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Machine learning techniques are attractive options for developing highly-accurate analysis tools for
nanomaterials characterization, including high-resolution transmission electron microscopy
(HRTEM). However, successfully implementing suchmachine learning tools can be difficult due to the
challenges in procuring sufficiently large, high-quality training datasets fromexperiments. In thiswork,
we introduceConstruction Zone, a Python package for rapid generation of complex nanoscale atomic
structures which enables fast, systematic sampling of realistic nanomaterial structures and can be
used as a random structure generator for large, diverse synthetic datasets. Using Construction Zone,
we develop an end-to-end machine learning workflow for training neural network models to analyze
experimental atomic resolutionHRTEM imageson the task of nanoparticle image segmentationpurely
with simulated databases. Further, we study the data curation process to understand how various
aspects of the curated simulated data—including simulation fidelity, the distribution of atomic
structures, and the distribution of imaging conditions—affect model performance across three
benchmark experimentalHRTEM imagedatasets.Usingourworkflow,weare able to achieve state-of-
the-art segmentation performance on these experimental benchmarks and, further, we discuss robust
strategies for consistently achieving high performance with machine learning in experimental settings
using purely synthetic data. Construction Zone and its documentation are available at https://github.
com/lerandc/construction_zone.

Machine learning (ML) methods promise to accurately and automatically
analyze large datasets at high-speeds, revolutionizing our materials char-
acterization workflows. Many state-of-the-art ML tools rely on supervised
learning techniques, where models utilize large amounts of data annotated
with features of interest for training. The performance of supervised ML
models, like neural networks, directly depends on the contents and gen-
erating distribution of the dataset used formodel training, and, importantly,
such models have been shown to extrapolate poorly beyond their training
datasets1 and have limited out-of-distribution generalization behavior2,3.
Developing robust ML models for automated analysis of transmission
electron microscopy (TEM), a versatile technique for structural and func-
tional materials characterization at the atomic-scale, thus requires large
image datasets which fully cover experimental imaging conditions and the
variety of samples one has imaged. However, manually producing

sufficiently large and diverse sets of well-annotated experimental data in
order to train robust, generalizable ML models can be extremely labor
intensive and creates thepossibility for bothhuman and experimental biases
to negatively impact model performance during deployment. With limited
experimental data, it is also difficult to investigate any failures or biases of a
ML workflow arising from the choice of data used.

The prohibitive cost of producing high-quality, well-annotated
experimental data for supervised learning tasks makes data simulation an
attractive alternative for developing effective machine learning models.
Synthetic datasets produced through materials simulations offer several
distinct advantages over their experimental counterparts. In particular,
high-throughput simulation can create arbitrarily large datasets covering
the full range of experimental conditions with ground-truth, physics-based
data annotation, avoiding human bias and error in selecting and annotating
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relevant data and at a lower cost. Synthetic data generation also enables
consistently reproducible end-to-end model development workflows and
the ability toprecisely isolatedata streameffects—bothpositive andnegative
—on trained models. The final challenge then becomes choosing suitable
and sufficient datasets for developingMLmodels to achieve a scientific task
of interest, making it important to understand how the data we use influ-
ences the accuracy and quality of the scientific inferences wemake and how
such data curation decisions induce practical compromises between ML
model performance and model development costs.

In the study of nanomaterials, developing suitable and robust machine
learning models for experimental use while only training models with
simulation data requires producing accurate, experimentally-similar syn-
thetic data for a sufficiently diverse and representative set of atomic struc-
tures, as dictated by experimental needs. Recent appliedML advancements
for TEM have successfully utilized simulated training data to train neural
network models to analyze crystalline scanning TEM (STEM) and STEM
diffraction data4,5, segment and analyze high-resolution TEM (HRTEM) of
2D material structures and nanoparticles6, and denoise HRTEM
micrographs7. These prior achievements, enabled by modern TEM simu-
lation methods which can perform large-scale, high-throughput, experi-
mentally realistic simulations across a variety of modalities8–12, have been
limited in scope to just a few types of atomic nanostructures5–7 or to only
periodic crystals4. The narrow set of atomic structures used for training data
fundamentally narrows the application scope of their models and work-
flows. To lift these scope limitations and enable a wider range of experi-
mental use cases, we need flexible, atomic-structure generation tools for
simulation that better mimic the variety of complex structures seen in
experimental data. However, modern software tools for computational
materials science tasks13–15 are not primarily designed for complex structure
generation and do not facilitate the precise description and generation of
arbitrary distributions of complex, nanoscale atomic objects, and thus
inhibit sampling sufficiently numerous and diverse atomic structures in
training datasets.

In this work, we develop an end-to-end workflow for training ML
models to perform atomic-resolution image segmentation of experimental
HRTEM data of nanomaterials using only large, high-quality synthetic
datasets comprising complex, defected atomic nanostructures sampled via a
robust structure generation tool. To achieve this, we develop Construction
Zone (CZ) (Fig. 1), an open-source software package which enables algo-
rithmic and high-throughput sampling of arbitrary atomic structures,
which is then combinedwithHRTEMsimulation to generatemetadata rich

databases with physics-based supervision labels. We demonstrate that CZ
can be used as a core component in a flexible, all-purpose simulation fra-
mework for producing high-quality synthetic materials structures from
complex distributions while still offering complete control of the structure
generation process

After, we narrow our focus to image segmentation of nanoparticle
systems on amorphous substrates—for which we have well-described,
comparable experimental benchmark data—in order to carefully study the
data-dependent behavior of ML models used in HRTEM analysis. Image
segmentation is a common pre-requisite for a variety of nanomaterial
characterization tasks in HRTEM, used to both identify and quantitatively
describe the size and shape of regions of interest in nanomaterials such as
crystalline regions, crystal structures, atomic interfaces, and atomic defects.
Compared to natural images, or even TEM images with directly inter-
pretable contrast such as those taken with HAADF-STEM, HRTEM
micrographs taken at ultra-high magnification have complex contrast fea-
tures which cause classical image segmentation approaches to fail16. Uti-
lizing our data curation framework, we study statistically precise
relationships between aspects of the training data—including simulation
fidelity, structural composition, and diversity of imaging conditions—and
image segmentation performance, aggregating the performance results of
several hundreds of neural networks. We benchmark performance of our
neural-network based image segmentation models on a series of experi-
mental HRTEM micrographs of clusters of Au and CdSe nanoparticles
imaged at ultra-highmagnification and evaluate data curation strategies and
data-efficient training methods for achieving state-of-the-art neural net-
work performance.

Results
Atomic structure and HRTEM image database generation
Models developedwithMLmethods forTEManalysis need to be adapted to
the specific atomic structures oneplans or expects to analyze in experiments;
therefore, the training dataset should include examples of a wide number of
likely atomic structures, so that any experimentally observed atomic
structures lie close to the distribution of structures used for training. When
curating a dataset to train robust HRTEM analysis models, one needs to be
able to effectively and simultaneously capture both broad, high level aspects
of atomic structures alongside the fine details that can be used to fully
describe an individual structure. For example, an atomic structure may
belong to a broader family of related structures, such as core-shell nano-
particles with similar sizes and chemistries. The same structure can also be

Fig. 1 | Diagram of the modular structure of
Construction Zone. a Atoms are supplied by Gen-
erator objects; subtractively removed into convex
objects by Volume objects; and combined together
into Scenes, in which multiple objects interact. A
Transformations module provides both standard
symmetry operations and more complex modifica-
tions to Generators and Volumes. The rest of the
package includes miscellaneous utilities for interfa-
cing with other software, premade structural
archetypes, and tools for surface analysis and mod-
ification. b Example structures generated in Con-
struction Zone, including a multi-grain core-shell
oxide nanoparticle with strain-mediated grain
alignment42 (left), a heavily-faceted gold nano-
particle on a carbon substrate decorated with
molecule ligands (center), and a series of gold
nanoislands on a bilayer of MoS2 forming Moiré
heterostructures43 (right). The Construction Zone
package is available on Github at https://github.
com/lerandc/construction_zone, with documenta-
tion available at https://construction-zone.
readthedocs.io/.
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described with unique and specific details, such as the placement of a defect
plane or the orientation of its lattice with respect to the electron beam. To
fully capture and utilize these complementary structural details, we have
developed Construction Zone (CZ), an open-source Python package for
building arbitrary atomic scenes at the nanoscale. CZ is designed to be
robust to general use-cases, such that any complex nanostructure can be
made, whilst also facilitating a flexible, programmatic workflow, such that
large distributions of similar objects can be generatedquickly and easily, and
structure generating code is both easy to interpret and easy to reuse and
repurpose.

CZ relies on a simple module structure (c.f. Fig. 1a) that combines
atomic placement (Generators), nano-object creation (Volumes), and
nano-object interaction (Scenes). Structures can be further manipulated or
generated with the Transformation class, which contains methods like
standard symmetry operations, or by using convenience routines and
analytical tools from the auxiliary modules, including functionality for
atomic surface analysis and modification. The package derives some of its
core functionality from other open-source materials science software
packages, namely, PyMatgen13, the Atomic Simulation Environment14, and
WulffPack15, and interfaces seamlessly into common simulationworkflows.
By allowing users to specify atomic features like defects and zone-axis
orientationswith a high-level,materials-focused interface, CZ enables easier
generation of both specific and random nanoscale atomic structures. We
showcase some example complex atomic structures ranging from nano-
particles to 2D heterostructures, generated entirely with CZ, in Fig. 1b. In
our study, CZ allows us to sample and quickly generate a large number of
random, similar nanoparticle structures with complex defects and varying
zone-axis orientations,mimicking the collection of nanoparticles thatmight
be imaged in a typical HRTEM experiment, whilst also tracking such
metadata about each structure, enabling us to draw fully specified training
data distributions for machine learning model development.

Here, we use CZ as a random structure generator alongside high-
throughput TEM simulation to create large, synthetic datasets whichwe use
to train neural networks via supervised learning techniques. These trained
neural networks are then evaluated on the benchmark task of nanoparticle
segmentation on experimental HRTEM micrographs of Au and CdSe
nanoparticles on amorphous carbon substrates16. For each image, the goal is
to classify each pixel as either part of a nanoparticle or substrate. Due to the
subtle, complex interplay of contrast effects under HRTEM imaging at
atomic resolution, classical image analysis techniques like Fourier filtering

fail to segment nanoparticles accurately, and are outperformed by neural
networks trained on manually-labeled experimental micrographs16. Unsu-
pervised techniques, such as using k-means clustering for pixel classification
based on intensity, have only been successfully deployed for TEM images of
nanoparticles taken at lower magnification17, where amplitude contrast
dominates the signal, atomic lattice texture is not present, and data tend to
be less noisy, thus further motivating high-accuracy supervised learning
methods as a more successful route for image segmentation at atomic
resolution.

To generate our synthetic dataset for training neural networks, we built
a data generation pipeline, diagrammed in Fig. 2 and detailed more thor-
oughly in Supplementary Fig. 1, that begins with randomly generating
several thousand spherical Au nanoparticles, placed atop unique amor-
phous C substrates, with random radii, orientations, locations, and with
possible twin defects or stacking faults, to account for structural diversity in
the targetmicrographs.We utilize Prismatic8–10 to simulateHRTEM images
using the multislice algorithm18 and calculate their corresponding, ground-
truth supervision labels, i.e., the sets of pixels in the images where nano-
particles are located. For each structure, we simulate HRTEMoutput waves
at 300kVwith a final resolution of 0.02 nmper pixel. From each simulation,
multiple images of each nanoparticle structure are sampled under varying
image conditions and noise. In order to facilitate targeted data curation
when trainingneural networks,we extensively track and aggregatemetadata
at each phase, so that specific distributions of simulated data can be easily
drawn from the full database.

Image segmentation of nanoparticles with supervised neural
networks
Utilizing our data generation pipeline, we examine how aspects of the
training set of simulated HRTEM images, as induced via data curation,
affect neural network segmentation performance on experimental HRTEM
images. By evaluating both general trends and more granular effects of
dataset characteristics on neural network performance, we identify data
curation strategies for training high-performance ML models for experi-
mental HRTEM image segmentation using only simulated data. To isolate
the effects on model performance due to characteristics of the training
dataset, we fix our neural network architecture and optimization hyper-
parameters and trainmultiple UNet networks19 for each data condition. For
a given data condition, training data are drawn I.I.D. from the simulation
database, such that each network has both unique random initializations of

Structural data

Metadata

Separate structure into subsets

Postprocess and sample imaging conditions Perform HRTEM SimulationTraining Data

Add structural details Add simulation settings Add image conditions

Sample particles with random 
size, orientation, and defects

Supervision Labels

Fig. 2 | Data processing pipeline from generated structures to training-
ready data. For each structure, we separate the structure into subsets for the training
data and supervision label, simulate the HRTEM image formation for each structure

with Prismatic8, and use post-processing to sample imaging conditions, noise, and
generate the segmentationmask. Metadata are accrued at each step, and the data are
stored into a series of staged databases.
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learnable weights and independent data streams. Details regarding the
composition and relevant sampling routines of each training dataset are
described in Supplemental Section 1, alongside a small selection of example
images drawn from our training datasets (c.f. Supplementary Fig. 3).

In order to understand our model performance in the context of the
intrinsic variability of HRTEM data, we benchmark our neural network
performance against three previously published atomic-resolution experi-
mental datasets16,20, taken on two different aberration-corrected TEMs by
different operators at ultra-high magnification (about 0.02 nm/pixel),
because contrast mechanisms in HRTEM are highly dependent on sample
thickness, chemical composition, structure, and experimental conditions.
The first dataset comprises images of large Au nanoparticles (5 nm) and
agglomerates21; the second small Au nanoparticles (2.2 nm)22; and the final
small CdSe nanoparticles (2 nm)21. Simultaneous benchmarking on several
different experimental datasets provides an opportunity to analyze how
robust our trained models are to distributional shift and to determine the
generality of training data effects. Previous best results on these datasets,
when analyzedwith neural networks trained with experimental data, are F1
scores of 0.89, 0.75, and 0.59, for the large Au16, small Au20, and CdSe16

datasets, respectively.
Neural networks can be trained to segment experimental HRTEM

datasets with moderate accuracy even with small simulated datasets con-
taining only 512–1024 images, as indicated by our results in Table 1.Models
trained on simulated data optimize performance on the simulated training
data quickly and to an extremely high degree of accuracy—frequently
achieving F1-scores above 0.90 on the (simulated) validation dataset in a
small number of epochs (c.f. Table 1, rightmost column)—whereas their
performance on experimental data increases more slowly, continually
improving throughout training, even after performance on simulated data
has apparently saturated (c.f. Supplementary Fig. 13). Thus, performance on
simulated data is not a reliable signal for performance on experimental data
and benchmarking is crucial for successful model deployment. Model
performance on validation data can lag behind training performance,
reducing with increasing dataset size, similar to delays observed for models
trained on small, algorithmically generated datasets23. In Fig. 3, we visualize
characteristic segmentation performance of four neural networks, across a
range of accuracies, on the large Au dataset. Poorly performing segmenta-
tionmodels (Fig. 3b, c), after training on just simulated data, can accurately
predict segmentation regions on nanoparticles with clear lattice fringes, but
might miss similar particles in other micrographs and/or lose significant

performance when predicting segmentation regions for more complex
structures textures and particles with many grains. Better networks have
smoother, more consistent predictions (Fig. 3d, e) but still might miss
regions in particles with more complex structures or might have high-
frequency spatial fluctuations in their predicted regions (Fig. 3d, rightmost
column), which are not physically consistent with nanoparticle structures,
potentially indicating important noise features or aspects of the imaging
conditions are not fully captured during data curation. Across the board,
neural networks seem to segment nanoparticlesmore consistently when the
particle (or particle grain) has visible lattice fringes, indicating that trained
models can distinguish ordered lattice textures from other regions.

The overall cost of the model development process depends both on
the cost of procuring effective training datasets and the cost of training the
models themselves, and often, compromises must be made between
acceptable costs and the end quality of obtainedmodels. As is well known,
neural networks trained with supervised learning methods can be greatly
improved by using larger training datasets, which can cost much more to
obtain and can cause model training time to increase substantially. In Fig.
4a, we measure the performance of neural networks on the large Au
experimental dataset after training on datasets of increasing size, where
the training data are drawnuniformly randomly fromall of the aggregated
databases (c.f. Supplementary Section 1). Segmentation performance
saturates at an F1-score of about 0.9 after about 8000 images are included
in the training dataset, after which there are only marginal improvements
due to dataset size alone.With smaller datasets,model performance canbe
highly variable, and the gap between the worst and best model trained
steadily decreases as the dataset size increases. By tuning the quality and
composition of the simulated data, we can train comparably accurate
models with more data-efficient curation strategies, as, for example, with
the networks trained on structures with varying substrate thicknesses (c.f.
Table 1 and, for more details, Supplementary Table 2), indicated by the
gold circle in Fig. 4a.

At a fixed dataset size, the model performance can be highly sensitive
and dependent on the noise of the training dataset, as shown for models
trained on datasets varying only in applied electron dose in Fig. 4b. On the
small Au and CdSe experimental datasets, we find that model performance
maintains this sensitivity, but now peaks at lower dosages, with slow fall off
of performance as noise decreases (c.f. Supplementary Figs. 9 and 10),
indicating that noisier data are important for models to learn. The perfor-
mance boost observed when using noisier data can potentially be seen as a
regularization effect: including noisier data in the training dataset for a
neural networkmodel canhelp ensure thatmodel predictions are stablewith
respect to noisy perturbations in experimental data. This effect ismore clear
whenmeasuring theperformanceof ournetworks across all of the simulated
datasets of varying noise, where the models using the lowest dose training
data tend to have stable performance across all higher dosages, too (c.f.
Supplementary Fig. 6). Differences in the qualitative performance trend
across noise levels between the large Au data and the other experimental
data might be a result of differing noise distributions in the images arising
from differing camera statistics, indicating that a pure Poissonian noise
modelmaynot fullymatchobservednoise distributions in our experimental
benchmarks.Given the sensitivity ofmodel performance to thenoise level of
the training dataset, we recommend to sample relevant noise from wider
distributions, such that during trainingmodels see examples froma range of
signal-to-noise conditions, which can improve the consistency of model
training but still requires a careful choice of the noise distribution (c.f.
Supplementary Fig. 2). Our results appear to be consistent as to prior work
for a similar nanoparticle segmentation task24 with a different experimental
geometry inwhich nanoparticles aremounted on a crystalline substrate and
are imaged over vacuum. Given that, in our task, the imaging beam passes
through both the nanoparticle and the (amorphous) substrate and has
higher effective electron dose (200–600 e−per Å2 across all datasets), it is
likely that the relationship to noise could be more complex and that the
minimal experimental dose that could be consistently segmented is larger,
i.e., more signal-to-noise is required for our task.

Table 1 | Best performance from neural networks on
segmentation of nanoparticles in HRTEM images after
training on various sets of simulated data, as measured on
three experimental datasets

Training dataset F1-score on Exp. Data NEpochs to F1

Dataset NImages 5 nm
Au

2.2 nm
Au

2 nm
CdSe

V90 V95

Baseline 512 0.710 0.740 0.681 19 21

Thermal 512 0.727 0.767 0.621 20 23

All simulation
effects

512 0.822 0.814 0.647 21 24

Smaller NPs 1024 0.833 0.809 0.673 11 13

Varying
Substrate

1024 0.885 0.842 0.620 11 12

Optimized Au 8000 0.915 0.808 0.648 3 3

Optimized
mixed
Au/CdSe

8000 0.884 0.863 0.731 1 2

Optimized
CdSe

8000 0.799 0.852 0.752 2 24

In the rightmost columns, we record the median number of epochs taken for networks to reach
validation F1 scores of 0.90 and 0.95 on simulated data during training.
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In high-throughput simulation settings, instead of producing many
examples over varying noise conditions, individual examples in the training
dataset could be made more informative by improving the quality of the
TEM simulation, which can improve the robustness of the desired dataset
and shift the source of development costs. In our case, improving thefidelity
of HRTEM image formation by including the effects of inelastic scattering
due to thermal vibrations, losses due to plasmonic excitations, and/or
residual aberrations in the optical alignment of the microscope has a sig-
nificant, positive effect on neural network performance. In Fig. 5, we show
the shift in performance of neural networks in the data scarce regime (N =
512) when trained on data with combinations of applied thermal effects,
residual aberrations, and plasmonic losses as compared to a baseline dataset
with no such effects. Visually, the impact of these effects can be subtle on the
simulated image (Fig. 5c, d), yet, when added to the simulation data used for
training, model performance can increase by as much as 0.1–0.15 in F1-
score (Fig. 5b). Importantly, in a regime of stable optimization, including
simulation effects appears to behelpful across awide rangeof applieddosage
only when all additional effects are included. Of these effects, applying
thermal effects is the most computationally expensive, as it requires aver-
aging several HRTEM wavefunctions over a set of independent frozen
phonon configurations, which linearly increases simulation costs, post-
processing time, and memory requirements, though, typically, only a small
number of frozen phonons (Oð10Þ) are needed to thermally converge TEM

simulations of larger atomic structures. Applying the effects of residual
aberrations and plasmonic losses are both relatively cheap in comparison,
and thus, should be included in training datasets if possible.

The relationship between dataset composition—such as diversity of
atomic structures or imaging conditions—to model performance is more
nuanced, and in particular, aspects of dataset composition seem to be more
important for controlling the variance of model performance than for
boosting performance ceilings. That is, by including images of nanoparticles
from a wide variety of structures or imaging conditions, we canmuchmore
likely guarantee that a randomly initialized model will optimize well and
learn to segment experimental data effectively. In Fig. 6, we measure the
performance of models trained on simulated datasets of fixed size (N =
1024) with varying atomic structural content and imaging conditions.
Networks trained on datasets comprising images of samples with varying
substrate thicknesses performed better and with lower variance than net-
works trained on a single, fixed substrate thickness (Fig. 6a, b), indicating
diversity in the atomic structures seenduring training is important for image
segmentation. Regarding imaging conditions, relative defocus is known to
have a strong nonlinear effect on contrast features in HRTEM, which is
reflected in ahighly variable nonlinear relationshipofmodel performance to
the focal point of simulated data (c.f. Supplementary Fig. 7). To address this,
we can sample images from a larger variety of focal points (Fig. 6c, d),
increasing the number of unique focal points (and by construction, focal

Fig. 3 | Characteristic performance of neural net-
workmodels analyzing experimental images ofAu
nanoparticles after training on only
simulated data. Models were selected trained on
Baseline, Substrate, and Optimized Au datasets,
from which these models represent median to
strongly-performing examples. Scalebar is 2.5 nm.
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range) seen during training while maintaining the total size of the dataset,
which has a small positive effect on segmentation performance and a strong
effect on reducing model variance. The number of unique nanoparticle
atomic structures, however, does not significantly impact model perfor-
mance (Fig. 6e, f), as long as a wide variety of imaging conditions are indeed
being sampled in the training dataset. In general, these data compositional
effects are more significant when models are optimized more aggressively

(Fig. 6a, c, e) by using a larger initial learning rate and the extra data diversity
can be interpreted as having a regularizing effect. Notably, regularization
effects arising from an increase in data diversity might come into play only
when the training dataset is already a suitable match to the experimental
data being analyzed—i.e., that the distributions from which simulated
training data and experimental data are drawn are similar. We find that
these regularization effects are not noticeable when neural network per-
formance is measured on the large Au or CdSe datasets (Supplementary
Figs. 8 and 10), where performance is worse overall, possibly due to the
experiments measuring nanoparticle structures that are structurally dis-
similar to the simulated data used to train the networks varying in focal
conditions. Changing the nanoparticle size in the training data can have a
strong effect on performance (c.f. Supplementary Fig. 11), but does not
appear to be completely related to the size of the nanoparticles in experi-
mental images.

Incorporating these lessons on data effects altogether, we can design an
optimized simulateddataset to targetmaximal absolute performance onour
experimental benchmarks—ultimately, the balance of dataset size, fidelity,
and composition will be dictated by the needs of a particular experiment or
analytical task, which can include constraints on model size, data curation
time, andmodel time-to-train.Here,we focused on improving performance
onboth the largeAudataset and theCdSedataset by increasing the varietyof
atomic structures seen, including all simulation effects mentioned pre-
viously, sampling awider rangeof imaging andnoise conditions, andusing a
modestly large training dataset (8000 total images). On these benchmarks,
with slight re-tuning of the training hyperparameters, we achieve a max-
imum F1 score of 0.9189 and 0.7516, for Au and CdSe, respectively, whilst
also achieving relatively strong generalization performance (c.f. Supple-
mentary Fig. 12). When using a random 50/50 mixture of the optimized
datasets, networks have strong generalization performance across the three
datasets, but better peak performance is achieved only on the small Au
dataset (c.f. Table 1). For details regarding the composition of these datasets
and the training strategy and performancemeasurements on other auxiliary
datasets, please refer to Supplemental Sections 1 and 3.

Discussion
Our results, taken altogether, indicate that high-accuracy supervisedmodels
for analyzing atomic-resolution HRTEM experiments can be trained with
sufficiently large, high-quality simulated databases. These synthetic datasets
tend to need to be larger than what is typically curated experimentally
(around 4000–8000 images), simulated with relatively high fidelity, and
must contain appropriate dispersions of atomic structures, especially
varying substrates, imaging conditions, particularly defocus, and applied
noise to ensure consistent model performance. Critically, many observed
effects of data curation strategies can be unnoticeable when networks per-
form poorly across the board or when the simulated dataset differs sig-
nificantly from an experimental benchmark, as demonstrated by our tests
varying the dataset composition at fixed dataset sizes (Fig. 6). With precise
control of the prior distributions from which training datasets were drawn,
we were able to isolate these successful data curation strategies for machine
learning model development, which otherwise can become almost intract-
able due to the large observed variance ofmodel performancesunder certain
training dataset conditions.

The advantages of simulated data primarily arise from access to arbi-
trarily large datasets, a broader and controlled distribution of training data,
and physics-based ground-truth measurements on the dataset. Our results
indicate that, even when dealing with experimental data that arises from a
highly-complex measurement process, the use of simulated data during the
development of ML models can compete and even provide distinct per-
formance gains as compared to utilizing experimental data. Alternative
approaches for bridging the gap between simulated data and experimental
data could involve training complementary sets of neural networks to
specifically learn how to model and apply noise effects and features not
capturedby simulationmodels, e.g., withCycleGANs25, though the extent to
which such an approach could be as effective for HRTEM as for annular
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Fig. 4 | Dependence of neural network model performance on dataset size
and noise. Effect of training dataset size (a) and noise from applied electron dose (b)
on neural network performance, as measured on experimental data of large Au
nanoparticles. Networks in (a) were trained on a uniformly random chosen subset of
all simulated data in this study, excluding the ‘Optimal’ datasets. Networks in (b)
were trained on data drawn from the ‘Thermal’ and ‘Dose Variation’ datasets. The
gold circle indicates the performance of the best neural network trained on a dataset
containing only 1024 images, which were drawn from a simulated dataset com-
prising structures with varying substrate thicknesses. For each dataset condition, five
randomly initialized neural networks were trained and measured.
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dark-field STEM is unclear. Well-curated experimental datasets are still
immensely valuable—both as reference benchmarks, as used in this study,
and as high-quality training data. An important caveat of our results is that
all performance metrics shown here ultimately compare physics-based
ground-truth labels and expert manual labels. Given the inevitability of
human measurement error, bias, and uncertainty, the two sets of labels
nevermatch perfectly, leading to a performance gap in ourmodels and thus
an artificial performance ceiling. Further work is needed to best understand
measurement error in the face of such distribution gaps and to understand
the best way to developmachine learningmodels that canmake use of such
mixed data given systematically different labels.

Ideally, during training, a model would have access to a simulated
dataset drawn from an identical distribution to the experimental prior and
enough examples in this dataset to provide adequate coverage of the
experimental distribution in which it will be deployed for analysis. In this
setting, ML models only make in-distribution predictions, and never face
extrapolation errors. In practice, it can be difficult to determine the exact
experimental prior, suggesting instead a strategy of drawing training data
from a distribution which the experimental distribution could be a feasible
subset, thus, reducing adverse effects of distributional shifts during model
deployment. General-purpose tools like Construction Zone, which enable
fast sampling of realistic synthetic examples for ML problems and are not
limited to any specific domain, are a crucial component of robust data
workflows which would enable such sampling strategies. Further, such
general purpose tools enable careful tuningof trainingdatasets tobestmatch
experimental prior distributions, which can be performed manually or
automatically, for example, as a component in an active learning training
loop26,27. Curating the best suitable dataset for a particular ML problem is a
crucial component of reliable ML workflows, but should be pursued in
conjunction with finding the best model framework, which can include
developing bespoke model architectures28,29 or implementing custom loss
functions30 with regularization31 specific to the problem of interest.

In sum, we have developed Construction Zone, a Python package that
enables programmatic generation and sampling of atomic nanostructures, a
general purpose tool designed primarily designed to help study and design
ML workflows at scale for nanoscale materials science problems. In con-
junction with HRTEM simulation, we systematically generate large struc-
tural and imaging databases for trainingMLmodels andhave demonstrated
their utility for atomic-scale characterization with HRTEM. By system-
atically generating large structural and imaging databases, we achieve state-
of-the-art performance on such models, whilst also providing the ability to
design and developML tools carefully through high levels of specific control
on the data generation process.

Methods
Construction Zone
Nanoscale atomic structures can be designed in Construction Zone (CZ
available at https://github.com/lerandc/construction_zone) using a com-
bination of Generator, Volume, Transformation, and Scene objects. Gen-
erators, which supply atoms in space, specify atom positions and can
generate atoms in both crystalline and non-crystalline arrangements.
Volume objects define the convex regions in which atoms fromGenerators
are accepted. Volumes can either be defined by sets of convex algebraic
surfaces, convex hulls of point clouds, or intersections of supplied convex
objects; non-convex geometries can be created as the union of multiple
Volumes. The Transformation module manipulates objects with standard
routines like symmetry operations andmore complex routines like applying
inhomogenous strain fields or modifying the local chemistry of a structure.
Generators and Volumes can be manipulated jointly or individually for full
construction flexibility. For example, a grain can be oriented either by
rotating a Generator lattice relative to its boundary or by rotating the whole
object in global coordinates. Finally, Scenes aggregate objects together.
Given a set of atomic objects, a Scene will handle interactions through a
generation precedence scheme and prepares data for interfacing with other
simulation methods or for writing to file.

CZ also features a small set of auxiliary modules for more complex
functionality and convenience. The Surface module provides fast routines
for analyzing, querying, and modifying the surface of a generated object
using derivatives of alpha-shape algorithms32,33. The Utilities module pro-
vides several analysis routines, such as radial distribution function (RDF)
analysis and orientation sampling. Lastly, the Prefab module contains
routines that generate “pre-packaged” objects like Wulff constructions of
nanoparticles (as implemented in ref. 15) or grain structures with planar
defects. For a full discussion of underlying routines, available features, and
package usage, we refer the reader to the CZ documentation, available at
https://construction-zone.readthedocs.io.

TEM simulation
High-resolutionTEMimage simulations in this studywereperformedusing
the multislice algorithm18, as implemented in the Prismatic software
package8. In the multislice algorithm, we model the image created in an
electron microscope through the interaction of an electron beam and a
material sample as the evolution of a 2D complex wavefunction, ψ(r). The
evolution of the wavefunction is given by the Schrödinger equation for fast
electrons34

∂ψðrÞ
∂z

¼ iλ
4π

∇2ψðrÞ þ iσVðrÞψðrÞ; ð1Þ

whereV(r) is the electrostatic potential of the sample and σ is an interaction
constant.V(r) is typically calculated with an isolated atom approach, where
the total potential is the sum of independent atomic potentials

VðrÞ ¼
X

i

ViðrÞ ð2Þ

where the individual atomic potentials themselves calculated with a para-
meterized look-up table of electron scattering factors35,36. Alternatively, the
scattering potential can be determined for a sample through ab initio
techniques11. OnceV(r) is determined, it is split into a series of binned slices
along the beamdirection and then thewavefunctionψ(r) is evolved through
a split-step method, where the electron beam alternately interacts with the
sample

ψðrÞ ¼ TðrÞψ0ðrÞ ¼ eiσVnðrÞψ0ðrÞ; ð3Þ

and then propagates in free space

ψðrÞ ¼ F̂�1
k!r eiλΔzjkj

2 F̂ r!k ψ0ðrÞ
� �n o

: ð4Þ

After the wavefunction has propagated through the entire sample, we
obtain the exit wavefunction, which can be further modified to apply
defocus and other residual optical aberrations typically seen in HRTEM
imaging by applying another transmission operation

ΨðkÞ ¼ Ψ0 kð Þe�iχðkÞ ð5Þ

where Ψ0(k) is the unaberrated wavefunction in Fourier space and χ is the
aberration function. Aberration functions used to model imaging condi-
tions in our study are detailed in Supplementary Table 1 and Supplemental
Section 1.

Database generation with CZ and HRTEM simulation
We simulate a HRTEM data stream by first generating a large database of
semi-realistic structures and then simulating micrographs for those struc-
tures under suitable imaging conditions.Wegreatly approximate the variety
of nanoparticles imaged in ref. 16 as a series of spherical Au nanoparticles of
varying diameters with a small number of planar defects, which are equally
likely to be twindefects or stacking faults. Eachnanoparticle is placedupona
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unique amorphous carbon substrate and at a random location on the
substrate surface at a random orientation. We then perform plane-wave
multislice simulations of the structures at an acceleration voltage of 300 kV,
focused to the center of the atomic model, at a resolution of 0.02 nm per
pixel.We simulate output wavefunctions for both the full structure and just
the nanoparticle in vacuum. To create ground-truth segmentation masks,
we threshold the phase of the output wavefunctions from the nanoparticles
in vacuum, averaged over frozen phonons. Threshold values were deter-
mined heuristically. We found phase-thresholding to be much more stable
and physically consistent across focal conditions than analogous intensity
thresholding techniques.

With the output wavefunctions, we then apply relevant focal condi-
tions, residual aberration effects, focal spread, thermal effects, plasmonic
losses, and electron dosage effects. Focal point, focal spread, and residual
aberrations are applied to output wavefunctions using Eq. (5) with the
appropriate aberration function; the effect of focal spread is approximated
by incoherently averaging the wavefunction over a series of focal points
distributed about the intended focal point. Thermal effects are included via
the frozen-phonon approximation, where we incoherently average several
exit wavefunctions to approximate the effect of thermal motion, corre-
sponding to unique, perturbed copies of the original atomic structure. The
atomic positions are perturbed by I.I.D. Gaussian noise, with amplitudes
given by atomicDebye-Waller factors; for all simulations including thermal
effects, we used eight frozen phonons. We approximate plasmonic losses in
HRTEM imaging by applying a contrast reduction to the wavefunction
intensities before averaging over frozen phonons. The contrast reduction is
applied by taking a weighted pixelwisemean of the original intensity and an
intensity with a constant added background (renormalized to have its ori-
ginal mean value). Noise from applied electron dosage is modeled by
sampling count intensities from scaled Poisson distributions. We note that
we donot include potential artifacts from the camera, i.e. via themodulation
transfer function, though all experimental datasets have been acquired by
scintillator-baseddetectors, forwhich including effects fromthemodulation
transfer function in the noise sampling process could further improve
performance6,24. For more details regarding the composition and sampling
of specific datasets, we refer the reader to Supplemental Section 1.

Neural network training
For our neural network development, we used a standard UNet
architecture16,19,37with aResNet 1838 encoder/decoder architecture and three
pooling/upsampling stages, resulting in about 14 million trainable para-
meters (c.f. Supplementary Fig. 4). Models were trained using a mixed
categorical cross-entropy and F1-score loss function on the segmentation
masks. We performed a brief manual hyperparameter search to determine
initial learning rates and learning rate scheduleswhichwere suitable enough
for stable optimization under a wide variety of the simulated datasets. For
most networks whose performance is reported in this study, we used the
Adam optimization algorithm39 with initial learning rates of 0.01 and 0.001,
a constant learning rate decay of 0.8, and a batch size of 16 images; formore
detailed effects of the batch size on training dynamics, we refer the reader to
Supplementary Fig. 5. Unless explicitly indicated otherwise, results in the
primary text reflect those of networks trainedwith an initial learning rate of
0.001. Models were trained for a fixed number of epochs (25) with no early
stopping; the network parameters that achieved the lowest validation loss
were saved via checkpointing. Input data were first normalized, per image,
to a range of 0 to 1, and then augmented with orthogonal rotations and
random left-right/up-down flips. For experimental data, images were pro-
cessedwith a 3 × 3medianfilter and thennormalized to a range of 0 to 1, per
image, before evaluating neural network test performance. Experimental
image patches containing only substrate regions were removed from the
training dataset prior to preprocessing. Per simulated training data condi-
tion tested, at least five different networks were trained with different ran-
dom weight initializations and training data subsets (drawn uniformly at
random after appropriate filtering). For each network, relevant metadata
were saved alongside the traininghistory andmodel parameters.All training

was performed usingTensorflowversion 240, with the SegmentationModels
package41. Neural networks were benchmarked for performance on three
experimental datasets using the F1-score

F1 ¼ 2f ðxÞ � ŷ
k f ðxÞ k þ k ŷ k ð6Þ

where f is the neural network model, x is the input image, and ŷ is the
corresponding image label. When discretizing the prediction to binary
values, the F1 score can be interpreted as a ratio of true positives (identifying
nanoparticle region correctly) to a sum of true positives, false positives
(identifying substrate as nanoparticle) and false negatives (identifying
nanoparticle as substrate) such that F1 ¼ TP

TPþ0:5ðFNþFPÞ. The F1 score
measures 0 when all pixels are misclassified and 1 only when there are zero
misclassified pixels. The non-discretized form is used for training and
evaluation in this work.

Computational resources and benchmarks
All structure generation, simulation, data generation, andmachine learning
were performed on a workstation computer, using an Intel XeonGold 6130
CPU (16 cores, 256 Gb RAM) and a NVIDIA Quadro P5000 GPU (16 Gb
RAM). Table 2 shows representative benchmark timings for each of the
main compute tasks in our training pipeline, as logged by our data gen-
eration scripts. To understand how our generation pipeline scales with
typicalmodern high performance computing resources, we ran comparable
data generation tasks on the Perlmutter supercomputer at NERSC, using a
single CPU node comprising 2 AMD EPYC 7763 CPUs (64 cores ea.,
512 GbRAMtotal). Our database generationworkflow can generally be run
in an embarrassingly parallel fashion,wheremultiple processes are spawned
to generate larger databases by, e.g., individually handling independent
structures, simulations, or images; the timings below represent the time per
item when running in parallel. In our pipeline, filesystem performance can
heavily influence the computational cost since each intermediate outputwas
saved to disk for reproducibility, reducing the effective parallelism of the
approach, especially on theworkstation.We suspect time-to-compute, from
specification of a structure to a set of corresponding training images, can be
reduced significantly by instead keeping things in working memory. The
structure generation costs are dominated by the generation of the amor-
phous carbon substrate, which is both serial and difficult to parallelize, but
could be precomputed. TheHRTEMsimulation and image generation tasks
are both dominated by the fast Fourier transform (FFT) operations, in the
propagation of the electron wavefunction and the application of focal
spread, respectively, and thus greatly benefit from having an optimized
shared-memory FFT implementation.

Data availability
The original atomic structures and the processed images used to train
segmentation models in this study have been made available via Zenodo at

Table 2 | Performance timings for structure generation,
HRTEM simulation, image generation, model training, and
model inference using a single workstation and, where
timings available, on a single CPU node on the Perlmutter
supercomputer at NERSC

Task Compute cost
(Workstation)

Compute cost
(Perlmutter)

Structure generation 15.2s/structure pair 4s/structure pair

HRTEM simulation 1.125s/frozen phonon 0.294s/frozen phonon

Image generation 1.4s/image (G) 0.108s/image

Model training 15s/512 images/epoch (G) —

Model inference 0.014s/512 × 512 patch (G) —

Where relevant,GPUusage is indicatedwith themarking (G). Perlmutter timings utilize 32processes
with 8 threads each.
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https://zenodo.org/doi/10.5281/zenodo.11554183; we also include a series
of trained model weights, from models trained on the baseline, substrate
varying, and optimized datasets.

Code availability
Code used to generate atomic structures, HRTEM simulations, and fully
processed images, as well as code used to train neural networks models, has
been made available at https://github.com/ScottLabUCB/HRTEM-robust-
synthetic-data. The Construction Zone package is available on Github at
https://github.com/lerandc/construction_zone, with documentation avail-
able at https://construction-zone.readthedocs.io/.
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