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Single-cell RNA sequencing for the identification of early-stage
lung cancer biomarkers from circulating blood
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Lung cancer accounts for more than half of the new cancers diagnosed world-wide with poor survival rates. Despite the
development of chemical, radiological, and immunotherapies, many patients do not benefit from these therapies, as recurrence is
common. We performed single-cell RNA-sequencing (scRNA-seq) analysis using Fluidigm C1 systems to characterize human lung
cancer transcriptomes at single-cell resolution. Validation of scRNA-seq differentially expressed genes (DEGs) through quantitative
real time-polymerase chain reaction (qRT-PCR) found a positive correlation in fold-change values between C-X-C motif chemokine
ligand 1 (CXCLT) and 2 (CXCL2) compared with bulk-cell level in 34 primary lung adenocarcinomas (LUADs) from Stage | patients.
Furthermore, we discovered an inverse correlation between chemokine mRNAs, miR-532-5p, and miR-1266-3p in early-stage
primary LUAD:s. Specially, miR-532-5p was quantifiable in plasma from the corresponding LUADs. Collectively, we identified markers
of early-stage lung cancer that were validated in primary lung tumors and circulating blood.
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INTRODUCTION

Globally, 18 million people were diagnosed with various cancers in
2018. The mortality rate for patients with lung cancer was twice
(18.4%) that of other cancers, including colorectal (9.2%), breast or
stomach (6.6%), and liver (8.2%) cancers'. Lung cancer represents
more than half of all new cancers diagnosed in North America®?
and is predominantly associated with smoking behavior. The
5-year-survival rate for lung cancer patients diagnosed at stage IV
is significantly poorer (19%) compared with 55% for stage |
diagnosis, as well as that of prostate, breast, and colon cancer
patients of which the 5-year-survival rates are 95%, 88%, and 64%,
respectively®. For non-small cell lung carcinoma (NSCLC), the most
common form of lung cancer, molecular diagnostic technologies
are based on a small number of biomarkers using a curated panel
of oncogenes* that form the basis for targeted therapies. Common
genomic alterations occur in EGFR, HER2, KRAS, c-MYC, and ALK
genes. Therapeutic targeting of altered genes has modestly
improved clinical outcomes, for example, ~20-30% of NSCLC
express enhanced levels of the mutated EGFR, warranting
treatment with the inhibitor Iressa that permits progression-free
survival for up to 10 months® with up to 60% of patient
developing resistance to treatment or acquiring additional
mutations®. Therefore, it is paramount that novel molecular
biomarkers for diagnosis of lung cancers at early stage are
discovered in order to improve survivorship and quality of life
through early detection.

Cancers are comprised of tumor cell populations with diverse
transcriptional programs that contribute to the complexity of the
cancer and are considered primary contributors to therapy
resistance, recurrence, and poor prognosis’. Recent innovations
in next-generation sequencing (NGS) and microfluidics technolo-
gies are enabling scientists to profile differential gene expressions
at the level of single cells using scRNA-seq applications. In
comparison with conventional RNA-seq (bulk RNA-seq), innovative
scRNA-seq applications facilitate the detection of DEGs within
individual cells and across cell populations. The new knowledge

gained from scRNA-seq analysis will contribute to the identifica-
tion of predictive biomarkers that will lead to improvements in
molecular diagnostic screening panels and discovery of persona-
lized cancer therapies that take into consideration the uniqueness
of an individual cancer.

For this study, we performed a 3’-end scRNA-seq analysis using
Fluidigm C1 systems to identify new candidate genes that could
serve as molecular biomarkers for diagnosis of lung cancers. We
used four human NSCLC epithelial cell lines, A549, H460, H1299,
and Calu3, for gene expression profiling at single-cell resolution
followed by validation in primary lung tumors against tumor-
adjacent normal lung tissues (hereafter normal lung tissues)
resected from 34 early-stage LUAD patients. We discovered
differential expression of microRNAs that regulate chemokine
mRNA expressions through epigenetic means by further validating
blood (plasma) samples collected from corresponding LUAD
patients at the time of surgical resection. Overall, the detection
of DEGs at single-cell resolution followed by successful validation
in lung cancer cells, primary tumors, and circulating blood has
enabled the identification of novel molecular markers that can be
used for diagnosis of early-stage lung cancer.

RESULTS

Construction of dual-indexed and 3’-end enriched cDNA
libraries for scRNA-seq

The transcriptomes of human NSCLC were characterized at
single-cell resolution through profiling DEGs. Mature mRNA
molecules were isolated from 1,600 individual cells of four NSCLC
epithelial cell lines (400 cells per cell line), A549, H460, H1299,
and Calu3 (Fig. 1a), commonly used for lung cancer studies. We
applied a dual-barcoding approach for indexing NGS read sets
generated from cDNA libraries of individual single cells. First, the
mRNA molecules isolated from individual cells were pre-indexed
with Fluidigm cell-specific barcodes at 3’-end regions behind
poly-A tails during synthesis and pre-amplification of cDNAs in
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the Fluidigm C1 systems. For second indexing, lllumina Nextera
barcode-containing primers were annealed to 5’-end regions of
fragmented ¢cDNAs during 3’-end enrichment following tagmen-
tation of pre-indexed individual cDNAs. From sequencing and
demultiplexing a total of 1,600 individually dual-indexed
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and 3’-end enriched cDNA libraries, we obtained ~180 million
(M) raw sequence reads (Supplementary Table 1). Following read
mapping of processed read sets to human genome (GRCh38.p13;
NIH), an average of 5937 genes per cell line was aligned with
reads per gene >4 in individual cells (Supplementary Fig. 1a).
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Fig. 1 Single-cell RNA-seq workflow and clustering analyses. a Individual cells from A549 (blue), H460 (orange), H1299 (green), and Calu3
(red) were captured in separate Fluidigm C1 HT IFCs and pre-indexed with Fluidigm cell-specific barcodes at 3’-end of polyadenylated mRNAs
during pre-amplification of cDNAs synthesized from total RNAs isolated from single cells, followed by library construction. Dual-indexed and
3’-end enriched cDNA libraries (n = 1,600) were sequenced in lllumina NextSeq 500 systems, followed by DEG detection. b Single cells (n =
1,441) in clusters (n = 4) re-arranged from NSCLC cell lines (n = 4). Parentheses include the number of cells in clusters or cell lines. ¢ Cluster
presentation in three dimensions. Subcluster, Cluster 1-1, is presented between Cluster 2 and 4. d Heatmap analysis of DEGs (n = 2,632).
Z-scores of the read-count DEG dataset were adjusted from —1.50 (black) to 1.50 (yellow). Color-matching numbers represent A549 (blue; 1),
H460 (orange; 2), H1299 (green; 3), and Calu3 (red; 4) as shown in (a—c). DEGs specific to a cluster or cell line are highlighted in orange and
purple, respectively. DEGs specific to Cluster 1-1 and Cluster 4 are highlighted in black. Representative DEGs per cluster, cell line and, Cluster
1-1 & Cluster 4-specific expression shown in the color-matching panels. See Supplementary Data 1 for full gene names. All DEGs are
statistically significant at FDR-corrected P value < 0.05 showing fold changes >|2|.

A total of 24,424 genes were mapped with high-quality reads per
cell >2,000 (Supplementary Fig. 1b), and raw read counts were
normalized at count per million (CPM) reads per gene =1
(Supplementary Fig. 1b).

Detection of DEGs

We performed a t-distributed stochastic neighbor embedding
(t-SNE) analysis to reduce dimensionality of normalized gene
expression values that are highly variable dataset. Then, a
complete-linkage hierarchical clustering analysis was conducted
using an unsupervised single-cell consensus clustering tool, SC3
(RRID:SCR_015953), and re-arranged single cells from the four
human NSCLC cell lines into four different clusters based on
differential gene expression in two dimensions (Fig. 1b). Interest-
ingly, each cluster contained cells from two cell lines, and cells per
cluster were re-arranged from one of two cell lines (Fig. 1b and
Supplementary Table 2). Although Cluster 1 was comprised of cells
from all four NSCLC cell lines (Fig. 1b and Supplementary Table 2),
A549 cells represented 52% (317/610) of cells re-arranged into
Cluster 1. Three-dimensional representation of the four clusters
identified a subcluster, Cluster 1-1 (Fig. 1c), within Cluster 1
comprised of 170 and 46 cells from H1299 and Calu3, respectively.
To minimize complexity when comparing clusters for DEG
detection, we employed the clustering result in two dimensions.
Cluster 1 was positioned in the center of cluster plot where
perplexity values determining the extent of cluster density
were closed to ‘0" in two dimensions (Fig. 1b). We set Cluster 1
as the control cluster for detection of DEGs to compare with the
three other clusters. In total, 2,655 DEGs were detected from three
comparisons; Cluster 1 vs. Cluster 2, Cluster 1 vs. Cluster 3, and
Cluster 1 vs. Cluster 4 (Supplementary Data 1). DEGs were
identified by fold-change differences =|2| in normalized expres-
sion values per gene at the statistical significance of false
discovery rate (FDR)-corrected P value <0.05. Following cross
check of gene ID between Ensembl and NCBI gene databases, we
categorized 2,632 scRNA-seq DEGs into cluster-specific or cell-line-
specific DEGs using a heatmap-clustering analysis (Fig. 1d).
Hierarchical sorting of heatmap-clustered DEGs according to
expression patterns clearly distinguished cluster-specific DEGs
(highlighted in orange), and cell line-specific DEGs (highlighted in
purple) (Fig. 1d). A third DEG set (highlighted in black) was
identified in H1299 and Calu3 cells that were re-arranged into
Cluster 1-1 (Fig. 1c) and Cluster 4 (Fig. 1d). Furthermore, when all
2,655 DEGs were divided into six different gene sets based on up-
or down-regulation, we detected DEGs unique to single gene sets
(Fig. 2a). For example, 85% (beige triangle, 802/939; Supplemen-
tary Data 1) of genes up-regulated in Cluster 3 compared with
Cluster 1 were uniquely detected from only the cluster
comparison, and 28% (63/226; Supplementary Data 1) of genes
down-regulated in Cluster 4 compared with Cluster 1 (purple
triangle in Fig. 2a) did not overlap scRNA-seq DEGs detected in
other cluster comparisons. To further characterize the scRNA-seq
DEGs, we prepared two additional DEG sets as following: (1) inter-
cell line DEGs were detected by individually comparing
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normalized gene expression values in cells from A549 with those
from H460, H1299, and Calu3; and (2) intra-cell line DEGs were
prepared by individually comparing normalized gene expression
values in cells from a cell line in a cluster with those in cells from
an identical cell line but existing in different clusters. For example,
to detect intra-cell line DEGs for A549, normalized gene expression
values in A549 cells in Cluster 1 were compared with those in
A549 cells in Cluster 2. When comparing the DEG sets, we
identified a significantly large portion (90%; 2,367 of 2,655) of
scRNA-seq DEGs overlapped with a set of intra-cell line DEGs
(Fig. 2b). Moreover, to determine the extent of statistical
significance in detecting scRNA-seq DEGs, we generated three
volcano plots using two values of FDR-corrected P (—10° x logs)
and fold change (log,) per up- or down-regulated gene in the
comparisons of Cluster 1 with Cluster 2 and Cluster 3 (Fig. 2c).
Those plots presented overall positive correlations, that is, the
higher absolute values of fold change of scRNA-seq DEGs were
detected at the more statistically significant level. However, the
volcano plot from Cluster 1 vs. Cluster 4 revealed relatively lower
correlation between the two values when compared with other
two volcano plots (Fig. 2c) due to the similarity in gene expression
pattern between Cluster 1-1 and Cluster 4 (highlighted in black;
Fig. 1d) that offset the extent of differential gene expression.

Gene set enrichment analysis (GSEA)

To identify functional annotations enriched in up- or down-
regulated gene set per cluster comparison, we used six DEG sets
comprised of up- or down-regulated genes in Cluster 2, Cluster 3,
and Cluster 4 against Cluster 1 allowing to include DEGs
commonly detected in more than two cluster comparisons
(Supplementary Data 1). We conducted enrichment analyses with
the six DEG sets using three biological databases, the Gene
Ontology (GO), KEGG pathway, and Molecular Signatures. The
Molecular Signatures Database is comprised of gene sets >30,000
in nine different collections that were registered from various
research projects. For GSEA in the current study, we used the
collection 6 (C6) comprised of 189 oncogenic signature gene sets
that were primarily identified by a microarray analysis of various
cancers. For a full list of overrepresented GO terms, KEGG
pathways, and oncogenic gene sets, see Supplementary Data 2,
3, and 4, respectively. Briefly, a GSEA using the GO database
resulted in overrepresentation of 441 unique GO terms (Supple-
mentary Table 3) which were hierarchically located at the lowest
position (GO level is ‘0"), indicating the most specific functional
annotations in the GO category of biological processes. Overall,
there were some specific genes or gene families, such as
glutathione S-transferase mu 2/3/4 (GSTM2/3/4) (Fig. 3a), aldo/
keto reductase gene family (Fig. 3a and c¢), HLA class Il
histocompatibility antigen gene family (Fig. 3b), cell cycle-
associated genes (cyclin-dependent kinases and cyclin-
dependent kinase inhibitors) (Fig. 3c) or ATP binding cassette
subfamily C member 1/2 (Fig. 3c), that contributed to significant
overrepresentation of biological processes ranked as top 5 GO
terms per up- or down-regulated gene set. Furthermore, we
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Fig.2 Characterization of DEGs detected from Fluidigm 3’-end scRNA-seq dataset. a Hexagonal triangle diagram indicates the percentage
of scRNA-seq DEGs uniquely detected in up- or down-regulated gene set per cluster comparison. b Venn diagram presenting scRNA-seq DEGs
(n = 2,655), intra-cell line DEGs (n = 1,360), and inter-cell line DEGs (n = 3619). Individual values indicate the number of unique or overlapping
DEGs among the three DEG sets. ¢ Volcano plots showing correlation between values of scRNA-seq DEG fold change (log,; x axis) and FDR-
corrected P (<0.05; —10° x log,; y axis) per up- or down-regulated gene set from cluster comparison. Individual DEGs are presented in the

color-matching dots per gene set as in (a).

identified a total of 79 unique KEGG pathways enriched with the
six DEG sets from a second GSEA (Supplementary Table 3). We
found that some specific genes or gene families commonly
contributed to significant overrepresentation of GO terms and
KEGG pathways. For example, glutathione metabolism (KEGG
pathway ID: hsa00480) in Cluster 1 vs. Cluster 2, all top 5 pathways
in Cluster 1 vs. Cluster 3 and steroid hormone biosynthesis
(hsa00140) in Cluster 1 vs. Cluster 4, were enriched by GSTM2/3/4
gene family, HLA class /Il histocompatibility gene families and
aldo/keto reductase gene family, respectively (Table 1). Moreover,
we found a total of 72 unique oncogenic gene sets over-
represented from a third GSEA using the Molecular Signatures
database (Supplementary Table 3). In particular, two oncogenic
gene sets, CORDENONSI_YAP_CONSERVED_SIGNATURE (Onco-
genic gene set ID: M2871) and SINGH_KRAS_DEPENDENCY_-
SIGNATURE (M2851), were comprised of relatively more reference
genes overlapping with our scRNA-seq DEGs (42%; M2851 and
40%; M2851, respectively) when compared with other over-
represented oncogenic gene sets (Supplementary Data 4). In
addition, the SINGH_KRAS_DEPENDENCY_SIGNATURE is com-
prised of 20 reference genes associated with cell viability and
positively correlated with KRAS mutation for stable gene expres-
sion®. Eight of the 20 reference genes overlapped with our up-
regulated genes in Cluster 3 against Cluster 1, and the dominant
cell lines of the Cluster 1 and Cluster 3 were KRAS-mutated A549
and wild-type KRAS Calu3, respectively® (Supplementary Data 4).
Four of the 8 overlapping reference genes were chromosome 1
open reading frame 116 (C1orf116)'°, laminin subunit (LAM) gene
family'", ladinin 1 (LAD1)'?, and ampbhiregulin (AREG)'3, which are
associated with regulatory process in epithelial-mesenchymal
transition (EMT). However, oncogenic gene sets resulting from
differential expression and/or mutations on KRAS or TP53 that are
the most frequent in lung cancer cells® were not constitutively
enriched with our six DEG sets (Supplementary Data 4).
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Validation of selected DEGs using qRT-PCR analysis

We validated fold-change values of DEGs obtained from our
scRNA-seq dataset with those from qRT-PCR analysis at bulk-cell
level. For this validation, 2,655 scRNA-seq DEGs were ranked from
highest to lowest fold-change value (Supplementary Data 1),
following this we selected 40 DEGs per cluster comparison (first 20
up-regulated and first 20 down-regulated genes; 120 DEGs in
total). We used Cluster 1 as the control cluster for DEG detection
(Supplementary Data 1). Because the A549 was the predominant
cell line identified in Cluster 1 (Fig. 1b and Supplementary Table 2),
we used A549 as the control cell line to obtain fold-change values
of the 120 selected DEGs. We then directly compared the fold-
change values from the scRNA-seq and qRT-PCR analyses (Fig. 4a,
¢ and e). Overall, the direct comparisons of fold-change values
showed positive correlation between the two analyses as
indicated in the range of coefficient of determination (r?) values
from 0.61 to 0.77 (Fig. 4b, d and f). Of the 120 selected DEGs, there
were only two exceptions, adenylate kinase 5 (AK5) and
transglutaminase 2 (TGM2), presenting an inverse expression that
was up-regulated in Cluster 4 against Cluster 1 from our scRNA-
seq analysis but down-regulated in H1299 against A549 from the
gRT-PCR analysis (Fig. 4e).

Absolute quantification of chemokine genes and microRNA
copy numbers in early-stage LUAD patients

In NSCLC, tumor-associated antigens (TAAs) are aberrantly
expressed'®. In our scRNA-seq DEG dataset, 13 TAAs from 6
different gene families were found in the 20 first up-regulated and
20 first down-regulated genes from all three cluster comparisons
(Fig. 4a, c and e). Using a qRT-PCR analysis, we pre-screened the
extent (cycle threshold; Ct) of those TAA expressions in primary
lung tumors resected from 34 (16 female and 18 male) Stage |
LUAD patients (Supplementary Data 5). Notably, all four tested
CXCL gene family (CXCL1, CXCL2, CXCL5, and CXCL8) showed
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Fig.3 GO of biological process overrepresented from GSEA. a-c Top 5 GO terms enriched with up (n = 355)- and down (n = 305)-regulated
genes in Cluster 2 in (@), up (n = 939)- and down (n = 1,172)-regulated genes in Cluster 3 in (b) and up (n = 199)- and down (n = 226)-regulated
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contributors to overrepresentation of the top 5 biological processes per gene set, respectively. Expression maps are presented below GO bars
to visualize differential expression of selected DEGs. Reference expression map shown in lower panel (a) contains information on a position of
clusters in two dimensions. See Supplementary Data 1 for full gene names.

higher successful amplification rates in primary lung tumors when
compared with other TAAs (Supplementary Data 5). Thus, we
validated CXCL gene family members, specifically CXCLT and
CXCL2 that were the first up-regulated in Cluster 2 against Cluster
1 (Fig. 4a) and amplified in almost all primary lung tumors
(Supplementary Data 5), respectively. For this validation, we
employed a standard curve approach for absolute quantification
of the two chemokine genes to identify a difference in quantities
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in 34 early-stage LUAD patient primary lung tumors against
patient-matched normal lung tissues. C-X-C motif chemokine
receptor 2 (CXCR2) was also included for this quantification. The
quantities of CXCL2 (Supplementary Fig. 2b) were a maximum of
104 times and 15 times higher in normal lung tissues and primary
lung tumors, respectively, when compared with those of
CXCL1 (Supplementary Fig. 2a). The quantitative difference
between the two chemokine genes corresponded to the result
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Table 1. Top five KEGG pathways and molecular signatures overrepresented from GSEA.
Database Biological ID description Gene name? Regulation EV© FDR-corrected
process 1D (Cluster 1DP) P value
KEGG pathways hsa00480 Glutathione metabolism GSTM2/3/4, GPX1/3, GSTO2 Up (C2) 8.86 1.16E—03
hsa05134 Legionellosis CXCL1/2/8, IL6, CASP7/8 734 2.15E-03
hsa00980 Metabolism of xenobiotics by GSTM2/3/4, GSTO2, AKR1C1 537 3.94E-02
cytochrome P450
hsa05146 Amoebiasis CXCL1/2/8, IL6, COL4A6 415 3.94E-02
hsa04621 NOD-like receptor signaling pathway CXCL1/2/8, IL6, NAMPT 3.51 2.40E—-02
NA NA NA Down (C2) NA NA
hsa05330 Allograft rejection HLA-A/B/C/E, HLA-DMA/B, HLA-DPA1/B1  Up (C3) 16.60 4.80E—07
hsa05320 Autoimmune thyroid disease 16.60 4.80E—07
hsa05332 Graft-versus-host disease 13.58 1.44E—06
hsa04940 Type | diabetes mellitus 10.80 1.77E—06
hsa04612 Antigen processing and presentation 5.95 3.46E—06
hsa03050 Proteasome PSMA3/4, PSMB1/5/6/7, PSMC2/3/4/5/6 = Down (C3) 9.10 8.28E—09
hsa03030 DNA replication MCM4/5/6/7, RFC2/3, RPA1/2 8.50 2.69E—-07
hsa00190 Oxidative phosphorylation COX7A2L8A/5A, NDUFA1/4/6/8/9, 7.76 2.01E-10
NDUFB1/2/4/6/7/8
hsa05012 Parkinson’s disease COX5B/6B1/6C, NDUFA1/4/6/8/9, 728 0
NDUFB1/2/4/6/7/8
hsa03010 Ribosome MRPL1/12/13/15, MRPS2/7/10/20, RPL6/7/ 6.86 1.24E—-10
7A/18A
NA NA NA Up (C4) NA NA
hsa00030 Pentose phosphate pathway G6PD, PGD, PFKP Down (C4) 10.99 1.48E—02
hsa00480 Glutathione metabolism GPX1/2, IDH1, MGST1 9.55 7.37E—03
hsa00590 Arachidonic acid metabolism GPX1/2, AKR1C3, LTA4H 8.59 1.48E—-02
hsa00140 Steroid hormone biosynthesis AKR1C1/2/3/4, CYP1B1 8.05 4.16E—02
hsa00980 Metabolism of xenobiotics by AKR1C1, ALDH3A1/B1 CYP1B1 798 1.01E-02
cytochrome P450
Molecular M2697 P53_DN.V1_DN CXCL1, EPB41L3, CPS1 Up (C2) 4.58 1.67E—05
Signatures M2725 MEK_UPV1_UP GAL, COL5A2, LIMCH1 435 1.67E—05
M2892 KRAS.KIDNEY_UPV1_UP EPB41L3, LIMCH1, NEFL 3.82 1.09E—-02
M2900 KRAS.LUNG.BREAST_UPV1_UP CXCL1/2/5/8, RPS4Y1, GLRX 3.79 1.58E—-02
M2634 EGFR_UPV1_UP GAL, COL5A2, SCCPDH 346 2.16E—-03
M2871 CORDENONSI_YAP_CONSERVED_SIGNATURE AXL, SERPINE1, MARCKS Down (C2) 7.25 1.37E-03
M2634 EGFR_UPV1_UP KRT81, AKAP12, KRT7 5.14 1.12E-05
M2698 P53_DN.V1_UP AXL, SPINT2, SCRN1 5.11 1.12E-05
M2725 MEK_UPV1_UP KRT7/81, COTL1, ARL4C 5.02 1.12E-05
M2769 ESC_V6.5_UP_EARLY.V1_DN AXL, SERPINET1, GPX2 456 9.38E—04
M2851 SINGH_KRAS_DEPENDENCY_SIGNATURE Clorf116, LAMC2, LAD1 Up (C3) 7.60 1.14E—03
M2768 ESC_J1_UP_LATEV1_UP CTGF, SPINK1, CTSH 428 0
M2790 EIF4E_DN C3, FNDC3B, NEDDAL 4.25 1.02E—06
M2698 P53_DN.V1_UP CD24, KRT19, EPCAM 4.04 0
M2903 LEF1_UPV1_DN CFTR, PDZK1IP1, CXCL5 3.81 2.78E—09
M2660 CSR_LATE_UPV1_UP MT2A, DTYMK, GTF3C6 Down (C3) 722 0
M2871 CORDENONSI_YAP_CONSERVED_SIGNATURE SERPINE1, BIRC5, GGH 468 2.73E—04
M2800 RB_DN.V1_UP PCNA, RAD51C, MCM7 443 9.14E—08
M2791 EIF4E_UP ATP5MF, MDH2, NOP16 426 5.97E-05
M2675 VEGF_A_UPV1_DN CKS2, CCNB1, MCM4 423 5.17E—10
M2660 CSR_LATE_UPV1_UP MT2A, BEX1, EZH2 Up (C4) 5.63 2.54E-03
M2905 LEF1_UPV1_UP CDKN2A, G0S2, FHL1 460 9.61E—03
M2698 P53_DN.V1_UP CDKN2A, G0S2, SOX9 4.55 7.70E—03
M2725 MEK_UPV1_UP KRT81, S100A6, AKR1C2 Down (C4) 7.74 5.09E—-10
M2780 NFE2L2.V2 AKR1C1/3, AKR1B10, MGST1 7.05 5.09E—-10
M2634 EGFR_UPV1_UP KRT7/81, PCDHY, EDN1 5.75 3.03E-06
M2636 ERBB2_UPV1_UP KRT81, S100A6, AKR1C2 5.75 3.03E—-06
M2807 CAHOY_ASTROGLIAL AKR1B10, ANXAT, EREG 5.53 5.01E-03
“Three representative genes or gene families per overrepresented signaling pathway or oncogenic gene set. Please see the Supplementary Table S3 for full
name of genes.
bC2-Cluster 2, C3-Cluster 3, and C4-Cluster 4 against Cluster 1.
“Enrichment value.
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Fig. 4 Validation of scRNA-seq DEGs by qRT-PCR analysis. a, ¢, e Direct comparison of fold change for selected scRNA-seq DEGs (n = 120)
detected from three cluster comparisons, Cluster 1 vs. Cluster 2 in (a), Cluster 1 vs. Cluster 3 in (c), and Cluster 1 vs. Cluster 4 in (e), compared
with genes identified in A549 vs. H460 in (a), A549 vs. Calu3 in (c), and A549 vs. H1299 in (e), using qRT-PCR. Prioritized DEGs (n = 120) are
comprised of the first 20 up- and the first 20 down-regulated genes (40 DEGs) per cluster comparison. X and y axes indicate gene names and
fold-change values (log,), respectively. Fold-change values expressed as mean + SEM; three separate experiments conducted in duplicate. b, d,
f Linear regression analysis was conducted for fold-change values of prioritized 120 selected DEGs between Fluidigm 3’-end scRNA-seq
(x axes) and gRT-PCR (y axes) analyses corresponding to the direct fold-change comparisons in (a), (c), and (e), respectively. Coefficient of

determination (r?) values are presented at P value < 0.0001.

from pre-screening Ct values of those genes showing a lower
averaged Ct value (31.44) of CXCL2 compared with that (35.61) of
CXCLT (Supplementary Data 5). Both CXCLT and CXCL2 were
quantifiable in most normal lung tissues (32 and 34 LUAD patients,
respectively) (Supplementary Fig. 2a and b, respectively). How-
ever, CXCL1 was not detectable in 5 female and 14 male tumor
tissues (19 patients in total) (Supplementary Fig. 2a), and CXCL2
was not quantifiable in tumor tissues of 3 female and 8 male
patients (11 patients in total) (Supplementary Fig. 2b). In addition,
we employed an absolute quantification approach to investigation
of three human microRNAs, miR-532-5p, miR-1266-3p, and miR-
3163, that epigenetically regulate a mRNA expression of CXCLT,
CXCL2, and CXCR2, respectively'® (Supplementary Fig. 3). Interest-
ingly, the three chemokine mRNAs and the corresponding
microRNAs were inversely correlated for most LUAD patients
(Fig. 5).

Absolute quantification of miR-532-5p, miR-1266-3p, and miR-
3163 in plasma samples

Next, we examined whether miR-532-5p (Fig. 6a), miR-1266-3p
(Fig. 6b), and miR-3163 (Fig. 6¢) were detectable in blood (plasma)
of LUAD patients. Here, we applied an absolute quantification
method to obtain copy numbers of miRNAs in plasma of whole
blood samples collected from the 34 early-stage LUAD patients at
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the time of surgical resection. Relative quantification of the
miRNAs was not possible because we did not have access to blood
from these patients prior to their lung cancer diagnosis. Instead,
we used Caenorhabditis elegans microRNA 39 (cel-miR-39) miRNA
mimic (Qiagen, Inc) as a normalization control to generate a
standard curve in the range of copy numbers from 1x 10 to 8 x
10% that was sufficient to cover copy numbers of miRNAs of
interest in plasma samples. We also used U6 spliceosomal small
nuclear RNAs (snRNAs) to obtain a correction factor for normal-
ization of raw Ct values. We found an average of 71,631 copies of
miR-532-5p in 33 of 34 plasma samples, while the averaged
copy numbers of miR-1266-3p and miR-3163 were relatively less
(Fig. 6d).

Validation of differential expression of CXCL1, CXCL2, and

CXCR2 using publicly available 3’-end scRNA-seq dataset

To confirm the differential expression of the three chemokine
genes profiled in the four human NSCLC epithelial cell lines that
resulted from our 3’-end scRNA-seq analysis using Fluidigm
C1 systems, we mined a publicly available 3’-end scRNA-seq
dataset (GSE131907)' that was sequenced from 208,506 single
cells of normal and primary lung tumor tissues, normal and
metastatic lymph nodes, metastatic brain tissues and pleural fluids
of 58 LUAD patients at multiple disease stages in various cell

npj Genomic Medicine (2021) 87
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Fig. 5 Quantitative analysis of CXCL mRNAs and microRNA copy numbers from Stage | LUAD patients. a-c Absolute quantification of
CXCL1 and miR-532-5p in (a), CXCL2 and miR-1266-3p in (b), and CXCR2 and miR-3163 in (c). Black and gray bars present quantitative fold
differences of chemokine genes (n = 3) and corresponding miRNAs (n = 3), respectively, in primary lung tumors compared with normal lung
tissues resected from female (n = 16) and male (n = 18) Stage | LUAD patients. x and y axes indicate patient IDs (female patients, 1-16 and
male patients, 17-34) and quantitative fold differences at log,, respectively. Statistical differences indicated as *P < 0.05, **P < 0.01, ***P <

0.001, and ****P < 0.0001 from two-sample t-tests.

populations. The dataset mined was generated from the
Chromium Controller (10x Genomics, USA) (Hereafter 10x Geno-
mics 3’-end scRNA-seq dataset to distinguish our Fluidigm 3’-end
scRNA-seq dataset). From a clustering analysis of the 10x
Genomics 3’-end scRNA-seq dataset (Fig. 7a), we identified that
epithelial cells from normal lung and primary tumor tissues (Stage
| and IV) were grouped into different clusters (Fig. 7b). These
findings suggest a difference in gene expression at single-cell
resolution in the epithelial cell populations between normal and
primary tumor tissues, as well as early and late stages lung
cancers. Specifically, the expression patterns of CXCL1 (Fig. 7c),
CXCL2 (Fig. 7d), and CXCR2 (Fig. 7e) in various cell populations,
including epithelial cells, presented a positive correlation with our
quantification result, that is, higher quantities of CXCL2 than
CXCL1, and relatively lower quantities of CXCR2 than those of
CXCL1 and CXCL2 in the 34 early-stage LUAD patients (Fig. 5 and
Supplementary Fig. 2). We also performed a Kaplan-Meier survival
analysis using publicly available 233 bulk RNA-seq datasets
generated from primary tumors of 161 early-stage LUAD patients
(Stage 1) and 72 late-stage LUAD patients (Stage Ill and IV) (Fig. 7f).
The survival plots revealed an inverse survival probability between

npj Genomic Medicine (2021) 87

the expression of CXCL1 and CXCL2 in primary tumors of early-
stage LUAD patients. The high expression of CXCR2 showed
relatively higher survival probability at early stage compared to
late-stage in primary tumors (Fig. 7f), regardless of a sex difference
between female and male LUAD patients (Supplementary Fig. 5¢).
In addition, the high expression of CXCLT showed an inverse
survival probability between female and male LUAD patients at
early stage (Supplementary Fig. 5a), while the low expression of
CXCL2 was related to higher survival probability at late-stage of
male LUAD patients up to 72 months (Supplementary Fig. 5b). The
high and low expressions of chemokine and chemokine-receptor
genes were determined at the cut-off expression values from a
log-rank test.

Protein expression validation

To extend our validation from gene to protein expression, we
conducted western blot analysis to profile the expression of
proteins encoded by 4 selected scRNA-seq DEGs. We chose CXCL2,
T-box transcription factor T (TBXT), cadherin 1 (CDHT), and catenin
beta 1 (CTNNBT), based on three criteria, (1) significant difference
of fold-change values at single-cell level, (2) potentiality as a
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molecular biomarker in lung cancers, and (3) association with EMT.
Differential expression of CXCL2 was validated at single- and bulk-
cell resolutions using Fluidigm 3’-end scRNA-seq and gRT-PCR
analyses, respectively, in the four human NSCLC epithelial cell
lines (Fig. 4a), 34 early-stage LUAD patients (Fig. 5b) and a various
cell population of 58 multiple-stage LUAD patients using the 10x
Genomics 3’-end scRNA-seq dataset (Fig. 7d). TBXT encodes
brachyury that is associated with EMT in lung cancer'’. The gene
was ranked as the second-highest up-regulated gene in Cluster 2
against Cluster 1 (Fig. 4a). CDH1 encoding E-cadherin was up-
regulated (4.32x; Supplementary Data 1) in Cluster 3 against
Cluster 1 and has been a known biomarker for EMT with CTNNB1
(encoding beta catenin; B-catenin) in lung cancer'®. First, the
expression patterns of CXCL2 in Fluidigm 3’-end scRNA-seq
(Fig. 8a) and gqRT-PCR datasets (Fig. 8b) were highly correlative
with the protein expression of CXCL2 (Fig. 8c). TBXT was expressed
in single cells >99% exclusively in Cluster 2 (Fig. 8a), thereby
presenting significant up-regulation in H460 compared with A549
from a qRT-PCR analysis (Fig. 8b). Brachyury was also exclusively
expressed in H460 (Fig. 8c) corresponding to the TBXT expression.
The two EMT biomarkers, CDHT and CTNNB1, also showed positive
correlation between gene (Fig. 8a and b) and protein levels
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(Fig. 8c). Overall, the expression pattern of the 4 selected scRNA-
seq DEGs was positively correlated between 3’-end scRNA-seq
(Fig. 8a) and gRT-PCR (Fig. 8b) analyses that was further validated
by protein expression (Fig. 8c).

DISCUSSION

World-wide, lung cancer has the highest mortality rate amongst all
cancers'. Although there are numerous explanations as to why
this cancer is pervasive, a complex pattern of gene expression in
individual tumor cells is a contributing factor, thereby making it
difficult to characterize tumor transcriptomes. In our study, we
employed a scRNA-seq application for the purpose of profiling
DEGs at single-cell resolution in human NSCLC epithelial cells. We
developed a robust scRNA-seq pipeline using the Fluidigm
C1 systems that led to the identification of candidate genes
causing transcriptomic complexity among individual cells in the
lung cancer (Fig. 1d and Supplementary Data 1). In particular, a
large portion of scRNA-seq DEGs were uniquely detected in the six
gene sets (Fig. 2a), showing significantly high rates overlapping
between scRNA-seq DEGs and intra-cell line DEGs (Fig. 2b). These
confirm the power of our scRNA-seq application for discovering
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differential gene expression among individual lung cancer cells.
Similarly, the significant overlapping rate between the DEGs of
scRNA-seq and inter-cell lines (Fig. 2b) indicates that 3’-end
scRNA-seq application can overcome limitation of traditional bulk
RNA-seq for detecting intra-cell line DEGs.
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From GSEA, we showed that diverse biological processes can be
affected by differential expression of individual genes or gene
families at single-cell resolution in NSCLC cells (Table 1 and Fig. 3).
The GSEA with the up-regulated gene set in Cluster 4 against
Cluster 1 revealed overrepresentation of relatively fewer GO terms

Published in partnership with CEGMR, King Abdulaziz University



J. Kim et al.

npj

Fig. 7 Validation of chemokine gene expression mined from public scRNA-seq dataset and survival analysis. a Reference expression map
resulting from a clustering analysis of publicly available 10x Genomics 3’-end scRNA-seq dataset (GSE131907)%. The scRNA-seq dataset was
generated from single cells (n =208,506) isolated from multiple-stage LUAD patients (n =58). b Four expression maps of epithelial cells
(green) clustered from single cells of various tissues (normal and primary lung tumor tissues, normal and metastatic lymph nodes, metastatic
brain tissues, and pleural fluids) of 58 LUAD patients at multiple disease stages (n = 36,466), only normal lung tissues at Stage | (n = 2,239),
only primary lung tumors at Stage | (n =5,651) and only primary lung tumors at Stage IV (n = 6,582) in the scRNA-seq dataset. c-e Expression
maps of CXCLT in (c), CXCL2 in (d), and CXCR2 in (e) in various cell populations, including epithelial cells, from those LUAD patients at multiple
disease stages. Refer to Supplementary Fig. 4 to identify clusters in a magnified reference expression map. f Kaplain-Meier lung cancer
survival analysis plots based on high or low expression of CXCL1, CXCL2, and CXCR2 in primary lung tumors profiled from bulk RNA-seq
datasets of Stage | (n=161) and Stage Ill & IV (n =72) LUAD patients. x and y axes indicate follow-up in months and survival probability,
respectively. The cut-off expression value between high and low expression per stage and gene was determined by a log-rank test.

or oncogenic gene sets with no enriched KEGG pathways when
compared with enrichment results from GSEA with other five up-
or down-regulated gene sets (Table 1). However, 2 of the 3 most
enriched GO terms from the up-regulated gene set from Cluster 1
vs. Cluster 4 were associated with cell cycle (Fig. 3c), and there
were another 8 cell cycle-associated GO terms enriched from the
GSEA with the down-regulated gene set in Cluster 3 against
Cluster 1 (Supplementary Data 2). For example, cyclin D gene
family members presented differential expression at single-cell
resolution among four clusters (Supplementary Fig. 6c), and we
validated a down-regulation of cyclin D1 (CCNDT) in H460
compared with A549 (Supplementary Fig. 6a). Previous work by
others reported a decrease in the expressions of CCNDI and
protein product, cyclin D, in H460'7. Cyclin D-CDK complex
progresses cells from GO/G1 to S phases of cell cycle in
downstream of RAS-Phosphoinositide 3 kinase-AKT serine/threo-
nine kinase (RAS-PI3K-AKT) signaling pathway'®. Others have
found a significant overrepresentation of RAS and PI3K signaling
pathways through a GSEA with up-regulated genes in brachyury-
knockdown MDA-MB-231 cells compared with MDA-MB-231
control cells?®. With our scRNA-seq DEG dataset from human
NSCLC epithelial cells, we also identified corresponding expression
patterns for genes involved in the RAS-PI3K-AKT signaling
pathway (Supplementary Fig. 7). Here, there were 12 down-
regulated and 10 up-regulated genes in Cluster 2 (comprised of
cells from H460 that predominantly express brachyury) against
Cluster 1 (comprised of cells from predominantly brachyury-null
A549, Calu3, and H1299) (Supplementary Fig. 7a). We also found
10 down-regulated and 44 up-regulated genes in Cluster 3
(comprised of cells from predominantly brachyury-null Calu3)
against Cluster 1 in the signaling pathway (Supplementary Fig.
7b). KRAS is a RAS family member that is frequently (~85%)
mutated in cancers more than any other family member, namely
NRAS (~15%) and HRAS (<1%)>". A549 and H460 NSCLC cell lines
express non-synonymous substitution of KRAS, while the gene is
wild type in Calu3 and H1299 NSCLC cell lines®. Thus, the
identification of relatively more down-regulated genes in Cluster 2
compared with those in Cluster 3 against Cluster 1 in the RAS-
PI3K-AKT signaling pathway indicates that a reduced expression
level of cell cycle-associated genes may be correlated with the
presence of brachyury in KRAS-mutated NSCLC cells. Alternatively,
brachyury overexpression and single-point mutation on TBXT are
transcriptomic and genomic characteristics for chordoma diag-
nosis??, where one of the primary genetic alternations is frequent
mutation (homozygous deletion) on CDKN2A gene encoding p16
protein?3, As a tumor suppressor, p16 regulates the cyclin D-CDK
complex. However, p16 is oncogenic when unable to form a
complex with cyclin D-CDK due to mutations that prevent p16
binding®*. In lung cancer, homozygous deletion of CDKN2A is
often found as in chordomas?®. Although CDKN2A was preferen-
tially expressed in Calu3 and H1299 cells (Fig. 3c), p16 is
dysfunctional in all four NSCLC cell lines used in the current
study because of mutations in CDKN2A®. Previous studies by
others reported that co-mutations on KRAS, CDKNZ2A, and/or
CDKN2B (encoding p15 protein) accelerated tumorigenesis in
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mouse lung?® and human lung cancer patients at early stage®”.
These findings suggest that brachyury may regulate cell-cycle
progression in brachyury-expressing cells where KRAS and
CDKN2A are co-mutated. Therefore, a differential expression of
cell cycle-related genes may be one of the factors to contribute to
an increase in transcriptomic complexity at single-cell resolution in
human NSCLC epithelial cells.

In cancers, chemokines facilitate inflammatory events by
recruiting immune cells to tumor sites, thus supporting metastasis
and tumorigenesis®®. Because of these functions, it is suggested
that chemokines may service as a cancer diagnostic biomarker?®
and viable candidate for targeted immunotherapy®’. In lung
cancer, previous studies by others reported that NSCLC patients
showed higher concentration of CXCL2 when compared with that
of the protein in chronic obstructive pulmonary disease patients>'.
More recently, it was reported that Cxcl2 secretion increased in
intra-tumor cells of Kras-mutated lung cancer mouse model, likely
contributing to immune escape process of lung cancer cells®2. In
our study, we observed a significant up-regulation of most CXCL
gene family members in Cluster 2 and Cluster 3 compared with
Cluster 1 at single-cell level (dark-purple bars; Fig. 4a and b,
respectively) as well as H460 and Calu3 compared with A549 at
bulk-cell level (dark-green bars; Fig. 4a and b, respectively) in
NSCLC cells. This strongly suggested that chemokine-encoding
genes may present a quantitative difference in lung cancers, and if
so, there may be epigenetic regulators associated with a
transcriptional process of chemokine mRNAs. Therefore, we
quantified mRNAs of CXCLT, CXCL2, and CXCR2 and associated
epigenetic regulators, miR-532-5p, miR-1266-3p, and miR-3163,
respectively, in primary lung tumors and normal lung tissues of 34
early-stage LUAD patients and finally found the inverse correlation
between the quantities of chemokine mRNAs and the copy
numbers of corresponding microRNAs (Fig. 5). Interestingly, the
inverse correlation was more clearly observed in early-stage male
LUAD patients (Fig. 5). The quantitative differences in chemokine
gene expression that were validated in four human NSCLC
epithelial cell lines (Fig. 4) and 34 early-stage LUAD patients
(Fig. 5 and Supplementary Fig. 2) were additionally supported by
the publicly available 10x Genomics LUAD 3’-end scRNA-seq
dataset (Fig. 7c-e). These findings suggest further transcriptomic
characterization of chemokine genes and epigenetic transcription
regulators is warranted at single-cell resolution in primary tumors
between the early- and late-stage LUADs.

MicroRNAs are abundant in human liquid biopsies®3, thus
quantification of miRNA copy numbers from blood (plasma) can
be an effective strategy for identifying aberrant gene expression
from various stages of cancer and developing diagnostic
molecular biomarkers. In our study, we showed the inverse
correlation between chemokine mRNAs and epigenetic regulatory
microRNAs in primary lung tumors against normal lung tissues of
34 early-stage LUAD patients (Fig. 5 and Supplementary Fig. 3). At
the time of surgical resection, blood was harvested from those
patients after which plasma was isolated to determine whether
miR-532-5p, miR-1266-3p, and miR-3163 can be applicable as a
molecular biomarker for diagnose of lung cancers using liquid
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Fig. 8 Validation of selected gene expression at protein level. a Expression maps presenting differential expression of 4 selected scRNA-seq
DEGs (CXCL2, TBXT, CDH1, and CTNNBT) and ACTB (control gene) at single-cell resolution with a reference expression map. b qRT-PCR validation
of fold-change values for the 4 selected DEGs at bulk-cell level; H460 (orange bars), Calu3 (red bars), and H1299 (green bars) compared with
A549 (control cell line). X and y axes indicate gene names and fold-change values (log,), respectively. Fold-change values expressed as mean +
SEM from three separate experiments conducted in duplicate. Statistical significance; *P < 0.05, **P < 0.01, and ***P < 0.001. ¢ Western blot
analysis showing expression of proteins encoded by the 4 selected DEGs and Actin (loading control) in the four human NSCLC epithelial

cell lines.

biopsy samples. Here, we discovered a higher copy number of
miR-532-5p (Fig. 6a), post-transcriptionally regulating CXCLT and/
or CXCL2, compared with those of miR-1266-3p (Fig. 6b) and miR-
3163 (Fig. 6¢) in plasma of the 34 early-stage LUAD patients. In
agreement with our work, recent studies by others reported that
miR-532-5p functions as a tumor suppressor in tongue3*, renal®?,
ovarian®, and lung cancers®’. Further characterization of miR-532-
5p will contribute to a better understanding of its biological
functions, including post-transcriptional regulatory processes of
chemokine genes, thereby helping establish viable biomarkers
that are accessible by non-invasive liquid biopsies for detection of
lung cancer.

In the current study, we successfully profiled the expression of
CXCL2 at single- and bulk-cell levels in four human NSCLC
epithelial cell lines using Fluidigm 3’-end scRNA-seq and gRT-PCR
analyses (Fig. 4a). We also showed the quantitative differences of
the gene between primary lung tumors and normal lung tissues
from early-stage LUAD patients (Fig. 5b) and confirmed the
differential expression of CXCL2 in diverse cell populations,
including epithelial cells, from multiple-stage LUAD patients
(Fig. 7d). Finally, we showed positive correlation between the
expression of CXCL2 mRNAs and CXCL2 proteins in human NSCLC
epithelial cells (Fig. 8c). Of the selected lung cancer-related EMT
genes, TBXT was exclusively expressed in Cluster 2 (Fig. 8a) and
H460 (Fig. 8b) at both gene and protein (brachyury) levels (Fig. 8c).
Previous work by others reported that, in the presence of
brachyury, expression of E-cadherin (CDH1) was down-regulated,
thereby promoting EMT in lung cancer cells'’. As part of the
E-cadherin complex, B-catenin (CTNNBT) plays a role in anchoring
the inner membrane of a cell for cell-cell adhesion®®, and its
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expression has been used as an EMT biomarker*°. In our study, we
discovered a positive correlation between the expression of CDH1
and CTTNBT at bulk-cell level (Fig. 8b) in human NSCLC epithelial
cells. The expressions of CDH1 (Fig. 8b) and E-cadherin (Fig. 8c)
were also positively correlated at bulk-cell level, while the
expression pattern of CTNNB1 at single-cell level (Fig. 8a) showed
more similar with that of B-catenin (Fig. 8c) compared with their
expressions at bulk-cell level (Fig. 8b) in the four NSCLC epithelial
cell lines. Furthermore, others reported that brachyury expression
in H460 is positively correlated with CXCL8 and CXCR2, and
CXCL8-CXCR2 complex presumably leads to enhanced EMT'”. We
found that CXCL8 was up-regulated in Cluster 2 (Fig. 4a) comprised
of cells predominantly from TBXT (Brachyury)-expressing H460
(Fig. 8) when compared to Cluster 1 where most cells were from
TBXT (Brachyury)-null cells lines (Fig. 8). However, there was no
evidence of a significant difference in CXCR2 expression at the
single-cell level among four clusters as well as at bulk-cell level
amongst the four human NSCLC epithelial cell lines (data is not
shown) and 34 early-stage LUAD patients (Fig. 5¢). We did
however identify alteration in CXCR2 expression at single-cell
resolution in natural killer and myeloid cell populations from
multiple-stage LUAD patients (Fig. 7e), and a relatively less
significant correlation between survival probability in primary
tumors of late-stage LUAD and the high expression of CXCR2
when compared to the high CXCR2 expression in primary tumors
of early-stage LUAD (Fig. 7f). Compared with work by others that
described elevated expression of CXCR2 in infiltrating neutrophils
from microarrayed Ras-driven LUAD to be associated with poor
prognosis®’, the relatively lower quantity of circulating miR-3163
(Fig. 6¢) that regulates an expression of CXCR2 mRNAs compared
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with that of plasma-isolated miR-532-5p and miR-1266-3p
regulating CXCLT and CXCL2 mRNAs, respectively, suggests further
work is required to understand how chemokine/chemokine-
receptor expression in various cell populations within a given
LUAD relates to disease progression, recurrence and response
to treatment.

In conclusion, we successfully established scRNA-seq pipeline
using the Fluidigm C1 systems and demonstrated that our scRNA-
seq workflow is highly robust for detecting and profiling
differential gene expression at single-cell resolution in lung
cancers. More specifically, experimental and bioinformatic valida-
tion of chemokine gene quantity and copy number of corre-
sponding microRNAs in solid and liquid LUAD patient samples
confirms that a quantitative difference in the chemokine gene
mMRNAs and corresponding microRNAs can be used as molecular
signatures for characterizing lung cancers. In our current study,
unique transcriptomic characteristics that we elucidated at the
single-cell resolution will provide a framework for the develop-
ment of early-stage diagnostic biomarkers, thus advancing
strategies for improving precision medicines for the treatment
of lung cancers.

METHODS

Cell lines

Four human NSCLC epithelial cell lines, A549 (ATCC-CCL-185), H460 (ATCC-
HTB-177), Calu3 (ATCC-HTB-55), and H1299 (ATCC-CRL-5803), were
purchased from ATCC (VA, USA) and used immediately for a 3’-end
scRNA-seq analysis. Cells were sieved through 40 um cell strainers followed
by live-cell collection using EasySep™ Dead Cell Removal (Annexin V) kits
(STEMCELL Technologies, Inc.). The number and viability of selected cells
were assessed using TC20™ Automated Cell Counter systems (Bio-Rad
Laboratories, Inc.), and then cells were adjusted at the concentration of
400 cells/pL per cell line in media comprised of phosphate-buffered saline
(PBS; Gibco), 5% (v/v) of fetal bovine serum (FBS; Gibco), and 1 mM of
calcium chloride.

Construction of dual-indexed and 3’-end enriched cDNA
libraries for NGS

For successful downstream analyses, it is essential to capture one single
cell per chamber in integrated fluidic circuits (IFCs; Fluidigm, Inc.). To
achieve this, cell-buoyancy tests were performed at five different titrations
with the volume-to-volume (v/v) ratio of 1:9, 9:1, 7:3, 6:4, and 5:5 between
cells and C1 suspension reagent (Fluidigm, Inc.) followed by visual
examination using an inverted microscope. We selected the buoyancy ratio
(v/v) of 5.5 (cells) to 4.5 (C1 suspension reagent). Four thousand epithelial
cells (10-17 um) per cell line were loaded to an IFC (PN 101-4964; Fluidigm,
Inc.), after which single cells captured in individual chambers of IFCs were
manually confirmed using an inverted microscope and scored on the C1
high-throughput (HT) workbook (PN 1015976; Fluidigm, Inc.). NGS datasets
obtained from only single cell-containing IFC chambers were used for the
downstream bioinformatic analyses. Cell lysis, total RNA isolation, cDNA
synthesis, and pre-amplification of synthesized cDNAs were performed
using the C1 script of ‘mRNA Seq HT:RT & Amp (1912x)" (Fluidigm, Inc.).
During ¢cDNA pre-amplification, individual cells were pre-barcoded at 3'-
end cDNAs with 40 different Fluidigm cell-specific indexes. Following the
completion of pre-amplified cDNA preparation in the C1 systems,
individual pre-indexed cDNA samples, including External RNA Controls
Consortium (ERCC) spike-in (Invitrogen) that was pre-diluted at the ratio of
1:60,000, were transferred from an IFC to a regular 96-well PCR plate.
For dual-indexing, 20 different i7 barcode-containing primers in Nextera XT
index Kit v2 Set A/B (lllumina, Inc.) were annealed to 5’-end of fragmented
cDNAs following tagmentation of individual cDNA samples. We con-
structed a total of 1,600 dual-indexed and 3’-end enriched cDNA libraries
(400 cDNA libraries per cell line) using Nextera XT DNA library preparation
kits (llumina, Inc.). Ten cDNA library pools (40 libraries per cDNA library
pool) per cell line were individually quantified using Qubit assay
(Invitrogen), and further quality and quantity check of the cDNA
library pools was performed in 2100 Bioanalyzer systems (Agilent, Inc.).
Based on the molarity measured, individual cDNA library pools were
equimolarly combined and sequenced in the Center for Gastrointestinal
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Biology and Disease (NC, USA) using NextSeq 500 systems (lllumina, Inc.).
We used the C1 mRNA Sequencing High Throughput Demultiplexer Script
(https://www.fluidigm.com/software) and Geneious Prime 2019.2.1
(https://www.geneious.com) to demultiplex individual NGS read sets and
deposited the demultiplexed datasets to NCBI GEO database (GSE183590).

Bioinformatic analysis

BBDuk Trimmer (a part of Bestus Bioinformatics Tools; RRID:SCR_016968)
was used to process individual demultiplexed raw NGS read sets by
trimming out low-quality reads at quality score <10~ (equivalent to Phred
score 30 indicating the sequencing-error rate at one base per 1000 bases)
and adapter/primer sequence-contaminated reads at read length >30
bases. We employed HISAT2 (RRID:SCR_015530) for read mapping to align
processed reads to human reference genome (GRCh38.p13). Aligned reads
per gene were quantified using FeatureCounts (A part of Subread; RRID:
SCR_009803). Next, we prepared a data matrix comprised of read counts
per gene (row) in each cell (column), and the data matrix prepared was
imported to a single-cell analysis tool, ASAP*', to normalize gene
expression values, reduce dimensionality of highly variable normalized
expression values per gene, re-arrange individual cells by a clustering
analysis and finally detect DEGs by a comparison of generated clusters. To
obtain normalized expression values per gene, we applied ‘Counts per
Million (CPM)’ as a scaling factor at CPM per gene =1 using a read-scaling
tool, voom*?, A t-SNE analysis was carried out for non-linear dimensionality
reduction of highly complex and variable normalized gene expression
datasets. Following a clustering analysis with the SC3 clustering tool, we
assigned Cluster 1 (Fig. 1b) as a control cluster and individually compared
normalized expression values per gene in single cells of Cluster 1 with
those in single cells of other three clusters to identify DEGs using a DEG
detection tool, limma (RRID:SCR_010943). For downstream validation, we
prioritized DEGs that were mapped with reads per gene =4 and fulfilled
with fold-change differences =|2| at the statistical significance of FDR-
corrected P value < 0.05.

Gene expression profiling

For a hierarchical heatmap-clustering analysis, the read-count data matrix
(read counts/gene/individual cells) were imported to Morpheus by Broad
Institute (RRID:SCR_017386). The data matrix was then adjusted in the
range of Z-score from —1.50 (lowest expression) to 1.50 (highest
expression). Furthermore, we prepared six different DEG sets comprised
of up- or down-regulated genes from Cluster 1 vs. Cluster 2, 3, and 4 (two
gene sets per cluster comparison) that included DEGs commonly detected
from more than two cluster comparisons. The six DEG sets prepared were
used as inputs to create volcano plots per cluster comparison with the
GraphPad Prism (RRID:SCR_002798) and were used to identify (1) uniquely
up- or down-regulated genes per cluster comparison and (2) GO terms in
the category of biological processes overrepresented with an up- or down-
regulated gene set per cluster comparison using a GSEA tool, PANTHER
(RRID:SCR_004869). In the ASAP, we used those six DEG sets for GSEA on
KEGG pathways and the 189 oncogenic gene sets available in KEGG (RRID:
SCR_012773) and Molecular Signatures (RRID:SCR_016863) databases,
respectively. We set the cut-off of FDR-corrected P value < 0.05 to obtain
statistically confident enrichment values from each GSEA.

Patient primary lung tumors

The authors declare patient materials were obtained in compliance with
the Nova Scotia Health Authority, and all experiments were approved with
written consent under the Nova Scotia Health Authority REB # 1024460
guidelines. All LUADs and normal lung tissues described in our study were
prepared for validation immediately upon receipt from the surgical suite.

Experimental validation of fold-change values using a qRT-
PCR analysis

TRIzol™ Reagent (Invitrogen) was used to isolate total RNAs from the four
human NSCLC epithelial cell lines and paired primary lung tumor and
normal lung tissues from 34 Stage | LUAD patients (16 female and 18
male). TURBO™ DNA-free kits (Invitrogen) were used to remove residual
genomic DNAs in isolated total RNAs. Total RNAs were quantified using DU
800 UV spectrophotometer systems (Beckman Coulter, Inc). Once
quantified, 2 and 1pug of total RNAs per cell line and LUAD patient
sample, respectively, were used to synthesize single-strand cDNAs with
QuantiTect Reverse Transcription kits (Qiagen, Inc.) for two-step qRT-PCR
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analysis. The synthesized single-strand cDNAs of 100 and 50 ng per cell line
and LUAD patient sample, respectively, were utilized as a template
for qPCR analyses with QuantiFast SYBR green PCR kits (Qiagen, Inc.) in
AriaMx gPCR systems (Agilent, Inc.) following manufacturer’s instruction of
the qPCR kits. Primer pairs for gPCR analyses were selected from previous
studies by others or either of ‘PrimerBank’ (RRID:SCR_006898) or
‘RTPrimerDB-The Real-Time PCR and Probe Database’ (RRID:SCR_007106).
When needed, custom primer pairs were designed using Primer3 (RRID:
SCR_003139). For information on primer pairs used in the current study see
Supplementary Data 6. All gPCRs were performed on two replicates per
cDNA sample and repeated three times per gene of interest. To obtain the
fold-change values of 120 selected DEGs in NSCLC cell lines using a qRT-
PCR analysis, we applied the Pfaffl's method*® to normalize raw Ct values
using A549 and actin gamma 1 (ACTG1) as a control sample and
endogenous reference gene, respectively.

Absolute quantification of selected chemokine mRNAs and
microRNA copy numbers in LUAD patient samples

For qRT-PCR quantification, we applied a standard curve approach to measure
quantities of three chemokine mRNAs, CXCL1, CXCL2, and CXCR2, and the
corresponding three microRNAs, miR-532-5p, miR-1266-3p, and miR-3163, in
cDNAs synthesized from total RNAs isolated from primary lung tumors and
normal lung tissues resected from surgery of 34 Stage | LUAD patients with no
prior treatment. The three microRNAs were selected from miRDB (RRID:
SCR_010848) based on sequence similarity in 3’-untranslated regions (UTRs)
(Supplementary Data 6). For a qRT-PCR analysis to measure microRNA copy
numbers in liquid (plasma) biopsy samples, cell-free total RNAs were isolated
from 200 L per plasma sample of the corresponding early-stage LUAD
patients (Supplementary Data 5) using miRNeasy Serum/Plasma Advanced
kits (Qiagen, Inc.). Following genomic DNA removal with TURBO™ DNA-free
kits, single-strand cDNAs per plasma sample were synthesized using Mir-X™
miRNA First-Strand Synthesis kits (Takara Bio USA, Inc.) following manufac-
turer’s instruction of the kits. For absolute quantification, standard curves were
prepared (copy number range from 1 x 10° to 8 x 10%) with 5x serial dilutions
of single-strand cDNAs synthesized from cel-miR-39 miRNA mimic included in
miRNeasy Serum/Plasma Spike-In  Control kits (Qiagen, Inc) following
manufacturer’s instruction of the kits. qPCRs were performed on two
replicates per sample and repeated three times/microRNA using TB Green
Advantage qPCR Premix kits (Takara Bio USA, Inc) in AriaMx qPCR systems
(Agilent, Inc.). U6 snRNAs were also used as an endogenous reference gene to
obtain an averaged-correction factor per qPCR array and normalize raw Ct
values, thereby calculating copy numbers by 10((normalized Ct value of targeting
mIRNA - intercept at y axis)/slope) The values of intercept at y axis and slope per
gPCR array were obtained from the standard curves prepared with the cel-
miR-39 spike-in control.

Bioinformatic mining of publicly available LUAD 10x
Genomics 3’-end scRNA-seq dataset

We mined publicly available LUAD 10x Genomics 3/-end scRNA-seq dataset
(GSE131907) to validate differential expression of genes profiled with our
Fluidigm 3’-end scRNA-seq and qRT-PCR datasets from the four NSCLC cell
lines and 34 Stage | LUAD patient samples, respectively. Whole read-count
data matrix was imported to the ASAP single-cell analysis tool. The read-
count data matrix of whole-cell populations was used to identify clusters
that contain epithelial cells from (1) normal lung and primary tumor tissues
at multiple stages, (2) normal lung at Stage |, (3) primary tumors at Stage |,
and (4) primary tumors at Stage IV. In addition, a Kaplan-Meier survival
analysis was performed to investigate correlation between the high or low
expression level of the three chemokine genes and survival probability of
female and male LUAD patients at Stage | (early) and Stage lll & IV (late). To
create survival plots per gene, stage, and sex, we used the R2 genomics
analysis and visualization platform (https://hgserver1.amc.nl/cgi-bin/r2/
main.cgi) that contains bulk RNA-seq datasets generated by The Cancer
Genome Atlas (TCGA) program (RRID:SCR_003193) publicly available in the
Genomic Data Commons Data Portal (RRID:SCR_014514).

Western blotting analysis

Proteins were isolated from the four human NSCLC epithelial cell lines
using cell lysis buffer as previously described**. Quantification of proteins
in cell lysates was conducted by Bradford Assay followed by SDS-PAGE gel
electrophoresis. The following primary antibodies diluted were used for
western blot analyses**: (1) CXCL2 (1:1,000; Cat. No. ab91511, Abcam); (2)
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brachyury (1:30,000; Cat. No. 81694, Cell Signaling Technology); (3)
E-cadherin (1:1,000; Cat. No. 3195, Cell Signaling Technology); (4) B-catenin
(1:2,000; Cat. No. 9562, Cell Signaling Technology); and (5) actin (1:2,000;
Cat. No. ab8229, Abcam). Proteins were visualized by chemiluminescence
autoradiography.

Statistics

Statistical significance for absolute and relative quantifications in gRT-PCR
analyses was determined using two-sample t-tests and non-parametric
Wilcoxon Signed Rank Test at two-sided P value <0.05, respectively.
Linear regression analyses were performed to identify coefficient of
determination (r?) for fold-change values of DEGs detected from Fluidigm
3’-end scRNA-seq and qRT-PCR analyses at the statistical significance
of P value < 0.0001. One-way ANOVA was applied to determine statistical
significance at P value <0.05 for three repeated measurements of
microRNA copy numbers in plasma samples. All the data are expressed
as the standard error of the mean (SEM) from three repeated experiments
using duplicated samples.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

scRNA-seq demultiplexed datasets that support the findings of this study have been
deposited to NCBI GEO database with the accession number GSE183590.
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