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Vulnerable window of yield strength for swelling-driven
fracture of phase-transforming battery materials
Ataollah Mesgarnejad1 and Alain Karma1✉

Despite numerous experimental and theoretical investigations of the mechanical behavior of high-capacity Si and Ge Li-ion battery
anodes, our basic understanding of swelling-driven fracture in these materials remains limited. Existing theoretical studies have
provided insights into elasto-plastic deformations caused by large volume change phase transformations, but have not modeled
fracture explicitly beyond Griffith’s criterion. Here, we use a multi-physics phase-field approach to model self-consistently
anisotropic phase transformation, elasto-plastic deformation, and crack initiation and propagation during lithiation of Si nanopillars.
Our computational results reveal that fracture occurs within a “vulnerable window” inside the two-dimensional parameter space of
yield strength and fracture energy and highlight the importance of taking into account the surface localization of plastic
deformation to accurately predict the magnitude of tensile stresses at the onset of fracture. They further demonstrate how the
increased robustness of hollow nanopillars can be understood as a direct effect of anode geometry on the size of this vulnerable
window. Those insights provide an improved theoretical basis for designing next-generation mechanically stable phase-
transforming battery materials undergoing large volume changes.
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INTRODUCTION
Increasing demand for portable energy storage has motivated a
large research activity focused on high-capacity Li-ion battery
anodes. Current carbon-based anodes have limited theoretical
capacity (372 mA h g−1 for Li6C (ref. 1)). Silicon and germanium
have an order of magnitude larger theoretical capacity (3579 mA
h g−1 for Li15Si4, 4200mA h g−1 for Li22Si5 (ref. 1), 1384 mA h g−1

for Li15Si4 (ref. 2)) but are prone to fracture due to the high,
approximately 300%, volume expansion during lithiation3,4, which
limits their use. Different designs have been explored to overcome
this limitation including silicon nanopillars5,6, thin films7–9, open
nano-porous crystalline Si structures with ultra-high interfacial
area produced by dealloying of Si-based alloys10,11, combinations
of these12,13, as well as composite designs that embed silicon
particles inside a more mechanically stable matrix14–18.
Basic studies of the lithiation process have shown that

crystalline silicon (c-Si) transforms to an amorphous lithiated alloy
(a-LixSi)

2,19,20. The kinetics of this large volume change phase
transformation is understood to be both interface-reaction
limited20 and highly anisotropic, reflecting the two key observa-
tions that the velocity of the c-Si/a-LixSi interface remains
approximately constant during lithiation, and that this velocity
depends strongly on crystallographic orientation19. Numerical
studies of elasto-plastic deformations of c-Si particles (nanowires,
nano-/micro-pillars, etc.) have demonstrated that the resulting
anisotropic swelling can produce both large shape changes of the
particles and, as a non-trivial effect of compressive yielding, tensile
stresses on their outer surface that can potentially drive
fracture3,21–23. Those insights have already proven useful to test
new anode designs to mitigate fracture23. However, our ability to
predict when and how fracture occurs in different large volume
change materials (e.g., Si versus Ge) and different anode
geometries (e.g., solid versus hollow nanopillars13) is still limited.
To date, the onset of fracture has been predicted using analytical
solutions for stresses obtained in idealized geometries, assuming

purely plastic deformation and isotropic swelling, and by applying
a Griffith criterion to predict fracture onset for a flaw size
comparable to the particle dimension24,25. However, crack
initiation and propagation in the setting of large elasto-plastic
deformation and anisotropic swelling in phase-transforming
materials remain largely unexplored.
Here, we use a multi-physics phase-field approach to simulate

both anisotropic swelling and fracture of solid and hollow c-Si
nanopillars within a unified theoretical framework and derive from
our simulations an understanding of when and how fracture
occurs as a function of key materials parameters, including yield
strength and fracture energy, and geometric parameters such as
nanopillar radius and slenderness. Phase transformation is
modeled using a phase-field ψ that distinguishes the c-Si and a-
LixSi phases and is evolved dynamically to describe the interface-
reaction-limited anisotropic motion of the c-Si/a-LixSi interface.
Fracture, in turn, is modeled using the well-established variational
approach that couples elasticity to a phase-field ϕ, which
distinguishes pristine and broken regions of the material26,27. To
realistically model large volume changes, this variational approach
is implemented using a large deformation formulation of elasto-
plasticity combining neo-Hookean nonlinear elasticity and J2
plasticity to quasi-statically evolve ϕ together with the material
displacement field and the plastic deformation gradient tensor.
The phase-field approach offers several advantages in the present
context. It provides a self-consistent formulation to model
simultaneously anisotropic swelling, large elasto-plastic deforma-
tion, and fracture. Furthermore, it can describe the evolution of
phase boundaries and cracks of arbitrarily complex shapes, as
demonstrated in applications to other phase transformations28

and fracture problems such as thermal shock fracture29, mixed
mode fracture30, ductile fracture31,32, and the simpler chemo-
mechanical fracture of single-phase battery cathode particles33–36,
also driven by volume expansion due to Li intercalation but only
involving small elastic stresses and no phase change. In addition,
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in contrast to Griffith theory, the phase-field approach is able to
describe crack initiation without pre-existing flaws. This property
stems from the fact that ϕ varies smoothly in space on a length
scale ξ, thereby enabling crack formation on the scale of the
“process zone” where elastic energy is transformed into new
fracture surfaces. Hence, directly relevant to the present study, the
phase-field approach can quantitatively describe crack initiation
from surface imperfections such as U- or V-shape notches by
treating ξ treated as a material-dependent parameter37. V-shape
notches, in particular, bear close similarity to surface shape
deformations of lithiated Si particles undergoing elasto-plastic
deformation during anisotropic swelling3,21–23.
To keep computations tractable, we perform 2D plane-strain

simulations (∂z ≡ 0) on a cross-section of an unconstrained
nanopillar (τzz = 0) lithiated from its surface (i.e., outer
boundary for a solid nanopillar and both outer and inner
boundaries for hollow nanopillars). Furthermore, to dissect the
contributions of multiple interacting physical effects (including
compressive and tensile yielding, anisotropic swelling, localiza-
tion of plastic deformation, and crack initiation and propaga-
tion), we carry out three different types of computations of
increasing complexity. In a first step, we model stress evolution
without fracture by assuming that swelling is isotropic and that
the stress fields and plastic hardening parameter α only vary
radially and are independent of the azimuthal angle θ as
depicted schematically in Fig. 1a. This axisymmetric approx-
imation reduces the 2D problem to a 1D radial problem. Stress
evolution in a similar idealized geometry has been previously
studied analytically by taking into account only plastic
deformation24,25. By taking into account here both elastic
and plastic deformations, we demonstrate that tensile stresses
generated on the particle surface by volume expansion reach a

maximum value as a function of yield strength σy. Even though
the critical σy value corresponding to this maximum is outside
the experimentally8,38,39 or theoretically estimated40 range σy ~
0.5–2 GPa for Si, the existence of this critical yield strength
provides a valuable theoretical framework to understand
fracture behavior inside this lower estimated range of 0.5–2
GPa. For this reason, we investigate stress evolution over a
wide range of σy that encompasses the entire vulnerable
window for fracture. In a second step, we carry out a similar
computation, still without fracture, but for the full 2D problem
without the axisymmetric approximation in which the stress
fields and α can vary both radially and azimuthally inside the
pillar cross section. This enables us to asses how anisotropic
swelling modifies tensile stresses on the pillar surface. We find
that tensile stresses become amplified by localization of plastic
deformation, but still exhibit a maximum as a function of
increasing σy. Those 1D and 2D computations demonstrate the
existence of a vulnerable window of yield strength inside
which pillars are prone to fracture. More crucially, for the
relevant experimentally reported yield strengths (σy = 0.5–2
GPa) of Si, the difference between the material and the most
critical yield strength controls the magnification of generated
tensile stresses. In the last step, we validate the existence of
this window by repeating our 2D computations with fracture,
showing that pillars fracture only over an intermediate range of
yield strength. We compare the results of full 2D simulations
with estimates based on our numerically calculated stresses in
the previous steps using the Griffith theory framework. We
then use experimental estimates of safe pillar radius (i.e.,
largest pillar radius without fracture) to quantitatively validate
our findings by calculating our estimate of yield strength.

Fig. 1 Axisymmetric results. Results of axisymmetric simulations of lithiation of hollow cylindrical crystalline nanopillars of outer radius R =
85 nm and variable thickness t. a Schematic representation of the hollow pillar geometry. b Plots of maximum hoop stress reached during
complete lithiation on the nanopillar outer (r = R, solid lines) and inner (r = R − t, dashed lines) boundaries versus yield strength σy for
different t/R ratios. Plots predict the existence of a “vulnerable window” of σy inside which the maximum hoop stress can exceed the threshold
for fracture. c Radial profiles at different times of the phase transformation ψ field (right vertical axis, gray lines with the c-Si/a-LixSi interface
located at ψ = 0.5), the Kirchhoff hoop stress

ffiffiffi
3

p
τθθ=2 (left vertical axis, red lines with earlier stages shown using lighter red) and von Mises

stress τeq (left vertical axis, blue lines) for σy = 3 GPa. Plots show compressive yielding followed by subsequent reversal of the sign of the hoop
stress and yielding under tension. d Same as c but for higher yield strength σy = 7 GPa where tensile yielding does not occur.
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RESULTS
Model
We model the swelling-driven deformation of the material using
the finite J2 elasto-plasticity framework41–43 and account for the
fracture of the material by coupling it to a phase-field fracture
model26,27. Furthermore, we model the anisotropic motion of the
c-Si/a-LixSi interface during lithiation using a non-conserved phase
field ψ where ψ = 0 in the crystalline phase and ψ = 1 in the
amorphous phase. The material properties are approximated
using a linear rule of mixture between the crystalline and
amorphous phases. We define the deformation gradient tensor
as Fij = ∂xi/∂Xj = 1 + ∂ui/∂Xj where Xi are the undeformed
coordinates and xi = Xi + ui are the deformed coordinates of
material points and u is the displacement field. We use a
multiplicative decomposition of the deformation gradient tensor
such that

Fij ¼
ffiffiffiffiffi
Jψ

p
FeikF

p
kj (1)

where Jψ = (1+ βψ)2 is the phase dependent volumetric
expansion due to phase change with linear Vegard expansion
coefficient β, Fp is the plastic deformation, and Fe is the elastic
deformation. We use the framework of the phase-field method for
fracture26,27 by introducing the fracture phase field ϕ along with
the process zone size ξ and combine it with the standard phase-
field approach for phase transformations to prescribe the ψ
evolution44. Accordingly, we write the total free energy functional
as the sum

FðFe;ψ;ϕÞ ¼ FelðFe;ψ;ϕÞ þFϕðϕÞ þFψðψÞ; (2)

of contributions corresponding to the elastic energy stored in the
material including the amorphous and crystalline phases (Fel), the
energy associated with the creation of new fracture surfaces (Fϕ),
and the free-energy associated with the c-Si to a-LixSi phase
transformation (Fψ), defined as

FelðFe;ψ;ϕÞ ¼
Z

Ω0

ðϕ2 þ ηξÞWþðFe;ψÞ þW�ðFe;ψÞ� �
dx; (3)

FϕðϕÞ ¼ 3Gc

8ξ

Z
Ω0

1� ϕþ ξ2j∇0ϕj2
� �

dx; (4)

FψðψÞ ¼
Z

Ω0

hf dwðψÞ � Γf tiltðψÞ=3þ σψj∇0ψj2
� �

dx: (5)

In the sharp-interface limit ξ/R ≪ 1 where the process zone size ξ
is much smaller than the nanopillar radius R,FϕðϕÞ reduces to the
standard fracture energy Gc of convenctional fracture mechanics,
defined as the energy required to create new fracture surfaces per
unit extension of the crack, where we have defined ∇0• = (∂•/∂Xi).
For the phase transformation contribution FψðψÞ, fdw(ψ) =
4ψ2(1− ψ)2 is a standard double-well potential with equal minima
at ψ = 0 and ψ = 1, corresponding to a c-Si/a-Si interface with
thickness w ¼ ffiffiffiffiffiffiffiffiffiffi

σψ=h
p

and excess free-energy γ = 2hw/3. In
addition, ftilt(ψ) provides the driving force for the solid-state
chemical reaction xLi+ + xe− + Si → LixSi by tilting the double
well potential (hfdw(ψ) − Γftilt(ψ)/3) so as to lower the bulk free-
energy density of a-LixSi (ψ = 1) relative to c-Si (ψ = 1) by an
amount proportional to Γ ¼ xð~μLi � μaLiÞ þ μcSi � μaSi � xFΔV � 0,
where μaLi (μ

a
Si) is the chemical potential of Li (Si) in a-LixSi at the

interface, ~μLi and μcSi are the chemical potential of Li in the
counter-electrode and Si in c-Si, respectively, and ΔV and F are the
electric potential relative to the counter-electrode and Faraday’s
constant, respectively. The choice ftilt(ψ) = 15(32ψ3/3 − 16ψ4 +
32ψ5/5)/16, with limits ftilt(0) = 0 and ftilt(1) = 1 and vanishing first
and second derivatives at ψ = 0 and ψ = 1, preserves the free-
energy minima at ψ = 0 and ψ = 1 for arbitrary Γ. Finally, to
construct FðFe;ψ;ϕÞ, we split the elastic energy into positive
(W+(Fe, ψ)) and negative (W−(Fe, ψ)) volumetric parts to distinguish

material regions under tension and compression, respectively, and
assume a neo-Hookean hyper-elastic material

WþðFe;ψÞ ¼
μðψÞ
2 b̂

e
kk � 2

� �
þ κðψÞ

4 Je2 � 2 ln ðJeÞ � 1
� �

if Je � 1

μðψÞ
2 b̂

e
kk � 2

� �
otherwise

8><
>:

(6)

W�ðFe;ψÞ ¼ 0 if Je � 1
κðψÞ
4 Je2 � 2 ln ðJeÞ � 1

� �
otherwise

(
(7)

where Je = det(Fe), b̂
e
ij ¼ FeikF

e
jk=J

e is the isochoric left Cauchy-Green
deformation tensor, and the shear modulus μ(ψ) = ψμa + (1 − ψ)
μc + ηξ μa and bulk modulus κ(ψ) = ψκa + (1 − ψ)κc + ηξμa are
interpolated between their values in the a-LixSi (μa, κa) and c-Si (μc,
κc) phases with the addition of a residual stiffness ηξ that is
introduced to ensure non-singularity of the balance equations and
can be chosen arbitrarily small ηξ = 2.5 × 10−4 without affecting
the results. This split allows for fracture to take place under shear
and under tensile loads but prohibits it under pure volumetric
compression. Moreover, the formulation forbids interpenetration
of fracture surfaces under compression while allowing them to
slide. Following classic J2 plasticity we assume that the von Mises
equivalent stress τeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

p � ðσy þ KαÞ where sij ¼
μðψÞðb̂eij � b̂

e
kkδij=2Þ is the deviatoric part of the Kirchhoff stress

tensor τ (τ = Jσ where σ is the Cauchy stress tensor), σy is the yield
strength, K is the isotropic hardening constant, and α is the
hardening parameter (at the infinitesimal strain limit the isotropic
hardening parameter reduces to the equivalent plastic strain). The
equations governing elasto-plastic deformation coupled to
fracture driven by the large volume change phase transformation
are obtained variationally from (2) and consist of two parts. Firstly,
for fixed ψ, the displacement field and fracture phase-field are
evolved quasi-statically by minimizing (2) with respect to ui and ϕ

δF

δui
¼ 0 s:t:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

q
� ðσy þ KαÞ; (8)

δF

δϕ
¼ 0; (9)

respectively, where δF=δ� is the Fréchet derivative of the free
energy F with respect to field •. Standard J2 plasticity is
incorporated by the constraint in (8) that plastic deformation
occurs when the equivalent von Mises stress reaches the yield
surface. The coupling of elasto-plasticity and fracture is self-
consistently captured by the fact that (8) and (9) are derived from
the same free-energy functional, which couples the evolution of
the displacement field ui and fracture phase-field ϕ. Secondly, the
ψ field is evolved in time to model the reaction-controlled
anisotropic motion of the c-Si/a-Si interface as

∂ψ

∂t
¼ �M n̂ð Þ δFψ

δψ
þ 2σψj∇0ψj∇0 � n̂

� �
(10)

where n̂ ¼ ∇0ψ=j∇0ψj is the direction normal to the interface and
Mðn̂Þ is the anisotropic interface mobility modeled using the same
functional form as An et al. (Equation (5) in ref. 23). In the sharp
interface limit w/R ≪ 145, (10) reduces to the simple law of
curvature-independent interface motion Vn ¼ Mðn̂ÞΓ with the
interface velocity Vn controlled by the thermodynamic driving
force for the interface reaction Γ assumed to be spatially uniform.
As discussed previously23, this assumption holds as long as Li
diffusion is much faster than the reaction kinetics so that the
chemical potentials of Li and Si remain spatially uniform inside the
a-Si phase, which is expected to be the case for the small
nanopillar sizes investigated here. In this limit, interface motion is
independent of the stress distribution inside the material and
purely geometrically determined by the form of the anisotropic
mobility Mðn̂Þ. Hence, elastoplastic deformation and fracture are
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independent of the value of the driving force Γ that only sets the
unit of time, i.e., Γ can be scaled out of the problem by measuring
time in units of R=ðMmaxΓÞ where Mmax is the maximum value of
Mðn̂Þ.

Vulnerable window of yield strength
To understand the basic mechanism of stress generation in these
components, as the first step, we performed an exhaustive series
of axisymmetric simulations without fracture (i.e., simulations in
which stress fields and the plastic flow hardening parameter are
assumed to only vary radially). Results of the axisymmetric
computations are shown in Fig. 1. Figure 1c, d shows the
evolution of the hoop stresses and equivalent von Mises stress
during lithiation of a solid nanopillar where we can identify three
regimes in these figures. As the phase transformation boundary
(ψ = 0.5) invades inside the particle from the outer boundary (r= R),
it creates compressive stresses due to the large volumetric
expansion of the a-LixSi phase. The resulting compressive stresses
generate plastic flow that caps the von Mises stress at σy. As the
crystalline core shrinks further, the compressive stresses on the
outer boundary subside and change sign due to the initial
compressive yield. Consequently, the hoop stress on the outer
boundary changes sign and becomes tensile (Fig. 1c, d), thereby
confirming the knock-on effect of compressive yielding on the
creation of tensile stresses that has been hypothesized to cause
cracking3,21–23. Importantly, for σy smaller than approximately 4
GPa for the present parameters, the tensile hoop stress reaches
the yield strength before the c-Si core has vanished, which results
in secondary plastic yielding under tension (Fig. 1c). In this range
(σy ≤ 4 GPa), the maximum hoop stress reached during complete
lithiation, maxðτθθÞ, increases linearly with σy as shown in Fig. 1b
for t/R = 1 corresponding to a solid pillar; since the outer
boundary is traction free (τrr ≡ 0) and the von Mises stress is
capped by σy, maxðτθθÞ ¼ 2σy=

ffiffiffi
3

p
on that boundary for plane-

strain. In contrast, for larger σy, compressive yielding requires a
larger lithiated fraction, which reduces the amount of volumetric
expansion available to create tensile stresses during shrinkage of
the remaining c-Si core. Therefore, maxðτθθÞ remains below the
yield strength and decreases with increasing σy as shown in Fig.
1b. We should also highlight that although all simulations
presented in this article were performed using β = 0.7 that
corresponds to ~280% volume change at full lithiation, our results
show that there exists a universal relationship between the
dimensionless maximum hoop stress maxðτθθÞ=μaβ and the
dimensionelss yield strength σy/μaβ (see Supplementary Fig. 1),
such that our findings can be extended to other materials whose

phase-transformation result in smaller volume changes. This
universality can be readily understood noticing that at smaller
expansion coefficients, smaller stresses are generated; therefore,
the knock-on effect of the compressive yielding only takes place at
smaller yield strength. Crucially, these results show that the
vulnerable window of yield strength is shifted to smaller values of
yield strength for smaller expansion coefficient. The resulting hat
shape of the maxðτθθÞ versus σy plot in Fig. 1b suggests the
existence of a vulnerable window for fracture corresponding to
the range of σy where the maximum hoop stress becomes large
enough to initiate fracture. Specifically, existence of a maximum
generated hoop stress at a critical yield strength increases the
available energetic driving force for fracture at lower yield
strength as confirmed below by our full 2D simulations (Figs 3–5).
Figure 1b also shows plots of maxðτθθÞ versus σy on the inner (r =
R − t) and outer (r = R) boundaries of hollow nanopillars. The
maximum hoop stress on the outer boundary still exhibits a
maximum. However, since the compliance of the annulus is
inversely related to its slenderness t/R, the maximum stresses on
both boundaries decrease with increasing slenderness.
Next, we performed 2D simulations of anisotropic swelling

without fracture for pillars oriented in two crystallographic
directions [001] and [112]. In these simulations, the crystalline
core is no longer circular and the anisotropic mobility of the
amorphization front creates a crystalline silicon core with sharp
corners. During lithiation, those crystalline corners concentrate
stresses and localize plastic flow in their vicinity. When the stresses
change sign and become tensile on the pillar outer boundary,
shear localization produces V-shaped notches at orientations
corresponding to these corners for lower yield strength, which
allows tensile yielding to occur on the periphery subsequent to
compressive yielding, but not larger yield strength where tensile
yielding does not occur. This difference can be seen in the pillar
morphologies in Fig. 3 for σy = 1 GPa and σy = 10 GPa (σy = 7 GPa
for [112] oriented pillar) that did not fracture. Those notches
further concentrate stresses, thereby augmenting the magnitude
of hoop stresses several fold at those orientations. This
magnification is shown in Fig. 2 where we compare maxðτθθÞ,
defined as before as the maximum hoop stress reached in time
during complete lithiation, from 1D axisymmetric computations of
isotropic swelling and the present 2D computations of anisotropic
swelling. For the latter case, we report maxðτθθÞ both on the outer
surface (blue and yellow diamonds) and at a position inside the
particle close to the outer surface (red circles) where maxðτθθÞ
reaches its maximum value along a vertical axis that contains the
corners of the c-Si core. The maximum hoop stress is seen to be
magnified both by localization of plastic deformation during

Fig. 2 Effect of anisotropy on maximum hoop stress. Comparison of 2D and 1D axisymmetric simulations of lithiation of solid nanopillars of
radius R = 85 nm without fracture. Plots of maximum hoop stress τθθ vs. yield stress σy for [001] (a) and [112] (b) oriented nanopillars (r is the
radial coordinate in the undeformed frame). In 2D simulations, localization of plastic flow at orientations corresponding to sharp corners of
the crystalline Si core and concomitant creation of V-shaped notches (Fig. 3) magnifies the magnitude of stresses, thereby enlarging the size of
the vulnerable window for fracture. The largest stresses are created along the crystalline corners at a small distance from the surface (red
circles).
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compressive yielding, which occurs for all σy reported, and V-
shape notches that form for lower σy due to tensile yielding.
The 2D results in Fig. 2 confirm the existence of a critical yield

strength that generates maximal tensile stresses but were
obtained from simulations without fracture. To investigate the
effect of stress augmentation on fracture, we repeated a series of
simulations with fracture for different σy and the [001] and [112]
crystallographic orientations and for fixed process zone size to
radius ratio ξ/R = 0.02. The time evolutions of particle
morphologies in Fig. 3 show that nanopillar fracture during
lithiation over an intermediate range of σy inside the vulnerable
window centered at the critical yield strength. For σy = 1 GPa, V-
shaped notches are created along the crystalline corner directions
but the magnitude of surface tensile stresses are insufficient for
crack initiation. For σy = 3 GPa, cracks initiate due to stress
concentration at V-shaped notches and propagate unstably
towards the crystalline core. For σy = 5 GPa, tensile yielding and
hence V-shaped notches are absent but tensile stresses grow
sufficiently large (at a later stage of charging compared to σy = 3
GPa) to create two pairs of cracks that propagate unstably after
initiation. The horizontal pair subsequently arrests and the vertical
pair propagates further due to spontaneous symmetry breaking.
Finally, for σy = 10 GPa (σy = 7 GPa for [112] oriented pillar),
reduced compressive plastic flow in the system suppresses the
subsequent increase of tensile stresses, thereby preventing crack
initiation. In [001] oriented pillars, crack initiate at the four corners
corresponding to [100] and [010] directions where stresses are
largest. In [112] oriented pillars, crack initiate at the two corners
along ½111� directions.
We used a 1% hardening coefficient (K/μa = 0.01) in all the

simulations presented in the main text, consistent with experi-
mental measurements of stress evolution in thin films showing
negligible hardening8. Incorporation of a small amount of
hardening avoids numerical convergence issues associated with
modeling perfect plasticity (K = 0). We carried out additional
simulations to test the effect of varying the hardening coefficient.

The results show that increasing hardening from 1% to 5% (K/μa
from 0.01 to 0.05) yields a slight reduction of localization of plastic
deformation (Supplementary Fig. 2) and a small increase in
maximum tensile stress (Supplementary Fig. 3), thereby leaving
the vulnerable window of yield strength largely unchaned.
Therefore our results are weakly dependent on the choice of
hardening coefficient up to a 5% value that represents a
reasonable upper bound based on measurements of a-LixSi plastic
behavior.

Size effects
Experimental observations of Si anodic components show a clear
size dependency where, for example, nanospheres with radii
smaller than ~75 nm5 and nanopillars with radii smaller than 120
nm6 do not break during lithiation. Such size dependencies,
prevalent in brittle and quasi-brittle materials46–49, are typically
characterized by a power law relationship between the stress to
fracture and component size, τc � 1=

ffiffiffi
R

p
, for R much larger than

the process zone size. Within the theoretical framework of Linear
Elastic Fracture Mechanics (LEFM), which treats crack surfaces as
sharp boundaries, this power law is readily obtained from the
expression for the energy release rate at the tip of a crack of
length a under a spatially homogeneous critical stress τc, which
can be written as G ¼ Caσ2ð1� νÞ=μ for plane-strain where C is a
dimensionless constant that generally depends on particle
geometry and load configuration. Equating the energy release
rate with the fracture energy (G = Gc), we obtain the expression

τc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gcμ

Cað1� νÞ

s
(11)

and thus the scaling τc � 1=
ffiffiffi
R

p
by further assuming that the

maximum flaw size a increases proportionally to the particle size
(a ~ R and a ≪ R). In the phase-field model used in this article,
which describes the state of the material with a spatially varying
scalar field ϕ, crack nucleation is an inherent property of the

Fig. 3 Phase-field simulations of nanopillar fracture. Phase-field simulations of fracture during the lithiation of [001] (a) and [112] (b)
oriented R = 85 nm nanopillars for different σy and for fixed process zone size to radius ratio ξ/R = 0.02. The color map depicts the hardening
parameter α and the thick black line shows the amorphous-crystalline boundary (i.e., ψ = 0.5 contour line). The red dashed boxes show
snapshots just before crack initiation and after unstable penetration towards the crystalline core. The results confirm the prediction of a
window of σy for fracture and distinguishes modes of fracture with (second row) and without (third row) localization of plastic deformation
creating a surface V-shaped notch prior to fracture (see also Supplementary Videos 1a, b–6a, b).
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model and occurs via an instability that causes ϕ to develop a
local dip (ϕ → 0) when the local stress exceeds a critical value
τc �

ffiffiffiffiffiffiffiffiffiffiffiffi
Gcμ=ξ

p
50 (up to a numerical prefactor that also depends on

particle geometry and load configuration). Consequently, by
comparing the above scaling expression for τc to Eq. (11), we can
physically interpret ξ as playing an analogous role to the dominant
flaw size in the LEFM framework. Furthermore, by using the result
of a stability analysis of a 1D stretched strip in the phase-field
model, which yields the prediction τc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Gcμ=4ξð1� νÞp

50, we
obtain the constant C ¼ 4=3 by comparison with Eq. (11) with a =
ξ. This value is close to the standard LEFM value C ¼ π=2 for a crack
of length 2a in a uniform stress. One main qualitative difference,
however, is that crack nucleation in the phase-field model occurs
through an instability of the pristine state in which ϕ is spatially
uniform and hence does not require the introduction of a flaw in
the form of a finite length seed crack as in LEFM.
We take advantage of this property to investigate the particle

size dependence of fracture onset by performing simulations at
fixed process zone size to particle size ratio ξ ¼ ξ=R. From the
dimensional analysis, it is natural to define the dimensionless
fracture energy as Gc/(μaR) where μa is the shear modulus of the
amorphous a-LixSi phase. The dimensionless fracture energy can
be readily interpreted as the ratio of the Griffith length scale Gc/μa
and the nanopillar radius. Fig. 4a reports the results of an
extensive series of 2D phase-field fracture simulations for [001]
oriented nanopillars for ξ ¼ 0:02, which identifies regions of the
two-dimensional parameters space Gc/(μaR) and σy where fracture
does (red circles) or does not (blue crosses) occur. These results
confirm the existence of a vulnerable window of σy where cracks
initiate and propagate in nanopillars during lithiation. This window
is centered around the critical value of σy generating maximal
tensile stresses and shrinks in size with increasing Gc/(μaR).
We now assess if the onset of fracture in 2D phase-field

simulations can be predicted within Griffith theory by using Eq.
(11) together with values of the maximum hoop stress during
lithiation obtained in 1D or 2D phase-field simulations without
fracture (Fig. 2). For this, we assume stress-free surfaces (τrr(R) =
τrθ(R) = 0) and small elastic strains, which allows to use a quadratic
approximation for the stored elastic energy Wþ ’ τ2θθð1� ν2aÞ=2Ea
where Ea = 9κaμa/(3κa + μa), νa = (3κa − 2μa)/(6κa + 2μa) are the
elastic modulus and Poisson ratio of the a-Si. We found that this
small strain quadratic form provides an accurate description of the

elastic energy in phase-field simulations calculated using non-
linear neo-Hookean elasticity (Eq. (6)). We can then rewrite Eq. (11)
as a function of the maximum hoop stress as

Gc

μaR
¼ Cξð1� νÞ maxðτθθÞ

μa

� �2

(12)

where C ¼ 4=3. Substituting in the above expression the values of
maxðτθθÞ obtained from 1D axisymmetric simulations, we obtain
the gray dashed line in Fig. 4a that falls significantly below the
boundary, comprised between red circles and blue crosses,
corresponding to the onset of fracture in 2D simulations with
fracture. Consequently, Griffith theory with axisymmetric tensile
stresses underestimates the critical value of Gc/(μaR) for fracture at
fixed σy and, hence, overestimates the safe pillar radius. This
discrepancy can be attributed to the fact that the 1D axisymmetric
simulations lack the stress amplification due to plastic localization
and instability. We therefore conclude that localization of plasticity
caused by anisotropic volumetric expansion plays a significant role
in fracture of Si nanopillars. This conclusion is further supported by
the finding that the prediction of Eq. (12) is significantly improved
when we use values of maximum hoop stresses obtained from 2D
simulations without fracture, which exhibit stress concentration at
V-shaped notches. Unlike in 1D axisymmetric simulations, where
the tensile hoop stress is always maximum at the pillar surface,
hoop stresses in 2D simulations with localization of plastic
deformation reach their maximal values inside the particle at a
short distance away from the V-shaped notch (Fig. 2). Therefore,
we can reasonably use Eq. (12) together with values of maxðτθθÞ
both inside the particle and at the tip of the V-shaped notch
(corresponding to the red circles and blue squares in Fig. 2a,
respectively) to obtain lower and upper bounds for the fracture
boundary in the plane of Gc/(μaR) and σy. The results are depicted
by the gray shaded region in Fig. 4a that is comprised between
the lower and upper bounds computed in this fashion. The
fracture boundary between red circles and blue crosses in 2D
phase-field simulations falls for the most part inside this gray
shaded region (in particular over the range σy ~ 0.5–2 GPa of
experimental relevance), thereby confirming that stress concen-
tration near V-shaped notches is an important mechanism
promoting fracture.
We can now relate our numerical findings to experimental

observations of safe nanopillar sizes. Figure 4a shows that the safe

Fig. 4 Vulnerable window of fracture. a Vulnerable window of fracture plotted for yield strength σy vs. dimensionless fracture energy
(particle size) Gc/(μaR) for [001] oriented nanopillars for fixed process zone size to radius ratio ξ/R = 0.02. Circles depict cases with, and crosses
show cases without fracture. The results confirm the existence of a vulnerable window of fracture energy (size) and yield strength for fracture.
Lines show the comparison with the closed-form approximation (Eq. (12)) based on maxðτθθÞ using 1D axisymmetric results shown in Fig. 1b
(dashed gray line), and maxðτθθÞ ¼ 2σy=

ffiffiffi
3

p
(dashed orange line). The gray shaded region comprises lower and upper bounds of the fracture

boundary computed using Eq. (12) together with values of maxðτθθÞ both inside the particle and at the tip of the V-shaped notch obtained
from full 2D simulations (corresponding to the red circles and blue squares in Fig. 2a, respectively). The green shaded region shows the
approximate value of the dimensionless fracture energy calculated for the safe particle size 120 nm6 and fracture energies in the range 5–7 J
m−2 (ref. 39). b Phase diagram of fracture in the plane of dimensionless process zone size 0.01 ≤ ξ/R ≤ 0.2 and yield strength σy obtained from
full 2D simulation using Gc/(μaR) = 0.01 (corresponding to R = 120 nm and fracture energy Gc = 6 J m−2). The results are consistent with the
experimentally estimated range σy = 0.5–2 Gpa for fracture.
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nanopillar radius (where pillars with radii less than the safe value do
not break) decreases with increasing σy over the estimated range σy
= 0.5–2 GPa for a-LixSi. The experimental range of safe nanopillar
radius is highlighted by the green shaded region in Fig. 4a. This
region was computed using the experimentally observed safe
nanopillar radius (120 nm)6 and the estimated range of fracture
energy (5–7 Jm−2) from experimental measurements39. 2D phase-
field simulations predict that, inside this green shaded region of
Fig. 4a, fracture occurs for σy between 1.5 GPa (blue crosses)
and 2 GPa (red circles), which falls in the upper part of the range
σy = 0.5–2 GPa estimated from experimental measurements8,38,39.
Phase-field modeling prediction also depend generally on flaw size
through the ratio ξ/R. To test this dependence, we repeated a series
of simulations by varying ξ/R over the range 0.01 to 0.2, which
encompasses the value 0.02 used in all simulations presented so
far. These simulations were carried out at fixed dimensionless
fracture energy Gc/(μaR) = 0.01 calculated using the average
reported fracture energy for a-LixSi Gc = 6 Jm−2 39 and the
observed safe nanopillar radius R ≃ 120 nm6. The results reported
in Fig. 4b show that nanopillars become more vulnerable to
fracture with increasing ξ/R as theoretically expected. For the
largest value ξ/R = 0.2 studied here, fracture occurs for σy between
0.5 GPa (blue cross) and 1 GPa (red circle), which falls in the lower
part of the range σy = 0.5–2 GPa estimated from experimental
measurements8,38,39. While the precise value of ξ/R is not known, its
value is presumably much smaller than unity given that nanopillars
do not typically exhibit large visible flaw sizes prior to lithiation6,20.
We can further confirm the above estimate of σy by redoing the

calculations for isotropic lithiation of amorphous Si. Experimental
observations demonstrate that a-Si lithiates isotropically51–53. It is
therefore reasonable to use our 1D axisymmetric simulations to
estimate the magnitude of hoop stresses generated during
lithiation of a-Si. We can simplify Eq. (12) further using the
expression maxðτθθÞ ’ 2σy=

ffiffiffi
3

p
valid for small σy (see Fig. 1b),

which yields the prediction Gc=μaR ¼ ð4C=3Þξð1� νÞðσy=μaÞ2 for
isotropic lithiation of a-LixSi. Zhao et al.24 obtained a similar
expression of the form of Gc=μaR � ðσy=μaÞ2 previously by an
analysis of lithiation that only considers plastic deformation and
computes the dimensionless prefactor numerically assuming an
initial flaw size comparable to R. In contrast, here, the prefactor is
obtained analytically from the aforementioned 1D stability
analysis of crack initiation in the phase-field model50. We can
use this isotropic estimate along with the safe experimentally
observed safe nanopillar radius 1 μm53 to calculate an upper
bound for its yield strength 0.4–1.2 GPa using the process zone
size 0.02 ≤ ξ/R ≤ 0.2. We can use a similar analysis for Ge. Since
lithiation of Ge is observed to be isotropic, using the estimates of
its shear modulus μa ≃ 19 GPa we can estimate σy in the range
1.5–4.6 GPa. We calculated the above range similarly using the
process zone size 0.02 ≤ ξ/R ≤ 0.2 and based on observed safe
nanopillar radius of 250 nm54.

Geometrical effects
Finally, to highlight the non-trivial role of geometry beyond size
effects, we investigate the fracture of hollow nanopillars that have
been shown experimentally to be more resistant to fracture13. Our
axisymmetric computations predict that this geometrical protec-
tive effect is present for large enough yield strength due to a
decrease of the maximum hoop stress reached during complete
lithiation of crystalline Si as a function of σy (i.e., the decrease of
the peak value of plots in Fig. 1b with increasing annulus
slenderness). However, for low yield strength, the maximum hoop
stress remains bounded by σy even for large slenderness. This
implies that the hollow nanopillar design can mitigate fracture
only for materials with moderately high yield strength. To test
these predictions, we modeled the lithiation and fracture of
hollow nanopillars with a constant cross-sectional area equal to

solid nanopillars with radii 85–170 nm and different slenderness
0.08 ≤ t/R ≤ 1 for σy = 3 GPa. The results illustrated in Fig. 5 show
that increased slenderness has a protective effect for this σy value.
For example, nanopillars break for t/R = 0.4 but only exhibit minor
cracking near the interior surface of t/R ≃ 0.29. Even more slender
nanopillars (t/R ≃ 0.08) do not fracture. This protective geometrical
effect, however, does not persist at lower yield strength for ξ/R =
0.02. Our axisymmetric computations predict that the maximum
hoop stress generated in even the thinnest annulus is equal to
that of a solid nanopillar for σy = 1 GPa (Fig. 1b). Our 2D
simulations confirm this prediction by showing that the hollow
nanopillar for t/R ≃ 0.29, which is protected for σy = 3 GPa,
fractures for σy = 1 GPa.

DISCUSSION
In summary, we have used a multi-physics phase-field approach to
model simultaneously anisotropic phase transformation, elasto-
plastic deformation, and crack initiation and propagation during
lithiation of Si nanopillars. Our results identify a vulnerable
window of yield strength inside which pillars fracture during
lithiation and distinguish two different modes of fracture inside
that window with and without surface localization of plastic
deformation prior to fracture for lower and higher yield strength,
respectively. Those two modes follow from the existence of a
critical yield strength that generates maximal tensile stresses
during lithiation. Combined with experimental measurements of
fracture energy39 and observations of size dependent frac-
ture5,6,53, our results yield an estimate of yield strength within a
range σy ≃ 0.5–2 GPa consistent with experimental8,38,39 and
theoretical40 estimates. This range is smaller than the critical yield
strength consistent with the observation of localized plastic
deformation during lithiation of Si nanopillars3,5,6. Over this range,
plastic deformation mitigates fracture by energy dissipation but, at

Fig. 5 Fracture of hollow nanopillars. Final cross section and
fracture pattern as a function of dimensionless fracture energy Gc/
(μaR) and slenderness t/R for hollow nanopillars with equivalent
cross-section area as solid nanopillars of radius R = 85, 121 and 170
(Gc = 6 J m−2, σy = 3 GPa, and ξ/R = 0.02). Color map depicts the
hardening parameter α. The parameter range where the nanopillar
fractured is shown with the red background. One can see that at this
yield strength the more slender nanopillar mitigates the failure. Also
increasing particle size (decreasing the fracture energy) promotes
initiation of cracks in-line with the experimental observations (see
Supplementary Videos 7a,b and 8a,b for results of simulations for Gc/
(μaR) = 0.01 and t/R ≃ 0.29 and t/R = 0.4).
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the same time, promotes it by the creation of stress-concentrating
V-shaped notches that precede quasi-brittle fracture.
Our results also suggest that the observed increased

robustness of hollow Si nanopillars13 is due to a reduction of
the critical yield strength generating maximal tensile stresses
with increasing slenderness. This interpretation, however,
warrants further investigation since this protective effect is only
significant in simulations with large enough σy values. The
present study highlights the importance of computationally
informed geometric design that takes into account the subtle
interplay between material properties and geometry to generate
reliable predictions of mechanical stability of high-capacity
battery materials, paving the way for designs that exploit more
complex geometries such as open nanoporous structures with
ultra-high interfacial area11.
We conclude with an outlook for future work. In addition to

tensile fracture originating from the outer surface of the
amorphous phase, there have also been experimental observa-
tions of interface delamination between the crystalline and
amorphous phases during the lithiation of Si pillars55. This
process may be driven by shear stresses localized at the
amorphous-crystalline boundary near the free surface of pillars
where the amorphous phase swells both radially and along the
pillar axis. Such shear stresses, which are absent in our 2D plane
strain simulations, could potentially initiate interfacial cracks
that propagate along the pilar axis to cause delamination. An
extension of the present study to 3D could shed light on this
mechanism. In addition, while we treated the a-LixSi phase as a
perfect elastic-plastic solid using von Mises theory (J2 formula-
tion) as in previous studies23, other formulations of plastic
deformation have been proposed56–59. Those formulations have
been motivated by results of DFT-based atomistic simulations
showing that stresses generated during lithiation of thin films
remain below the yield strength of a-LixSi computed under
uniaxial tension56. They include a reaction-flow formulation57,
which extends von Mises theory to include, in addition to the
magnitude of deviatoric stresses, a contribution of the chemical
driving force for the solid-state reaction to the yield surface, and
a different formulation without explicit flow where Li insertion,
also driven by a combination of deviatoric stresses and chemical
potential, produces an anisotropic compositional expansion58,59.
Those more elaborate formulations could be implemented in
the computational framework developed in the present study to
test their effects on fracture behavior. Since they have been
mainly validated by comparison with stress measurements in
thin films56,58, which are already reasonably well-described by
von Mises theory with the yield strength as a fit parameter60, it is
unclear if they will produce dramatically different fracture
behaviors. We expect quantitative rather than qualitative
differences. Finally, fracture behaviors may also depend on the
choice of phase field formulation of fracture. While the
formulation used in this work26,27 does not explicitly consider
surface stresses61, it has been shown to reproduce non-trivial
crack propagation phenomena in varied contexts29,30, consistent
with Griffith theory, and to quantitatively model crack initiation
at V-shape notches37 without consideration of surface stresses
whose effects in swelling-driven fracture of Si pillars remain to
be investigated.

METHODS
All the equations are solved using the Galerkin Finite Element Method.
Furthermore, to ensure the robustness of solution, only 1/4 of each
geometry was simulated and appropriate boundary conditions are applied
on the symmetry axes. Since the phase-field fracture method requires that
the spatial resolution of discretization resolves the small regularization
length ξ and because of memory requirements for storage of history
variables (elements of tensor b̂

e
in Eq. (6) stored at each quadrature point),

the resulting nonlinear problem is often very large (0.75 million degrees of
freedom for 2D simulations presented in this article). This necessitates the
use of a parallel programming paradigm that utilizes complex numerical
tools, thereby limiting the use of commercially available finite element
software. We therefore, use our own code, which also allows us precise
control of the solution algorithm and has been previously validated
experimental observation of brittle fracture62. Our implementation is based
on PETSc63 as the linear algebra backbone and libMesh64 for finite
elements bookkeeping. Equation (8) is solved using a Newton method
where we calculate the consistent tangent moduli explicitly at each
iteration. Furthermore, Eq. (10) is integrated explicitly using 50 substeps
during each time step to ensure the accuracy and stability of integration.
Table 1 summarizes the values of different parameters used in our
simulations.
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