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Mutation load estimation model as a predictor of the response
to cancer immunotherapy
Guan-Yi Lyu1, Yu-Hsuan Yeh2, Yi-Chen Yeh3,4 and Yu-Chao Wang1,5

The determination of the mutation load, a total number of nonsynonymous point mutations, by whole-exome sequencing was
shown to be useful in predicting the treatment responses to cancer immunotherapy. However, this technique is expensive and
time-consuming, which hampers its application in clinical practice. Therefore, the objective of this study was to construct a
mutation load estimation model for lung adenocarcinoma, using a small set of genes, as a predictor of the immunotherapy
treatment response. Using the somatic mutation data downloaded from The Cancer Genome Atlas (TCGA) database, a
computational framework was developed. The estimation model consisted of only 24 genes, used to estimate the mutation load in
the independent validation cohort precisely (R2= 0.7626). Additionally, the estimated mutation load can be used to identify the
patients with durable clinical benefits, with 85% sensitivity, 93% specificity, and 89% accuracy, indicating that the model can serve
as a predictive biomarker for cancer immunotherapy treatment response. Furthermore, our analyses demonstrated the necessity of
the cancer-specific models by the constructed melanoma and colorectal models. Since most genes in the lung adenocarcinoma
model are not currently included in the sequencing panels, a customized targeted sequencing panel can be designed with the
selected model genes to assess the mutation load, instead of whole-exome sequencing or the currently used panel-based methods.
Consequently, the cost and time required for the assessment of mutation load may be considerably decreased, which indicates that
the presented model is a more cost-effective approach to cancer immunotherapy response prediction in clinical practice.
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INTRODUCTION
Cancer is the leading cause of human deaths worldwide. Cancer
therapeutics are intensively studied, and immunotherapy repre-
sents one of the novel promising therapeutic approaches. In this
type of therapy, the immune system is recruited to fight against
tumor development and expansion, and the most successful
immunotherapeutics to date have been immune checkpoint
inhibitors, such as anti-programmed cell death protein 1 (PD-1),
anti-PD-L1, and anti-CTLA-4 antibodies.1 Under normal conditions,
T-cells can identify and kill tumor cells by recognizing the antigens
on tumor cells. However, one tumor cell mechanism, which allows
them to avoid killing by taking advantage of the tightly regulated
nature of T-cells, has evolved. Specifically, PD-1, the surface
receptor on T-cells, is an immune checkpoint molecule responsible
for avoiding autoimmunity. Upon the binding of PD-1 to its ligand,
PD-L1, the T-cells are deactivated. Therefore, tumor cells can
present PD-L1 on their surfaces and escape death by deactivating
T-cells.2 Immune checkpoint inhibitors have been developed to
block the interaction between PD-1 and PD-L1, allowing the
immune system to act against tumor.3 US Food and Drug
Administration (FDA) have approved anti-PD-1 (nivolumab,
pembrolizumab), anti-PD-L1 (atezolizumab), and anti-CTLA-4
(ipilimumab) drugs for the treatment of different kinds of cancers,
such as melanoma, non-small-cell lung cancer, bladder cancer,
head and neck cancer, and renal cell carcinoma.4–6 Clinical trials,
examining the anti-tumor activity of PD-1/PD-L1 blocking

antibodies against other solid and hematological malignancies
are in progress, demonstrating that the PD-1 pathway represents a
promising target for anti-cancer therapy.7

Although the efficacy of immunotherapy has been demon-
strated, treatment response is only observed in a subset of
patients.8–10 Therefore, the identification of patients that can
potentially respond to drugs and the understanding of the
underlying mechanisms are necessary. Rizvi et al.10 demonstrated
that the mutation load, the number of nonsynonymous point
mutations, may be a useful predictive biomarker for treatment
response. An increased number of nonsynonymous point muta-
tions is associated with improved objective response, durable
clinical benefit (DCB), and progression-free survival (PFS). How-
ever, whole-exome sequencing, necessary for the determination
of mutation load is not sufficiently cost and time-effective to be
applied as a standard clinical test. In contrast, cancer gene panels
composed of about 300–600 cancer-related genes are used in
clinical practice to investigate the genetic profile of tumors.11,12

Therefore, the application of the next-generation sequencing
(NGS) gene panels for the precise estimation of the mutation load
and treatment response prediction was investigated. Johnson
et al.13 showed that the mutation counts detected in the 315-gene
NGS panel for melanoma are highly correlated with those
assessed by whole-exome sequencing (Spearman correlation
coefficient= 0.995). Additionally, patients with high mutation
counts detected by NGS gene panels were demonstrated to have
a significantly higher PFS than those with the low gene panel
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mutation counts.12 Further, Roszik et al.14 developed a novel
algorithmic method to accurately predict total mutation load
within tumors using approximately 170 genes in the NGS panels.
These results indicate that the NGS gene panels with hundreds of
genes can be used to estimate the mutation load of tumors and to
predict the efficacy of immunotherapy. However, Campesato
et al.12 further demonstrated that the predictive accuracy is
apparently lost when the number of genes in the NGS panel is
lower than 150, suggesting that the comprehensive gene panels,
comprising more than 300 cancer-related genes, should be
employed. Unfortunately, the cost of the NGS gene panels with
more than 300 genes is still high, and this may be unattainable for
the routine clinical tests in most hospitals worldwide.
Here, based on the publicly available cancer genomics

information, we proposed a computational framework for the
construction of a mutation load estimation model for lung
adenocarcinoma, the most common type of lung cancer, and
we analyzed the effectiveness of this model for the prediction of
cancer immunotherapy response. Furthermore, the computational
framework was applied to construct the mutation load estimation
models for melanoma and colorectal cancer, respectively. These
cancer-specific models may allow the design of customized panels
for the targeted sequencing of selected genes to estimate
mutation load, instead of whole-exome sequencing, decreasing
the cost and time required for the assessment of mutation load.

RESULTS
Computational framework overview
The flowchart of the computational framework used during the
mutation load estimation model construction for lung adenocar-
cinoma is shown in Fig. 1. We generated the mutation matrix with
the somatic mutation data downloaded from The Cancer Genome

Atlas (TCGA)15 as the training data. Subsequently, the candidate
genes were selected based on a set of defined criteria. Afterward,
a simple linear model was used for the construction of mutation
load estimation model. Least squares parameter estimation
method was employed for parameter identification and Bayesian
information criterion (BIC) was used for model selection. After the
selection of the most appropriate model, the performance of the
mutation load estimation model was evaluated and verified using
the mutation information obtained from the independent
validation data. Details of this procedure are presented in
Materials and methods.

Mutation load estimation model for lung adenocarcinoma was
constructed using only 24 genes
With the lung adenocarcinoma somatic mutation data down-
loaded from TCGA database, a computational framework was
developed to construct the mutation load estimation model. After
selecting nonsynonymous point mutations, the mutation matrix
with 13,526 genes and 230 patients was generated. Subsequently,
based on the defined selection criteria (mutation frequency ≥ 10%,
coding DNA sequence (CDS) length ≤ 15,000, and Bonferroni
corrected p-value < 0.05 in Wilcoxon test), 62 candidate genes
were selected (Materials and methods, Supplementary Fig. 1, and
Supplementary Table 1).
For the 62 candidate genes selected, there are 262−1

combinations of gene sets, resulting in 262−1 possible models.
Based on the least squares parameter estimation and BIC for
model selection (Materials and methods, Supplementary Meth-
ods), the most appropriate mutation load estimation model for
lung adenocarcinoma was shown to contain only 24 genes,

Fig. 1 Computational framework used during the construction of the lung adenocarcinoma mutation load estimation model
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selected as follows:

ŷ¼68:72 � PXDNLþ64:27 � NOTCH4þ � � � þ27:1 � PAPPA2
þ22:57 � ZFHX4þ47:24;

(1)

where ŷ is the estimated mutation load using the 24-gene model.
The complete list of genes and their corresponding parameters in
the constructed estimation model are shown in Table 1. With the
model constructed as shown by equation (1), the mutation counts
in these 24 genes of a patient allow the estimation of the
mutation load.

The constructed model for lung adenocarcinoma can be used for
the precise estimation of the mutation load and accurate
prediction of the immunotherapy treatment response
For the performance evaluation of the constructed model for lung
adenocarcinoma, the mutation load for all patients in the training
data from TCGA (n= 230) was estimated using this model. R2

between the estimated and actual mutation load was shown to be
0.9336 (Supplementary Fig. 2), indicating that the estimated
mutation loads highly correlate with the actual mutation loads.
Additionally, in order to validate the constructed mutation load
estimation model, two independent validation datasets (n= 211)
were applied as well, to test the performance (Materials and
methods),10,16 and R2 between the estimated and actual mutation
load was shown to be 0.7626 for the independent validation
cohort (Fig. 2a).
We analyzed the performance of the mutation load estimation

model for lung adenocarcinoma, in the prediction of the
immunotherapy treatment response, using information from an
independent validation cohort.10 The actual and estimated
mutation loads of the patient subgroups with different clinical
characteristics are presented in Supplementary Figs. 3 and 4,
respectively. Survival analysis was applied for the comparison of
the PFS between the patients (n= 30) with high/low estimated
mutation loads, and we demonstrated that a high mutation load,
as estimated using our constructed model, was significantly
associated with the improved PFS (p= 0.0003, log-rank test) (Fig.
2b). Univariate analysis showed that strong PD-L1 expression and
high mutation load (either actual or estimated mutation load) are
significantly associated with the improved PFS. In multivariate
analysis, after adjusting for the PD-L1 expression, high estimated
mutation load remained significantly associated with improved
PFS (Supplementary Table 2). The estimated mutation loads were

also employed to predict whether the patients have DCBs or no
durable benefits (NDBs) following the immunotherapy. To this
end, we determined a discrimination threshold first. Because the
higher estimated mutation load correlates with the improved PFS,
if the estimated mutation load of a patient is higher than or equal
to the discrimination threshold, that patient is more likely to have
DCB, and vice versa. Therefore, the receiver operating character-
istic (ROC) curve was used to determine the optimal discrimination
threshold, and the estimated mutation load ≥ 141 was identified
as the threshold combining the maximal sensitivity and specificity.
The area under the curve (AUC) for DCB/NDB classification using
our constructed model was shown to be 0.8744, demonstrating
that the estimated mutation load can predict the immunotherapy
treatment response quite well (Fig. 2c). According to the
estimated mutation load of each lung adenocarcinoma patient
and the identified optimal threshold, the sensitivity and specificity
of DCB/NDB classification using our constructed model were
shown to be 0.8462 and 0.9333, respectively (Fig. 2d). Further-
more, the accuracy of the cancer immunotherapy response
prediction was 0.8929, obtained using our estimation model,
which is comparable to that obtained using whole-exome
sequencing.10

Performance verification by random models
Although we demonstrated that our estimation model for lung
adenocarcinoma can be used for the precise estimation of the
mutation load of a patient, and the estimated mutation load is
useful for the prediction of cancer immunotherapy treatment
response, we further verified the results, comparing them with the
results of a model constructed using 24 randomly selected genes.
Therefore, 24 genes were randomly selected from the generated
mutation matrix, and a random model was constructed with the
help of the least squares parameter estimation method. The
procedure was repeated 10,000 times, resulting in 10,000 random
models. Subsequently, the performances of these random models
were evaluated. The empirical distribution of R2 between the
estimated and actual mutation loads in the independent
validation cohort for 10,000 random models is presented in Fig.
3a. The R2 of our constructed model (0.7626) was shown to be
higher than all R2 calculated by random models, and the empirical
p-value of R2 was p < 0.0001. Further, based on the random
models and the immunotherapy treatment response data, the
ROC curves for all 10,000 random models were plotted (Fig. 3b)
and the empirical distribution of AUC is shown in Fig. 3c (empirical
p-value= 0.0002). For each random model, the optimal discrimi-
nation threshold can also be identified using the ROC curve,
allowing the determination of the classification accuracy. The
empirical distribution of classification accuracy for 10,000 random
models is displayed in Fig. 3d and the empirical p-value of our
constructed model was 0.0001.

Cancer-type-specific mutation load estimation model is necessary
for clinical application
In addition to lung adenocarcinoma, previous studies showed that
the tumor mutation load is associated with the degree of clinical
benefit of immunotherapy in melanomas.17,18 Therefore, we
investigated whether the mutation load estimation model
developed using lung adenocarcinoma data can also be employed
to estimate the mutation load and predict immunotherapy
treatment response for melanoma patients. Mutation data of the
melanoma patients17–20 and the clinical outcomes for patients
treated with anti-CTLA-417,18 or anti-PD-120 agents were retrieved.
The constructed 24-gene estimation model of lung adenocarci-
noma was applied to estimate the mutation load of these
melanoma patients. R2 between the estimated mutation load and
actual mutation load was shown to be 0.6574, and the accuracy of
classification with the optimal discrimination threshold was shown

Table 1. Genes and the corresponding parameters used in the
constructed lung adenocarcinoma mutation load estimation model

Gene symbol Entrez ID Parameter Gene
symbol

Entrez ID Parameter

PXDNL 137902 68.72 ASXL3 80816 39.52

NOTCH4 4855 64.27 ERICH3 127254 37.88

CSMD2 114784 58.51 HRNR 388697 37.14

PLPPR4 9890 54.54 LRP2 4036 36.12

NRXN1 9378 50.57 ASTN1 460 35.65

KMT2C 58508 49.19 RYR3 6263 35.57

ADAMTS12 81792 46.68 MXRA5 25878 34.54

COL6A3 1293 45.95 ADGRG4 139378 31.22

ZNF831 128611 41.88 NALCN 259232 29.79

FAM135B 51059 41.01 LRP1B 53353 28.99

FLG 2312 40.99 PAPPA2 60676 27.10

FAM47C 442444 40.62 ZFHX4 79776 22.57

Constant
term

47.24
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to be 0.6437 and 0.6579 for anti-CTLA-4 and anti-PD-1 treatments,
respectively. These results demonstrate that the mutation load
estimation model trained for lung adenocarcinoma can be used
for the estimation of the mutation load and the immunotherapy
treatment response prediction in melanoma patients to a certain
extent. However, the performance of the constructed model was
not as good as that for lung adenocarcinoma patients. To test
whether a melanoma mutation estimation model can yield better
results, we utilized the somatic mutation data of melanoma
patients obtained from TCGA database (n= 333)21 to train a
melanoma mutation load estimation model, using the same
approaches as the one used for the lung adenocarcinoma
patients. The constructed melanoma model contained 22 genes
(Table 2). R2 between the estimated mutation load and actual
mutation load in an independent validation cohort collected from
four studies (n= 333)17–20 was shown to be 0.8124 (Fig. 4), which
is superior to that calculated using the lung adenocarcinoma
model, indicating that cancer-type-specific mutation load estima-
tion models are necessary. Additionally, clinical responses in the
melanoma patients treated with anti-CTLA-417,18 or anti-PD-120

agents were acquired to assess the performance of the
immunotherapy response prediction. The actual and estimated
mutation loads of patient subgroups with different clinical
characteristics are presented in Supplementary Figs. 5 and 6,
respectively. Overall survival (OS) for both anti-CTLA-4 and anti-
PD-1 treatments were shown to have no significant correlation

with the estimated mutation load (Supplementary Fig. 7). For the
anti-CTLA-4 treatment patients, AUC for the classification of
clinical benefit using estimated mutation load was 0.6270 (Fig. 5a),
and the accuracy of classification with the optimal discrimination
threshold was shown to be 0.6494 (Fig. 5c). Univariate analysis
showed that M category, serum lactate dehydrogenase (LDH)
level, prior courses of systemic therapy, and mutation load (either
actual or estimated mutation load) are significantly associated
with clinical benefit. In multivariate analysis, after adjusting for M
category, LDH level and prior systemic therapy, estimated
mutation load was shown to remain significantly associated with
the clinical benefit (Supplementary Table 3). Furthermore, AUC for
the classification of clinical benefits using estimated mutation load
for the anti-PD-1 treatment patients was 0.5812 (Fig. 5b), and the
accuracy of classification was shown to be 0.6053 (Fig. 5d).
However, there were no significant differences in the mutation
load between the treatment responders and non-responders
(Supplementary Table 4). These results indicate that the mela-
noma model can estimate the mutation load of the melanoma
patients more precisely than the lung adenocarcinoma model.
Unexpectedly, however, the prediction accuracy of the treatment
response of melanoma model was similar to that of the lung
adenocarcinoma model. In addition to the lung adenocarcinoma
and melanoma, the proposed computational framework was also
applied for colorectal cancer, where mutation load estimation is
currently not available. Somatic mutation information

Fig. 2 Performance evaluation of the mutation load estimation model. a Estimated mutation load vs. actual mutation load using the
independent validation data (n= 211). b Survival analysis comparing PFS in patients with the high estimated mutation loads (n= 15) with
those with the low estimated mutation loads (n= 15). The log-rank test results indicate that the higher estimated mutation load correlates
with improved PFS (p= 0.0003). c ROC curve for the classification of DCB/NDB patients using the estimated mutation load. The red point
indicates the optimal discrimination threshold 141. AUC= 0.8744. d Immunotherapy response prediction using the estimated mutation load.
Gold horizontal line represents the optimal discrimination threshold, 141
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downloaded from TCGA was used as the training data (n= 536)22

and the constructed colorectal mutation load estimation model
contained 22 genes (Supplementary Table 5). The mutation
data for colorectal cancer patients from two independent studies
(n= 691)23,24 were employed as the validation data. R2 between

the estimated mutation load and actual mutation load was shown
to be 0.8794 (Supplementary Fig. 8). The actual and estimated
mutation loads of patient subgroups with different clinical
characteristics are presented in Supplementary Figs. 9 and 10,
respectively. Since no immunotherapy response data for these

Fig. 3 Performance verification using 10,000 random models. a Empirical distribution of R2 between the estimated and actual mutation load
for 10,000 random models. b ROC curves for the constructed model and 10,000 random models. Blue line, the ROC curve of classifier based on
the mutation load estimation model. c Empirical distribution of AUC statistic for 10,000 random models. d Empirical distribution of the
classification accuracy for 10,000 random models

Table 2. Genes and the corresponding parameters used in the
constructed melanoma mutation load estimation model

Gene
symbol

Entrez ID Parameter Gene
symbol

Entrez ID Parameter

TNXB 7148 93.24 RYR2 6262 50.95

NPAP1 23742 80.88 LRP2 4036 49.34

DNAH10 196385 75.59 COL4A4 1286 41.92

ADGRG4 139378 69.31 RP1 6101 40.24

SCN10A 6336 58.65 APOB 338 38.24

CMYA5 202333 55.98 UNC13C 440279 36.52

FAT3 120114 54.53 XIRP2 129446 35.84

ZNF831 128611 53.47 MXRA5 25878 33.81

CSMD3 114788 53.14 DNAH11 8701 30.16

MYH4 4622 52.94 MUC17 140453 28.28

PKHD1L1 93035 51.74 DNAH9 1770 27.21

Constant
term

18.17

Fig. 4 Performance evaluation comparing the actual mutation load
with the estimated mutation load using the melanoma model in an
independent validation cohort (n= 333)
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colorectal cancer samples exist, the treatment response prediction
accuracy of the constructed colorectal model cannot be evaluated.

DISCUSSION
Immunotherapy using immune checkpoint inhibitors has emerged
as a promising new therapeutic approach to cancer treatment in
recent years. However, there are still patients who do not respond
to this type of therapy, and the potential predictive biomarkers
that can be used to identify the potential responders of
immunotherapy are intensively studied, since this information
can support the medical decision-making. Previous studies
demonstrated that the mutation load measured by whole-
exome sequencing may predict the sensitivity to cancer
immunotherapy. However, due to the high costs and technical
threshold, the routine use of whole-exome sequencing is
generally not feasible in medical institutions, which hinders the
application of this method as a standard clinical test. In this study,
we developed a computational framework for the construction of
the mathematical model that can be used for the estimation of
the patient mutation load using the genetic information on a
small number of genes. The constructed mutation load estimation
model for lung adenocarcinoma using only 24 genes was shown
to allow the precise estimation of the mutation load and the
highly accurate prediction of the immunotherapy response in the
lung adenocarcinoma patients, and this accuracy was shown to be

similar to that of the whole-exome sequencing. Furthermore, all
performance indices demonstrated that our mutation load
estimation model outperforms the random models, which shows
the effectiveness of the computational framework proposed in
this study.
Previous studies showed that the commercial or institutional

gene panels that consist of genes known or suspected to be
relevant to cancer can be used to estimate the mutation load.25

However, the number of genes in these panels is considerably
higher than that in our model, including as many as 170, 315, and
641 genes.12,14 Additionally, only four genes used in our lung
adenocarcinoma model are currently included in other cancer
gene panels, and only one of them is included in all three panels
(Supplementary Table 6). This suggests that the majority of genes
used in our model is not well-recognized as cancer-associated
genes. Since the mutational profile of these 24 lung adenocarci-
noma model genes was shown to be highly associated with the
responses to cancer immunotherapy and mutation load, the role
of these genes in cancer development and progression should be
elucidated in future studies.
The genes used in our lung adenocarcinoma mutation load

estimation model have a total CDS length of 187,188, which is
much shorter than that in the commercial or institutional gene
panels.11,25,26 Therefore, this represents an additional advantage
of a gene panel developed based on our mutation load estimation
model, since panel cost depends on the total lengths of the genes

Fig. 5 Performance evaluation of the immunotherapy treatment response prediction using the melanoma mutation load estimation model. a
ROC curve for the classification of clinical benefits using the estimated mutation load in the anti-CTLA-4 treatment patients. Red point, the
optimal discrimination threshold 264. AUC= 0.6270. b ROC curve for the anti-PD-1 treatment patients. Red point, the optimal discrimination
threshold 206. AUC= 0.5812. c Immunotherapy response prediction using the estimated mutation load for the anti-CTLA-4 treatment
patients. Gold horizontal line represents the optimal discrimination threshold 264. The accuracy of the classification is 0.6494. d
Immunotherapy response prediction for the anti-PD-1 treatment patients. Gold horizontal line represents the optimal discrimination
threshold 206. The accuracy of the classification is 0.6053
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selected. Our model should help decrease the cost and time
required for panel analysis, which will further accelerate the
establishment of diagnosis and medical decisions. Additionally,
since there are many gene transcripts, and the CDS length
information retrieved from the Ensembl BioMart represents the
length of the transcripts, the CDS length of the longest transcript
was used when selecting the candidate genes. Therefore, if the
panels are developed using the most common transcript of each
gene, the total CDS length and cost can be further reduced.
Moreover, mutational hotspots can be considered as well when
developing a gene panel to minimize the cost.
Although the cost can vary across different platforms, panel

designs, analysis pipelines, and practices, we believe a customized
targeted gene panel based on our 24-gene lung adenocarcinoma
model may be a cost-effective solution for the mutation load
estimation and prediction of responses to cancer immunotherapy
in lung adenocarcinoma patients. A previous study directly
compared the costs of a targeted sequencing panel (Einstein_v1,
with a targeted region of 4.98 Mb) to whole-exome sequencing,
using the same sequencing platform.27 The cost of Einstein_v1
was shown to be approximately one-fourth lower than that of the
whole-exome sequencing (USD $281.25 vs. $1266). The targeted
region in our 24-gene model (approximately 0.2 Mb) is much
smaller than that in Einstein_v1, and the cost can be anticipated to
reduce further. Additionally, targeted gene panel approach
shortens the turnaround time. A previous study estimated that
the data processing CPU time for a 90-gene panel is one-twentieth
of that needed for the whole-exome sequencing (5 vs. 100 h).28

Furthermore, targeted gene panel approach can substantially
increase the throughput, because of its high multiplexing
capabilities. For example, in the aforementioned study comparing
Einstein_v1 and whole-exome sequencing, whole-exome sequen-
cing allowed only three samples per lane, whereas the targeted
sequencing panel Einstein_v1 can analyze 16 samples per lane.27

These are all important issues determining clinical applicability of
a test.
When we applied the mutation estimation model trained using

lung adenocarcinoma data on the melanoma patients, its
performance was not as good as that observed for the lung
adenocarcinoma patients. Since there are considerable differences
in the mutational landscapes between different types of cancer,
this was not surprising, and cancer-type-specific mutation load
estimation model was shown to be necessary to estimate precisely
the mutation load in different types of cancer. We demonstrated
that the R2 between the estimated mutation load and actual
mutation load in melanoma patients is higher when using the
melanoma model compared with that obtained when using the
lung adenocarcinoma model. Additionally, we showed that the
colorectal cancer model can precisely estimate the mutation load
in colorectal cancer patients, where mutation load estimation is
currently not available. However, we noted that the prediction
accuracy of the treatment response in melanoma patients with
the melanoma model is not superior to that of the lung
adenocarcinoma model. This may be due to the relatively weaker
association between the mutation load and treatment response in
melanoma patients compared with that in the lung adenocarci-
noma patients, and mutation load alone may not be sufficient to
predict clinical benefits in the melanoma patients, which agrees
with the previously obtained results.17,20 To elucidate this issue
further, we plotted the ROC for clinical benefit prediction using
the actual mutation loads of patients treated with anti-CTLA-4/
anti-PD-1 immunotherapy (Supplementary Fig. 11), and the AUCs
for this classification were shown to be 0.6587 and 0.6092,
respectively. Furthermore, the accuracy of clinical benefit predic-
tion using actual mutation load in melanoma patients was shown
to be 0.6149 and 0.6842 for anti-CTLA-4 and anti-PD-1 treatments,
respectively. These moderate performance indices indicate that
the predictive value of mutation load for the treatment response

in melanoma patients is not as high as that in the lung
adenocarcinoma patients. Consequently, although the melanoma
model can be used for the estimation of the mutation load as
precisely as the lung adenocarcinoma model, their accuracy in
predicting the treatment response is not comparable. This
suggests that the ability to predict treatment response for a
mutation estimation model depends upon its precision in
estimating the mutation load and the nature of the disease as
well. The development of different approaches may be necessary
to predict immunotherapy treatment response in different types
of cancer in future.
The limitation of our study is a relatively small number of cases,

since the immunotherapy treatment response data for lung
adenocarcinoma patients included only 28 cases,10 and therefore,
a larger number of cases is required for the validation of the
performance of the treatment response prediction. Furthermore,
the datasets in this study were mostly obtained in the Caucasian
population, and the performance of our model in other ethnicities
should be tested. Recently, in addition to the mutation load, other
features such as microsatellite instability and neoantigen burden
emerged as potential predictive biomarkers for cancer immu-
notherapy treatment response as well.29–31 Therefore, the
strategies that integrate different features may be more effective
biomarkers for the accurate prediction of cancer immunotherapy
response in future.32

In summary, we have proposed a computational framework and
successfully constructed a mathematical model using only 24
genes that can be used to estimate the mutation load in lung
adenocarcinoma precisely. The estimated mutation load can be
used to predict the clinical outcome of cancer immunotherapy
with high accuracy. Therefore, a customized panel for the targeted
sequencing of these selected genes can be designed, instead of
whole-exome sequencing. Consequently, by using our mutation
load estimation model, the cost and time needed for the
assessment of the mutation load should considerably decrease
and the cancer immunotherapy response prediction should be
more obtainable in the standard clinical setting.

MATERIALS AND METHODS
Data used for model construction
Genomics data, specifically somatic mutation information, were used for the
construction of the mutation load estimation model. As the training data for
the construction of the lung adenocarcinoma model, the somatic mutation
data were downloaded from TCGA database (n= 230).15 As the validation
data, the somatic mutation data from two independent studies were
retrieved (n= 181 for Imielinski et al.;16 n= 30 for Rizvi et al.,10 excluding four
patients with squamous cell carcinoma). Additionally, we retrieved the data
showing the treatment responses to anti-PD-1 immunotherapy.10 For the
melanoma model, the somatic mutation data was obtained from TCGA
database (n= 333)21 as the training data. The somatic mutation information
from four independent studies (n= 333)17–20 and clinical outcomes of
melanoma patients treated with anti-CTLA-4 (Snyder et al. (n= 64)17 and Van
Allen et al. (n= 110)18) or anti-PD-1 therapy (Hugo et al. (n= 38)20) were used
as the validation data for the melanoma model. For the colorectal model, as
the training data, the somatic mutation data obtained from TCGA database
(n= 536)22 were used, while the validation data were the mutation data
retrieved from two independent studies (n= 619 for Giannakis et al.23; n= 72
for Seshagiri et al.24).

Selection of nonsynonymous point mutations and the
construction of mutation matrix
Since the number of nonsynonymous point mutations has been
demonstrated to be associated with the clinical benefits of immunother-
apy,10 the first step was selecting nonsynonymous point mutations from
the training data downloaded from TCGA. Here, the column “Variant_-
Classification” indicates the translational effect of a variant. There are 11
different types of variant classification in TCGA lung adenocarcinoma
somatic mutation data and three of them, including nonsense mutation,
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nonstop mutation, and missense mutation, are considered nonsynon-
ymous point mutations. The mutations of these three types were selected
and used for mutation matrix construction. Mutation matrix is an m × n
matrix where m indicates the number of genes and n represents the
number of patients. Each element in the mutation matrix specifies the
number of nonsynonymous point mutations in a gene in one patient.
Following the selection of the nonsynonymous point mutations, the
“Variant_Type” information in TCGA somatic mutation raw data, showing
variant types, was used for the calculation of mutation count. The types of
variants used here were single-nucleotide polymorphism (SNP), double-
nucleotide polymorphism (DNP), and tri-nucleotide polymorphism (TNP),
indicating the mutations in one, two, or three consecutive nucleotides,
respectively. Therefore, the mutation count calculation was one, two, and
three for SNP, DNP, and TNP, respectively. The summation of all mutation
counts of a gene in a patient represented the total number of
nonsynonymous point mutations. For example, three SNPs, two DNPs,
and one TNP in a gene A of a patient gave ten nonsynonymous point
mutations in gene A. In this way, the number of nonsynonymous point
mutations in each gene for each patient was calculated, generating the
mutation matrix.

Candidate gene selection
There are about 20,000 genes in human genome,33 and it is impractical to
consider all genes with nonsynonymous point mutations for the model
construction. Therefore, candidate genes, which may help estimate the
mutation load precisely were selected based on the following three
characteristics: mutation frequency, CDS length, and the association
between mutation status and mutation load (Fig. 1). For each gene in
the mutation matrix, the mutation frequency, i.e., the percentage of
patients with mutation in one gene, can be calculated. If the constructed
model comprises genes with low mutation frequency, more genes are
required for the precise estimation of the mutation load, and, to avoid this,
we selected the genes with mutation frequency higher than or equal to
10%. Since we aimed to reduce the cost of mutation load estimation, and
the cost of the customized panel is proportional to the number of selected
genes and their corresponding CDS lengths, genes with the large CDS
lengths were avoided when constructing the model. Here, the CDS lengths
for each gene were obtained from the Ensembl BioMart database,34 and
genes with the CDS lengths larger than 15,000 nucleotides were excluded
from further analysis. Furthermore, we aimed to select the mutation load-
associated genes that can be used to precisely estimate the mutation load
of the patients, and for those where the mutation load was shown to be
significantly different between the patients with mutations in a particular
gene and the patients with the wild-type gene, these genes were
identified as the mutation load-associated gene and selected as potential
candidate genes. For example, based on the mutation information of the
gene A in the mutation matrix, the patients can be separated into two
groups: the mutated group, in which the patients carry the mutation in
gene A, and the wild-type group, where the patients do not carry gene A
mutations. Wilcoxon rank sum test was employed to test the difference in
the mutation loads between these two groups. The genes with Bonferroni
corrected p-values lower than 0.05 were identified as the mutation load-
associated genes and selected as potential candidate genes. The genes
that met all three criteria were selected as the candidate genes for further
model construction.

Construction of the mutation load estimation model
Based on the selected candidate genes, a linear mathematical model was
used to estimate the mutation load:

ym¼cþ
Xn

i¼1
ai � xmiþem (2)

where ym is the mutation load of them-th patient, xmi, i= 1,…, n, indicates
the mutation count of the selected model gene i in them-th patient, ai, i=
1, …, n, represents the weighting of each selected model gene i on the
mutation load, c specifies the constant term, and em is the model
uncertainty for the m-th patient. The equation shows that the mutation
load of a patient can be calculated using the mutation counts of the
selected model genes multiplied by the corresponding weightings and
adding the constant term and the model uncertainty.
In the mutation load estimation model shown in equation (2), the

mutation load ym and the mutation counts of the selected genes xmi can
be obtained from the generated mutation matrix. On the other hands, the
weighting of each selected gene ai and the constant term c represent the

model parameters that had to be identified. Subsequently, least squares
parameter estimation method was employed for parameter identification
and BIC was used for model selection. BIC is a model selection criterion
widely used in the field of system identification.35 It measures the trade-off
between the estimated error and model complexity. The model with the
lower value of BIC can estimate the mutation load more precisely without
including too many genes in the model. Therefore, the model with the
minimal BIC statistics was selected as the most appropriate mutation load
estimation model. Details are presented in Supplementary Methods.

Performance evaluation and validation
We have selected the most appropriate model containing p genes with the
minimal BIC value. Afterward, we evaluated the performance of the
mutation load estimation model by calculating R2 between the estimated
and actual mutation load using the independent validation data.
Furthermore, based on the PFS/OS information and the estimated
mutation load for each patient, a survival analysis comparing patients
with high/low estimated mutation loads was used to determine if the
estimated mutation load correlates with the clinical outcome of
immunotherapy. Since the immunotherapy response data for lung
adenocarcinoma were obtained from Rizvi et al.,10 the estimated mutation
loads were employed to discriminate between the patients with DCB or
NDB as well. The ROC curve was plotted to determine the optimal
discrimination threshold and the AUC was calculated. Subsequently, the
patients with the estimated mutation load higher than the optimal
discrimination threshold were predicted to have DCBs. In contrast, the
patients with the estimated mutation load below the optimal discrimina-
tion threshold were predicted to have NDBs. In this way, the sensitivity,
specificity, and accuracy of the classification were evaluated. Furthermore,
we compared the performance of our model with the performances of
random models composed of p randomly selected genes. Therefore,
10,000 random models with p genes were constructed and their
performance were evaluated. We generated the empirical distributions
of R2 between the estimated and actual mutation load, AUC statistic of
classifier, accuracy of classification for 10,000 random models, and the
empirical p-values showing the performance of our mutation load
estimation model were determined.

Statistical analysis
Differences in mutation loads were examined by using the Mann–Whitney
U-test or the Kruskal–Wallis exact test. The log-rank test was used to
compare Kaplan–Meier survival curves. Cox proportional-hazards regres-
sion model was used to estimate hazard ratios and their associated 95%
confidence intervals.

Data availability
All data used in this study were publicly available prior to analysis
(Materials and methods).

Code availability
The code for mutation load estimation model construction is available
upon request.
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