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Developing high-performance multicomponent ceramics, which are promising in solving challenges
posed by emerging technologies, shows grand difficulties because of the immense compositional
space and complex local distortions. In this work, an accuratemachine learning (ML) model built upon
an ab initio database is developed to predict the mechanical properties and structural distortions of
multicomponent transition metal carbides (MTMCs). The compositional space of MTMCs is
thoroughly explored by the well-trained model. Combined with electronic and geometrical analysis,
we show that the elemental adaptability to the rock-salt structure elegantly elucidates themechanical
characteristics of MTMCs, and such adaptability can be quantified by local lattice distortions. We
further establish new design principles for high-strength MTMCs, and V–Nb–Ta-based MTMCs are
recommended, which are validated by the present experiments. The proposed model and design
philosophy pave a broad avenue for the rational design of MTMCs with exceptional properties.

The emerging technologies aiming to solve global challenges, such as energy
crises and climate change, impose stringent requirements for the needed
structural materials. For instance, superhard and incompressible materials
are essential for high-performance cutting tools and wear-protective
coatings1. For such purposes, materials with bulk modulus higher than
300 GPa are desirable1. Thoughmetallic transitionmetal carbides, e.g., ZrC,
TiC, and WC, show good performance in some scenarios2, their wide
applications face obstacles because of poor sinterability and low fracture
toughness3. Due to the heightening demands involved in future applica-
tions, new strategies for materials design are required to fulfill the growing
needs of advanced techniques.

The concept of high-entropy alloys brings new opportunities for the
design of high-strength materials4. Since then, the configurational space for
materials development has expanded from the corner region to the center
region, where the configurational entropy can be maximized5. The idea of
entropy stabilization was successfully introduced to ceramics by Rost et al.6,
followed by the discovery of high-entropy borides7, carbides8–10, nitrides11,
carbonnitrides12,13, and sulfides14. These newly discovered materials with
superb properties show great potential in replacing conventional ceramics
for demanding conditions. Among these ceramics, multicomponent tran-
sition metal carbides (MTMCs), including high- and medium-entropy
carbides, stand out as they possess high hardness, good oxidative resistance,

and tunable thermal conductivity15–17. Experiments also show that the
properties of MTMCs may depart from or surpass their rule-of-mixtures
(ROM) values12,13,18, makingMTMC a flexible platform for designing novel
ceramics with desired properties.

Despite the promising opportunities of MTMCs, the vast composi-
tional space makes the exploration and fine-tuning of MTMCs by experi-
ments and ab initio calculations unaffordable. The experimental
synthetization generally costs days, even months. On the other hand, ab
initio calculations of mechanical properties, such as elastic modulus of
MTMCs, are resource-consuming because dozens of computations are
required even for one composition based on the energy-strain or stress-
strain methods, which is unsuitable for the composition optimization of
multicomponent systems. Therefore, an accurate and fast methodology for
predicting the mechanical properties of MTMCs is highly desired.

For MTMCs, superior mechanical performance surpassing the ROM
values has been found in certain cases9,19, which is usually attributed to the
complex compositions and geometrical misfits20, but without fundamental
investigations and detailed explanations to the best of our knowledge.
Furthermore, challenges were encountered in predicting heat transfer
coefficient21, superconducting transition temperature21, and elastic
properties22,23 of high-entropy alloys using the mixture rules. Traditionally,
valence electron concentration (VEC) is adopted to predict phase formation
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andmechanical properties of materials successfully24–28. For someMTMCs,
VEC also manifests good performance in correlating their mechanical
properties27. However, previously studied MTMCs are limited to no more
than three principal components27,28. Moreover, VEC cannot precisely
estimate the phase29 and ductility30 of high-entropy alloys. Thus, there is still
a significant gap in understanding the role of VEC in MTMCs within the
high-entropy region.

Machine learning (ML) methods are good at mining the complex
correlation between input descriptors (atomic or precursory properties) and
target properties in high and non-linear dimensions. Recently, various ML
models were successfully utilized for the rational design of high-entropy
alloys31–37, high-entropy ceramics38–43, and more44–47. Artificial neural net-
work (ANN)40, support vector machine40, random forest39, and k-nearest
neighbor41 models were used to predict the single-phase synthesizability of
high-entropy ceramics. In addition, Zuo et al.38 combined Bayesian opti-
mization and graph neural networks to predict the formation energies and
elastic properties of transition metal ceramics. After that, Tang43 et al.
incorporatedbondparameters (bondorder, bond length, andbond ionicity)
to train a Gaussian process regression model and predict the mechanical
properties of binary and high-entropy ceramics. Jaafreh et al.42 adopted
various algorithms to train theMLmodel for hardness predictionbasedon a
database of experimental results. Notably, all the publishedmodels38,43,48 for
predicting the mechanical properties of MTMCs were trained based on
datasets only comprised of very sparse points in the high-entropy region,
making it challenging to generalize the model to the whole compositional
space. Specifically, the considerednumber of cations is usually nomore than
438,48, or very few high-entropy samples within extremely small supercells43

are studied, which can hardly incorporate the compositional and geome-
trical complexity. Although deep-learning models have been applied to fit
interatomic potentials for MTMCs, such as (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C

49

and (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2
50, such deep-learning potentials are not

suited for high-throughput predictions within a large compositional space.
By now, a database and ML models specialized for predicting the
mechanical properties of general MTMCs are still lacking.

In thiswork,we leverage adata-driven approach todesign anddiscover
high-performance MTMCs. An ab initio database containing ternary,
quaternary, quinary, and senary MTMCs was delicately constructed (see
SupplementaryTable 1), onwhichMLmodels with high accuracy and good
generalizability are established. This is distinct from previous works38,42,43

where no or very fewMTMCswithmore than four principal elements were
incorporated. Based on the well-trained ML model, high-throughput pre-
diction was conducted on both equiatomic and non-equiatomic MTMCs.

Our findings reveal that themechanical properties ofmanyMTMCs do not
follow the ROM values. Besides, the mechanical strength of MTMCs only
weakly correlates with VEC. Through in-depth geometrical and electronic
structure analyses, we elucidate that the elemental adaptabilities to the rock-
salt structure are the underlying reasons for the mechanical properties of
MTMCs.We further delineate a rule for high-performanceMTMC design,
through which MTMCs containing V, Nb, and Ta in the cation sublattice
are recommended as high-modulus carbides. These conclusions are sup-
ported by our experiments, indicating the effectiveness of our proposed
design principles for high-performance MTMCs.

Result
Machine-learning model
Supervised ML models for predicting material properties are generally
comprisedof several essential parts: database collection, feature engineering,
model training and evaluation, model deployment, and experimental vali-
dation. Among these steps, the feature engineering step can be skipped if
non-empirical features are adopted51. However, to digest non-empirical
inputs, deep layers and a large number of trainable parameters are needed.
In this work, we extract physical descriptors to train and predict MTMC
properties (Fig. 1). In this case, much fewer variables are required in the
learning algorithm thanks to the guidance of physical descriptors.

As provided in the workflow illustrated in Fig. 1, we first prepare a
database consisting ofMTMCs with 2–5metallic elements. As presented in
Supplementary Table 1, 65%of samples consist of no less than fourmetallic
elements, distinct from previous studies38,42,43,48.

The samples are encoded by 13 precursory properties (see Supple-
mentary Table 2 for the details). These descriptors do not require extra
experiments or simulations, and thus are suitable for building physics-
guided ML models and have the advantage of exploring the whole com-
positional space51. Note that the mixing enthalpy and volume change
induced by mixing are not considered as they need prior DFT calculations,
which may limit the high-throughput predictions for non-
equiatomic MTMCs.

The mixing entropy is calculated as:

ΔS ¼ �R
X
i

ðci × lnciÞ; ð1Þ

where R and ci are the gas constant and concentration of the ith precursor,
respectively. The average values of precursory properties can be used to
describe MTMC samples based on the mean-field theory. In contrast, the

Fig. 1 | Machine-learning workflow. ANN and PCA refer to artificial neural net-
works and principal component analysis, respectively. The input features are listed
in Supplementary Table 2. The “+”, “×”, “2”, “3”, and “log10” are operators and are

explained in Supplementary Table 3. There are five steps for the design of high-
performanceMTMCs: constructing a database, feature engineering, model training,
high-throughput prediction, and experimental validation.
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deviation and the range of properties are used to describe the dissimilarities
among constituents. The average (prop), deviation (σprop), and the range of
precursory properties are calculated by the following equations.

prop ¼
X
i

ci × propi
� �

; ð2Þ

where propi is the property value of ith precursor.

σprop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
ci 1� propi

prop

� �2
s

: ð3Þ

The range of each property is calculated by:

range ¼ propmax � propmin; ð4Þ

where propmax and propmin are the maximum and minimum values of the
precursory property, respectively. The collected inputs were then passed to
operators (listed in Supplementary Table 3) to further expand the input
dimension. After these procedures, the input dimension is enlarged to 224.
However, some input features are highly correlated (Supplementary Fig. 1),
which slows the training and prediction efficiency. Thus, we further reduce
the inputdimensionalitywith theprincipal component analysis,wheremost
data covariance (0.99) is reserved.

We adopt a global optimization algorithm, i.e., the adaptive moment
estimation method52, to train the ML model. During the optimization
iterations, the trainable parameters are updated, and thedifferences between
predictions and data labels are minimized. To reduce overfitting, we have
explored the effect of regularization. As depicted in Fig. 2a, b, the regular-
ization method reduces the overfitting significantly; the validation error
would increase after 500 training epochs without such a regularizer. To
make the best use of collected data points, we adopt a cross-validation (CV)

method inwhich the database is divided into independent subsets, and each
one of them serves as the validation set for different training folds.We have
also optimized the number of hidden layers, number of neurons per layer,
number of CV folds, and batch size. The results show that a 5-CV model
with four layers and 80 nodes in each layer gives the lowest mean absolute
percentage error (MAPE): 3.54%.The interpretationof input features canbe
seen in Supplementary Note 1.

Deployment of the well-trained model
The bulk modulus (B), shear modulus (G), Young’s modulus (E), and
Vickers hardness (Hv) are widely employed to evaluate the mechanical
performance of structuralmaterials. The elastic constants of C11 andC44 are
also used to quantify the material’s ability to withstand uniaxial strain and
shearing. Compared to the properties calculated by density functional
theory (DFT), the well-trained ML model shows excellent prediction
accuracy.As shown inFig. 3, the estimatedmean absolute error (MAE) ofB,
G, and E is lower than previous reports43,48, which is understandable as only
very few high-entropy MTMCs were incorporated into the database of
previous works.

The well-trained model is then applied to predict the whole compo-
sitional space of MTMCs. As shown in Supplementary Note 2, the model
accurately predicts the non-equiatomic compositions that are not
encountered during the training phase, suggesting good generalizability
across the entire compositional space. Additionally, the ternary property
diagrams in Fig. 4 show that unexploited non-equiatomic compositions can
have superiormechanical properties than equiatomicMTMCs.Especially, B
of theTi–V–Mosystem can be enhanced bydecreasing the concentration of
Mo and increasing the concentration of V. Ti–Nb–Ta and V–Nb–Ta sys-
tems (Fig. 4b, e) show similar patterns in shear modulus, indicating that the
high-cost and detrimental V element can be replaced by low-cost and
environmentally-friendly Ti. In Fig. 4f, a low basin of E can be found in the
bottom left region, which should be avoided if one aims to designHf–V–W-
based carbides with high E values. As these diagrams of mechanical

Fig. 2 | Hyperparameter optimization. Learning
curves a without and b with L2 regularization.
MAPE with varied hyperparameters. c and d are
colored with the value of MAPE averaged among
all folds.
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properties can be generated efficiently, the ML model effectively guides the
design of exceptional MTMCs with economical and eco-friendly
constituents.

Mechanical properties indicated by VEC and ROM
Based on the DFT and ML predicted results, some phenomena arise: poor
correlation of the mechanical properties of MTMCs with VEC (Fig. 5a–c)
and the breakdown of the ROM (as shown in Fig. 5d–f). Previously, such
deviation was commonly attributed to the complex interactions between
constituent species, but without fundamental explanations.

VEC has been widely used to dictatematerial properties, such as phase
stability26 and mechanical strength27,28. Balasubramanian et al.27 reported
that the ductility of binary and ternary ceramics increases with increasing
VEC. Jhi et al.28 attributed the highest hardness of transition-metal carbo-
nitrides with VEC = 8.4 to the directional d–p σ bonds. However, for

MTMCs, the correlation between modulus and VEC has not been sys-
tematically investigated yet because of the huge compositional space and
complex distortions in the local environment. Thanks to the well-trained
ML model, we can explore the mechanical properties of MTMCs with
different compositions efficiently. As shown in Fig. 5a, B of all MTMCs
(Group A) increases slightly with an increasing VEC. The E values increase
with increasing VEC when VEC is <9.0, and then decrease to lower than
400 GPa until VEC = 10.0, similar to the trend of G. More strikingly, large
fluctuations of B, G, and E exist in MTMCs at the same VEC, which differs
fromceramicswith ordered structures or nomore than three components27.
For instance, the span of B and E at VEC = 9.0 is around 150 and 250GPa,
respectively, signifying the poor capability of VEC in dictating the modulus
of disordered MTMCs.

Since some precursory binary carbides are unstable in the rock-salt
structure [B1 or face-centered-cubic (FCC) structures], it is reasonable to

Fig. 4 | Ternary diagrams of B, G, and E. a B of
V–Mo–Ti system; b G of Nb–Ta–Ti system; c E of
Nb–Ta–Ti system; d B of Nb–Ta–V system; e G of
Nb–Ta–V system; f E of Hf–W–V system. Units are
given in GPa. The elemental combinations are
selected based on the results calculated in Supple-
mentary Note 3.
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Fig. 3 | Performance of ANN model. a Bulk mod-
ulus (B); b Shear modulus (G); c Young’s modulus
(E); d Hardness (Hv); e C11; f C44. Units of MAPE
and MAE are in % and GPa, respectively.
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postulate that these metallic elements should show lower adaptability to the
rock-salt MTMCs. We collected the energy Hull of binary carbides from
Materials Project53 and listed them in Supplementary Table 5. B1-type CrC,
MoC, andWCshowhigher energies above the convexHull (>0.25 eV/atom),
declaring their high instability in rock-salt structures. In comparison,VCand
TaC exhibit positive hull energies lower than 0.1 eV/atom, which explains
their relatively low instability. If these elementswithpositive energyabove the
convex hull are excluded (the remainingMTMCs are labeled asGroupC), as
seen in Fig. 5a–c, strong upward trends for bothB,G, and E can be observed.
Similar correlationsbetweenVECandmechanical properties are also evident
if we plotmoduli after excluding highly unstable elements (GroupB: exclude
Cr, Mo, and W). These trends agree well with the previous reports27,28 for
carbides containingoneor two low-stabilitymetallic elements, signifying that
the elements with low adaptability should be responsible for the deviation
from the VEC trends in MTMCs.

Thephysical intuition tells us that the properties ofmixturesmaydiffer
or be close to the ROM values depending on the adaptability of individual
elements. For example, Zhao20 reported that the general stacking fault
energies in selectiveMTMCsobey theROM. In contrast, somehigh-entropy
nitride and carbonitride have moduli that surpass ROM estimations9,12,13,18.
The comparisonofmechanical properties ofMTMCsobtained fromtheML
model and ROM is provided in Fig. 5d–f. Similar to the deviations from the
VEC trends, the varied adaptability of different elements accounts for poor
ROM predictions compared to ML results. If we exclude Cr, Mo, andW, a
clear correlation between the moduli of MTMCs and their ROM approx-
imations can be observed [Group B in Fig. 5d–f]. The correlation is more
significant if only consideringTi, Zr,Hf, andTaelements (highly adaptable),
denoting that ROM can only be applied to selected elemental combinations
for MTMCs [Group C in Fig. 5]. The above trends are also visible based on
our raw ab initio data [Supplementary Fig. 6], and theMLpredictions in the
whole compositional space make them more salient.

Adaptability and local distortion fromelectronic and geometrical
analysis
The trends of mechanical properties against VEC in MTMCs with more
than three metallic elements have not been reported previously. An
understanding of the fundamental reasons for this phenomenon can help
design MTMCs with excellent properties. From the energy perspective, the
energies above the convex Hull in Supplementary Table 5 indicate that the
adaptability of constituent elements plays a critical role. To gain deep insight
into the mechanism, we further explore the electronic and geometrical
structures of MTMCs.

In the B1-type carbides, bands of different orbitals play different roles
against shear distortion28. In specific, the eg–p σ bands are highly directional
and responsible for the shearing-resistant bonding interactions, but the π
bonding between p and t2g orbitals is insensitive to shear distortion. The
high-energy σ bonding between intermetallic d orbitals is stronger after
shearing, resulting in lowered shear and Young’s modulus if it is filled by
electrons28. The calculated band structure of TiC is shown in Supplementary
Fig. 7a, which is in excellent agreement with literature28,54. For other binary
carbides belonging to IV–VI groups, their electronic structures are similar to
TiC. Such similarities among B1-type binary carbides indicate that the
valence states are occupied successively with increased VEC, and the above-
mentioned interactions (eg–p, t2g–p, and t2g–t2g) become effective succes-
sively. Therefore, clear trends of the mechanical moduli of binary carbides
are found as VEC increases monotonically. To compare the difference
between binary carbides and MTMCs, the electronic band structures of
selective MTMCs are calculated. Those selected MTMCs all have VEC = 9,
but exhibit large, medium, and low modulus, respectively (Supplementary
Table 6).As evidenced inFig. 6a–c, the electronic structuresof theseMTMCs
show varied patterns, and the interactions between different bands are not
involved in a similar order as in binary carbides (Supplementary Fig. 7).
Thus, even with the same VEC, the fundamental electronic interactions are
different. Therefore, the selected systems show distinct mechanical prop-
erties. Moreover, as discussed above, Nb and Ta are more adaptable to the
rock-salt structure thanCr,Mo, andW.Consequently, the band structure of
(NbTa)C2 exhibits more similarities to binary carbides than (CrZr)C2 and
(MoTiWZr)C4, which leads to the smaller deviation of (NbTa)C2 from
trends of group B elements shown in Fig. 5. We further calculate the band
structure ofMTMCsconsisting only of group-Celements, and the electronic
band structures in Supplementary Fig. 8 show features akin to the binary
carbides (Supplementary Fig. 7). Hence, the large fluctuations inmechanical
properties at the same VEC are attributed to the elements which refuse to
redistribute their electronic band structure to dissolve into rock-salt
MTMCs. In short, VEC is a good indicator of the mechanical properties
of MTMCs with high electronic adaptability to the B1 structure and binary
carbides, but not for MTMCs consisting of Cr, Mo, and W elements.

To quantify the adaptability of different elements, we collect the atomic
displacement (ΔR) from the octahedral center in the FCC lattice:

ΔR ¼
�����
�����
Pn

i
R1NN

n � R

�����
�����
2

, where R and R1NN are the atom position and the

positions of its first-nearest neighboring (1NN) atoms, respectively. The
number of 1NN atoms isn. Additionally, as shown in Supplementary Fig. 9,

Fig. 5 | Mechanical properties indicated by VEC
and ROM. Correlation between VEC and a B, b G,
and c E from ML predictions. d–f Parity plots
between mechanical properties given by ML and
ROM. Group A: all elements in groups 4–6 and
periods 4–6; Group B: exclude Cr, Mo, and W;
Group C: exclude Cr, Mo, W, V, and Nb.
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the magnitude of ΔR exhibits high consistency across independent special
quasi-random structures (SQSs). As shown in Fig. 6d, the investigated
elements relocate their positions in the rock-salt lattice in the order of
Cr~Mo~W>V~Nb > Ti~Zr~Hf~Ta. Such an order agrees well with the
analysis of the energy above convex Hull (Supplementary Table 5) and
electronic band structures [Fig. 6a–c and Supplementary Fig. 8]. Interest-
ingly, the magnitude of local distortion shows a good ability to predict
deviationmagnitudes of elasticmoduli fromROMvalues, as reflected inFig.
6e–g. For MTMCs with low geometrical adaptabilities (high local distor-
tions), the mechanical properties calculated by DFT are much lower than
the ROM values, and consequently, the ROM values fall short in predicting
the mechanical properties. Trends are also observed between the local dis-
tortion and elastic moduli (Supplementary Fig. 10), signifying that the local
distortion is a better descriptor than VEC and ROM for MTMCs. Fur-
thermore, large distortions in local environments are concurrently observed
with large volume expansions (Supplementary Fig. 11), designating that the
elements with low adaptability expand their atomic volume in the rock-salt
structure. We additionally fit the linear relationship between B and local
distortion with the formula: B = ROM−∑keΔRe+ b, and found that Cr,
Mo, and W decrease B significantly (Supplementary Fig. 12). As the geo-
metrical distortion can effectively quantify the adaptabilities of constituent
elements and dictate the moduli, it plays a pivotal role in bridging the
underlying band structures and mechanical performance of MTMCs,
including high- and medium-entropy ceramics.

Rational design of high-performance MTMCs
According to the adaptability to the rock-salt structure, the investigated
elements are split into three groups. Ti, Zr, Hf, and Ta readily dissolve into
theB1 latticewithout dramatic distortion of local environments. In contrast,
Cr, Mo, and W display large atomic dislocations in the FCC structure. For
the other elements (V and Nb), moderate adaptability is found. The mag-
nitude of local distortion in MTMCs is obtained with DFT calculations in

the above discussions, which may limit the high-throughput screening to
identify excellent MTMCs. To address this dilemma, an ANN model is
trained and applied to predict the local distortion of MTMCs. As shown in
Supplementary Fig. 13, the ANN model accurately predicts the local dis-
tortions in MTMCs, effectively alleviating resource-demanding DFT
calculations.

The mechanical performance of MTMCs can be explained from two
aspects: the elemental adaptability to the FCC structure and the intrinsic
properties of different species. The adaptability, as discussed above, can be
quantified by local distortions, and the inherent properties are given by the
moduli of precursory carbides. ForMTMCswithminor local distortions, the
ROM accurately estimates their mechanical moduli (Fig. 6e–g). Thus,
exceptional MTMCs can be discovered with high-moduli precursors. As an
example, the model is deployed to predict the local distortion of Ti–Zr–Hf,
V–Nb–Ta, and Cr–Mo–W systems. As shown in Fig. 7a, b and Supple-
mentary Fig. 14, (Ti–Zr–Hf)C displays the strongest adaptation to the FCC
structure. Nonetheless, as their precursory carbides show low E, the pre-
dicted E of (Ti–Zr–Hf)C (Supplementary Fig. 14c) is relatively low. In
contrast, the (V–Nb–Ta)C system presents high modulus as it has low local
distortion Fig. 7a and is comprised of binary carbides with high moduli.
Specifically, the E values of VC, NbC, and Ta are 518, 497, and 530 GPa,
respectively, significantly higher than other binary carbides. Thus, many
MTMCs in the (V–Nb–Ta)C compositional space exhibit highE values (Fig.
7c). Finally, large local distortion is observed in the (Cr–Mo–W)C system,
which gives rise to lower mechanical performance compared to ROM
approximations (Fig. 6e–g). Since the E values of B1-type CrC, MoC, and
WCare lower than420 GPa,MTMCs in the (Cr–Mo–W)Csystemgenerally
have inadequate mechanical performance (as predicted in Supplementary
Fig. 14d). As summarized in Fig. 7e, V–Nb–Ta-based carbides stand out as
they are consisted of superior precursors and have strong adaptability to the
FCC lattice. Since the local distortions of Ti andHf are small inMTMC, and
the E values of TiC and HfC are medium, we additionally explored the

Fig. 6 | Electronic and geometrical structure ana-
lysis. a–c Band structures of three selected MTMCs
withVEC = 9.0 butwith distinct E values: a 311 GPa,
b 425 GPa, and c 545 GPa. d Local distortion of
different elements in all the studied MTMCs.
e–g Correlations between the magnitude of local
distortion of MTMC and their mechanical
properties.
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(VNbTa)–Ti–Hf-based carbides as Ti and Hf have strong adaptability and
moderate E values. Figure 7b shows small local distortions of this system, as
expected. The obtainedE values increasewith the increased concentration of
(VNbTa)C3. Thus, if a compromise is made between elemental adaptability
and their intrinsic mechanical performance, the V–Nb–Ta-based MTMCs
are corroborated to have excellentmechanical performance. As indicated by
the white dots in Fig. 7c, d, (Nb0.33Ta0.67)C, (V0.40Nb0.15Ta0.45)C,
(HfNbTaTiV)C5, and (Hf0.10Nb0.18Ta0.18Ti0.36V0.18)C are recommended,
and their mechanical properties are presented in Fig. 7f and Table 1.

Experimental validations
Nanoindentation experiments are broadly adopted to measure the elastic
modulus and hardness of ceramics. However, large fluctuations were
reported in prior literature. For example, (HfNbTaTiZr)C5

9,12,55–59 and
(HfNbTaZr)C4

8,55,60–63 were prepared and tested by independent experi-
ments, but their Young’s modulus distributes from 333 ± 14GPa to
576 ± 39GPa and 441 ± 88GPa to 615 ± 11GPa, respectively. Therefore,
consistent experiments with the same protocol are essential to validate the
predictions of DFT calculations and the ML model. For this purpose, we
have performed batch experiments on synthetization and nanoindentation
testing of these theoretically predicted MTMC compositions. The experi-
mental details are described in the Methods section. As shown in Table 1
and Fig. 7f, reasonable agreements between DFT/ML and experiments are
obtained, signifying the good accuracy of DFT calculations and the

establishedMLmodel.Generally, the elasticmodulus andhardness given by
nanoindentation arehigher than that givenbyDFTandML, but the trendof
ML predictions is successfully reproduced, proving the effectiveness of our
proposed design principles. The comparisonwith literature results is shown
in Supplementary Note 4.

Discussion
The huge compositional space has been the critical factor impeding the
high-throughput screening and rational design of outstanding MTMCs
since their first discovery. Experiments and ab initio simulations are
exceedingly expensive, and they are normally adopted to probe limited
compounds only. In this respect, the ML model developed in this work
predicts mechanical properties and geometrical distortion of local envir-
onments of equiatomic and non-equiatomic MTMCs rapidly and accu-
rately, which considerably accelerates the design process.

VEC andROMarewidely used to pinpoint the properties of alloys and
ceramics. However, with synergistic efforts of DFT calculations and ML
predictions, this work shows that VEC is insufficient for describing the
moduli of MTMCs, and the moduli of many MTMCs deviate from the
ROMestimations. Previousworks commonly attribute these phenomena to
the complexity of disordered multicomponent materials. In contrast, as
depicted in Fig. 8, this work dives into the fundamental reasons by deci-
phering elemental adaptability from perspectives of energy above convex
Hull, electronic structures, and geometrical structures. Elementswith strong

Table 1 | Mechanical properties, including E (in GPa) and Hv (in GPa), of MTMCs measured by nanoindentation with different
forces and compared to the DFT and ML predictions

E Hv

Materials 50 mN 8mN ML DFT 50mN 8mN ML DFT

(Nb0.33Ta0.67)C 606 ± 23 707 ± 35 547 550 25 ± 2 25 ± 1 29 29

(V0.40Nb0.15Ta0.45)C 576 ± 15 688 ± 37 508 499 34 ± 2 35 ± 2 27 26

(HfNbTaTiV)C5 575 ± 16 668 ± 45 482 489 35 ± 2 35 ± 3 27 28

(Hf0.10Nb0.18Ta0.18Ti0.36V0.18)C 586 ± 16 679 ± 20 481 483 38 ± 2 37 ± 2 27 28

(TiZrHfTaMo)C5 494 ± 29 612 ± 37 446 456 32 ± 5 36 ± 3 25 26

(TiZrHfVTa)C5 544 ± 19 609 ± 59 447 440 36 ± 2 37 ± 5 26 25

(MoNbTaVW)C5 476 ± 28 587 ± 13 427 418 24 ± 2 28 ± 2 19 19

Fig. 7 | Rational design of MTMCs with excep-
tional modulus. Local distortions a, b and c, d E of
V–Nb–Ta and (VNbTa)–Hf–Ti systems predicted
by the ANN model, respectively. e Principles of
designing high-performance MTMCs, and the color
is for E values. White dots in c and d denote the
recommendations, and their compositions are I:
(Nb0.33Ta0.67)C, II: (V0.40Nb0.15Ta0.45)C, III:
(HfNbTaTiV)C5, and IV:
(Hf0.10Nb0.18Ta0.18Ti0.36V0.18)C, respectively.
f Mechanical properties of recommended compo-
sitions from ML model and experiments (8 mN).
The additionally synthesized compositions are V:
(TiZrHfTaMo)C5, VI: (TiZrHfVTa)C5, and VII:
(MoNbTaVW)C5, respectively. Detailed experi-
mental results are shown in Table 1.
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adaptability to the FCC lattice easily redistribute their electronic densities,
leading to a lower Hull energy in the precursory carbides, similar band
structures, and small local distortions in MTMCs. Such adaptability also
elegantly explains the poor dictation ability of ROM and VEC for different
elemental combinations.

Though elemental adaptability is effective in explaining themechanical
performance of MTMCs, it is not a quantifiable descriptor for designing
MTMCs with exceptional strength. Our analysis suggests that the local
distortion plays a key role in bridging the underlying electronic structures
andmechanical performance ofMTMCs, and thus reasonably representing
the elemental adaptability. By considering the intrinsic properties and local
distortions of different species in MTMCs together, V–Nb–Ta-based
MTMCs are predicted to be excellent candidates as high-performance
carbides, which is validated by our experiments. Therefore, based on the
fundamental understandings and established design principles, the devel-
oped model provides versatile tools for designing and discovering super-
ior MTMCs.

In summary, an ANN model is developed to predict the
mechanical properties and local distortion of MTMCs with high
accuracy and efficiency. As the input features are extracted from
properties of precursory carbides, the well-trained model can be
deployed to rapidly explore the whole compositional space, including
equiatomic and non-equiatomic MTMCs. Based on DFT calculations
and ML predictions, we found that VEC and ROM cannot be used to
correlate with the mechanical performance of MTMCs, especially for
those with large local distortions. Further analysis of convex Hull,
geometrical distortions, and electronic structures underlines that the
adaptability to the FCC lattice of different elements (quantified by local
distortion) is the root cause of deviations from estimations made by
VEC and ROM. Specifically, the mechanical properties of MTMCs
composed of strongly adaptable elements can follow the mixing rule
and VEC trend. By considering the elemental adaptabilities and
intrinsic mechanical properties of precursory carbides, V-Nb-Ta-
based MTMCs are predicted to have excellent performance.
(Nb0.33Ta0.67)C, (V0.40Nb0.15Ta0.45)C, (HfNbTaTiV)C5, and
(Hf0.10Nb0.18Ta0.18Ti0.36V0.18)C are recommended after a judicious
design, and experiments are carried out and successfully validate ML
predictions and recommendations.With the help of theMLmodel and
design philosophy established in this work, a broad path for developing
high-performance multicomponent ceramics is paved.

Methods
DFT calculations
The density functional calculations were carried out by the Vienna ab initio
simulation package (VASP)64. The energy cutoff of 600 eVwas specified for
the plane-wave-basis to reach high accuracies. The termination conditions
for self-consistent electronic loop and ionic relaxations were set to be

10−4 eV and lower than 0.05 eV/Å, respectively. The exchange-correlation
functional proposed by Perdew, Burke, and Ernzerhof (PBE)65 was used
with generalized gradient approximations (GGA). Projector augmented
wave (PAW) potentials66,67 recommended by the VASP tutorial were
employed. The tetrahedronmethod with Blöchl corrections was adopted to
treat the partial occupancies of electrons. For the geometrical optimization
of bulk structures, all the cell and atomic degrees of freedom were fully
relaxed. For the elastic constant calculations, only atomic positions were
optimized,while the cell shapewasfixed. The simulated supercell consists of
32 cations and 32 anions within the rock-salt structure. The special quasi-
random structures (SQSs) were generated by optimizing the
Warren–Cowley short-range order (SRO) parameters68,69 toward zero
(examples are provided in Supplementary Table 8). A gamma-centered
5 × 5 × 5 k-point mesh was used to sample the Brillouin zone with Bloch
vectors. Elastic constants were calculated by the energy-strain method,
where seven points were considered to fit the energy curve for each
shearing mode.

Experimental procedure
RawconstituentpowdersNbC(~1.20 μm),TaC(~1.10 μm),TiC (~1.50 μm),
HfC (~2.0 μm), VC (~1.0 μm) were individually weighed according to the
designed ratio of metal elements. The powder mixture was then ball milled
(250 rpm, 10 h) in a cemented carbide jar using cemented carbide balls and a
ball-to-powder mixture ratio of 10:1. The jar was filled with Ar gas before
grinding toprevent possible oxidation.Densification andconsolidationof the
powder mixture were fulfilled using spark plasma sintering (SPS, LABOX-
325R, Japan). During sintering, the powder mixture was heated to 2000 °C
with a rate of 100 °C/min and a soaking time of 10min. The pressure was
maintained at 40MPa during the sintering process. The nanohardness of
MTMCs was determined using a nanoindentation hardness tester (Agilent
Nano IndenterG200). Loads of 8mNand50mNwere used to performa3*3
matrix on each sample, the loadwasmaintained for 10 s at the peak load, and
the loading ratewas 10−3 mN/s. The interval between each indentwas 60 μm.
The indentation tip type is Berkovich, with a radius of 20 nm.

Data availability
The authors declare that the experimental data supporting the results of this
study can be found in the paper and its Supplementary Informationfile. The
detailed data for the study is available from the corresponding authors upon
request.

Code availability
The Python codes that support the findings of this study are available on
GitHub.
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