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Automated particle segmentation and feature analysis of experimental image data are indispensable for data-driven material

science. Deep learning-based image segmentation algorithms are promising techniques to achieve this goal but are challenging to
use due to the acquisition of a large number of training images. In the present work, synthetic images are applied, resembling the
experimental images in terms of geometrical and visual features, to train the state-of-art Mask region-based convolutional neural
networks to segment vanadium pentoxide nanowires, a cathode material within optical density-based images acquired using

spectromicroscopy. The results demonstrate the instance segmentation power in real optical intensity-based spectromicroscopy
images of complex nanowires in overlapped networks and provide reliable statistical information. The model can further be used to
segment nanowires in scanning electron microscopy images, which are fundamentally different from the training dataset known to
the model. The proposed methodology can be extended to any optical intensity-based images of variable particle morphology,

material class, and beyond.
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INTRODUCTION

Understanding the design rules that dictate materials chemistry is
critical to enabling the rational design of energy storage systems.
Moreover, connecting single-entity and ensemble measurements
is paramount to understanding how structure-function relation-
ships propagate across length scales and dictate the performance
of hierarchical systems in battery materials'. The ability to probe
a multitude of contrast mechanisms from a single measurement
has enabled many insights into the working principles of
electrochemically active materials®. Spectromicroscopy techni-
ques such as scanning transmission X-ray microscopy and X-ray
ptychography, for example, leverage X-absorption and scattering
events to capture morphological and electronic structure informa-
tion which can be colocalized at the nanometer level to provide
chemical maps for a region of interest*”. The application of such
information-rich measurements to particle networks has been
limited, in part, due to the complexity of extracting morphological
and chemical features from large and complex datasets. Dataset
dimensionality reduction techniques such as principal component
analysis considerably improve the ease of deciphering chemical
markers often contained within spectra®. Nevertheless, there is a
need for more efficient and effective workflows to obtain size
and shape descriptors that can be utilized with chemical
information to explore physio-chemical phenomena as a function
of various descriptors”°~12,

In recent years, image segmentation algorithms that leverage
the parallel processing capability of neural networks have
garnered significant attention because of their potential to enable
automated image analysis'>'*. For example, the well-received
Mask region-based convolutional neural networks (Mask R-CNN)
algorithm is now utilized routinely for general segmentation
tasks. Common Object in Context (COCO)'® and PASCAL Visual
Object Classes (VOC)'” have been developed in concert to train
and benchmark the performance of algorithms for computer
vision studies. However, the requirement of large datasets to train

deep-learning algorithms has been challenging to meet with
experimental microscopy data in the material-chemistry commu-
nity due to an inherent complexity in generation and the
time-consuming nature of human annotation. Nevertheless,
deep-learning algorithms based on empirical data and human
annotation have been developed for several material classes, such
as graphene flakes'® imaged by optical microscopy, carbon nano-
fibers'® imaged by SEM and a further collection of electron
microscopy images for various material class?°. Similarly, attempts
to augment real image datasets of polycrystalline grains®', or
usage of image rendering techniques on nano-particles
images???3 to counteract the prohibitive data acquisition step,
have been proven to be successful.

To overcome the challenges associated with limited training
data, especially, with emphasis on instance segmentation, we have
developed a deep learning model, based on the Mask R-CNN
algorithm, which has been trained entirely on synthetically
generated microstructures. By applying an optical density com-
pression step, the algorithm can segment and obtain statistical
information from both electron and X-ray microscopy images of
vanadium pentoxide (V,0s), a canonical cathode material. From an
instance segmentation perspective, the V,0s nanoparticle disper-
sions shown in Fig. 1 represent a counterpoint that stands in
contrast to the case of “ideal” monodispersion of nanoparticles
characterized by a nearly spherical geometry for which the
automated size determination process is documented?®?4-26, |n
many cases, the task of segmenting nanoparticles is exacerbated
by the diversity of particle shapes (e.g., nanospheres, nanorods,
nanobelts, tetrapods, 2D hexagons, nanocubes, and nanodiscs)
and dispersions found in the literature and industrial applica-
tions?*2’. The synthesis method for the nanowires featured in this
work combined with their non-spherical geometry leads to
considerable irregularity in thickness, length-to-width aspect ratios,
and edge profiles, which collectively result in a significant degree
of variability in particle shape despite the all-encompassing
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Fig. 1 Overview of the microscopy images. a SEM; b X-ray
ptychography; ¢ STXM; d-f corresponding manual annotation.

nanowire classification. This shape variability combined with
particle agglomeration makes for an ambitious instance segmenta-
tion task that closely resembles the needs of many applications
today?®?°, Through the lens of chemistry-mechanics coupling,
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V,05 appears as a fascinating case study of image analysis on the
role of particle size, shape, and geometry>%3°, The promise of V,05
as a cathode material stems from a high theoretical capacity, the
potential for ‘beyond lithium’ batteries, and the geographical
diversity of vanadium deposits which reduces criticality concerns
that have throttled cobalt battery chemistries'®3'32 A well-
documented bottleneck for the widespread adoption of the
thermodynamically stable a-V,0s phase is the emergence of
intercalation-induced structural transformations, which create
significant phase inhomogeneities and stress gradients that have
been linked to deleterious impacts on performance and long-
evity*>34, It has been shown that the patterns of lithiation in these
systems are strongly modified by dimensional and morphological
features such as particle size, particle geometry, curvature, and
interconnects—the coupling of high-dimensional X-ray imaging
methods, ensemble measurements, and image segmentation
holds considerable promise for identifying optimal crystalline sizes
and geometries to overcome inherent material bottlenecks that
give rise to lithiation heterogeneities resulting ultimately in stress
accumulation®%°.

In the present work, we consider three different types of
microscopy images generated by X-ray ptychography, scanning
transmission X-ray microscopy (STXM) and scanning electron
microscopy (SEM) techniques. While each imaging technique is
fundamentally different, the model developed in this work
demonstrates a remarkable robustness when segmenting
nanorod-like structures. The present work is organized as follows:
in section “Human annotation of the V,05 dataset,” we briefly
introduce the experimental datasets, which are later utilized to
validate the performance of the model. For the model training, we
generate a series of synthetic images. The workflow of data
generation is explained in section “Synthetic dataset generation,”
whereas the details on the training of the Mask R-CNN model are
presented in section “Application and training of the Mask R-CNN
model”. In section “Instance segmentation results of microscopy
images”, results on training, evaluation, and segmentation of
considered microscopy images from the above mentioned
imaging techniques are provided and discussed. Further, towards
the reproducibility of the model, an interactive web-based
segmentation application has been developed and can be found
at:  https://share.streamlit.io/linbinbin92/V205_app/V205_app.py
for testing and further image analysis.

RESULTS
Human annotation of the V,0; dataset

Manual annotation of the V,05 datasets was facilitated by the
web-based annotation tool Makesense.ai*® in a polygon format,
where points along a particle border are set to form the shape of
the particles (see Fig. 1). This step was performed for every particle
in the present images, and the annotated file was saved in
JavaScript Object Notation (JSON) format to serve the validation
purpose. It is worth noting that some limitations of the manual
annotation process such as a sensitivity to human error and a
dependence on spatial resolution of the native images naturally
exist. Further sources of error stem from the inherent complexity
of the dispersion, which results in many instances where particles
are overlapped.

Synthetic dataset generation

To generate synthetic image datasets reminiscent of the V,05
experimental dataset particles, we have developed a random
nanowire generator using the software Geodict®®. In the
generation step, for each training sample, the number of particles,
length, shape distribution was specified to create 3D voxel-based
structures, Fig. 2. The chosen size of the domain was 512 x 512 X
200 (Wx Bx H). For the present work, the number of particles,
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Fig.2 Synthetically generated dataset for training procedure. The
3D microstructure is compressed to create optical density-based
image as input data. The individually labeled nanowires in
correlation with the optical density-based image are then used to
create the binary masks for output data.

diversity of morphology, and resolution, approximate the experi-
mental information contained in the experimental X-ray ptycho-
graphy data in Fig. 1b. Higher resolution i.e. larger domain size,
can be chosen at cost of longer generation time and image file
size. The height of the domain for the synthetic 3D microstructure
was chosen such that it exceeded the total height of the
overlapped nanowires. Further, the nanowires were internally
enumerated and deposited one after another. This workflow
ensures that the labels are predetermined, thus bypassing the
need for human annotation at a later phase. In order to mirror the
transmission intensity generated by X-ray ptychography, an
optical density compression step was applied to emulate
thickness information. Here, voxels were first compressed along
the out-of-plane direction then summed and divided by the total
thickness of the nanostructure. The pixel values comprising the
projected optical density image map in the in-plane directions
were therefore normalized, and further transformed to a gray
color scale, expressed as a value from 0 to 255. Accordingly,
regions where two or more particles are overlapped can be
distinguished by a sudden change in optical density (i.e. pixel
intensity). In a subsequent step, a standard Gaussian filter (filter
size of 2) was applied to the images to account for blurring of the
particle edges. As shown in Fig. 2, the ground truth sample was
split into individual binary masks for each nanowire contained in
the synthetic ground truth image. Therefore, for each training
sample, the dataset consists of one input image and N output
binary mask images with N as the number of particles in that
image. These binary mask images can be further used to obtain
statistical information about the morphology descriptors. Before
evaluation, initial dataset size of 250 images were generated for
training purposes. After an initial evaluation, additional images
were generated in recursive steps involving a greater diversity of
particle morphology to closely replicate the experimental data. A
final dataset of 1250 synthetic images were obtained with a 80/
20 split for the training and validation steps. In order to introduce
further variability in the dataset, standard augmentation techni-
ques have been applied as the dataset is fed forward to the
dataloader. Note here, we do not create an additional dataset in
the training process. To account for intrinsic variability in the
contrast and brightness of experimental microscopy datasets, we
applied a random brightness and a random contrast filter ranging
from 0.7 to 1.2. A random flip in both horizontal and vertical
direction with a probability of 0.5 has been applied. Details on the
training process and dataset can be found in the model training
and data section. We note that it is possible to enhance the
synthetic dataset with further real images. However, addition of
experimental data to the training set did not yield a notable
improvement in performance of the model as discussed in further
detail in the Supplementary Note 3.
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Application and training of the Mask R-CNN model

To date, numerous deep learning models for instance segmenta-
tion can be found in the computer vision literature. Ever since
2017, the Mask R-CNN and its variants (Mask scoring R-CNN*7,
TensorMask3®) have been solid options for the task of instance
segmentation due to their high accuracy of instance mask
predictions. Other famous object detectors, such as YOLO (You
only look once)3® has been also found in the segmentation of
nanowire-like materials*®. However, YOLO algorithms generally
aim at higher training and prediction speed without providing
prediction masks in the first place. To this end, recent extensions
of YOLO, such as YOLACT*' have been developed with mask
predictions towards real-time application. Other similar deep-
learning based methods with specific modifications applied to
fibrous structure segmentation can be found in the literature*?#3,
While we believe that other instance segmentation algorithms can
also be applied for the present instance segmentation study, we
decided to apply the well-established Mask R-CNN algorithm
within the Detectron2 framework** due to its great built-in API
and well-structured online documentation. Details on the essential
components of the Mask R-CNN model can be found in the
methods section. It is important to note that while the synthetic
dataset was modeled after experimental microscopy images, the
training steps for the model developed in this work were
performed solely on the synthetic dataset without any real
images. The stochastic gradient descent method was used with
the default setting provided by the Detectron2 implementation of
Mask R-CNN algorithm**. The hyperparameters modified in the
parameter study can be found in Table 1. For the present study,
the effect of synthetic dataset size, as well as hyperparameters as
learning rate, region of interest batch size per image (ROl HEAD)
and Non-Maximum-Suppression (NMS) were studied. ROl HEAD is
a subset of the proposed ROIs bounding boxes from Region
Proposal Networks (RPN), so the loss can be calculated on this
subset rather than on all of the box proposals. Intersection over
Union (IOU) threshold (IOU THR) for RPN defines the ratio of
overlaps between the ground truth boxes and proposed boxes
during the training. NMS mainly acts as a filter to remove
overlapping proposed boxes. More details and default hyperpara-
meter settings can be found in**. We further note that our model
leverages pre-trained weights on the COCO dataset and the
chosen learning rates were therefore larger than training a
completely new network from scratch. Results on model predic-
tion performances trained with smaller learning rates can be
further found in Supplementary Note 4. The training was
performed on four A100/V100 Nvidia GPUs at Lichtenberg Cluster,
TU Darmstadt for a total time of 5-10 h with a batch size of 8
images per GPU. The training time here should only provide an
approximation, additional information can be found in the
Supplementary Note 7. Detailed study and optimization of the
performance speed was not the objective of this work.

Instance segmentation results of microscopy images

In this section, the segmentation results are evaluated considering
the metrics defined in the section “model evaluation metrics”. It is
important to re-emphasize that the deep learning model has been
trained solely on synthetic image datasets modeled after the X-ray
ptychography and scanning transmission X-ray microscopy data.
Consequently, the SEM image, which is distinctive in terms of
contrast generation is foreign to the trained model. All images are,
obtained from mentioned microscopy techniques as they are, and
were not pre-processed or filtered for the evaluation purpose. The
only pre-processing step applied to the ptychography and STXM
images involves the conversion from transmission data to
absorbance (optical density)®. The results obtained from the deep
learning model are compared to manually annotated results, which
are subject to uncertainty to certain level due to visual limitation.

npj Computational Materials (2022) 88
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Table 1. Hyperparameter study in the training procedure.

No. Epochs Dataset size Learning rate ROI head I0U THR NMS AP BBOX AP SEGM
1 250 250 0.02 256 0.6 0.7 89.442 87.392
2 250 500 0.02 256 0.6 0.7 91.843 88.878
3 250 750 0.02 256 0.6 0.7 92.219 89.568
4 250 1000 0.02 256 0.6 0.7 93.541 90.195
5 500 250 0.02 256 0.6 0.7 90.949 87.908
6 500 500 0.02 256 0.6 0.7 92.831 89.872
7 500 750 0.02 256 0.6 0.7 93.336 90.034
8 500 1000 0.02 256 0.6 0.7 93.878 90.254
9 750 250 0.02 256 0.6 0.7 92.219 89.568
10 750 500 0.02 256 0.6 0.7 92.82 90.095
1 750 750 0.02 256 0.6 0.7 93.454 89.958
12 750 1000 0.02 256 0.6 0.7 94.002 90.487
13 500 750 0.01 256 0.6 0.7 93.564 89.72
14 500 750 0.03 256 0.6 0.7 93.279 89.87
15 500 750 0.02 128 0.6 0.7 92.582 89.614
16 500 750 0.02 512 0.6 0.7 93.513 89.932
17 500 750 0.02 256 0.7 0.7 93.278 89.945
18 500 750 0.02 256 0.8 0.7 93.523 90.139
19 500 750 0.02 256 0.6 0.6 92.902 89.952
20 500 750 0.02 256 0.6 0.8 93.58 89.74

Fig. 3 Model prediction on V,05 nanowires within a synthetic image (512 x 512 pixels). a Test image. b Predicted instance masks with
lower opacity plotted on the test image. ¢ Semantic binary mask. Blue: TP, Red: FN, Green: FP; every nanowire instance in the present synthetic
image has been successfully segmented with highest accuracy and negligible deviation in the overlapping regions and particle boundaries.

We again note that the current model leverages pre-trained model
weights and can be re-trained and extended to multiple object
classes of further morphologies, such as, e.g., nano-spheres, see
Supplementary Note 1 for further information.

Before applying the model to real microscopy images, 20
models were trained with various hyperparameters to examine
their influence on the synthetic images, see Table 1. Subsequently,
all 20 trained models were applied to segment all three types of
microscopy image. The best performer in mask segmentation AP
for each image type was selected to visualize the segmentation
masks in Figs. 3, 4, 6, and 8b. For a full list of all AP results, readers
are referred to Supplementary Table 1. We start to evaluate the
model segmentation accuracy at a semantic level to estimate to
what degree the model can segment the actual nanowires from
the background. The inherent strength of instance segmentation
is that it includes the subordinate functionality of semantic
segmentation, where the semantic results can be immediately
extracted from the mask predictions. As shown in Figs. 3, 4, 6, and
8b, fairly good segmentation results were obtained. These object
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masks were then used to evaluate semantic segmentation
accuracy presented in Figs. 3, 4, 6, and 8c. The color blue denotes
the true positive (TP) pixels, to which the model predicts correctly
as given in the ground truth provided by human annotation. The
green color indicates false positive (FP) pixels, which means the
model has inaccurately predicted that these pixels belong to a
particular nanowire. The red color denotes the false negatives
(FN), which depict the pixels that belong to a nanowire (based on
the ground truth) but were not identified as such by the model.
The performance of the trained model is discussed in more detail
in the following sections.

Note that to make the model generally accessible as a
segmentation tool of nanorod-like structures, we have further
developed a web-based interactive application for readers to
access and data-mining their own image datasets. Upon upload-
ing the data and initializing the prediction model, statistics on
predicted masks can be obtained and visualized accordingly.
Details and access on the web-based interactive application can
be found in data and code availability section.
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Table 2. Model performance on X-ray pytchography image (bounding box/segmentation mask).
No. Accuracy AP APsq AP;5 AP, AP, AP,
13 86.6 39.145/42.327 64.638/62.519 43.965/39.964 25.248/22.442 52.753/58.03 72.525/85.05
19 855 41.809/41.719 74.603/67.042 43.25/40.438 28.34/19.785 52.772/52.774 62.624/70.099
14 86.2 38.584/41.662 63.618/62.803 42.159/42.159 25.248/26.931 44.998/50.644 75.05/70.099

L [(b)

Fig. 4 Model prediction on V,05 nanowires within the X-ray pytchography image (531 x 449 pixels). a Test image. b Predicted instance
masks with lower opacity plotted on the test image. The best performer in AP segmentation mask in Table 2 was used to visualize the
prediction masks in b. ¢ Semantic binary mask. Blue: TP, Red: FN, Green: FP; yellow arrows indicate the main FN pixels, i.e., nanowire pixels
missed by the model. White arrows indicate the FP pixels, which were overlooked in the manual annotation, but detected by the model. Cyan
arrows indicate over-predicted pixels, of which the model predicts them as additional nanowires, but were only regions of higher intensity.

Synthetic nanowire image. As for the synthetic nanowires shown
in Fig. 3, not surprisingly, the deep learning model correctly
segments particles contained within the synthetic nanowire
datasets. The obtained AP of the tested 20 models reach a AP
score of around 90 for bounding box regression and mask
segmentation, respectively, see Table 1. As the synthetic image
type is basically known to the model, the good accuracy is
expected. Tuning the hyperparameters, test dataset would
generally result in a better AP in bounding box prediction and
segmentation masks, however, not influence the results on
synthetic images significantly. To demonstrate the power of our
model in instance segmentation of overlapped, optical density-
based nanowire images, we additionally compared the prediction
capabilities of our model to a traditional routine algorithm—the
distance map-based Watershed algorithm—for a simple exemp-
lary synthetic image. Supplementary Figs. 3-12 in Supplementary
Note 2 demonstrated the superiority of our model, while the
Watershed algorithm generally fails to isolate individual nanowires
in the overlapped regions.

X-ray ptychography image. Although the model has been trained
solely by synthetic datasets, good segmentation results are
observed on experimental datasets. For the presented X-ray
ptychography image, the model predicts the overall binary mask
with good accuracy and scores a segmentation score of 86.6, see
Table 2. The AP, AP,s for both the bounding box, and the
segmentation mask are comparatively high and score around 40,
respectively. APsq reaches a score of around 62. From the metrics,
it is mentionable that AP, are greater than AP, and AP,,,, indicating
that the image contains larger particles and they were segmented
to a greater degree than smaller ones. At the instance level, two
false-positive nanowires have been identified and are (shown in
green) indicated by white arrows in Fig. 4¢; the origin of this false-
positive result is low pixel intensity near the threshold that
separates particles from the background. For the same reason,
these particles were not manually annotated but nevertheless
were identified by the model thus demonstrating its performance,
which is competitive with careful human annotation (while being
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much more accurate). The two particles shown in red (indicated
by yellow arrows) are missed by the model, presumably by the
noise in the corresponding region. But overall, considering the
optical density input, the individual particles are extracted with
good accuracy. In general, the mask predictions consistently
perform extremely well when particles are well separated in space
while overlapping regions (notoriously more difficult to segment)
are still identified with good accuracy. Some issues arise when the
optical density gradient is low with less clear transitions in the
overlapped region. Some issues arise when the optical density
gradient is low with less clear transitions in the overlapped region.
Further, the model tends to find smaller particles within larger
instances as shown by the cyan arrow. The origin of this limitation
stems from the broad range of particle aspect ratios and
thicknesses in the experimental data (ca. 50-500 nm), thus
resulting in a less continuous optical density distribution with
individual particles. In the training data, particle morphologies
were generated assuming a prismatic structure with little-to-no
variation in the cross-sectional shape. In contrast, the experimen-
tally synthesized V,0s5 are subject to defect formation, particle
sintering, and intrinsic variations in the crystal growth during
synthesis. This leads to a particle dispersion that is highly complex,
non-prismatic and an ambiguous optical density mapping and
further complicates the detection in the overlapped area and
create artifacts which would possibly mislead trained models. This
also introduces additional challenges during synthetic data
generation and the segmentation tasks. Nevertheless, this
complexity in particle size, shape, and extent of curvature has
pronounced effects on the emergent properties of these cathode
particles so their correct identification remains important>®3°,
Here, over-predicted particle masks inside the larger ones can be
easily removed in a post-processing step. This step was not
performed here to preserve the originality of the model
prediction. However, to enhance the general prediction capability
of the model and avoid post-processing procedures, the genera-
tion of non-prismatic structures for training datasets can be
instrumental and will remain as future work. Lastly, statistical
information on particle area size, aspect ratio and orientation are
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Fig. 5 Particle statistics from the X-ray ptychography image. Histograms and their kernel-density estimates (KDE) are illustrated as a
function of area (summation of pixels corresponding to each particle mask), aspect ratio (particle length/width), and orientation (angle relative
to the horizontal axis) in a-c, respectively. The statistical results show qualitative agreement; however, the main discrepancy represented by
over-predicted pixels cause the shift of KDE curve in the respective number ranges.

Fig. 6 Model prediction on V,05 nanowires image by STXM (531 x 449 pixels—rescaled) . a Test image.b Predicted instance masks with
lower opacity plotted on the test image. The best performer in AP segmentation mask in Table 3 was used to visualize the prediction masks in
b. ¢ Semantic binary mask, Blue: TP, Red: FN, Green: FP; in ¢, many FP nanowires are present, which indicate the missing manual labels, but
detected by the model. The results demonstrate the robustness of the model in segmenting image of low-resolution and densely packed

particles.

compared in Fig. 5 in form of histogram with kernel density
estimation (KDE). The area size is determined by summation of the
pixels belonging to different particle masks. The aspect ratio is
calculated as the ratio between image coordinates of the longer
edge to the shorter edge of the corresponding predicted mask.
The orientation is considered as the angle between the particle
alignment to the horizontal axis and ranging from 0 to 180
degree. As can be found in Fig. 5, the statistical information from
the X-ray ptychography data is in a qualitatively good agreement.
The main discrepancy is contributed by the number of
additionally detected smaller particles inside the larger particles
and as explained previously, leading to a higher density of the
histogram for area size of 2000-4000 pixels and aspect ratio 2-4.
This perturbation can be also observed for orientation for particles
with 75 to 100 degrees and 150 to 175 degrees. As the number of
particles in the image is comparably small, the feature distribution
becomes sensitive to the number of detected particles.

STXM image. Of the two X-ray microscopy techniques consid-
ered in this work, X-ray ptychography offers the greatest spatial
resolution (ca. 6 nm), thus, from a purely image segmentation
perspective we expect the performance of the model to be
greatest for this class of images. Nevertheless, techniques such as
scanning transmission X-ray microscopy which offer slightly lower
spatial resolution (ca. 25 nm) but enabled more detailed mapping
of spectral features (i.e. have richer chemical information) are
equally important for cheminformatics. In this work, the original
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resolution of the STXM image was 100x100 pixels and fewer than
in the X-ray pytchography image. To enable sharper manual
annotation, we rescaled the STXM image to the size of
pytchography image for easier visual access (it is important to
note that this does not fundamentally change the resolution
enabled by the experimentation). The number of particles, their
variations in morphology, and the complexity of their dispersion is
noticeably greater than the X-ray ptychography image making the
segmentation task considerably more challenging. Nevertheless,
the segmentation accuracy scores around 75 and the AP score is
around 30/21 for bounding box and masks, respectively. Since
there exist relatively no larger particles in the image, AP, was not
provided. The comparably lower but surprisingly good scores
highlight the complexity of segmenting complex particle disper-
sions with several instances overlap and agglomeration. This is
especially noticeable for the false positive green particles in Fig. 6¢
(see also Table 3), which were generally overlooked in the manual
annotation process. The access of human annotation is strictly
limited for image of such complexity. However, at the instance
level, from a visual perspective, the model performs considerably
well. Overlapped particles are consistently identified and agglom-
erations, while difficult to identify visually, are captured by the
deep learning model. The statistical distribution of the features in
Fig. 7 agree well both to a qualitative and quantitative extent. The
shape of KDE agrees well with the manual ground truth
distribution. As the model prediction captured smaller particles,
which were not manually labeled, the statistics of the prediction
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Table 3. Model performance on STXM image (bounding box/segmentation mask).
No. Accuracy AP APsq AP;5 AP, AP, AP,
1 75.6 27.267/ 54.404/ 23.423/ 25.228/ 37.744/ NaN
21.791 51.877 17.587 20.862 28.877
3 731 30.51/ 53.577/ 29.092/ 24447/ 48.116/ NaN
21.36 52.172 15.618 17.329 32.782
9 753 28.293/ 51.763/ 27.977/ 20.581/ 49.245/ NaN
21.049 48.671 17.437 16.013 34.714
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Fig. 7 Particle statistics from the STXM image. Histograms and KDE curves are illustrated as a function of area, aspect ratio, and orientation
in a-¢, respectively. The statistical results show good qualitative and quantitative agreement. The main reason for the shift of KDE curves are
due to the FP pixels, leading to higher density estimates in the respective number range.

are shown to have a higher density distribution in each feature
characteristic, observable as small peak shift of the KDE curve. The
results suggest that for complicated particle networks contained
in a relatively low-resolutioned and low-contrast image, deep
learning models indeed deliver more comprehensive information
on the statistical information than human annotations. We note
that further comparison of manually annotated STXM images and
their corresponding statistics can be found in Supplementary
Note 5.

SEM image. The deep learning model shows success in
segmenting the particles in the ptychography and STXM optical
density images, in part, due to the mechanisms of contrast
generation, which involves the transmission of an incident X-ray
source through the bulk of the material. Here, the degree of
transmission is related to the energy-specific elemental absorption
cross-section, corresponding to excitation of electrons from core
levels to unoccupied or partially occupied states, giving rise to
similar absorption contrast for compositionally homogeneous
particles and allowing the discernment of overlapped intersec-
tions (in form of increased optical density due to thickness effects).
As a point of comparison, in scanning electron microscopy, the
detection of secondary electrons or backscattered electrons from
the surface is sensitive to surface morphology, edge effects, and
charge build-up and is fundamentally different from the X-ray
ptychography and STXM images shown in previous sections. To
demonstrate the versatility of the model, we introduce a scanning
electron micrograph for the purposed of segmentation. Despite
the fundamental differences in contrast generation between the
data used to train the model and the SEM data utilized as an input
here, the model performs sufficiently well in the overlapping
regions despite the absence of optical density information. We
postulate that the deep learning model still captures the contrast
gradients at the particle boundaries and utilizes it as a criterion to
identify individual fibers in the overlapped regions, independent
of the background. Nevertheless, residual errors in the segmenta-
tion persist; for instance, as in the previous dataset,
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agglomerations are not well separated, as shown by the cyan
arrow in Fig. 8b (see also Table 4). In addition to unidentified
nanowires, (indicated by yellow arrows) minor discrepancies exist
in the rightmost region of the image, where oversized masks
(green, indicated by white arrows) were predicted for individual
wires. Here, the absence of optical density information combined
with the distinct mode of contrast relative to STXM and X-ray
ptychography contribute to the lower AP shown for the SEM
image. Nevertheless, we see strong potential to improve the
observed inconsistency. For example, an additional class for
agglomerated phase can be introduced and generated in the
microstructure generation step, to further differentiate between
different foreground phases and, subsequently, nanowires
instances. Despite the lower AP score around 13, the statistical
results seem to be less sensitive in the presence of more
significant particle numbers. The main deviation lies in the
number of undetected isolated particles of smaller size and
therefore leading to an underestimation of statistical density w.r.t.
area size up to 1000 pixels, aspect ratio from 2.5 to 7.5 and
orientation from 100-150 degrees, as shown in Fig. 9a-c. We
further refer to Supplementary Figs. 19 and 20 for another
comparative case of SEM image with highly attached nanowires.

DISCUSSION

Advancements in chemical imaging have enabled improvements
in image collection speed, signal-to-noise, and computational
power enabling the stronger connections between structure-
function relationships and emergent properties. In this work, we
have developed a deep learning model for instance segmentation
which has been trained solely by synthetic datasets emulated after
experimental microscopy data. A benchmarked assessment of the
Mask R-CNN algorithm assesses the prediction accuracy of the
model on experimental datasets collected by X-ray ptychography,
scanning transmission X-ray microscopy, and scanning electron
microscopy. Despite variations in spatial resolution, particle
dispersion densities, and contrast generation, the model scores

npj Computational Materials (2022) 88

npj



B. Lin et al.

Fig. 8 Model prediction on V,05 nanowires within SEM image
(957 x 1280 pixels). a Test image. b Predicted instance masks with
lower opacity plotted on the test image. The best performer in AP
segmentation mask in Table 4 was used to visualize the prediction
masks in b. ¢ Semantic binary mask. While sufficiently good
segmentation results are found for overlapping nanowires, several
FN pixeled nanowires, indicated by yellow arrows in b were missed
by the model. Further discrepancies can be found in the region of
agglomeration denoted by FP pixels and white arrows. The absence
of optical density information combined with the distinct mode of
contrast relative to STXM and X-ray ptychography contribute to the
comparably lower prediction performance.
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well across all the considered microscopy data thus demonstrat-
ing the versatility of the neural network in the segmentation tasks.
The introduction of optical density values in the synthetic datasets
utilized to train the model enables accurate predictions and
individual segmentation instances for overlapping particles—a
challenge that is strongly relevant to particle dispersions but has
seen limited advancement due to inherent complexities. The Mask
R-CNN algorithm is designed for instance segmentation, which
includes regional proposal networks that can locate instances in a
large scale image, and further network components can
differentiate the class of objects. Given the one class of nanowires
in our current work, further instance classes can be included easily
within our synthetic image generation workflow and would
provide higher generalization capability and accuracy. The
segmentation capability of the model can be further extended
towards coaxial or hiearchical nanowires structures, see Supple-
mentary Note 8. A web-based, and interactive segmentation tool
based on the model developed in this work has been made
publicly available at https://share.streamlit.io/linbinbin92/
V205_app/V205_app.py. Future work will also focus on the
introduction of noise to replicate light perturbations, angle
dependencies, and variable background characteristics in order
to improve the model’s robustness to real-life datasets. In light of
considerable ongoing developments in situ X-ray and electron
microscopy techniques*®®, we will further seek to implement the
developed methods in real-time process control settings during
nanowire growth and battery operation. Here, a continuous
stream of image-derived particle statistics will aid identification of
change points and targeted processing interventions to control
particle geometry during manufacturing; elaboration of the
methods to chemical imaging will enable coupling of real-time
imaging to control dynamics (through appropriate transfer
functions) for early detection of electrode degradation during
battery operation*=*8, Our current model achieves a frame rate
per second (fps) of approximately 1 using a conventional graphics
processing units (GPU) of type RTX 2070. Further improvements in
processing speed are expected using a more performant GPU card
with further model optimizations.

METHODS
Synthesis of V,05 nanowires

It is important to note here that two polymorphs of V,0s are featured in
this work. The a-V,0s polymorph is the thermodynamically favorable
phase in the V,05 system and crystallizes in a layered structure with
orthorhombic symmetry. (-V,0s is a metastable 1D tunnel-structured
polymorph that preserves the composition of its thermodynamically
stable counterpart while exhibiting drastically different structural motifs>*,
While distinct in terms of their crystal structure, both a-V,0sand {-V,0s
produce nearly identical nanoparticle morphologies during a hydrother-
mal synthesis. Nanowires of a-V,0s, the thermodynamic sink for binary
vanadium oxides, were synthesized by a hydrothermal growth process.
Briefly, V305 - H,O nanowires were initially prepared and calcined in air to
obtain a-V,0s nanowires crystallized in the orthorhombic phase, as
reported previously®. Typical dimensions span from 50 to 400 nm in width
and up to several microns in length. Chemical lithiation was achieved via
submersion into a 0.01M n-butyllithium solution in heptane. Metastable (-
V,05 nanowires were prepared by a series of hydrothermal reactions as
described in the previous work*®. Briefly, bulk V,0s and silver acetate were
hydrothermally reacted to form an intermediate 3-Ago33V,0s product. To
create the tunnel-structured (-V,0s, B-Ago33V>0s was hydrothermally
reacted with HCl in aqueous conditions to leach the Ag from the structure.
For electrochemical sodiation, CR2032 coin cells were prepared under an
inert argon environment. The working electrode was prepared by casting
a mixture of the active material ((-V,0s, 70 wt.%), conductive carbon
(Super C45, 20 wt.%), and binder [poly(vinylidene fluoride) 10 wt.%)]
dispersed in N-methyl-2-pyrrolidone onto an Al foil substrate. Sodium
metal and glass fiber were used for the counter electrode and separator,
respectively. For the electrolyte, TM NaPF6 solution was prepared using a
solvent mixture of ethylene carbonate and diethyl carbonate (1:1
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Table 4. Model performance on SEM image (bounding box/segmentation mask).
No. Accuracy AP APsq AP5 AP AP, AP,
1 59.6 27.61/12.927 51.8/23.126 22.884/5.206 20.586/7.842 43.495/22.443 38.356/36.634
5 61.7 27.916/12.688 54.302/37.916 21.149/5.643 22.776/8.337 43.195/21.884 16.311/25.743
13 33.2 21.561/12.659 47.924/35.553 15.718/5.088 14.011/8.089 44.587/23.695 15.317/12.871
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Fig. 9 Particle statistics from the SEM image. Histograms and KDE curves are illustrated as a function of area, aspect ratio, and orientation in
a-¢, respectively. The statistical results show good qualitative agreement. The main discrepancy exists for smaller FN nanowires missed by the
model, thus leading to higher-density estimates in the ground truth (manual annotation) in the respective number ranges, e.g. the peak in

area size distribution.

volumetric ratio). The extent of sodiation was controlled by galvanostatic
discharging using a LANHE (CT2001A) battery testing system. Cells were
disassembled, washed with dimethyl carbonate (DME), and dried for 24 h
in an inert argon environment.

Scanning electron microscopy

Before imaging, dispersions of a-V,05 and {-V,05 nanowires were created
by drop-casting onto a silicon nitride substrate®. The SEM image shown in
Fig. 1a was collected on a Tescan LYRA-3 instrument equipped with a
Schottky field-emission source and a low aberration conical objective lens.

X-ray ptychography

X-ray ptychography measurements were performed at the coherent
scattering and microscopy beam line of the Advanced Light Source in
Berkeley, CA. An optic with a 60 nm outer zone width, and a 40 nm step-size
of the field of view was utilized. The image shown in Fig. 1b depicts the ratio
between the X-ray absorption intensities at 527 and 529.8eV, which
correspond to known excitations to t,g and eg*, respectively, which are
indicative of the extent of intercalation. The symmetry labels herein indicate
transitions to final vanadium 3d-O 2p hybrid states; the line shapes, peak
positions, and relative intensities of these absorption features reflect the
specifics of vanadium reduction, electronic structure, and chemical bonding
in these compounds and have been interpreted with the help of first-
principles density functional theory calculations in past work>5>°,

Scanning transmission X-ray microscopy

The STXM measurements were performed at the spectromicroscopy beam
line 10D-1 of the Canadian Light Source in Saskatoon, SK utilizing a 7 mm
generalized Apple Il elliptically polarizing undulator source (EPU). Here, a
focused beam spot was raster-scanned across the field of view with a
35nm step size (thus determining the spatial resolution). A series of
images were collected from 508 eV to 560 eV in 0.2 eV increments. The
STXM image shown in Fig. 1(c) depicts the average absorption (optical
density) contrast from 508 eV to 560 eV°.

Model architecture of the Mask R-CNN algorithm

In the following section, the basic structure of Mask R-CNN model and its
workflow are briefly explained. The model architecture can be divided into
3 main parts'?, as illustrated in Fig. 10:
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® feature extraction. This step is usually referred to as the backbone of
the model and is constructed with multiple CNN layers. The input
image is introduced and passed through the CNNs to extract
representative features of the entire image. The CNN layers are usually
deep and contain most of the model weights updated during the
training steps. The backbone used here can easily be tailored to the
desired segmentation task in order to improve speed and perfor-
mance. The backbone used for the training in this work is a Feature
Pyramid Network (FPN) with the ResNet-50 network'* pre-trained on
COCO-dataset'. FPN addresses one of the main challenges in object
detection which is detecting objects at different scales®'. FPN is
constructed of two pathways, a bottom-up and a top-down pathway
so it can capture features at different scales. See also Supplementary
Note 6 for more details on FPN structures®2.

® Region of interest proposal and alignment. This step in the model is
designed to identify and extract instances from feature maps produced
by the backbone. The Region proposal network (RPN) achieves this by
generating a series of region of interest (ROIs), each encapsulating a
single instance. The model generates hundreds of ROIs and an
associated a confidence score to quantify the probability of encom-
passing an object for the given ROI. After filtering and modifying the
coordinates of each ROI, RPN advances portions of the feature map
(corresponding to each ROI) with a fixed size to the model prediction
head in order to determine the properties (e,g, bounding box, and
instance mask, etc.) of each instance.

® Overhead for mask and bounding box prediction and classification. The
so-called prediction heads are functions that predicts the
characteristics of that proposed instance. For object detection
purpose, most common R-CNN structures typically provide two
instance heads, namely bounding box regression head, which
draws a bounding box around an instance, and the instance
classification head to classify the object class. The typical
prediction head of Mask R-CNN is therefore a extension of R-CNN
models with the mask segmentation, in which a binary mask is
generated to label the predicted instance.

Model loss functions

During training, the difference between model prediction and ground
truth should be minimized. This optimization procedure requires the
definition of a function to perform this calculation, usually referred to a loss
function or a cost function. Typically, in neural networks, the optimization
goal is to minimize this loss function. Different loss functions can be used
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Bounding Box Instance
Classification
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Fig. 10 Basic workflow of the Mask R-CNN algorithm. The input
image is processed by different network components to extract
high-level features, region of interests for prediction of bounding
box, classes and masks.

Instance
Segmentation

for different tasks based on the input data and the desired output of the
model. In the Mask R-CNN model used in this work, the defined loss
function is based on the summation of 3 individual loss functions'>:

,(Z):,(l)bbox"l‘a(/cls"ra(/mask (1)

where Pppox is the smooth L' loss function used for predicting bounding
box coordinates, with the advantage of having steady gradients for large
loss numbers and fewer oscillations during updates for smaller loss values.
PLas is a cross entropy loss function to measure the classification of
multiple classes and returns a probability between 0 and 1. In the case of a
binary segmentation (in this case, the nanowire and the background), the
cross-entropy loss function can be written as:

Las = —(ylog(p) + (1 —y)log(1 — p)) @

where the log is the natural log, y is a binary value (0 or 1) indicating the
class of observation, and p is the predicted probability for the given
observation. As for % mask, it is a binary cross-entropy for the generated
binary mask of size mx m for each ROl

Model evaluation metrics

To evaluate the segmentation results, we made use of three metrics. The
segmentation accuracy defined in Eq. (3) is used here as simple pixel-wise
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Fig. 11 Definition of intersection over union. Area of object
intersection over the area of object union. This definition is used to
calculate precision and recall for a given loU threshold.
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Fig. 12 PR curve. Exemplary precision values corresponding to
given recall values, shown by red dots. According to VOC2010, to
avoid the wiggly representation of PR curve, shown by dashed
green lines, precision values take the previous maximum values to
the left to generate the normalized curve, shown by solid blue lines.
The final AP is calculated as the area under the normalized curve.

correctness, which only examines the true predicted pixels with
predictions made from all the objects in the foreground. TP denotes the
true positive, FP the false positive, and FN the false negative predictions.
Note that this metric is only applied to the foreground, which differs from
the common use considering the background pixels likewise.
P

Accuracy = PPN (3)
The second evaluation scheme is according to COCO dataset'® based on
mean average precision (MAP). This is introduced briefly in the following
section. Firstly, to confirm a correct prediction of bounding box or mask,
intersection over union is used (loV). It is defined by the area of
intersection between bounding boxes divided by their union as shown in
Fig. 11. Predictions are true positive, if loU is higher than a given threshold,
and false negative if that is lower than that threshold. The most common
thresholds used are loU>50 (APsg) and loU>75 (APss). To further
understand mAP, precision and recall are defined as follows:

P

Precision = 4
recision = - PP (4)

Recall = 5
ecall = TEN (5)

Recall is considered as true positive prediction rate, i.e., the ratio between
true positive predictions and all ground truths. Precision is defined as the
ratio between true positive predictions and all predictions that are made.
Further, the obtained precision and recall are plotted to obtain the so-
called precision-recall (PR) curve with the area under it referred to as
average precision (AP). In VOC2010'7, a modified PR curve was introduced,
where precision for a given recall r is set to the maximum precision for any
r > r. Afterward, the AP can be computed by numerical integration for the
area under the curve (AUC) as shown in Fig. 12. In COCO, mAP is defined as
the average of AP for all classes in each image. In this work, a single class of
nanowires is segmented, but it is worth noting that additional classes can
be accounted for with relative ease.
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For VOC, usually loU>50 is considered considered true positive
prediction, which results in true predictions with any loU higher than 0.5
contributing equally to the AP. To rectify this problem, COCO uses different
thresholds for loU ranging from 0.5 to 0.95 with a step size of 0.05 and
then reports the average of all computed APs to varying thresholds as
mAP, see Eq. (6). In this work, we use AP for mAP ., and assume the
difference is clear from the context.
mAPcom _ mAPgo + mAP55 + ...+ mAP95 ©6)

10
Evaluation based on COCO also reports more detailed results based on the
scale of the detected objects. With reported APy, for objects with area
smaller than 322 pixels, AP eqium fOr objects with area between 322 and
697 pixels and APy, for objects with area greater than 692 pixels, one can
evaluate the model performance on segmenting objects in different scales.
Finally, given the fundamental motivation to extract particle statistics from
image datasets, the performance of the model is further evaluated based
on the accuracy of the predicted statistics. Computation is made based on
the segmented masks of each particle. Statistical information obtained
from the predictions are then compared to the manually annotated results.
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