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Multi-cell Monte Carlo method for phase prediction
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We propose a Multi-Cell Monte Carlo algorithm, or (MC)?, for predicting stable phases in chemically complex crystalline systems.
This algorithm takes advantage of multiple cells to represent possible phases, while eliminating the size and concentration
restrictions in the previous counterparts. Free atomic transfer among cells is achieved via the application of the lever rule, where an
assigned molar ratio virtually controls the percentage of each cell in the overall simulation, making (MC)? the first successful
algorithm for simulating phase coexistence in crystalline solids. During the application of this method, all energies are directly
computed via density functional theory calculations. We test the method by successful prediction of the stable phases of known
binary systems. We then apply the method to a quaternary high-entropy alloy. The method is particularly powerful in predicting
stable phases of multicomponent systems, for which phase diagrams do not exist.
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INTRODUCTION

Prediction of stable phases of multicomponent systems is a crucial
step in understanding thermodynamics of alloys. The increasing
availability of density functional theory (DFT) based methods, and
systematic approaches for phase prediction such as the cluster-
expansion method' have made inroads in modeling few-
component systems. However, obtaining phase diagrams for
ternary compositions and beyond has remained a challenging and
often unfeasible task due to the complexity of the problem. In
addition to predicting potential stable phases, an extra challenge
is the coexistence of phases and prediction of phase fractions. To
overcome these restrictions, we present a Multi-Cell Monte Carlo,
or (MC)? algorithm, that is capable of predicting for a chemically
complex crystalline system both the coexistence of multiple
phases and the composition and structure of the different phases
in a single run. To the best of our knowledge, this is the first and
only method that can capture the phase boundary from only one
initial composition, without the need to interpolate intermediate
compositions.

Coexisting supercells in Monte Carlo simulations have pre-
viously been used within the Gibbs ensemble method? for the
simulation of vapor/liquid equilibrium, where atoms are constantly
deleted/inserted in the cells. In crystalline solids, deleting/inserting
atoms in each cell creates point defects. Therefore, the Gibbs
ensemble MC has not been applied to phase predictions in solids.
Recently, we have introduced the first multi-cell MC ‘relaxation’
method for solids, which required a fixed number of atoms in each
cell® However, the fixed cell sizes restricted the compositional
variations and did not allow for prediction of phase fractions.

Here, we introduce a new algorithm that eliminates the fixed
size restriction while profiting from the concept of multi-cell MC.
Each cell is assigned a molar ratio which controls its percentage in
the total system. The molar ratios are determined by the ‘lever
rule’ so that the total composition of the system is constant. In
contrast to the atom-transfer idea in a Gibbs ensemble MC
simulation, the transfer of random atoms is achieved here by
changing the species of an atom in one or more cells, which we
call a flip” move. A flip move changes the composition in each cell
and thus the overall set of molar ratios, equivalent to the transfer

of a group of random atoms among the cells. Flip moves were first
introduced by Kofke and Glandt to establish the semigrand
canonical ensemble® and can happen locally (one random atom in
one random supercell) or globally (one or more random atoms in
all cells simultaneously). While local flips are sufficient, occasional
global flips accelerate convergence without any loss of generality.
In the current work, the total energy of each cell is computed with
DFT at 0K, and no vibrational entropy is considered. The
relaxation is allowed in all lattice and basis degrees of freedom
at zero pressure. Note that in general, the energy can also be
evaluated under a constant, nonzero pressure. We specifically
choose zero pressure in this work to apply (MC)2 to the prediction
of equilibrium phase diagrams.

The lever rule is a tool to determine the equilibrium phase
fractions in binary systems.> Applied to two cells, representing two
phases of a binary system with overall concentration ¢ of
component j, the lever rule determines the molar fraction f; of
phase i to conserve the initial stoichiometry:

Xy +x3fy = 3 + X3 =2, (1)

where X’ is the concentration of component j in phase i. In matrix
form, Eq. (1) becomes XF = C with matrix X = {x} and vectors
F = {fi}andC = {d}. The molar ratios (f,andf,) are obtained
from F = X~'C. While C is constant, X = {n/N;} is updated after
each MC step, where r} is the number of atoms of species j in cell i
containing N; total atoms. Note that equation F = X~'C is not
restricted to binary systems but equally applies to any system with
an arbitrary number of components m.

In order to keep the matrix X square and thus invertible, we
always use m cells, representing m phases, for an m-component
system. This is sensible since the Gibbs phase rule states that
under constant pressure—and excluding special points such as
eutectic points—at most, m phases can coexist in equilibrium for
an m-component system.” If the actual number of phases is fewer
than m, then the corresponding molar fraction of the additional
cells will become zero, as demonstrated in the examples below.

The particle flip moves, combined with the lever rule applied to
multiple cells, mimics the effect of varying cell size and
composition, without the need for particle insertion/deletion in
the cells (see (MC)? flowchart in Supplementary Fig. 1).
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Fig. 1 (MC)Zpredictions for energy and composition of AuPt at 600 K vs. MC steps with (a) cell compositions (yellow represents gold, blue
platinum); (b) molar fractions for both cells and (c) change of energy relative to the initial step (dots are energies recalculated with ‘accurate’

DFT settings).

n (MC)Z, two levels of simulation can be envisioned: within
individual cells and considering all cells combined. Within each
cell i, and ignoring all other cells, the total number of atoms N; is
fixed, but the ratio of the different species can change. This
corresponds to the semigrand canonical ensemble. However,
globally the total number of atoms > " N; as well as total
numbers of each species in the entire simulation is fixed by
assigning the appropriate molar fraction to each cell via the lever
rule. Because temperature and pressure are additionally fixed
across all cells, the entire simulation represents an isothermal-
isobaric ensemble with acceptance criterion for a move from step
k to step k + 1°

1,exp< BAH+N§m:| Vil kB”)

with 8 = 1/kgT where kg denotes the Boltzmann constant, T is the
temperature, and V; is the volume of cell i. Note that in Eq. 2V; is
used rather than V;f;. The reason for this choice is that the virtual
cells, mimicking a different volume of V;(k)f;(k), do not contribute
new configurations to sample and consequently do not change
the probability density. The number of atoms in each cell N; is
assumed to be equal to N for simplicity. The term AH is the
enthalpy change of all cells combined

AH = Zm
m

= m{Ui(k) + pVi(k)Ifi(k)

i=1

P = min

()

1)+ pVi(k + 1)|fi(k + 1)

where U; is the |nterna| energy of cell i. Note that in the most
general case, (MC)? can be performed on a system under
constant but nonzero pressure and/or temperature, for instance
combined with molecular dynamics (MD) simulations instead of
energy minimization for evaluation of the energy. However, here
we focus on the case of p = 0 and use energy minimizations that
are carried out at T = 0 K. As such, contribution of the vibrational
entropy is neglected, but can be included if finite-temperature
MD is used instead. In addition, in the case of crystalline solids,
with sufficiently large simulation cells, studied in this paper, the
volume change after flipping one atom in the cell is negligible.
Therefore, the term V;(k + 1)/Vi(k) ~ 1. Considering this ratio
and the fact that pressure is set to zero here to obtain
equilibrium phase diagrams, the acceptance criterion can be
simplified to

m m
pacc _ min{Lexp {—m(ZU,ﬂ(k-&J Z
i=1 i=1

(4)
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The factor m appears in the exponent since ) f; =1 and we
need the weighted sum and not the average energy of the cells
in the exponent.

RESULTS AND DISCUSSION
Au-Pt binary alloy

An equiatomic Au-Pt alloy is chosen as our first benchmark. This
simulation starts with two fcc cells, since both Au and Pt have the
fcc structure. Each cell contains 32 atoms with special quasiran-
dom structure (SQS).” Note that a SQS cell is chosen to optimally
deﬁne a random alloy as the initial phase, but is not necessary for
(MC) in general. See Supplementary Section 6 for examples
starting with different initial configurations. Since the Au-Pt phase
diagram has a miscibility gap at low temperatures,? this alloy is
expected to decompose into Pt- and Au-rich phases.

Figure 1 shows the evolution of (a) composition, (b) molar
fraction, and (c) total energy of each cell at 600 K. While both
cells start with equal numbers of Au and Pt atoms, after
~500 steps, Cell 1 contains mostly Pt atoms, while Cell 2 has an
Au-rich composition (Fig. 1a). At this point, energy and molar
fractions start to equilibrate as well. At equilibrium, the all-Pt
phase 1 forms 40% of the solld leaving ~ 60% of phase 2 with
~ 82% Au. Therefore, (MC) not only predicts the separation into
a Pt- and Au-rich phases correctly, but also yields the relative
amounts and composition of each phase. This is the major new
finding of this paper, and when performed at various tempera-
ture/composition combinations,(MC)’can directly predict the
phase diagram of alloys. The rapid energy drop at the beginning
of the simulation in Fig. 1c, is an early indication that phase
separation is favorable. After the ~500-step point, the energy
stabilizes at a certain value, indicative of convergence, and an
energy or concentration convergence check, which can easily be
implemented, would have terminated the simulation already at
that point. Energy calculations for a series of snapshots with the
‘accurate’ settings (see Methods Section), shown in Fig. 1 ¢
validate our ‘fast’ DFT setup. Flgure 2 shows the excellent
agreement between our (MC)? predictions of Au-Pt phase
boundaries at 600, 800, and 1000 K and experiment.” The points
at the different temperatures are the ensemble average
compositions in the plateau-regime after the “burn-in” phase
of the Monte Carlo runs, e.g. last 60% of steps for the 600 K (327
°C) run. The error bars represent the systematic error that arises
from the finite size of the simulation cells, which is 1/N ~ 3% in
this case. The statistical error, i.e. the standard error of mean, is
shown in Table 1. The statistical error is small compared to the
systematic error and thus is omitted in the phase diagram. The
small statistical error also confirms that our simulations are
reasonably converged.
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Hf-Zr binary alloy

Next, we test (MC)? for a Hf-Zr binary alloy. The initial structures
for this simulation are 2 hcp cells with 24 atoms randomly
assigned with Hf or Zr. More details can be found in the
supplementary materials. We successfully predict the complete
solubility at 400, 700, and 1000 K. Figure 3 shows, as an example,
the results for an equiatomic Hf-Zr alloy at T = 400 K, where the
system fluctuates around the initial equiatomic composition
during the entire run (Fig. 3a) without any significant change in
energy (Fig. 3c). The negligible energy change also suggests that
the system is completely soluble and can assume any composition
in the whole concentration range, which in turn comfirms the
fluctuation throughout the simulation observed in Fig. 3a, b.
Unlike the case of Au-Pt where the molar fractions converge to a
constant value, the molar fractions for Hf-Zr fluctuate from zero to
100%, indicating that (MC)? maintains a single phase around the
initial concentration, since no other composition could result in
0% vs. 100% fraction (Fig. 3c). Again, the energies from the ‘fast’
setting are confirmed by the ‘accurate’ setting results, as shown in
(Fig. 30).
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Fig.2 (M ) prediction for the Au-Pt phase boundary at 600, 800,

and 1000 K vs. experimental phase diagram, redrawn from Grolier
et al.’. The error bars represent the systematlc error that arises from
the finite size of the simulation cells, which is 1/N ~ 3% in this case.

Table 1.  Standard error of the calculated equilibrium Pt concentration
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HfZrTaNb quaternary alloy

The unique predictive power of (MC)2 becomes evident when
applied to multicomponent systems, particularly beyond ternary
alloys where phase diagrams do not exist and cluster-expansion
calculations start to falter. As an example, we study the
quaternary, equiatomic, HfNbTaZr high-entropy alloy, known to
form a body-centered cubic (bcc) single-phase random solid
solution after casting.10 Figure 4 summarizes the results of a (MC)?
run at 300 K, starting with four equiatomic random bcc SQS cells
with 36 atoms each (9 of each species). Cells 3 and 4 are gradually
enriched by Nb/Ta and Hf/Zr respectively, while the other two
cells maintain more or less equiatomic composition (Fig. 4a).
However, since the molar fractions of Cells 1 and 2 are zero, they
do not represent phases after the phase separation has taken
place and thus are discarded by (MC)?. Therefore, the only
remaining phases are Nb/Ta and Hf/Zr formed in Cells 3 and 4,
respectively. Since the bcc structure, at low temperature, is
unstable for Hf and Zr'" and cell volume and shape are optimized
by VASP along with atomic positions, the Hf/Zr-rich Cell 4
manages to transform into a hexagonal close packed (hcp) lattice
from the initial bcc lattice, as shown in the structures accompany-
ing Fig. 4a. Therefore, (MC) predicts the phase separation of the
bcc HfZrTaNb HEA into two phases of Nb/Ta (bcc) and Hf/Zr (hcp).
These predictions are consistent with recent atom probe
tomography results, which found a secondary phase enriched in
Hf and Zr after sufficient annealing.'® Despite this successful
prediction, there is no guarantee that such transformations would
be observed for an arbitrary system, where the system can get
stuck in a metastable configuration. We recommend trying
different initial structures, especially when no previous knowledge
about the system is available.

Ni-Sn system and formation of intermetallics

Besides random alloys, (MC)? also gives sensible results for systems
forming ordered intermetallics, as we show for the Ni-Sn binary
system (details in Supplementary Section 5.) Here, a (MC)? run for a
Ni-12.5 at%Sn alloy at 400K correctly predicts formation of pure Ni
with fcc structure and the ordered D09 (underlying hcp stacking)
NisSn phase, in agreement with experiments from'? (Fig. 5). Note
that the solubility ranges, shaded in gray, are below the resolution of
this simulation which is ~ 4 at.% due to the cell size.

As a final note, we reiterate that the current implementation of
(MC)? takes into account the configurational entropy contribution
to the free energy, while vibrational entropy is not included.
Inclu5|on of the latter can be achieved for example by combining
(MC)* with molecular dynamics at finite temperature, which
would extend the sensible applicability range of (MC)? to
considerably hlgher temperatures. We suggest to restrict the
application of (MC) without vibrational entropy, to temperatures
sufficiently below the solidus curve.
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(MC)?predictions for energy and composition of Hf-Zr at 400 K vs. MC steps with (a) cell compositions (yellow represents hafnium, blue

zirconium); (b) molar fractions for both cells and (c) change of energy relative to the initial step (dots are energies recalculated with ‘accurate’
DFT settings. Molar fractions fluctuate between 0 and 1, indicating a single phase alloy without change in initial composition.
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fractions, implying phase separation into two phases: a Nb-Ta BCC phase in Cell 3 and a Hf-Zr hcp phase in Cell 4.
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D019Ni3Sn) compositions are marked with empty and full circles on
the phase diagram respectively. The atomic arrangements are
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In summary, we have introduced the (MC)2 method to predict
both stable phases and phase fractions in multicomponent alloys.
As we have demonstrated, each converged (MC)? run identifies
either a region of miscibility, or the relevant phase boundaries for
the simulated temperature and composition. The algorithm in
(MC)2 takes advantage of parallel computations of multiple cells
and provides the unique capability to identify relevant phases and
phase boundaries without any prior knowledge of possible
phases.

METHODS

Computational methods

DFT calculations are performed with the plane-wave package VASP,'*'®
where the choices for settings and SQS,’ generated with the Alloy
Theoretic Automated Toolkit (ATAT),'® are described in Supplement
Sections 2-4 in detail. Two settings for the DFT calculations are used,
‘accurate’ and ‘fast’. The ‘accurate’ setting ensures a total energy
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convergence of 0.2 meV/atom, while the ‘fast’ settings with reduced
k-point meshes and cutoff energies are used during the MC simulations.
Upon completion of a (MC)? run with ‘fast’ settings, 9 intermediate
configurations are recalculated with ‘accurate’ parameters. The energy
differences between the two settings quantify the error from the ‘fast’
settings and verify that general trends and results remain unchanged.
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