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To guide the choice of treatment, every new breast cancer is assessed for aggressiveness (i.e., graded) by an experienced
histopathologist. Typically, this tumor grade consists of three components, one of which is the nuclear pleomorphism score (the
extent of abnormalities in the overall appearance of tumor nuclei). The degree of nuclear pleomorphism is subjectively classified
from 1 to 3, where a score of 1 most closely resembles epithelial cells of normal breast epithelium and 3 shows the greatest
abnormalities. Establishing numerical criteria for grading nuclear pleomorphism is challenging, and inter-observer agreement is
poor. Therefore, we studied the use of deep learning to develop fully automated nuclear pleomorphism scoring in breast cancer.
The reference standard used for training the algorithm consisted of the collective knowledge of an international panel of 10
pathologists on a curated set of regions of interest covering the entire spectrum of tumor morphology in breast cancer. To fully
exploit the information provided by the pathologists, a first-of-its-kind deep regression model was trained to yield a continuous
scoring rather than limiting the pleomorphism scoring to the standard three-tiered system. Our approach preserves the continuum
of nuclear pleomorphism without necessitating a large data set with explicit annotations of tumor nuclei. Once translated to the
traditional system, our approach achieves top pathologist-level performance in multiple experiments on regions of interest and
whole-slide images, compared to a panel of 10 and 4 pathologists, respectively.
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INTRODUCTION

To guide management, most pathologists grade breast cancers
according to a standardized grading system'?, comprised of
three features: (1) degree of nuclear pleomorphism (or “atypia”),
(2) extent of gland formation and (3) mitotic count. The scoring
criteria for mitotic count and gland formation are defined by
quantitative measures, whereas nuclear pleomorphism scoring is
based on qualitative analysis of the nuclear morphology of tumor
as assessed microscopically on a scale of 1 to 3, reflecting
increasing differences in appearance compared with normal
epithelium. The final tumor grade is derived from these three
scores. With the increased utilization of digital pathology,
grading can now be carried out on digitized histopathological
images, which vyields similar agreement as compared to
assessment via light microscopy?. Increasingly, the pathologists
can also be assisted by artificial intelligence (Al)-based systems in
routine practice*”’.

The most commonly applied Al technology for analysis of
medical images are so-called deep neural networks (deep
learning; DL). Deep-learning architectures are composed of
connected neurons that receive an input image and perform a
series of operations on the learnable network parameters to
accomplish a learning task, such as classification, regression and
segmentation. They have led to unprecedented success in several

areas of computer vision®~'" to more recent advancements in
digital pathology'>'®. More specific for breast cancer grading,
automated mitosis detection was one of the first applications of
DL'7'8, demonstrating its clinical and prognostic value'®-'. Gland
segmentation was formulated as a series of nuclei and gland
detection, as well as a segmentation task?>%3, with extensions to
clinical risk categories®* through the use of DL.

Unlike gland formation and mitotic count, nuclear pleomorph-
ism does not have the same quantitative nature in its definition.
As a result, nuclear pleomorphism scoring is the least reproducible
of the three grading components, which limits its utility?>=%’.
Owing to the qualitative nature of nuclear pleomorphism scoring
and the difficulty in forming a reference standard, the existing
works in this field have been limited. In multiple works?®-31,
traditional ML techniques were applied on hand-crafted features
for a standard three-category classification of nuclear pleomorph-
ism on patch-level instances. Another work®?> employed a
convolutional neural network to learn relevant features for the
binary classification of severe (score 3) pleomorphism, and sparse
representations of feature embeddings®® with an extension to
active learning®* were formulated for the patch-level three-way
classification of nuclear pleomorphism. Contrary to the existing
works, our approach utilizes a reference standard from the
collective knowledge of 10 pathologists, the largest in any related
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Tumor output

Input slide Pleomorphism spectrum

Fig. 1 Overview of the Al algorithm scoring nuclear pleomorphism spectrum. An input whole-slide image is processed through the
epithelial cell detection network to detect the tumor regions. Subsequently, the deep regression network scores nuclear pleomorphism on the
tumor regions, score 1 is denoted by green, score 2 by yellow and score 3 by red color. Since the deep regression network outputs a spectrum
of values, ranging from 1 to 3, the pleomorphism spectrum reflects the values in between the traditional three categories, as well. In this
example, the Al algorithm scored high pleomorphism for the tumor regions in the input slide, evident by presence of dark orange and red

colors from the pleomorphism spectrum in the detected tumor region.

Table 1. Overview of the number of regions of interests (ROls), whole-slide images (WSls), and pathologists involved in the two reader studies of this
work, namely the ROI study and the slide study.

Tumor ROIs Normal ROIs WSlIs Pathologists Target
ROI study n=125 n=179 n=39 n=10 ROl-level pleomorphism
Slide study - - n=118 n=4 Slide-level pleomorphism

pleomorphism score for each slide in the slide study.

Target indicates what pathologists had to score in the two reader studies, namely a single-pleomorphism score for each ROI in the ROI study, and a single-

work, in an effort to reduce the inter-observer variability. Another
contribution of our work is the reformulation of the discrete three-
category classification of nuclear pleomorphism scoring into a
regression task over the full spectrum of nuclear pleomorphism.
Finally, we perform qualitative and quantitative analyses of our
approach on selected regions of interest and on an external set of
whole-slide images to compare with the panels of 10 and 4
pathologists, respectively.

Supervised DL requires reference standard labels associated
with the images for neural network training. Acquiring such labels
is a non-trivial task for applications such as pleomorphism scoring,
with discrete classes and observer variability. Translating the
scores of multiple observers into a reference label (e.g., based on
majority, or consensus) disregards valuable information, which is
present in the spread of the scores of individual experts. In this
work, we therefore formulate a novel DL approach to nuclear
pleomorphism scoring by considering it as a continuous score,
rather than classifying it into three discrete categories. We re-
formulate the original three-category classification into a full
spectrum of continuous values from the lowest pleomorphism
score to the most severe.

Our approach mainly consists of two parts. The first part is an
epithelial cell detection network developed previously®® (see
“Methods” section for details). This step is intended to limit the
analysis to the diagnostically relevant regions (i.e., invasive tumor)
within a whole-slide image. In the second step, a deep regression
network predicts the continuous nuclear pleomorphism score on
the tumor regions. Training this network does not require detailed
manual annotations by pathologists, which is one of the key
limiting factors within computational pathology. This work marks
the first end-to-end fully automated nuclear pleomorphism
scoring in breast cancer using DL. Moreover, we are translating
a discrete classification into a continuous regression problem to
preserve valuable observer input, which is not applied previously.
The overview of our approach outlining this two-stage process
of nuclear pleomorphism scoring is presented in Fig. 1. We refer
to our approach as “Al algorithm” or "Al” throughout the rest of
the paper.
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In order to develop and validate our approach, we carried out
two separate studies, resulting in two separate data sets (see Table
1 for details). The first study, referred to as ROI-study, consisted of
125 tumor regions of interest (tumor ROIs) and an additional 79
“normal appearing” epithelial regions of interest (normal ROIs)
from 39 whole-slide images, carefully selected to include a wide
variety of tumor morphology in breast cancer histopathology.
We invited a panel of 10 pathologists from 6 countries to score
nuclear pleomorphism on the tumor ROIs, each visually paired
with a normal ROI from the same patient for the pathologists to
use as reference for scoring the degree of pleomorphism. We used
the results of the ROI-study to train our Al algorithm as well as to
evaluate its performance compared to the panel of pathologists.
In our automated approach, we used the averaged nuclear
pleomorphism scores of the 10 pathologists as reference scores,
representing their collective knowledge rather than forcing a
discrete majority score. The Al algorithm was trained on a wide
range of tumor morphology, leveraging the reference scores to
establish the concept of nuclear pleomorphism as a full spectrum
of tumor morphology change.

In the second study, referred to as the Slide-study, 118 whole-
slide images of breast cancer resection tissue sections were used
for evaluation. The distribution of the slides in this study
resembled the distribution of the cases in routine clinical practice.
We invited four pathologists to score nuclear pleomorphism of the
slides, which were then compared to our Al algorithm for whole-
slide-level evaluation. The ROI- and Slide-study, as well as the
procedure to train Al algorithms used in this study are outlined in
more detail in the “Methods” section.

RESULTS

In Table 2, we provide an overview of the data used for training
and validation purposes in this work. The training set came from
52 ROIs selected from the 16 slides in the ROI-study. The best
model was selected based on the performance (i.e., smallest loss
value, see “Methods” section for details) on the validation patches
from the 28 ROIs within 10 slides. We considered the spread of the
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reference scores of the pathologists for the selection of training
and validation slides to expose the Al algorithm to as much variety
as possible. The remaining 45 ROIs from the 13 slides were used
for evaluation. On the other hand, the entire set of the 118 whole-
slide images in the slide-study was exclusively used for evaluation.

Prediction performance of the Al algorithm

In this section, we analyzed the predictions of the Al algorithm
on fixed-sized patches of 512 x 512 pixels randomly cropped at
20x magnification from 45 ROIs out of the 13 evaluation slides in
our ROl data set. The output of our Al algorithm was a
continuous numerical value ranging between 1 to 3, correspond-
ing to the increasing severity of the nuclear pleomorphism. For
patch-level quantitative analysis of the prediction performance
of the deep regression network, we sampled four independent
sets of 1000 patches from the validation set. Our approached
achieved a MAE of 0.262 + 0.004, MSE of 0.111+£0.002 and EV
score of 0.756 = 0.009. The regression errors (MAE and MSE) from
the Al algorithm were small with respect to the prediction

Table 2. Overview of the number of patches, regions of interests
(ROIs) and whole-slide images (WSls) used for training and validation
purposes in this work.

Patch-level Patch-level ROl-level WSl-level

training validation validation validation
ROIs n=>52 n=28 n=45 -
WSils n=16 n=10 n=13 n=118
Patches n=2400/ n = 6000/ - -

epoch epoch
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window [1 to 3] and the EV score was high. For patch-level
qualitative analysis, we demonstrated the granularity of our
automated approach by quantizing the predictions into the
three categories as per the guidelines, as well as five additional
categories. In Fig. 2, we present example patches from the test
set for each category, sorted by the quantized predictions of the
Al algorithm, with each patch having a higher categorical score
than the one preceding it. While the nuclei in the leftmost
patches were closest in appearance to healthy epithelium, the
degree of nuclear pleomorphism became gradually more severe
with each patch to the right.

We selected the gradient-weighted class activation mapping
(Grad-CAM)*® method to qualitatively investigate the visual cues
that the Al algorithm learned to score pleomorphism. Through this
method, we could highlight the areas in a high-resolution input
image patch to inspect whether the prediction was based on
nuclear morphology. In Fig. 3, we present several example patches
from the ROI test set, visualizing the salient areas determined by the
deep regression network. The patches with predictions close to the
reference scores showed strong activation around nuclei. Similarly,
when we inspected the patches where the Al algorithm failed, we
observed that it overlooked the nuclear structures and incorporated
data from other tissue areas. Our qualitative experiments in this
section indicated that when looking at high-resolution local
predictions at patch level the Al algorithm predicted similar scores
with the pathologists when it focused on the nuclei, failing when
focusing on other areas, such as stroma, in very rare occasions. In
ROI- and slide-level experiments, multiple overlapping patches with
small displacements were scored to mitigate the rare occurrence of
this problem, resulting in predictions based on the nuclear
structures. This Grad-CAM based visualization technique can be
extended to ROI- or WSl-level via a sliding window approach based
on the analysis of high-resolution patches.

Fig.2 Nuclear pleomorphism predictions quantized into different numbers of categories, sorted from low pleomorphism to high in each
category, from left to right. In a, patches were quantized into three categories, which was in line with the three-category classification in
routine clinical practice, whereas in b, the patches were quantized into five categories to demonstrate the continuity of the nuclear

pleomorphism spectrum from the predictions of the Al algorithm.

Fig. 3 Grad-CAM saliency outputs of six patches from the evaluation set in the ROI-study. The predictions were close to the reference
scores (@) when the Al algorithm focused on the cellular structures and it failed in few cases (b) focusing on other tissue parts.
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Fig. 4 Quadratic kappa scores of the pathologists as well as the Al algorithm on the evaluation set in the ROI-study (45 ROIs). In
a, pairwise kappa scores of the Al algorithm and the pathologists are compared where the best pairwise kappa score was achieved between
the Al algorithm and Py. The majority scores, denoted by Maj, had the third best kappa score with the Al algorithm, behind Ps and P4. The
pairwise kappa metrics, sorted by the average pairwise scores, b shows that the Al algorithm has, on average, the highest agreement out of
any pathologists. It also has the highest pairwise kappa score of 0.68 with Pg. In each row, small dots correspond to the kappa scores with the
other pathologists/Al algorithm and the large dot denotes the average kappa score of that particular pathologist/Al algorithm with the others.

Quantitative comparison of the Al algorithm

Ten pathologists scored nuclear pleomorphism into one of the
three categories, 1 to 3, in the ROIl-study, which was curated to
contain as much as possible a uniform degree of pleomorphism.
The first quantitative comparison between the Al algorithm and
the pathologists used the evaluation set of this study, consisting of
45 ROIs from 13 slides. We quantized the predictions of the Al
algorithm into the three categories to compare to the scores of
the individual pathologists, as well as to the majority vote of their
scores (using the provided confidence scores in the case of ties).
We present the kappa scores quantifying the agreement between
the pathologists and the Al algorithm in Fig. 4. In this comparison,
the scores of a pathologist were not part of the majority voting in
their comparison to the majority scores. The Al algorithm had a
kappa score of 0.61 with the majority scores (denoted as “Maj"” in
Fig. 4a), performing better than 8 out of the 10 pathologists. It
only trailed behind the two pathologists, Ps and P,, whose kappa
with the majority scores were 0.67 and 0.66, respectively.
Moreover, the Al algorithm had the highest average kappa score
of 0.53 in pairwise comparisons, followed by P, with a kappa score
of 0.49.

Towards application in clinical practice: nuclear
pleomorphism scoring on whole-slide images
In the slide-study, our experimental setup was in line with the
real-world clinical setting, where a single score is given to an
entire slide by a pathologist. The slide-level evaluation between
the Al algorithm and the four pathologists, P;, P;;, P;ii, P, were on
the full set of 118 whole-slide images, which were scored into
one of the three categories. In contrast to the ROI-level study in
which nuclear pleomorphism in an ROl was homogeneous,
whole-slide images in this study were heterogeneous with a
larger variety of nuclear morphology. We present the visual
pleomorphism spectrum of the (non-quantized) predictions of
the Al algorithm on four example slides in Fig. 5. Qualitative
analysis of the visual outputs on whole-slide images demon-
strates the use-case of the Al algorithm as a time-saving, practical
tool for nuclear pleomorphism scoring.

For the quantitative analysis of the Al algorithm compared to
the pathologists, we quantized the pleomorphism predictions of
the slides into three categories. The score differences illustrated
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in Fig. 7(a) through (d) reveal that the Al algorithm achieved a
nuclear pleomorphism score equal to pathologists P; P, P;;;, P, in
74(%63), 66(%56), 71(%60) and 75(%64) slides, respectively.
Moreover, it had a score difference of £1 on the rest of the
slides, except for three slides; two of which were with P; and the
third one was with P;,. For these cases, the scores of the four
pathologists were (1,3,2,1) for the first slide, (2,3,2,2) and
(2,2,2,3), for the second and the third slide, respectively. The
quantized pleomorphism score of the Al algorithm was 1 for
these slides. In addition, it matched the scores of P;, in 75 slides,
the highest in any pairwise comparison (see Fig. 6 for pairwise
comparison of the pathologists). The quantized score distribution
of the Al algorithm over all the slides in the study is given in
Fig. 7e. Finally, we present the pairwise quadratic kappa scores
between Al and the pathologists in Fig. 7f. The highest pairwise
kappa score of 0.56 was achieved between the Al algorithm and
P.. Al had pairwise kappa scores of 0.43,0.44 and 0.47 with the
rest of the pathologists, P;, P;; and P, respectively. On average,
the pairwise kappa score for the Al algorithm was 0.475 and it
was only second to P; with 0.497. The slide-level results highlight
the top-level performance of our approach, and they are
consistent with the previous results in ROIl-level experiments,
with Al consistently ranking high in agreement with the best
performing pathologists.

The Al algorithm was fully automated as no human or expert
fine-tuning took place during training or inference. In few cases,
false tumor predictions by the epithelial cell detection network
resulted in scoring pleomorphism in non-invasive areas. There
were two such instances in our slide-level experiment where
the Al performance was compromised, as displayed in Fig. 8.
The low degree of pleomorphism in benign areas caused the
overall scores of both slides to go down by one. Excluding the
scores in the benign areas from the two slides would further
improve the slide-level kappa scores of the Al algorithm;
0.59,0.45,0.46,0.50 from 0.56,0.43, 0.44, 0.47 with pathologists
P;, P, Piii, Py, respectively. In rare cases, such as the visually
outlined areas in Fig. 8a, in situ carcinoma was also scored. In
this case, the scores in these areas did not alter the overall score
due to having similar degree of nuclear pleomorphism with the
invasive tumor or being too small to make an impact. We argue
that re-training the epithelial cell detection network with a
more diverse set of benign examples, and employing a
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Fig. 5 Nuclear pleomorphism spectrum of the Al algorithm on 4 of the 118 evaluation slides in the slide-study. The color spectrum from
green to yellow to red denotes increasing nuclear pleomorphism severity. The deformation in nuclear morphology with the increasing
pleomorphism scores demonstrated the capability of the Al algorithm capturing the concept of nuclear pleomorphism. The four pathologists
scored (1,2,1,1), (1,2,1,2) and (2,3,2,3) for the top three slides from left to right, with predictions displaying mostly uniform tumor
morphology across the slides. All pathologists scored 2 for the slide at the bottom, which contained a larger range of tumor morphology,

evident from the predictions of our approach.

multi-resolution segmentation approach with a larger field of
view, such as ref. 37, could resolve these issues.

DISCUSSION

In this work, we reported a fully automated deep-learning method
for scoring nuclear pleomorphism in breast cancer through
reformulating the standard classification as a spectrum of the
extend of the changes in tumor morphology. Our Al algorithm
was composed of two stages; an epithelial cell detection network
was used to locate the invasive tumor in whole-slide images, and
subsequently, a deep regression network scored nuclear pleo-
morphism on the tumor, considering the nuclear pleomorphism
as a spectrum.

In our experiments, we quantized the patch-level predictions of
the Al algorithm into arbitrary numbers of categories to showcase
its flexibility of demonstrating pleomorphism continuity in greater
granularity than the traditional three-category classification. In few
patch-level classification experiments, we noticed that the Al
algorithm did not focus on areas with tumor cells, thus failing to
capture the tumor pleomorphism. Overlapping patch-level
predictions for ROI- and slide-level inference mitigated this rare-
occurring problem through pooling. We demonstrated that our
automated approach could learn to score pleomorphism from

Published in partnership with the Breast Cancer Research Foundation

tumor only, not requiring normal epithelium for comparison. In
our ROl-level experiments, the Al algorithm achieved a higher
agreement with the majority scores than 8 out of the 10
pathologists, and it had the best overall spread of pairwise kappa
scores among all pathologists. The slide-level experiments
suggested a similar outcome in which the Al algorithm had the
second-best overall spread of pairwise kappa scores among four
pathologists. The kappa scores of the best performing pathologist
was the highest with the Al algorithm compared to the other
three participating pathologists. In few slide-level predictions, the
epithelial cell detection network had false tumor predictions
resulting in scoring on those regions. This minor issue could be
resolved by employing a more powerful tumor segmentation
approach with a larger field of view, such as®’. Overall, we
demonstrated that the Al algorithm consistently achieved top-
level performance similar to the best performing pathologists
throughout our quantitative experiments in ROI- and slide-study.
The results proved that the careful curation of our training data set
covering a large range of tumor morphology to account for the
nuclear pleomorphism spectrum as well as the data augmenta-
tions to make the Al algorithm resilient against the variations in
the visual appearances of the H&E slides due to different sources
were sufficient for top pathologist-level performance. We argue
that for domains with limited visual space, such as the extent of
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Fig. 6 Comparison of pleomorphism scores in the slide-study. The comparison of the pleomorphism scores of the four pathologists a—f as
well as the score distribution of the pathologists g-j in the slide-study display the scoring patterns of the pathologists on the 118 whole-slide
images in the slide-study. The largest differences were observed between P; and other pathologists, with P; assigning significantly lower
number of score 1s and much higher number of score 3s compared to the other three pathologists.

score 3
score 1

80 80
74
60 60 66
40 40 47
score 2
20 27 20 2
0 17 0 0
0 0
2 -1 0 1 2 2 -1 0 2
-1.0
(a) Al vs. P; (b) Al vs. Py Al
80 80 ’08
60 71 60 75 Pi 0.6
40 40 P;;
" ” 0.4
0 28 19 0 1 25 0 Pijii
0 0 0.2
2 -1 0 1 2 2 -1 0 2 P,
0.0

(C) AI VS. Pm

(d) AI VS. Piv

Al Pi Py P Py
()

Fig. 7 Performance evaluation of the Al algorithm on the 118 whole-slide images in the slide-study. For comparison purposes, the scores
of the Al algorithm were quantized into three categories. The score differences of Al algorithm from the four pathologists are presented
through a to d, while its score distribution is shown in e. The Al algorithm and the first pathologist, P, had the highest agreement (f) with Al

being only second to P; on average pairwise kappa scores.

the abnormalities of tumor nuclei in breast cancer, curated data
sets representative of the label space with domain-specific data
augmentations enable DL solutions to achieve high performance.

In routine clinical practice, nuclear pleomorphism scoring of
whole-slide images from breast cancer patients requires a great
amount of time for pathologists due to the investigation of
multiple tumor regions at a high (20x — 40x) magnification and
the comparison to that of normal breast epithelium. Our Al
algorithm provides pleomorphism scores for tumor regions in
whole-slide images, making it an automated stand-alone tool for
breast cancer grading. Moreover, it can aid pathologists by
visualizing the pleomorphism scores on the images at a glance;
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therefore, improving the pathologist efficiency in daily practice.
Our approach makes it possible to investigate the importance of
the nuclear pleomorphism score distribution on images at
different classification ranges than the standard three categories
for the prognostic analysis of the patients. Even beyond, the
evolution of the tumors can be visualized from the spatial
distribution of the continuous nuclear pleomorphism scores.

Our study has some limitations. First, we have restricted the
analysis and the validation to one single slide per patient, whereas
in clinical practice, pathologists score pleomorphism based on
multiple slides per patient, usually by mentally averaging scores
across slides. In our future work, we are planning to extend the

Published in partnership with the Breast Cancer Research Foundation



C. Mercan et al.

(a)

(b)

Fig. 8 Examples of sub-optimal behaviour of the proposed algorithm. Non-invasive malignant and benign tissue, outlined in burgundy and
cyan colors, respectively, could be mistaken as invasive tumor by the epithelial cell detection network. This sub-optimal behavior altered the
quantized pleomorphism scores of two slides by one in the test set. The slide on the left (a) had a highly pleomorphic tumor region, which
suggested a quantized pleomorphism score of 3, but the low scores from the benign areas pulled down the overall score to 2. All four
pathologists scored 3 for the slide. Similarly, the pleomorphism score of the slide on the right (b) should have been 2, evident by the tumor
region in yellow color, but it was quantized to 1 due to the low scores from the large benign area. All four pathologists scored 2 for the slide.

validation of the proposed method to multiple available slides per
patient. However, the proposed method will be directly applicable
to the new setting, as the automated pleomorphism score is
computed by averaging predictions across several regions within
a single slide, an operation that can be naturally extended to
multiple slides without changing the core algorithm. Second, in
the current study we solely address the potential impact of this
algorithm as a computer-aided diagnosis (CAD) tool, aiming at
supporting pathologists in clinical diagnostics. However, in our
future work, we will study the potential value of the automated
pleomorphism score as a prognostic digital biomarker, focusing
on both the analysis of prognostic impact of different cut-off
values, as well as on the information contained in the spatial
distribution of nuclear pleomorphism on whole-slide images for
overall survival of breast cancer patients.

METHODS

In this section, we describe the data used in this study to build the
ROI-study data set and the Slide-study data set, as well as details
on the deep-learning algorithm for automated nuclear pleo-
morphism scoring. All data were collected from the Radboud
University Medical Center (Nijmegen, Netherlands). The local
Institutional Review Board waived the need for approval to collect
and use data in this study (#2015-1637).

ROIl-study data set

We collected H&E stained whole-slide images of breast cancer
resections with a total number of 39 slides from two cohorts,
which we refer to as cohort A and cohort B. The slides in cohort A
were scanned on a 3DHistech P1000 scanner at 0.25 um/pixel, and
the slides in cohort B were scanned on a 3DHistech Pannoramic
250 Flash Il scanner at the same spatial resolution of 0.25 um/pixel.
From cohort A; we made a balanced selection of cases with
respect to the nuclear pleomorphism scores. Invasive carcinoma of
No Special Type (NST) was the most prevalent tumor type, seen in
24 out of the 31 slides, resembling the distribution of breast
cancer patients in clinical practice. From the cohort B; we included
8 additional cases that covered different histological subtypes
with severely aberrant morphology from a triple negative breast
cancer cohort. As a result, pleomorphism of the tumor with score 3
in cohort A was, on average, less severe than the tumor with score
3 in cohort B. The full distribution of the carcinoma types in the
selected cases is provided in Table 3. Overall, the slides were
selected to cover the entire range of nuclear pleomorphism from a
large spectrum of tumor morphology in breast cancer pathology.
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Table 3. Distribution of the tumor types in the ROI- and slide-study.

Invasive carcinoma type ROI-study Slide-study
Slides ROIs Slides

No special type (NST) 26 83 91

Lobular 6 21 22

Metaplastic carcinoma 3 8 -

Invasive micropapillary 1 4 2

Mucinous 1 3 -

Tubular 1 3 2

Malignant adenomyoepithelioma 1 3 -

Cribriform - - 1

Total 39 125 118

In clinical practice, normal epithelium in a whole-slide image,
when present, is a useful reference point for pathologists to
determine the degree of pleomorphism of the tumor. In the ROI-
study, we presented pairs of ROIs from tumor and normal
epithelium to the pathologists for nuclear pleomorphism scoring
similar to the routine practice. We manually selected one or
more tumor ROIs from each slide ensuring pleomorphism
homogeneity within each ROIl. Overall, we selected 125 such
regions from 39 slides. Additionally, we manually selected at
least one ROI from normal appearing epithelium (normal ROI). As
few slides contained little to no large enough areas with normal
epithelium, it was not possible to select at least one normal ROI
from every slide. In total, there were 59 normal ROIs that we
could select from the set of slides. Ten out of the 39 slides did
not have large enough region with normal cells. Therefore, for
the whole-slide images without normal epithelium, we retrieved
10 additional slides from the same patient to acquire at least one
normal ROL. As a result, the total number of selected normal ROIs
increased to 79 with the selection of 20 normal ROIs from the
additional set of slides. Following this selection procedure, each
ROI was cropped around their center point to a square area of
around 0.38 mm? at 0.25 um/pixel. Subsequently, a tumor ROI
was paired with a normal ROl from the same patient to form a
query pair. This process was repeated for all 125 tumor ROIs in
the data set. It has to be noted that each query had a unique
tumor ROI, but a normal ROI could be paired with more than one
tumor ROI due to the smaller number of normal ROIs compared
to tumor ROIs, 79 vs. 125.
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Fig.9 Web platforms for the ROI- and slide-study. An example query from the web platform of the ROI-study (a) included a pair of tumor
and normal ROIs from the same patient. Ten pathologists were invited to score nuclear pleomorphism and to provide confidence scores for
such 125 queries from 39 whole-slide images. An example from the slide-study (b) included a whole-slide image, which could be viewed in
multiple magnifications. Four pathologists were invited to score nuclear pleomorphism on 121 whole-slide images.
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Fig. 10 Distribution of the nuclear pleomorphism scores of the pathologists and of the average (reference) scores of the pathologists in
the ROI-study. The rows correspond to the pathologists, {Pg};(;, except for the last row that corresponds to the average scores of the
pathologists, which we used as reference scores in our learning setup. Each column is one of the 125 queries in the ROI-study. The colors
green, yellow and red correspond to the scores of 1, 2 and 3 of the pathologists, respectively. The queries are sorted by the average scores,
from left to right in increasing order, denoted by the color hues of green, yellow and red, corresponding to the increasing severity of the

pleomorphism.

We built a web-based nuclear pleomorphism platform consist- Slide-study data set

ing of the queries to display the ROIs, allowing the pathologists to  We collected an additional set of H&E stained whole-slide images
score them through a user interface. Each query was followed by~ from cohort B, with a total number of 118 slides. The slides
the questions; nuclear pleomorphism score of the tumor into one  selected for this study did not have any overlap with ROI-study, as
of the three categories; 1, 2, or 3, and an optional field for  the patients in each study were unique. The selection criteria for
confidence with the scoring; not certain, fairly certain, certain, as the slides followed a similar approach to ROIl-study in that we
well as an additional text field for comments about the queried  collected a large variety of slides with diverse tumor morphology.
tumor and normal ROIs. An example is provided in Fig. 9a. When  We referred to the available clinical data of the patients for our
an ROI was selected, the full resolution of the ROl was displayed  selection to approximate the distribution in the clinical practice.
with a total size of 2560 x 2560 pixels. We invited 10 pathologists As a result, NST was the most prevalent carcinoma type with
from 6 countries with varying levels of expertize in breast 71 slides, followed by Invasive Lobular Carcinoma (ILC) with
pathology to participate in this study. As a result, each tumor 14 slides. The full distribution of the carcinoma types in the slide-
ROI was scored for nuclear pleomorphism 10 times. For a tumor study is presented in Table 3.

ROI, we aggregated the pleomorphism scores of the pathologists A web-based reader study based grand-challenge.org
by average pooling. We illustrate the reference scores as well as (www.grand-challenge.org/reader-studies) was built for scoring
the pleomorphism scores of the individual pathologists for all 125 nuclear pleomorphism on the 118 slides. The application could

queries in Fig. 10. Throughout our experiments, we trained and display multi-resolution whole-slide images to enable pathologists
validated the Al algorithm on a large subset of this data set, using to freely navigate the slides with zoom-in and zoom-out
the reference scores as reference standard. The rest of this data set capabilities. In this study, we asked pathologists to score nuclear

was used to evaluate the ROl-level performance of the Al pleomorphism of whole-slide images into one of the three
algorithm compared to the pathologists. A more detailed break- categories; 1, 2, or 3, and we provided them an optional comment
down of the training, validation and evaluation subsets is field for each queried slide, as displayed in Fig. 9b. We invited 3 of
provided in the experimental settings section. the 10 pathologists who participated in the ROIl-study, to also
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Proposed methodology for learning nuclear pleomorphism scoring by tumor morphology as a spectrum. Patches were sampled

from areas with high nuclear composition (a, b) using epithelial cell detection network. The weights of the epithelial cell detection network (a)
were kept frozen during the training of the deep regression network (c) for learning pleomorphism spectrum.

score nuclear pleomorphism in the slide-study. Moreover, we
invited an additional pathologist who did not participate in the
ROI-study, bringing the total number of pathologists to four.
Detailed breakdown of the score distributions of the pathologists,
individually, and compared to each other is displayed in Fig. 6. In
our experiments, we used the whole-slide images and the
pleomorphism scores of the pathologists only to evaluate the
performance of the Al algorithm, as opposed to the ROI-study in
which training and validation of the Al algorithm took place.

Automated nuclear pleomorphism scoring

Our approach for learning nuclear pleomorphism scoring followed
a two-stage methodology (see Fig. 1). The first stage consisted of
the detection of tumor and normal cells using an epithelial cell
detection network developed in-house and previously pre-
sented>>. In brief, a RetinaNet detection model*® was trained with
image patches of 256 x256 pixels at 40x magnification from
breast cancer whole-slide images stained with H&E. Slides
contained manual annotations of tumor and normal epithelial
cells in the form of point annotations, which were converted to
fixed-size bounding boxes for training purpose. At test time, the
trained RetinaNet model predicts bounding boxes centered at the
location of detected epithelial cells at slide level, and labels each
prediction as containing a normal or a tumor epithelial cell.

The second stage contained the training of a deep regression
network on tumor to learn nuclear pleomorphism scoring as a
spectrum instead of the traditional three-category classification.
An illustration of the proposed methodology is presented in
Fig. 11. During training of the regression network, patch sampling
strategy involved locating the areas with high nuclear composi-
tion within the selected ROIs in the ROI-study by the epithelial cell
RetinaNet model. In this work, we utilized this pre-trained network,
keeping its weights frozen during training and inference. This step
was particularly important in that it enabled learning from nuclear
features rather than from other factors in the tissue. For inference,
the epithelial cell detection network pre-processed whole-slide
images to locate invasive tumor regions for the deep regression
network to score nuclear pleomorphism.

Nuclear pleomorphism is traditionally scored into one of the
three categories from 1 to 3, indicating the degree of
abnormalities in the tumor appearance. Given that nuclear
pleomorphism reflects the extent of abnormalities in the
appearance of tumor nuclei, we considered a more generalized
version of the categorical classification in the form of a continuous
spectrum of nuclear pleomorphism. The granularity in the
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pleomorphism spectrum came from the averaged collective
knowledge of 10 pathologists. This realization transformed the
three-category classification problem into a regression task.
Therefore, the second stage in our methodology was comprised
of a Densenet®® based deep regression network, which was
trained on the tumor patches using the average scores of the
pathologists as reference standard. The network architecture
consisted of “dense blocks” in which the input of a layer was the
concatenation of the output of the previous block and the inputs
of the layers preceding it. Another distinguishing feature was the
“transition layers”, which helped to regulate the number of
channels in the network. In comparison, a traditional CNN is only
composed of consecutive layers, in which an input of a layer is the
output of the previous layer.

Training. A training iteration of our Densenet based deep
regression network was as follows. A training patch sampled
from the tumor ROl was fed through the deep regression
network to regress its pleomorphism score. A smooth;; loss
function*® was computed from the prediction with respect to the
reference score. Finally, the gradient of the loss function was
backpropagated through the network to improve the prediction
performance in the next iteration by updating the network
parameters. This training iteration was done on a batch of
multiple patches in the training set. We illustrate one such
training iteration in Fig. 11 through (a) to (c). Tens of thousands
of patches with high nuclear composition and the granularity of
the reference scores enabled the Al algorithm to learn nuclear
pleomorphism as a spectrum.

We trained the network from scratch using the Adam optimizer
with an initial learning rate of 1e — 4, which we decreased by 30%
during training when no improvements were observed on the
validation set for ten epochs. Furthermore, we paired Adam with
the decoupled weight decay regularization technique proposed in
this paper*'. Each training patch was 512 x 512 pixels at 0.5 pm/
pixel spacing, sampled from the tumor ROIs in the training set. We
used a batch size of 12 patches in each training iteration, and 200
training and 500 validation iterations per epoch. Training continued
until convergence, i.e., no improvement on the validation loss in 10
consecutive epochs. Spatial data augmentation operations such as
horizontal and vertical flips as well as 90°, 180°, 270° rotations were
applied to both training and validation patches. In order to make
the Al algorithm robust against the variations in color and staining,
we applied a large range of color and stain augmentations on the
training patches, as discussed in*2. The training patches were also
augmented with blurring techniques to make the network more

npj Breast Cancer (2022) 120



npj

C. Mercan et al.

10

robust against out-of-focus regions. Nuclear composition in the
training and validation patches was maximized through sampling
from the nuclear density maps of the ROIs, obtained by applying
Gaussian filters on the output of the epithelial cell detection
network. The patch-level performance of the deep regression
network was quantified using several regression metrics; mean
absolute error (MAE), mean squared error (MSE) and explained
variance (EV) score. The continuous-valued predictions of the Al
algorithm were quantized into arbitrary numbers of categories to
demonstrate the continuity of pleomorphism as well as for
comparison against pathologist scores. Quantization of a contin-
uous range of values into p categories was the process of
partitioning the range into evenly sized p number of brackets,
and representing each bracket with an integer value. To illustrate,
the range [1, 3] was quantized into three categories as follows; any
value in the range of [1,1.66) corresponded to 1, [1.66,2.33]
corresponded to 2, and (2.33, 3] corresponded to 3. We evaluated
the performance of the Al algorithm versus the pathologists and
the pairwise performance of the pathologists, by Cohen’s quadratic
kappa measure®.

Slide-level inference. We performed slide-level inference by first
applying the epithelial cell detection network before the slide-
level inference to ensure scoring only on invasive tumor.
Successively, we processed the slide as small overlapping tiles,
and translating the scores of the tiles into a single slide-level
pleomorphism score. Each tile was the same size as the input
image patch with 512x512 pixels at 0.5 um/pixel. In our
experiments, we selected an overlap value of 448 pixels between
each tile, horizontally and vertically. The Al algorithm scored a
continuous pleomorphism value for each tile. As a result, a block
of size 64 x 64 pixels received multiple scores from the predictions
of overlapping tiles. The scores were aggregated by average
pooling to assign the pleomorphism score of the block. Finally, the
pleomorphism score of the slide was determined by the average
pleomorphism score of its blocks.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY

We made the data set of n =118 whole-slide images analyzed in the slide-study
publicly available, together with a web-based platform based on grand-
challenge.org, which implements the evaluation procedure and computes results
as depicted in Fig. 7. Via this platform, the test slides can be downloaded, processed
locally and predictions can be uploaded to grand-challenge.org to be evaluated by
computing pairwise Kappa scores with the procedure implemented in this paper.
This will enable researchers to test their models and compare their results with ours
as well as with other participants. The data set can be downloaded from Zenodo
(doi:10.5281/zenodo0.7285896)**. Both images and evaluation platform can be
accessed via this link: https://breastpleomorphism.grand-challenge.org/.

CODE AVAILABILITY

This project was developed based on private digital pathology data using both
closed-source and open-source Python libraries. The main components of the code of
this project are listed below: scripting language: Python v3.7; math/statistical
operations: numpy v1.20 and pandas v1.2.4; deep learning: torch v1.9 and torchvision
v0.10; visuals/plots: matplotlib v3.3.4 and seaborn v0.11 ; patch extraction: we used a
Python package developed internally, which has been recently integrated into the
public  WholeSlideData https://github.com/DIAGNijmegen/pathology-
whole-slide-data; color augmentation: we used a Python package developed
internally, which has been recently integrated into the public StainLib software:
https://github.com/sebastianffx/stainlib. Although the full source code of this project
is not made publicly available, access to detail of its implementation can be granted
under reasonable request.

software:
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