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The plant-sucking insect selects
assembly of the gut microbiota from
environment to enhance host
reproduction
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Hong-Wei Shan , Xie-Jiang Xia, Yi-Lu Feng, Wei Wu, Hong-Jie Li, Zong-Tao Sun, Jun-Min Li &
Jian-Ping Chen

Plant-sucking insects have intricate associations with a diverse array of microorganisms to facilitate
their adaptation to specific ecological niches. The midgut of phytophagous true bugs is generally
structured into four distinct compartments to accommodate their microbiota. Nevertheless, there is
limited understanding regarding the origins of these gut microbiomes, the mechanisms behind
microbial community assembly, and the interactions between gutmicrobiomes and their insect hosts.
In this study, we conducted a comprehensive survey of microbial communities within the midgut
compartments of a bean bug Riptortus pedestris, soybean plant, and bulk soil across 12 distinct
geographical fields inChina, utilizing high-throughput sequencing of the 16 S rRNAgene. Our findings
illuminated that gut microbiota of the plant-sucking insects predominantly originated from the
surrounding soil environment, and plants also play a subordinate role in mediating microbial
acquisition for the insects. Furthermore, our investigation suggested that the composition of the insect
gut microbiome was probably shaped by host selection and/or microbe-microbe interactions at the
gut compartment level, with marginal influence from soil and geographical factors. Additionally, we
had unveiled a noteworthy dynamic in the acquisition of core bacterial taxa, particularly Burkholderia,
whichwere initially sourced from the environment and subsequently enrichedwithin the insectmidgut
compartments. This bacterial enrichment played a significant role in enhancing insect host
reproduction. These findings contribute to our evolving understanding of microbiomes within the
insect-plant-soil ecosystem, shedding additional light on the intricate interactions between insects
and their microbiomes that underpin the ecological significance of microbial partnerships in host
adaptation.

Insects are extensively colonized bymicroorganisms that play a pivotal role
in bolstering their health and fitness. This is particularly pertinent for plant-
sucking insects, which subsist on nutritionally deficient or imbalanced diets.
In response, the symbiotic associations with beneficial microorganisms
provide a supplementary source of nutrients1–4. Additionally, these sym-
bioticmicroorganisms engage in diverse interactions with their insect hosts,
conferring a range of advantageous traits such as developmental support

and increased fecundity5, enhanced tolerance to temperature fluctuations6,7,
the detoxification of noxious chemicals8,9 and bolstered resistance to natural
enemies10,11. The insect intestinal tract is an indispensable habitat for these
symbiotic microorganisms. Generally, gut associations are transient,
meaning that microorganisms can be acquired by the insect from external
sources and are shed from the insect back to the environment12,13. Herbi-
vorous insects are present on the plants and ingestmicroorganisms from the
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aboveground parts to incorporate in their microbiome13,14. Moreover, soil
habitats are extremely rich in microorganisms which serve as an important
microbial reservoir for insects to confer host fitness15,16.

Insects and their microbiomes have coevolved over millions of years,
with most of their interactions proving mutually beneficial. This suggests
that insects selectively attract and cultivate specific microorganisms under
the pressure of natural selection, employing immune systems and providing
specialized nutrients and habitats17,18. Concurrently, these interactions
between insects and their microbiomes are also influenced by an array of
environmental factors, including geographic location, host plants, and
insect habitats19–21. Most studies on insect-symbiont interactions so far have
focused on individual symbionts22,23. However, many insects are inhabited
by a complex microbial community, the analyses of microbial community
assembly and interactions between gutmicrobiomes and insect host remain
relatively scarce.

Pentatomomorpha is one of the most diversified infraorders of true
bugs (Hemiptera: Heteroptera) that are predominantly phytophagous
species that extract nutrients by piercing their sucking mouthparts directly
into leaves, stems, flowers, pods, and seeds24,25. The plant-sucking stinkbugs
possess a specializedmidgut that is morphologically differentiated into four
distinct sections to accommodate gut microbiota26,27. These gut micro-
organisms have evolved various transmission ways, with some being ver-
tically transmitted through mechanisms like egg surface contamination,
coprophagy, or the formation and deposition of specialized symbiont-
containing capsules28–30. Others are acquired horizontally from the envir-
onment, establishing symbiotic relationships in later life stages31. The
transmitted journey begins with newly hatched true bug nymphs, which are
initially devoid of symbiotic microorganisms and subsequently acquire
symbionts by probing with their proboscises12. Ultimately, some beneficial
microbes are selectively enriched in the specific regions (M3 orM4 section)
of insect midguts5,32. Despite considerable interest the interaction between
the stinkbug and their gut symbionts, little is known on the microbial
community and the enriched process of specific taxa in the differentmidgut
compartment niches.

This study centers around the investigation of gut microbiota in the
bean bug Riptortus pedestris, a notorious pest of leguminous crops, and the
cause of soybean “staygreen” syndromes across many regions in Asia33,34.
The insect is extensively associated with a bacterial symbiont belonging to
the genus Burkholderia in crypts at a posterior midgut region35. Bur-
kholderia symbionts are characterized by environmental acquisition and
provide beneficial effects on the development of the insect hosts23,31. Thus,
the stinkbugs and their symbionts serve as ideal subjects for examining the
potential sources of gut microbiota with horizontal acquisition and the
determinants of partner specificity within hosts. In the study, we conducted
a comprehensive survey covering a wide geographic scale of bacterial
communities across plant, soil, and multiple insect midgut compartments
within soybean fields. The purpose of the investigation is to unravel the
intricate processes through which the insect host and their environments
influence the assembly of microbiomes and co-occurrence patterns across
various gut compartments in the insects. Additionally, we aim to decipher
the underlying interactions that may hint at a potentially symbiotic rela-
tionship between key bacteria and host fitness.

Results
Bacterial communities in different gut compartments of R.
pedestris and their surrounding environment
The midgut of the bean bug R. pedestris, akin to many other stinkbugs,
exhibits differentiation into four morphologically distinct sections: the first
midgut section (M1), which is notably voluminous; the second midgut
section (M2), characterized by its elongated tubular shape; the ovoid third
midgut section (M3); and the fourth midgut section (M4), hosting
numerous crypts and typically colonized by a substantial bacterial popu-
lation (Fig. 1a–c).We then characterized themicrobiomeswithin these four
sections of the insect midgut, as well as the neighboring plant and soil
compartments, using Illumina MiSeq sequencing based on the 16 S rRNA

regions. A total of 210 microbial community samples were collected from
soybean fields across twelve geographical areas in China and subsequently
sequenced. Rarefaction curves were generated using all the samples to cal-
culate alpha diversity (Supplementary Fig. 1). The highest bacterial diversity
was observed in the soils, followed by the moderately diverse phylloplane
(leaf surface), while a clear trend of gradually decreasing alpha diversity was
evident fromM1 toM4 sections within the insect midgut (Fig. 1d). Distinct
bacterial beta diversity was observed across four insect midgut sections,
phylloplane, and soil (Fig. 1e, adonis, R2 = 0.24, p < 0.001). Non-metric
multidimensional scaling analysis (NMDS) based on Bray-Curtis distances
among communities revealed the presence of five distinct sample clusters,
corresponding to the sample type.Notably,M1andM2of themidgutnearly
overlapped in the NMDS plot (Fig. 1e). Furthermore, the first three midgut
sections displayed partial overlap with the phylloplane and were closer in
composition to the soil compartments than the M4 section of the midgut
(Fig. 1e).

The potential sources and selection processes of insect intest-
inal microbiome
To further elucidate the potential origins and processes of host selection for
the intestinalmicrobiota,we conducted source-tracking analysis to pinpoint
the bacterial communities observed within insect midguts, as well as the
neighboring plant and soil compartment niches. Notably, the insect guts
shared themajority of Operational TaxonomicUnits (OTUs) with both the
soils and plant leaves. Furthermore, there was a discernible decline in the
commonOTUs fromM1 toM4 sections of the insect midgut (Fig. 2a). The
Source Model of Gut Microbiome (SMGM) provided insights into the
contributions of different sources to the insect gut-associated bacterial
communities. It revealed that these communities originated from two pri-
mary reservoirs: bulk soils andplant leaves, which together contribute ~75%
of the microbial composition. Specifically, soils emerged as the dominant
microbial source with known source values exceeding 65%, while plant
leaves played a secondary role with known source values exceeding 52%
(Fig. 2b). Additionally, the bacterial communities appeared to undergo
gradual filtration as they transitioned through the four distinct midgut
compartments (Fig. 2b).

The differential abundance analysis revealed notable findings: within
the insect midgut sections, 11.3% of OTUs (657 out of 5791 OTUs) in M1,
11.0% of OTUs (639 out of 5820 OTUs) in M2, 6.5% of OTUs (365 out of
5605 OTUs) in M3, and 0.9% of OTUs (51 out of 5389 OTUs) in M4 were
significantly enriched when compared to the soils (Fig. 2c). Additionally,
some bacteria were specifically enriched in the insect different midgut
compartments. For instance, in theM1midgut sections, themost abundant
OTUs (with log2 fold change > 5) belonged to the genera Spiroplasma and
Ralstonia. In the M3 midgut section, OTUs from the genera Burkholderia,
Serratia, and Ralstonia were mostly enriched. Interestingly, all nine OTUs
significantly enriched in theM4sections belonged to the genusBurkholderia
(Fig. 2c). Comparatively, when compared to plant leaves, the insect hosts
exhibited a similar pattern of enrichment in bacterial communities across
the various midgut compartments (Fig. 2c).

Spatial dynamics of microbial co‑occurrence networks in
insect midgut
We conducted a comprehensive co-occurrence network analysis to inves-
tigate how structural differentiation within the host intestine impacts
microbial interactions.Ourfindings revealeddistinct shifts in co-occurrence
patterns across the four compartment niches (M1-M4) of the insect midgut
(Fig. 3). Specifically, the phyla Bacteroidota, Proteobacteria, and Firmicutes
emerged as dominant bacteria, collectively occupying key positions,
accounting for over 85% of the network in all four midgut sections
(Fig. 3a–d). Notably, the prominence of these three phyla varied, with
Proteobacteria gradually gaining dominance from section M1 to M4
(Fig. 3a–d). The most notable difference lay in the network of the
M4 section, which displayed fewer correlations and exhibited a looser
network structure compared to the other threemidgut sections. In contrast,
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the networks in sections M1, M2, and M3 showcased more complex
structures, characterized by a higher node count, greater connectivity, and
increased network density compared to the M4 section (Fig. 3a–d). Fur-
thermore, we examined specific node-level topological features within the
four networks, revealing significant differences in degree, closeness cen-
trality, betweenness centrality, and eigenvector centrality values across the
sections (Fig. 3e–h). The intricate nature of these networks underscored the
substantial influence of host intestinal structural differentiation on the
assembly of microbial communities.

Environmental factors affect insect gut bacterial communities
To explore the impact of environmental factors on insect gut micro-
biomes, we conducted an analysis to investigate the relationship between
gut microbial diversity and the surrounding geographic and soil con-
ditions. Our sampling sites covered a wide range of latitudes and long-
itudes (Fig. 4a, Supplementary Table 1), with significant variations
observed in soil chemical properties, including pH, soil organic carbon
(SOC), and total nitrogen (TN) content, across the geographic sites
(Fig. 4b; Supplementary Fig. 2). The results of the distance-based
redundancy analysis (db-RDA) highlighted that latitude, soil pH, and
C/N ratios were the primary drivers of variation in the diversity and
community composition of insect gut bacteria (Fig. 4c). Subsequently,
we examined the correlations between insect gut bacterial alpha diversity
(Chao1 richness and phylogenetic diversity) and environmental factors

using linear Pearson correlation coefficients. Further analysis revealed
significant negative correlations between diversity indices and latitude
(Fig. 4d, e, p = 0.002 for bothChao1 richness and phylogenetic diversity).
Similarly, soil pH exhibited significant negative correlationswith the two
diversity indices (Fig. 4d, e, p < 0.001 for both Chao1 richness and
phylogenetic diversity). In contrast, the soil C/N ratio demonstrated
significant positive correlations with the two diversity indices (Fig. 4d, e,
p < 0.001 for Chao1 richness and p = 0.020 for phylogenetic diversity).
Notably, other environmental factors, such as longitude, did not show
significant associations with microbial diversity in our study (Supple-
mentary Fig. 3, p = 0.062 for Chao1 richness and p = 0.107 for phylo-
genetic diversity).

Taxonomic composition of bacterial communities in four midgut
sections of different geographic insect populations
Taxonomic analysis unveiled distinct variations in microbial communities
across the four insect midgut compartments, which were influenced by the
geographic origin of the insect populations (Fig. 5). Specifically, theM1 and
M2 gut compartments exhibited a diverse community of likely transient
bacterial taxa, including genera like Muribaculaceae, Ralstonia, Escherri-
chia-Shigella, and Enterobacter (Fig. 5a, c). These bacterial communities in
the twomidgut sections appeared similar within each insect population, yet
NMDS analysis highlighted divergence at the OTU level, resulting in the
division of the twelve insect populations into two distinct sample clusters
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Fig. 1 | The diversity of bacterial community within insect midgut, phylloplane
and soil of soybean fields. a A stinkbug R.pedestris live on a soybean leaf. b The
insect midgut is differentiated into four sections; M1-M4, the four sections of the
midgut; MT: malpighian tubes. c Transmission electron micrographs (TEM) of the
insect midgut with a bacterial layer. d Chao1 and Shannon diversity metrics of the
four sections of insect midgut, phylloplane and soil of soybean field collected from

the insect habitat. e Non-metric multidimensional scaling (NMDS) of bacterial
communities based on Bray-Curtis similarity. The difference of microbial com-
munities among the different samples was calculated with PERMANOVA via
“adonis” test. The insects, soybean leaves and soils were collected from 12 different
geographical areas in China, and see Supplementary Table 1 for details of the sample
collection information.

https://doi.org/10.1038/s41522-024-00539-z Article

npj Biofilms and Microbiomes |           (2024) 10:64 3



(Fig. 5b, d). The left cluster, which partially overlapped with six insect
populations, showed a higher abundance of the bacterial genusEnterobacter
and generally exhibited higherChao1diversity compared to the right cluster
comprising the other six populations (Fig. 5a–d and Supplementary Fig.
4a, b). Additionally, the PERMANOVA test based on Bray-Curtis distance
measures revealed that the bacterial community structures of the two
midgut sections were significantly different among the twelve geographical
insect populations (Fig. 5b and d, adonis, R² = 0.56, p < 0.001 for M1 and
R² = 0.52, p < 0.001 for M2). Conversely, microbial communities in the M3
andM4 sections of the insect populations tended to display amore uniform
pattern (Fig. 5e–h). Notably, the genus Burkholderia became increasingly
abundant in the M3 sections, eventually emerging as a core taxon that
dominated the M4 compartment niches, accounting for over 90% of the
microbial composition in most insect populations. This dominance of
Burkholderia effectively excluded other competing taxa in the M4 sections

(Fig. 5g, h). Despite the microbial communities within the midgut M3 and
M4 sections showing a relatively consistent pattern, there were still some
variations across the geographical insect populations (Fig. 5f and h, adonis,
R2 = 0.49,p < 0.001 forM3andR2 = 0.47, p = 0.002 forM4). Simultaneously,
alpha-diversity richness exhibited a declining trend in these two midgut
sections (Supplementary Fig. 4c-d).

The gut-associated bacteria facilitate insect host reproduction
The aforementioned findings revealed that the genus Burkholderia stood
out as the core bacterial taxon consistently present in the insect midguts of
all tested populations. To assess the impact of the bacteria on host repro-
duction fitness, we conducted experiments involving three different insect
populations, each inoculated with their respective original gut bacterial
strains. Initially, we isolated three distinctBurkholderia strains belonging to
the “stinkbug-associated beneficial and environmental (SBE)” group,
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originating from the ZJNB, HNZK, and GSQY insect populations respec-
tively (Supplementary Fig. 5). Subsequently, we inoculated the insects with
these isolated Burkholderia strains or homogenates of midgut contents
obtained from adults of their original populations respectively, thereby
establishing a symbiotic relationship with the core bacteria Burkholderia,
primarily within the crypts of their midgut M4 sections (Fig. 6a–c). Con-
currently, the insects also colonized other gut bacteria in the four different
midgut sections through the midgut homogenate inoculation (Supple-
mentary Fig. 6). Following gut bacteria inoculation, the insects exhibited
increased body weight in both female and male adults (Supplementary Fig.
7). Moreover, the presence of gut bacteria promoted the development of
insect ovaries (Fig. 6d–f), leading to a higher number of eggs within the
ovaries and an accelerated maturation of these eggs (Fig. 6g and Supple-
mentary Fig. 8). Subsequently, the symbiotic insects initiated reproduction
earlier and demonstrated improved egg production (Fig. 6h, i).

Discussion
Understanding the potential sources of insect-associated microbiomes can
provide critical information on the interactions among insects, microbes
and their environment36–38. Many plant-sucking insects like aphids, white-
flies and leafhoppers harbor endosymbiotic bacteria transmitted vertically
fromfemales to eggs.However, the stinkbugsR.pedestris is an exception that
are associated with gut bacteria. In most cases, insect gut bacteria are hor-
izontally transmitted, meaning that microorganisms can be acquired by the
insect from external sources and are closely linked to their habitat envir-
onment. Given that phytophagous insects primarily feed on plants, which

host a diverse array ofmicrobes, it is plausible that these plants play a role in
shaping the microbial composition of the insect gut39,40. However, previous
studies have indicated that certain true bugs begin life as symbiont-free at
the newly hatched stage, subsequently acquiring the genus Burkholderia
into their midguts from the soil or rhizosphere during later developmental
stages31,41. Considering that R. pedestris frequently feeds on legume crops
(Fig. 1a), our survey of the microbiomes in soybean fields’ plants and soils
suggests that these environments could potentially serve as reservoirs for the
insect gut microbiota.

Our data revealed significant differences in microbial diversity
among insect guts, plants, and soils, with soils harboring the most
abundant microorganisms in the bean field ecosystem (Fig. 1d). Fur-
thermore, the microbiome communities within insect guts shared a
greater number of OTUswith soils thanwith plant communities (Fig. 2a).
Source tracking analysis further supported that soil microbiomes could
make a more substantial contribution to the composition of insect gut
microbial communities (Fig. 2b). Nonetheless, it’s worth noting that
plants typically harbor a portion of the soil microbiota, with microbial
communities settling in both the roots and above-ground parts during
their growth and development19,38. Concurrently, herbivorous insects are
often found on plants, potentially facilitating the transfer of soil micro-
biota into the microbiota of insects through their interactions with
plants42,43. Our data also indicated that the bacterial communities within
insect midguts partially overlapped with those found in the phylloplane
(Fig. 2a, b), suggesting that plants might indeed play a role in the acqui-
sition of bacteria by the stinkbug insects.
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In agricultural ecosystems, the microbial communities are often
influenced by multiple environmental factors due to various climates and
complex biological networks44,45. For example, previous studies indicated
the root and soilmicrobiomes are linkedwith soil properties and geographic
factor46–48. Consequently, we hypothesized that the insect gut microbiotas,
originating from environmental sources, are also shaped by such abiotic
factors.Ourfindings demonstrated that soil properties, includingpHandC/
N ratio, were significantly associated with the diversity of the gut micro-
biome in R. pedestris (Fig. 4c–e). This suggests that soil habitats serve as the
primary sources of insectmicrobiome and indirectly exert their influence on
the microbial communities of these terrestrial creatures. Additionally,
geographical factors, primarily latitudes, also hadnotable effects on bacterial
diversity among insects collected fromdifferent sites (Fig. 4c). Specifically,R.
pedestris hosted gut bacterial communities with higher richness and phy-
logenetic diversity at lower latitudes (Fig. 4c–e), implying that higher tem-
peratures may accelerate the boom of bacterial communities in insect guts.

This pattern aligns with findings in other insects, such as honeybees, flies,
and plant hoppers, where bacterial communities were similarly influenced
by geographical factors20,21,49.

In addition to facing abiotic stresses from their habitat environment,
the assembly of the insect gut microbiome is also heavily influenced by host
factors50–52. In stinkbugs, themidgut is subdivided into a series of structurally
distinct regions, each harboring different microbial communities26,27,53. In
our study, we observed that the insect gut-associated bacterial communities
were derived from soils and plants, and were subsequently filtered and
enriched in different gut compartment niches (M1 to M4 midgut sections)
(Fig. 2b, c). Furthermore, we observed that the bacterial richness and net-
work complexity reduced across the fourmidgut compartment niches, with
the lowest bacterial diversity recorded in the end sections of the midgut
(Fig. 3). Thesefindings collectively suggest that insectsmay recruitmicrobes
that are well-suited to specific niches within their gut compartments, and
this assembly process gradually enriches certain taxa while filtering out
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others. The selective inoculation of environmental bacteria is likely shaped
by both host-driven selection andmicrobe-microbe interactions. The insect
gut has evolved into distinct compartments that may exhibit varying
microenvironments, including pH and oxygen levels, capable of supporting
diversemicrobial communities54.Moreover, insects possess a specializedgut
structure featuring narrow channels known as “constricted regions”, which
display antimicrobial properties and serve a role in filtering microbes,
thereby selecting specific microbial partners for distinct gut segments 26,55,56.
Conversely, the coexisting microbes engage in a variety of interactions.
These interactions may involve competition, where certain microbes with
higher competitiveness dominate the niche57, or cooperation, which
enhances the benefits derived from symbiotic partners, thus maintaining a
stable gut microbiota58.

Our study demonstrates that both the host and geographical site sig-
nificantly influence the bacterial communities within different gut com-
partment niches of insects, underscoring the joint impact of host-microbe
interactions and environmental factors on the composition of gut
microbes51,59. Our research uncovers significant disparities in microbial
communities across various geographic populations of insects, especially
noticeable within the M1 and M2 midgut sections. Conversely, microbial
communities within the M4 midgut compartment of insects from geo-
graphically distant regions demonstrate a relatively consistent pattern, albeit
with somevariationsbetweengroups (Fig. 5).Themicrobial communities in
the front sections of the midgut, such as M1 and M2, are likely directly
influenced by environmental abiotic factors, while the M4 section,

characterizedbynumerous crypts specialized forhosting symbiotic bacteria,
appears to be also shaped by host selection and microbial-microbial inter-
actions.Collectively, these resultsprovide valuable insights into thedynamic
relationship between hosts and microbes. This intricate process likely
involves host recruitment, microbial filtration and the enrichment of spe-
cific taxa in various gut niches55,56,60. Meanwhile, microbes may engage in
complex interactions, rapidly evolving and adapting to different gut
environments57,58.

Mutualistic symbiosis in this context suggests that insects tend to
attract and selectively favor microbial taxa that confer fitness advantages to
their hosts37,61. The genus Burkholderia is frequently found in pentatomo-
morphan stinkbugs, particularly in insects belonging to the superfamilies
Coreoidea and Lygaeoidea35,62–64. Our findings illuminate the journey of
Burkholderia, originating from the environment and subsequently under-
going filtration and enrichment within different midgut compartment
niches of R. pedestris. Ultimately, Burkholderia emerges as the dominant
microbial taxon, accounting for up to 90% of the microbial composition in
the M4 midgut section across most of the twelve tested insect populations
(Fig. 2c and Fig. 5). The establishment of this intimate symbiotic relation-
shipbetween insects and environmentalBurkholderia is determinedbyboth
host intestinal structure andmicrobial characteristics. Specifically, stinkbugs
have evolved a specializednarrowpassage knownas the “constricted region”
between the inner cavities of theM3andM4midgut sections,whichpermits
Burkholderia to access the M4 section while blocking the entry of other
bacteria58,64. Simultaneously, the M4 section undergoes morphological
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modifications, transforming into substantial sac-like structures known as
crypts and developing an extensive tracheal network that envelope the
M4 section, ensuring sufficient oxygen for respiration to accommodate
bacterial symbionts26,65. In addition, the distinct lipopolysaccharide
O-antigen of the symbiotic Burkholderia is pivotal in initiating symbiotic
associations with the host. Subsequently, the symbiont bolsters host
immunity by augmenting antimicrobial activity, thereby inhibiting other
microbes66,67. Moreover, specific antigens, flagella-mediated swimming
motility, and polyester synthesis by these bacteria further enhance their
adaptation to the symbiotic conditions within the insect intestine66,68,69.

Symbiotic microorganisms have been demonstrated to influence host
reproduction in various insect groups, either bymanipulatinghost sex ratios
or by enhancing host fecundity70–73. Our findings indicate that gut micro-
biota can increase egg production in R. pedestris, with Burkholderia emer-
ging as a key bacterial taxon exerting a significant influence over the host
reproduction (Fig. 6, Supplementary Fig. 5 and Supplementary Fig. 6).
Furthermore, the prevalence of Burkholderia suggests that the regulation of
host reproduction by the gut symbionts is a common phenomenon in the
natural insect populations (Fig. 6 and Supplementary Fig. 5). Symbiotic
microorganisms can impact insect reproduction through various mechan-
isms. Numerous studies have shown that symbionts can facilitate insect
development and reproduction by providing nutrients such as amino acids
and B vitamins to the host73–77. Given thatmost stinkbugs are phytophagous
insects that feed on nutritionally poor or unbalanced diets such as phloem
sap or xylem sap, they rely on a diverse array of symbiotic microorganisms
to fulfill their nutritional requirements, ultimately affecting host
fitness2,5,32,78,79. For example, Burkholderia symbionts provide hosts with the
essential aminoacids and cofactors in sap-sucking scale insects80. In a similar
vein, transcriptomic data has indicated that symbiotic Burkholderia can
produce all essential amino acids and B vitamins that are scarce in the
stinkbugs’ diet, highlighting their potential role in providing nutrition to the
insects81. Moreover, the colonization of Burkholderia in the host insect gut
can stimulate the biosynthesis of the heteroptera-specific juvenile hormone
III bisepoxide, which regulates the production of hemolymph storage
proteins82,83. These physiological changes may subsequently lead to corre-
sponding alterations in host reproductive processes, including ovarian
development and egg maturation, thereby modulating insect reproduction
(Fig. 6d–f).

In conclusion, based on a comprehensive survey covering a wide
geographic scale of bacterial communities across plant, soil, and multiple
insect intestinal compartments within soybean fields, this study offers a
systematic understanding of the potential sources and assembly processes of
the insect gut microbiome, as well as their role in regulating host repro-
duction. Our results suggest that soil habitats harbor an exceptionally rich
microbial community, acting as main microbial reservoir that significantly
contributes to the insect gutmicrobiome source.Additionally, plants play an
important role in mediating microbial acquisition by insects. Furthermore,
our study suggests that the insect gut microbiome is probably influenced by
a complex interplay of both host-microbe interactions and environmental
factors, leading to its unique composition in different gut compartment
niches. Notably, the core bacterial taxon Burkholderia gradually becomes
enriched while other taxa are filtered out within the insect gut compart-
ments due to host selection and microbe-microbe interactions, ultimately
influencing insect reproduction. These findings provide valuable insights
into the interconnectedmicrobiomeswithin the insect-plant-soil ecosystem
and the intricate dynamics of insect-microbiome interactions, ultimately
contributing to host fitness and ecological adaptation.

Methods
Sample collection
The stinkbugs were collected from 12 diverse geographic regions where
the pests were widely distributed in the soybean-producing areas across
China between August and October 2020 (refer to Supplementary Table
1 for details). At each location, we simultaneously collected adult insects,
soybean leaves (from the mid-upper positions of the plants), and soil

samples (~5 cm in depth) from three plots within the same field. The
collected insects were carefully preserved in breathable containers to
maintain the insects’ survival for subsequent dissection and DNA
extraction. Additionally, the harvested leaves and soil samples were
preserved at -80 °C to prepare them for further experimentation.

DNA extraction and 16S rRNA amplicon sequencing
At each of the 12 locations, three adult insect individuals were pooled to a
single biological replicate, andwe established three such biological replicates
per location. Prior todissection, the insects underwent a surface-sterilization
process, involving a 1min immersion in 75% ethanol, followed by thorough
rinsingwith sterile water for three times. Themidgut was thenmeticulously
dissected and subjected to a triple rinse with sterile water. Subsequently, the
distinct four gut sections were isolated and placed into individual tubes for
DNAextraction, respectively. Concurrently, approximately 10 grams of leaf
samples were collected for epiphytic DNA extraction, while 2 grams of soil
samples were obtained for DNA extraction in each replicate, as previously
described16,19. DNA extraction was carried out utilizing the DNeasy Pow-
erSoil Kit (QIAGEN, Germany), adhering closely to the manufacturer’s
provided instructions.

Theamplificationof theV3-V4hypervariable regionsof the16 S rRNA
genes was carried out using universal primers 343 F (5’-TACG-
GRAGGCAGCAG-3’) and 798 R (5’-AGGGTATCTAATCCT-3’). Fol-
lowing amplification, the quality of the amplicons was assessed through gel
electrophoresis, followed by purification using AMPure XP beads. Subse-
quently, the purified amplicons underwent an additional round of PCR
amplification. To ensure uniform representation, equal quantities of the
purified amplicons were combined for subsequent sequencing. High-
throughput sequencing was performed using the Illumina Novaseq 6000
PE250 platform to generate the libraries.

The raw sequencing data were initially provided in FASTQ format.
Subsequently, paired-end reads underwent a preprocessing step utilizing
the Trimmomatic software84. This process involved the identification
and removal of ambiguous bases (N), as well as the elimination of
sequences with an average quality score below 20, achieved through a
sliding window trimming approach. Following this trimming process,
the paired-end reads were assembled using the FLASH software85 with
specific assembly parameters set as follows: a minimum overlapping
length of 10 bases, a maximum overlapping length of 200 bases, and a
maximummismatch rate of 20%. Subsequent denoising of the sequences
took place in two stages: firstly, reads characterized by ambiguity,
homology, or length below 200 bases were discarded. Secondly, reads
where at least 75% of bases possessed a quality score above Q20 were
retained. Furthermore, any reads identified as chimera were detected
and subsequently removed. These two denoising steps were executed
using theQIIME software86. The resulting clean reads underwent further
processing, which entailed the removal of primer sequences and their
clustering to generate operational taxonomic units (OTUs). This clus-
tering was executed using the Vsearch software87, employing a 97%
similarity cutoff. Within each OTU, a representative read was selected
using the QIIME package. For taxonomic classification, all representa-
tive reads were annotated through a BLAST search against the Silva
database (Version 123) using the RDP classifier88 with a confidence
threshold set at 70%. Additionally, all representative reads were sub-
jected to annotation through a BLAST search against the Unite database.

Physicochemical analysis of soils
The soil samples were subjected to an analysis of their chemical properties,
including pH, SOC, and TN. These analyses were conducted following the
methods outlined by Xiao et al. 89. In brief, soil pH was determined by
employing a 1:2.5 ratio of soil to water, utilizing the MetropH320 instru-
ment (Mettler-Toledo Instruments Ltd., USA). For SOC and TN quantifi-
cation, the dry combustion method was employed, utilizing an elemental
analyzer (Vario EL III, Germany). Each measurement was carried out in
triplicate for accuracy and consistency.
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The investigation of the insect gut microbiota on host
reproduction
An experimental study was conducted to investigate the influence of gut
microbiota on host reproduction. We selected three distinct geo-
graphical insect populations, ie., HNZK (collected at 33.54°N, 114.61°E),
ZJNB (29.90°N, 121.84°E) and GSQY (35.73°N,107.65°E), and set up
three different experimental treatments. (i) Aposymbiotic: In this
treatment, aposymbiotic insects were obtained by subjecting eggs to a
rigorous surface sterilization process, following the protocol outlined by
Salem et al.32. Briefly, the eggs underwent a 45 s immersion in bleach
(12% NaOCl), followed by a 5 min treatment with 95% ethanol. Sub-
sequently, they were thoroughly rinsed with sterile H2O. (ii) Re-infected
with native microbial community: In this treatment, insects were re-
infected by feeding second instar aposymbiotic nymphs with homo-
genates obtained from freshly dissected midguts of original adults. This
approach was adapted from the work of Zheng et al.,54. (iii) Re-infected
with core bacteria Burkholderia: In this treatment, insects were re-
infected by feeding second instar aposymbiotic nymphs with cultured
Burkholderia strains isolated from the original adult populations, as per
themethodology described by Kikuchi et al. 8. To verify the success of the
surface sterilization and re-infection procedures, diagnostic PCR ana-
lyses were conducted using specific primers targeting Burkholderia35.

The nymphswere raised in sterile plastic containers (8 cm in diameter,
15 cm in depth) until they reached adulthood. On the 1st day of their
emergence as adults, their body weight was measured. Ovary development
was assessed on the 5th day of adulthood, with a focus on counting devel-
oping eggs within the ovarioles and mature eggs within the oviduct. To
record the time to reproduction, a pair of newly emerged female and male
were placed together, and the day when the female initiated her first ovi-
position was noted. To evaluate insect fecundity, the number of eggs laid by
the females was recorded for a 15 day period following their emergence.

Fluorescence in situ hybridization
Thedetectionofbacterial distributionwithin the insectmidgutwas achieved
using Fluorescence In Situ Hybridization (FISH) with the universal probe
EUB338 (5′-Cy3- GCTGCCTCCCGTAGGAGT-3′) 90. Insect tissues were
immersed in a hybridization buffer (composed of 20mmol/LTris-HClwith
pH 8.0, 0.9mol/L NaCl, 0.01% sodium dodecyl sulfate, and 30% for-
mamide) containing 50 nM of the EUB338 probes per milliliter. This
incubation took place overnight. Subsequently, the samples were incubated
in Actin Green 488 Ready Probes for 1 h. Following this, the samples
underwent thorough washing in phosphate-buffered saline and were
examined under a Leica TCS SP8 X confocal microscope.

Transmission electron microscope
We conducted an investigation into the ultrastructure of bacteria within the
midgut ofR. pedestrisusingTransmissionElectronMicroscopy (TEM). The
midgut segments were meticulously separated and initially fixed overnight
in 2.5% glutaraldehyde within a 0.1 mol/L phosphate buffer at pH 7.0.
Following this fixation, they were postfixed with 1% OsO4 in phosphate
buffer, subjected to dehydration through a graded ethanol series (ranging
from 30 to 100%) and absolute acetone. Subsequently, the samples were
embedded in Spurr’s resin. Thin sections of adult abdomens and eggs were
obtained by precision cutting using a LEICA EM UC7 ultramicrotome,
followed by staining with uranyl acetate and alkaline lead citrate for 10min
each. Finally, these prepared sections were observed using a Hitachi Model
H-7650 TEM.

Statistical analysis
We performed a comprehensive analysis of diversity, both alpha (including
Chao1 Richness, Shannon-Wiener, and phylogenetic diversity indices) and
beta (utilizing non-metric multidimensional scaling (NMDS) of Bray-
Curtis dissimilarity), using QIIME to assess diversity variations across the
samples. To assess alpha diversity, a rarefaction curve was generated to
determine adequate sequence depth using QIIME. For beta diversity

analysis, the bacterial community dissimilarity among different groups of
samples was evaluated through permutational analysis of variance (PER-
MANOVA) using the “adonis” test. The significance of correlations
between alpha-diversity indices and environmental factors was evaluated
using Spearman correlation analysis. To explore the relationship between
environmental factors and bacterial communities, we employed distance-
based redundancy analysis (db-RDA). The relative abundance of various
microorganisms at the OTU level served as the “response variable,” while
geographical data (latitude and longitude) and soil characteristics (pH and
C/N ratio) were utilized as the “explanatory variable file.” Additionally,
different sampling sites were designated as the “grouping file” for analysis.
Visual representation of the enrichment and depletion patterns of gut
bacterialmicrobiomes in eachcompartmentniche compared tophylloplane
and soils was achieved through a volcano plot analysis. Only robust (log2
FC > 1; p < 0.05) findings were considered statistically significant. We also
constructed co-occurrence networks to explore relationships among bac-
terial communities in differentmidgut sections, utilizing the igraph package
and the interactive Gephi platform91,92. Only robust (Spearman’s r > 0.6 or
r < -0.6) and statistically significant (p < 0.01) correlationswere retained. To
further analyze the networks, we calculated four topology property para-
meters-degree, clustering coefficient, average path length, and density-using
the Network Analyzer tool in Cytoscape. Statistical significance regarding
insect fitness was assessed using ANOVA analysis, and for multiple com-
parisons, Fisher’s least significant difference (LSD) tests were conducted at
the 0.05 significance level. This analysis was performed using SPSS 20.0
Statistics software.

Reporting Summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The amplicon data have been deposited into the NCBI Sequence Read
Archive database (https://ncbi.nlm.nih.gov) under BioProject accession
number PRJNA1061644. The 16 S rRNA sequences of the isolated bacteria
in this study have been deposited in the GenBank databases (https://ncbi.
nlm.nih.gov) under the accession number OR856010-OR856012.

Code availability
The underlying code used to support the findings of this study is available
upon request to the authors.
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