple regulatory elements and AR binding sites (Supplementary
Fig. S3b). Prior literature has demonstrated an oncogenic role for TP53TG1
in pancreatic ductal adenocarcinoma, retinoblastoma, and nasopharyngeal
carcinoma’™ ", and future work will be needed to validate the function of
this IncRNA in mCRPC.

Using our list of AR-upregulated pca-IncRNAs, we next sought to
validate the association of androgen signaling with pca-IncRNA expression
and further explore this relationship in the context of AR directed therapies.
To do this, we analyzed data from a recently published RNA-seq dataset
with biopsies taken from 21 mCRPC patients at baseline and during pro-
gression with enzalutamide profiled in refs. 30,31. Although the number of
IncRNAs profiled in these studies was limited, we found that expression of
AR-upregulated pca-IncRNAs that were measured in this dataset, including
PCATI14 and COLCAI, varied across patient biopsies with three major
clusters containing either high, moderate, or low expression of these genes,
respectively (Fig. 4c). These genes were subsequently found to contain
positive correlations with both AR gene expression (Pearson correla-
tion=0.4) and AR regulon activity (Pearson correlation = 0.52) as measured
by the VIPER algorithm in the original studies (Fig. 4d)”. Based on this
association with AR signaling, we reasoned that patients who responded to
enzalutamide treatment (defined by a 50% decrease in PSA at 12 months in
the original studies) should downregulate the expression of AR-upregulated
pca-IncRNAs when compared to patients who failed to respond to treat-
ment. We observed a trending decrease in pca-IncRNA expression (paired T
test P value = 0.057, Supplementary Fig. 3c) and a significant decrease in
AR-upregulated protein-coding gene expression (paired T test P value =
0.0017, Supplementary Fig. 3d) in patients responding to treatment.

These studies also identified three patients whose tumors developed
treatment resistance due to alterations in lineage plasticity from an
AR + /NE— phenotype to an AR-/NE- status, suggesting alterations in AR
target gene expression. Using our methodology, expression of AR-
upregulated pca-IncRNAs (paired T test P value = 0.073, Fig. 4e) showed a
strong trend towards decreased expression, which was similar to the findings
with AR-upregulated pca-protein-coding genes (paired T test P value = 0.22,
Supplementary Fig. 3e) and the AR VIPER score (paired T test P value = 0.13,
Supplementary Fig. 3f) from the original studies”, suggesting that lineage
plasticity due to treatment resistance may also alter the landscape of AR-
regulated IncRNAs. In summary, we found that AR amplifications are
strongly associated with expression of pca-IncRNAs, which led to the iden-
tification of androgen-regulated IncRNAs. Moreover, these genes were found
to be associated with response to enzalutamide and may exhibit alterations
during lineage shifts as a result of treatment resistance.

TME-IncRNAs are enriched in RB1 loss tumors and are asso-
ciated with poor overall survival

Previous studies have found mutations in the tumor suppressor gene
RBI to be associated with poor overall survival across multiple tumor
types and within mCRPC""*’. Moreover, prognostic signatures
have been defined to detect genes that exhibit transcriptomic per-
turbations in tumors with RB1 deficiency, but these have not focused
on therole of IncRNAs". To define IncRNAs associated with RBI loss,
we performed differential expression analysis of bulk RNA-seq data
between mCRPC biopsies with biallelic inactivation of RBI relative to
monoallelic and wild-type tumors determined via whole-genome
sequencing from ref. 13 (Supplementary Table 4). Upon annotating
IncRNAs to their respective cell types, it was found that many upre-
gulated IncRNAs were not enriched in a particular cell type, likely
reflecting non-cell-specific proliferative pathways that typically
increase upon RBI inactivation. However, a subset of upregulated
IncRNAs were annotated as mostly immune cell-specific tme-
IncRNAs, suggesting a link to immune infiltration in RBI deficient
tumors (Fig. 5a). In contrast, downregulated genes consisted of pca-
IncRNAs associated with androgen signaling. Similar findings were
found for protein-coding genes in this dataset (Supplementary
Fig. 4a).

For downstream analysis, we focused on upregulated tme-IncRNAs
enriched in components of the immune system (NK/T, monocyte/macro-
phage, neutrophil, B lineage cells) and removed erythroid progenitor-
enriched IncRNAs due to their tendency to overlap with genes associated
with proliferative pathways. Differential motif analysis found that IncRNAs
upregulated in RBI loss tumors showed enrichment for E2F/SP1 tran-
scription factors (SP1 FDR=3.2x 107", E2F4 FDR=9.8 x 107"°), con-
sistent with the role of RB1 in cell cycle regulation. However, immune-
specific tme-IncRNAs were enriched for motifs specific to immune cells,
such as the IRF family of transcription factors (IRF8 FDR = 1.6 x 10, Fig.
5b). Moreover, pathway analysis in sScRNA-seq data revealed that this subset
of genes was highly correlated with immune and inflammatory pathways
(Hallmark TNFA signaling Pearson correlation=0.80) and distinct from the
pathways seen with the entire gene set, which consisted of epithelial-to-
mesenchymal transition (Pearson correlation = 0.88), G2M (Pearson cor-
relation=0.78) and E2F (Pearson correlation = 0.72) signatures classically
associated with RBI deficiency (Fig. 5¢)". Similar results were also seen for
protein-coding genes and their corresponding pathways associated with
RBI deletions (Supplementary Fig. 4b). This association with immune and
inflammatory signatures was also seen using bulk RNA-seq data (Hallmark
TNFA signaling Pearson correlation = 0.55, Fig. 5d). Furthermore, we
compared the expression of this subset of tme-IncRNAs with a previously
published tumor-intrinsic signature of genes associated with RBI loss and
poor outcomes from ref. 15. We found a strong positive correlation between
these two gene sets, suggesting that RBI loss-associated genes are correlated
with reciprocal changes in the immune microenvironment of mCRPCs
(Pearson correlation = 0.59, Fig. 5d).

To understand the contribution of cell-specific IncRNAs towards the
prognostic relevance of this existing signature of RBI loss, we tested the
association of signature activity of these tme-IncRNAs with overall survival
in mCRPC patients using outcomes data from ref. 15 (“Methods”). This
demonstrated a statistically significant relationship in both univariate and
multivariate analysis of poor overall survival with increased tme-IncRNA
signature activity (univariatee HR=14, CI=1.1-1.8, P value=0.001;
multivariate: HR = 1.43; CI = 1.09-1.9; P value = 0.011 Fig. 5e). Notably, we
confirmed that protein coding genes upregulated in RBI loss and enriched
in the TME also associated with poor patient outcome (Supplementary Fig.
4c). Further, this association with poor outcomes was not observed for pca-
IncRNAs or pca-protein-coding genes that were downregulated in RBI loss
tumors in both uni- and multi-variable analysis (Univariate: HR = 0.91,
CI=0.75-1.1, P value = 0.349; Multivariate: HR =0.96. CI=0.73-1.3. P
value = 0.794 Fig. 5f; Supplementary Fig. 4d). Therefore, our findings sug-
gest that specifically immunologic pathways, as detected by cell-enriched
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IncRNAs, are correlated with established transcriptomic aberrations in RBI-
deleted tumors and contributes to the association of these genes with poor
overall survival, highlighting the importance of the TME in mCRPCs with
this genomic alteration.

Histologic transformation induces expression of IncRNAs in
prostate cancer cells

Given the presence of a small cell neuroendocrine carcinoma (SCNC)
biopsy in the He et al. dataset, we investigated the differences in IncRNA

expression between small cell carcinomas and prostatic
adenocarcinomas'. Differential expression analysis using this dataset
revealed multiple genes upregulated in the SCNC sample that could not
be assigned to a cell type based on our current list of cell-specific IncRNAs
(Fig. 6a and Supplementary Table 5). Analysis of these genes solely in the
SCNC sample revealed that most are unique to prostate cancer cells and
were likely overlooked due to the paucity of samples containing SCNC
features in this dataset (Fig. 6b). Several genes in this list have established
associations with neuroendocrine features, such as the IncRNA RMST
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(avg_log2FC=4.63, FDR=1.52x10"'") in this gene set has been
implicated in medullary thyroid cancer, a rare neuroendocrine tumor*'.
RMST is upregulated in SCNC cells and its promoter contains several
regulatory elements that potentially control its gene expression in
mCRPC (Supplementary Fig. 5a).

Subsequent pathway association analysis revealed that SCNC-enriched
IncRNAs (SCNC-IncRNAs) were strongly associated with sonic hedgehog
signaling (Pearson correlation=0.82), which has been described in the
literature®’, while adenocarcinoma-enriched IncRNAs (adeno-IncRNAs)
were associated with androgen signaling (Pearson correlation=0.72, Fig.
5¢)”. As methylation differences have been known to contribute sig-
nificantly to neuroendocrine prostate cancer*’, we examined hypomethy-
lated regions near genes deregulated between the two histologic variants
using data from ref. 14 It was subsequently found that while SCNC-
IncRNAs displayed similar methylation values across histologic variants (¢
test P value=0.23, Fig. 5d), adeno-IncRNAs showed highly divergent
methylation profiles (f test P value = 0.003, Fig. 5d).

Next, as other groups have developed signatures of neuroendocrine
prostate cancer'**, we sought to compare our single-cell-derived signature
against these. Using bulk RNA-seq data, we found a significant level of
positive correlation between our SCNC-IncRNA signature with an estab-
lished set of SCNC markers based on protein-coding genes from ref. 43
(Pearson correlation=0.45, Fig. 5¢)". This was comparable to a previously
published SCNC-IncRNA signature derived without single-cell analysis by
Ramnarine et al."” (Pearson correlation=0.40). However, when performing
AUC analysis to discriminate histologic variants in a validation cohort of 3
SCNC and 71 CRPC-adenocarcinomas using bulk RNA-seq data, our sig-
nature had high sensitivity and specificity for detecting neuroendocrine
histology and outperformed the previously published IncRNA signature
(Single-cell signature AUC = 0.96, Ramnarine et al. signature AUC = 0.53,
Fig. 5f). These findings suggest that our signature of SCNC/adeno-IncRNAs
is strongly associated with the underlying biology of SCNC and detects
prostate cancer cell-specific shifts in the IncRNA landscape during histo-
logic transformation.

Discussion

In this study, we used single-cell transcriptomic data from mCRPC biopsies
coupled with a computational pipeline to identify cell-enriched IncRNAs
within prostate cancer cells and the TME. In doing so, we recovered known
and discovered many IncRNAs expressed specifically in prostate cancer or
TME cells that had previously been masked by bulk sequencing data in
prostate cancer. This allowed us to uncover previously underappreciated
associations between these genes and regulatory elements, tumor progres-
sion, genomic status, and histopathologic variants.

We believe that this is a unique study in that we perform an mCRPC-
specific characterization of the IncRNA landscape, as well as utilize single-
cell transcriptomic data to yield insights into the cell-specific nature of
IncRNAs in this disease. In this analysis, we identified pca-IncRNAs such as
PART1, which has been implicated in oncogenesis due to its effects on cell
proliferation and invasion*. This analysis also identified tme-IncRNAs in
mCRPC, such as SMIM25 in monocytes, which has been shown to be a
monocyte-specific marker with studies implicating it in autoimmune dis-
eases and antigen processing and presentation across various tumor
types**’. The IncRNA PVT1 was found to be specific to T cells and studies
have shown it to influence metabolic pathways in T cells in the context of
autoimmunity, as well as antigen processing and presentation throughout
several cancers'®". B-cell-specific IncRNAs included LINC00926 with lit-
erature pointing to its role in B cells through its functions on cell junction,
protein kinase, and RAS pathways within the TME®. Lastly, we identified
FAM157C in neutrophils, which has been demonstrated to promote gran-
ulocyte proliferation®.

In this study, we were also able to map the regulatory landscape in
mCRPC-associated IncRN As, which was crucial since we found evidence of
aberrations in regulatory elements due to DNA methylation across prostate
cancer progression and histologic variants. Upon coupling the results of our

single-cell analysis with bulk RNA-seq data for prostate cancer progression,
we were able to map out cell-specific alterations in IncRNA expression that
had eluded prior investigations. We found well-described changes in pca-
IncRNAs such as downregulation of PCATI4 and upregulation of
SCHLAPI in metastatic samples®'’. Moreover, we discovered changes in
NK/T-IncRNAs in the metastatic setting, with data suggesting an increase in
CD8 + PDCD1 + T cells that harbor an exhausted T-cell phenotype based
on the expression of CYTOR and MIAT. Prior work has suggested a role for
these IncRNAs in the TME with MIAT being demonstrated to correlate with
infiltrating immune cells in breast cancer”’. However, future studies will
need to be conducted to better establish the mechanistic role of these
IncRNAs in dysfunctional T cells.

Pca-IncRNAs were found to be strongly associated with AR region
amplifications and AR signaling, which recapitulated previously char-
acterized genes such as PCAT14”. Our analysis also identified androgen-
regulated IncRNAs such as COLCA1, which was correlated with AR geno-
mic status and contained AR binding sites at nearby regulatory elements,
suggesting its potential importance in this disease. Prior work on COLCA1
has implicated it in susceptibility to colorectal cancer™. Moreover, a recent
study has also demonstrated AR binding sites in the promoter region of
COLCA1, but future work will need to establish a role for this gene in
prostate cancer’”’. When comparing patient biopsies treated with enzaluta-
mide in laser-capture microdissected RNA-seq data, we found a trending
decrease in expression of pca-IncRNAs in responders to treatment as well as
in three patients whose tumors converted from an AR + /NE- to an AR-/
NE- status. Prior work on these three patients has suggested a role for lineage
plasticity with a significant downregulation of AR activity and AR gene
expression”’. While it is plausible that AR-regulated IncRNAs should also
exhibit a concomitant decrease in expression during lineage plasticity, more
samples with deeper sequencing to effectively capture the space of pca-
IncRNAs and detect differences at lower expression magnitudes are needed
to further establish these findings.

Next, we analyzed IncRNAs associated with RBI biallelic inactivation
and found many genes to be correlated with proliferative signatures that
have been demonstrated in other studies”’. However, by coupling these
genes with our results from single-cell analysis, it was discovered that a
subset of genes was enriched in immune cells, suggesting a relatively
underexplored role for immune signaling in these tumors. Other studies in
ovarian, bladder, and localized prostate cancer have pointed to similar
conclusions in that tumors with RBI deletions were found to harbor a
distinct immune profile due to the presence of tumor-infiltrating
lymphocytes® ™. This subset of tme-IncRNAs was correlated with a pre-
viously published tumor-intrinsic transcriptomic signature of RBI loss,
suggesting that proliferative pathways in cancer cells may lead to con-
comitant changes in the immune microenvironment'’. Furthermore, these
IncRNAs were found to be associated with poor overall survival, indicating
that immune signaling may partially explain the prognostic value of RBI
deletions in mCRPC. Hence, our single-cell analysis of IncRNAs adds a
further level of understanding to the biological processes, namely immune
and inflammatory signaling, that are associated with existing RBI loss sig-
natures. Future single-cell analysis of mCRPCs with genomic aberrations in
RBI can allow for a higher-resolution understanding of the immune
microenvironment changes in these tumors.

Our final vignette examined the IncRNA landscape in SCNC and found
numerous prostate cancer cell-specific changes in IncRNA expression. The
utility of single-cell analysis was evident from the finding that our SCNC/
adeno-IncRNA signature had high sensitivity/specificity in discriminating
tumor pathologies and was strongly associated with markers of neuroendo-
crine differentiation and hedgehog signaling. Several genes in our signature
have been studied in the context of neuroendocrine differentiation. These
include RMST, which has been shown to be associated with medullary
thyroid cancer, a rare neuroendocrine tumor, and HOXB-AS3, which has
been demonstrated to exhibit high expression in neuroendocrine cells during
spinal cord development*"**. Future work will be required to better establish
these links between our single-cell-derived IncRNAs and SCNC pathology.
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In conclusion, we performed an integrative analysis of single-cell
transcriptomic and bulk multi-omic data from mCRPC biopsies to char-
acterize the IncRNA landscape of this disease. Our findings revealed a dis-
tinction between pca- and tme-IncRNAs, as well as enrichment of regulatory
elements in these genes. Differential gene expression analysis of mCRPCs
and primary prostate cancers revealed several known and underrecognized
IncRNAs that exhibited cell-specific expression changes with tumor pro-
gression as well as alterations in DNA methylation. AR region amplifica-
tions were found to be associated with pca-IncRNAs, which showed a
trending decrease in expression in responders to enzalutamide and may be
associated with lineage plasticity during treatment resistance. Tumors with
RBI biallelic inactivation were found to upregulate expression of TME-
enriched IncRNAs, which were correlated with a tumor-intrinsic signature
of RBI loss and also associated with poor outcomes. Lastly, we discovered
SCNC-IncRNAs that were correlated with established neuroendocrine
markers and strongly capable of distinguishing prostate cancer histology.
Our findings demonstrate the utility of single-cell analysis to refine our
understanding of IncRNAs in mCRPC and nominate potential mechanisms
of actions based on cell-type enrichment. These results will serve as a
resource to guide future mechanistic work to explore the biology of these
IncRNAs within their appropriate cell types and contribute to the under-
standing of IncRNAs in the disease processes underlying mCRPC.

Methods

Single-cell RNA-seq prostate cancer datasets

To characterize IncRNAs in mCRPC cancer cells and the tumor micro-
environment, we utilized published single-cell transcriptome sequencing
data from mCRPC and primary tumors. These included sequencing data
from He et al. (lymph node, bone and liver metastases, n = 14) to, Kfouryetal.
dataset (bone metastases, 7 =9)", Chen et al. dataset (lymph node metas-
tases, n=2)*, and Song et al. (primary tumors, n=11)" (Fig. 1a).

Bulk genomic, transcriptomic, methylome, transcription factor,
and clinical outcomes mCRPC datasets

Whole-genome sequencing data were analyzed from ref. 22 (n = 444) and
ref. 13 (n=101). DNA methylation data (n = 100) were obtained from ref.
14 at dbGAP (phs001648) and bulk RNA-sequencing data (n=74) at
EGAS00001006275. Overall survival data with clinical covariates for these
mCRPC samples was downloaded from ref. 15 (n=100). Laser-capture
microdissection RNA-sequencing data with associated metadata was
obtained from ref. 30 (n =22). Chromatin Immunoprecipitation (ChIP)-
sequencing datasets for AR, FOXA1, and H3K27ac were obtained from ref.
26 (n=4). RNA-sequencing count data from TCGA primary prostate
cancer samples (n=333) and normal adjacent tissue (n=50) and the
associated metadata were downloaded from ref. 25.

Discovery and validation of cell-specific IncRNAs in mCRPC
and TME

To identify IncRNAs with cell-type-specific expression in mCRPC prostate
cancer cells and the TME, we performed differential expression analysis
using the Seurat package to compare IncRNA expression across cell types
using data from refs. 16,57. TPM normalized data from He et al. were log-
transformed and merged with metadata labels. Subsequently, differential
gene expression analysis for IncRNAs contained in CellRanger GRCh38-
2020-A was performed by using the Seurat package R function Fina-
1AlIMarkers and filtered for genes detectable in at least 10% of cells with an
adjusted P value of less than 10% and average log2 fold change greater than
1. This yielded a candidate list of cell-enriched IncRNAs”.

To ensure that cell-enriched IncRNAs identified in ref. 16 were not also
enriched in a different cell type not profiled in ref. 16, additional filtering was
performed. Two other mCRPC scRN A-seq datasets were used for filtering'*.
Raw count data from ref. 17 were log CPM normalized followed by merging
with metadata labels"”. Similar differential gene expression analysis for
IncRNAs was performed on this dataset. For each cell type in the candidate
list, cell-enriched IncRNAs were filtered if they were found to be enriched in

different cell types in ref. 17 than their original designation. A similar
approach was used after downloading marker genes from ref. 56 by filtering
and removing cell-enriched IncRNAs corresponding to cell types unique to
this dataset™. This yielded a final list of cell-enriched IncRNAs including
IncRNAs enriched in prostate cancer cells (pca-IncRNAs) and IncRNAs
enriched in the TME cells comprising of various immune cells (tme-
IncRNAs). A similar approach was also used for protein-coding genes in ref.
16 to derive a final list of cell-enriched protein-coding genes in prostate
cancer cells and TME cells.

For orthogonal evidence of cell specificity, we used scRNA-seq data
from refs. 17,20. Similar differential expression was performed to identify
cell-enriched IncRNAs in the Kfoury et al. and Song et al. datasets. Cell-
enriched IncRNAs in these two datasets were used to confirm cell-type-
specific expression of the nominated cell-enriched IncRNAs identified in ref.
16. Due to platform differences, only a subset (15.7%) of cell-enriched
IncRNAs identified in ref. 16 was profiled in the Kfoury et al. and Song et al.
datasets and used for this orthogonal validation'**%”.

Motif analysis

Promoters for motif analysis of prostate- and TME-enriched IncRNAs were
extracted using the promoters function in the EnsDb.Hsapiens.v86 R
package™. Next, the getSeq function was used in the BSgenome.Hsa-
piens.UCSC.hg38 R package™. Fasta files were uploaded to https://meme-
suite.org/meme/tools/centrimo to perform differential motif analysis®.
Motif enrichment was set to “Anywhere” and the HOCOMOCO Human
motif database was used. Motifs in Fig. 2b were further filtered for tran-
scription factor protein-coding genes enriched in prostate and TME cell
types using the FindMarkers R function with cutoffs of genes being
detectable in at least 10% of cells with an adjusted P value of less than 10%
and average log2 fold change greater than 1.

Enrichment of regulatory elements with IncRNAs

For AR, FOXA1, and H3K27ac, ChIP-seq data from ref. 26 was used with
replicates being concatenated and merged using bedtools merge***'. UCSC
liftover was used to convert coordinates to Hg38%*. Hypomethylated regions
(HMRs) from ref. 14 were also obtained from the supplementary data'.
Overlap of ChIP-seq and HMR data with IncRNA gene body Hg38 coor-
dinates was performed using the subsetByOverlaps R function and
enrichment was assessed using Fisher test followed by FDR correction®.

Methylation profiles of regulatory elements with IncRNAs

The DMR bedgraph file between mCRPC and benign prostate was used
from ref. 14 and converted to BigWig format using the UCSC bed-
GraphtoBigWig tool”. Next, ChIP-seq and HMR bed files were subset to
include regions within a 20-kilobase window around IncRNA TSSs using
the promoters function in the EnsDb.Hsapiens.v86 R package™. Deeptools
functions ComputeMatrix and PlotProfile were used to plot the sum of
DMR methylation differences within this subset of regions for prostate,
TME, and a background set of IncRNAs*. All sets of IncRNAs were
downsampled to 91 to match the number of prostate-enriched IncRNAs
and remove any bias due to the size of the gene set.

Correlation of methylation and expression for IncRNAs

Results from correlation analysis in ref. 14 was obtained from the supple-
mentary data’. For both HMRs and H3K27ac regions with significant
Spearman correlation between methylation and gene expression after FDR
correction, the results were subset to only include IncRNAs. Regions were
grouped if they demonstrated associations with either any of the 91 prostate,
289 TME, or the remaining 16173 IncRNAs. If multiple regions existed, the
one with the lowest associated P value was retained.

Differential expression analysis

The R packages EdgeR and Limma were used to perform differential
expression analysis in bulk RNA-seq for the comparison between TCGA
primary prostate cancer vs. WCDT mCRPC samples, as well as within
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mCRPC samples for AR region amplification vs. wild-type and RBI biallelic
inactivation vs. monoallelic/wild-type tumor biopsies, using count data with
tumor purity as a covariate®. For differential expression analysis in scRNA-
seq data, the R function FindMarkers from the Seurat package was used with
samples grouped by “liver” to assess IncRNAs associated with SCNC
histology™”. Significance thresholds for expression analysis was an absolute
average log2 fold change greater than 1 and adjusted P value less than 10%,
except for the analysis of AR region amplification which used an adjusted P
value less than 25% to detect known AR-regulated IncRNAs and protein-
coding genes.

Methylation analysis

Differentially methylated regions (DMRs) for mCRPC vs. primary prostate
cancer and mCRPC vs. benign prostate as well as HMRs for mCRPCs were
obtained from refs. 14,66. HMRs and DMRs were annotated to IncRNAs
using the nearest function”. HMR signatures were scored using the com-
bined z-score approach® and associated with tumor histology for 5 SCNC
and 95 adenocarcinomas in ref. 14 and compared using paired T test.

Single-cell RNA-seq pathway association analysis

scRNA-seq data from ref. 16 was processed as described in “Discovery and
validation of cell-specific IncRNAs”™". Expression matrices were converted
to pseudo-bulk data for each sample biopsy. The signature activity of
IncRNA signatures and MSigDB Hallmark pathways for each sample was
extracted using the combined z-score approach” and correlated against
each other using Pearson correlation coefficients (PCCs). PCCs were ranked
in decreasing order to identify the top correlated pathways with IncRNAs.
MSigDB Hallmark Pathways were identified in the R package msigdbr®.

Bulk RNA-seq pathway association analysis

Bulk RNA-seq data for 74 mCRPC samples in the form of count data was
filtered for lowly expressed genes and log CPM normalized, all using the R
package edgeR™. Signature activity of IncRNA signatures calculated using
the combined z-score approach®” was correlated against known pathway
gene sets for genes using PCCs. MSigDB Hallmark Pathways were identified
in the R package msigdbr®. Exhausted T-cell markers were used as
described in ref. 16 and include the following: PDCD1,HAVCR2,TOX,TI-
GIT,ICOS, FASLG, LAG3, ENTPDIITGAE. Neuroendocrine prostate
cancer gene sets were obtained from refs. 19,43. Genes upregulated in RB1
loss tumors were obtained from ref. 15.

The area under the curve analysis

Bulk RNA-seq data for 74 mCRPC samples was processed as described in
“Bulk RNA-seq pathway association analysis.” The single-cell signature of
tumor histology was derived by identifying differentially expressed genes
between adenocarcinomas and the small cell carcinoma sample from ref. 16
as described in “Differential expression analysis™". These differentially
expressed IncRNAs were used as our signature. A previously published set of
122 neuroendocrine prostate cancer IncRNAs was obtained from refs. 19,69.
Signature activity of both signatures in bulk mCRPC RNA-seq data was
extracted using the combined z-score approach®. Samples were grouped
based on histology from the associated clinicopathologic metadata in ref. 13
with three mCRPC tumors labeled as “CRPC-small cell” and the remaining
71 mCRPC tumors “CRPC-adeno”. AUC analysis was performed using the
roc function in the pROC R package®.

Survival analysis

Bulk RNA-seq data for 74 mCRPC samples was processed as described in
“Bulk RNA-seq pathway association analysis” with genomic annotations for
RBI derived from ref. 13 Overall survival and clinical covariates were
obtained from ref. 15. In total, 59 samples were matched among these datasets
and used for survival analysis. For univariate analysis, overall survival from
the date of diagnosis was regressed onto the signature activity calculated using
the combined z-score approach®” on a continuous scale of RB1 loss-associated
TME (NK/T, monocyte/macrophage, neutrophil, and B lineage cells) or

prostate-enriched IncRNAs using Cox-proportional hazard modeling with
the survival R package”. Multivariate analysis was performed similarly with
additional covariates for serum LDH, PSA, ALP, and hemoglobin con-
centrations, along with ECOG performance status and the presence of visc-
eral metastases and enzalutamide resistance. Analysis for protein-coding gene
sets associated with RBI deletions was done using a similar approach.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability

DNA methylation is available at dbGAP (phs001648) and bulk RNA-
sequencing data at EGAS00001006275. All other data analyzed during this
study are included in the following published articles and their supple-
mentary information files'*7?%?%#2630%,

Code availability
All analysis scripts can be found at https://github.com/ChrisMaherLab/
scRNA_PCa.
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