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The Bifidobacterium-dominated fecal
microbiome in dairy calves shapes the
characteristic growth phenotype of host

Check for updates

Yimin Zhuang1,5, Shuai Liu1,5, Duo Gao1, Yiming Xu1,2, Wen Jiang1,2, Tianyu Chen1, Jianxin Xiao1,3,
Jingjun Wang1, Guobin Hou1,4, Sumin Li1, Xinjie Zhao1, Yanting Huang1, Shangru Li1, Siyuan Zhang1,2,
Mengmeng Li1, Wei Wang1, Shengli Li1 & Zhijun Cao1

The dominant bacteria in the hindgut of calves play an important role in their growth and health, which
could even lead to lifelong consequences. However, the identification of core probiotics in the hindgut
and its mechanism regulating host growth remain unclear. Here, a total of 1045 fecal samples were
analyzed by 16S rRNA gene sequencing from the 408 Holstein dairy calves at the age of 0, 14, 28, 42,
56, and 70 days to characterize the dynamic changes of core taxa. Moreover, the mechanisms of
nutrient metabolism of calf growth regulated by core bacteria were investigated using multi-omics
analyses. Finally, fecal microbiota transplantation (FMT) in mice were conducted to illustrate the
potential beneficial effects of core bacteria. Four calf enterotypes were identified and enterotypes
dominated byBifidobacterium andOscillospiraceae_UCG-005were representative. The frequency of
enterotype conversion shifted from variable to stable. The close relationship observed between
phenotype and enterotype, revealing a potential pro-growth effect of Bifidobacterium, might be
implemented by promoting the use of carbohydrate, activating the synthesis of volatile fatty acids,
amino acids and vitamin B6, and inhibiting methane production in the hindgut. The FMT results
indicated the beneficial effect of Bifidobacterium on host growth and hindgut development. These
results support the notion that the Bifidobacterium-dominated fecal microbiome would be an
important driving force for promoting the host growth in the early life. Our findings provide new insights
into the potential probiotic mining and application strategies to promote the growth of young animals
or improve their growth retardation.

The importance of gastrointestinal tract (GIT) microorganisms to host
health andmetabolism is generallywell recognized1. In ruminants, the effect
of the microbiota might be amplified because the rumen houses highly
abundant, diverse microbes that ferment plant fiber into volatile fatty acids
(VFAs), providing 70–80%of their energetic requirements formaintenance
and production2. Hence, to continually improve agricultural production
efficiency, the ruminal microbial community and function of adult cows
have been studied extensively3–5. Calves in the early stages of life do not have
a fully developed rumen and the hindgut microbiome might play an
important role in regulating the growth and development of calves.
Although the food digestion pattern of calves is close to that of monogastric

animals, which rely on a combination of host enzymes and symbiotic
bacteria for digestion, they still have unique digestive characteristics com-
pared with other animals, including specific bacteria, metabolites, and the
direction ofmicrobial evolution. Some studies on the temporal dynamics of
the hindgut microbiota in calves have reported that dietary strategies5 and
fecal microbiota transplantation (FMT)6 can significantly change the
microbial community structure and thus improve calf growth performance
and health.More importantly, the growth performance (body weight [BW]
and average daily gain [ADG]) of calves in the preweaning and prepubertal
periods is positively associated with their ability to produce milk in
adulthood7,8, suggesting that the calf hindgut microbiota has a profound
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impact on long-term and even lifelong performance. Although these studies
have expanded our knowledge, the representative characteristics of the calf
hindgut microbiota in early life are lacking due to experimental specificity,
small numbers of experimental animals, and possible individual variations.
Our understanding of the differences in metabolic functions in the hindgut
microbiota and core bacteria of calves with different phenotypes is also
limited.

Enterotyping, which was first proposed to summarize the hindgut
microbiota characteristics in humans9, is an effective method for stratifying
populations, revealing a general overview of inter-individual differences in
the gut microbial community. In subsequent studies, bacterial enterotype
analysis was gradually extended to other mammals, such as chimpanzees10,
swine11, and buffalo12. The results of all such studies have confirmed that the
enterotype classification in adult hosts is dominated by critical bacterial taxa
and relatively conservative regarding short-termdisturbances13,14. However,
compared with the redundant microbiota of adult dairy cows, the hindgut
microbiota of calves in early life (from birth to weaning) is highly variable
with age, and canbe easily disturbedbydiet15, resulting inunclear trends and
timing of the transition between enterotypes in individual calves. Therefore,
it is necessary to systematically study and understand the factors driving
formationof hindgut enterotypesof pre-weaning calves, aswell as the effects
of the final enterotype on growth performance and physiological metabo-
lism. Deeper understanding of these processes could provide important
insights into the adaptability of young animals and theirmicroecosystems to
dietary changes.

Therefore, in this study, we aimed to answer the following questions.
Which are the core bacteria that contribute to the growthof calves, andwhat
are the related potential mechanisms? The 16S rRNA gene sequencing was
used to identify the fecal core bacteria of calves across the ages. Multi-omics
analyses (fecal metagenomics, fecal metabolomics and serum metabo-
lomics) were conducted to reveal the mechanism of fecal core bacteria
regulating the calf growth.TheFMT inmice further emphasized the effect of
core probiotics in calf feces on growth promotion.

Results
Calf sample characteristics
A large cohort of 408 Holstein dairy calves (150 female and 258 male) were
enrolled in this study, fromwhich a total of 1045 fecal sampleswere collected
at birth (day 0), and at 7, 35, 56, and 70 days of age (Supplementary Fig. 1).
Each sample was subjected to 16S rRNA sequencing to examine the
microbial community and diversity. Fecal metagenomics, fecal metabo-
lomics, and serummetabolomics were also performed for the samples from
20calves selected randomly in the twodifferent enterotypegroupsof 70days
of age (n = 10 per group). The integration of these omics could reveal the
mechanism of microbial regulation of host development at the level of
metabolic function.

Landscape of age-related microbial changes in calves
The information of 16S rRNA sequencing showed that ~50 million high-
quality sequenceswere observedwith46422 ± 16249 (mean ± SD) reads per
fecal sample. The results revealed the significant temporal characteristics in
the calf microbiota. The highest values of microbial richness (Chao1) and
diversity (Shannon) indexes were observed on the day of birth (Fig. 1a,
Kruskal–Wallis test, p < 0.05). Interestingly, alpha diversity dropped sig-
nificantly, reaching the lowest value at day 7, and increasing with age
thereafter to day 56. No significant differences in alpha diversity were found
between 56 and 70 days of age. Regarding beta diversity based on the
principal coordinate analysis, distinct clustering of fecal microbiota by age
group was observed (Fig. 1b and Supplementary Table 1, ANOSIM,
p = 0.001). Specifically, the bacterial community at birth showed the biggest
distance from those of the other age groups of calves. The bacterial com-
munities of calves at 56 and 70 days of age were also significantly distin-
guishable from those at day 35.

At the genus level, we further identified the dominant bacteria at each
time point. Achromobacter and Corynebacterium showed high abundances

at birth, but had almost completely disappeared at the subsequent time
points (Fig. 1c). Collinsella and Escherichia-Shigella were the specific
dominant genera at 7 days of age (Fig. 1d). Notably, beneficial bacteria
Bifidobacterium and Lactobacillus were the most abundant genera at 7 and
35 days of age,maintaining high abundances in some samples of 70-day-old
calves (Fig. 1e). Blautia and Bacteroides became the dominant bacteria at
7 days, and retained their advantage to the age of 70 days (Fig. 1f). Genera
unclassified Muribaculaceae family and Oscillospiraceae_UCG-005 as
dominant bacteria showed high abundances in subsets of samples from 35
and 56-day-old calves, becoming ubiquitous at 70 days of age (Fig. 1g).
Bacteroides, Olsenella, Faecalibacterium, Streptococcus, and Sharpea were
also found in high abundance in the calf hindgut (Supplementary Fig. 2).

By identifying age-associated bacteria, producer could make targeted
interventions to promote faster maturation of calf hindgut microbiome.
Here, the random forest machine learning algorithm was applied to regress
the relative abundances of bacteria in the feces against the subjects’ chron-
ological ages. We evaluated regression performance using mean absolute
error. The predictive result was supported by the consistency of observed
high-abundance signatures of microbes with high feature importance
scores, such as Syntrophococcus, Olsenella, Oscillospiraceae_UCG-005, and
Sharpea (Fig. 1h). The model accuracy (R2) for age predicted by fecal
microbiota reached 0.99 (Fig. 1i).

Classification of the early calf hindgut microbiota based on
enterotyping
To further classified the subtypes of calf microbiota and determine their
related core bacteria, enterotype analysis was conducted. As the result, the
hindgut microbiota has been classified into several stable enterotypes,
defined by the abundance of key taxa. However, the paradigm of the bac-
terial community type has remained unclear in calves. According to the
Calinski Harabasz (CH) index of partitioning around medoids (PAM), the
microbial profiling demonstratedanoptimal number of four clusters (k = 4)
showing the best robustness in the calf fecal community (Fig. 2a, b). To
better understand the four enterotypes and to determine the temporal
distributions of bacteria in the calf microbiota in the first 70 days of life, we
explored the emergence windows of each cluster (Fig. 2c). Clusters 1
(n = 209) and 2 (n = 140) were the two main enterotypes of calves at birth
and were represented by relatively high abundances of genera Achromo-
bacter and Corynebacterium, respectively. However, these two enterotypes
of fecal samples disappeared rapidly after birth. Cluster 3 (n = 458) became
the most predominant enterotype at 7 days of age and were dominated by
the genus Bifidobacterium in high abundance. For the period from 35 to
70daysof age, clusters 3 and4 (n = 238)were the representative enterotypes;
with age, the proportion of cluster 3 decreased and that of cluster 4
increased. Oscillospiraceae_UCG-005 became the dominant genus of bac-
teria in themicrobial community of cluster 4 (Fig. 2d, e and Supplementary
Fig. 3).

We also investigated the transition process of hindgut enterotypes
across different ages in the early stage of calves. As shown inFig. 2f, a general
inter-enterotype variation tendency was observed throughout the entire
periodof early life.Notably, themost frequent transitionoccurred in thefirst
week of early life, during which nearly all of the calves in clusters 1 and 2
shifted to cluster 3. From day 7 to post weaning (days 56–70), about 85% of
calves in cluster 3 transitioned to cluster 4 and the remainder showed no
variation between clusters 3 and 4, suggesting a decelerating trend of
enterotype transition.Next, we performedMarkov chain analysis, amethod
used to establish themodel of enterotype transitionprobabilities, to quantify
the relationships among different microbiota enterotypes (Fig. 2g). Speci-
fically, clusters 1 and 2 showedhigh frequencies of transitioning to cluster 3,
with probabilities of 0.95 and 0.96, respectively. Furthermore, cluster 3 was
quite conserved, with a self-transition probability of 0.42. There was close
transition interaction between clusters 3 and 4, with probabilities reaching
0.58 for the transition from cluster 3 to 4, and 0.94 for cluster 4 to 3.

To identify the possible factors influencing hindgut enterotype tran-
sition, we analyzed both calf and maternal factors using permutational
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multivariate analysis of variance (PERMANOVA) (Fig. 2h). In general, age
and diet were the top 2 factors shaping the hindgut microbiota in all four
enterotypes. The intake of different dietary types (liquid, concentrate, and
forage) also significantly impacted the hindgutmicrobiota. Intriguingly, the
enterotype transition may have occurred in response to certain maternal
factors includinggestational body condition score (BCS), gestationalweight,

midwifery (the delivery process that requires themidwife to help correct the
fetal position or give external force), whole-life antibiotic treatment (anti-
bioticcsf), gestational antibiotic treatment (antibioticcsn), gestational mor-
bidity (morbidity), gestational day, parity and age. Specifically, the
gestational day had significant effects on clusters 1, 2, and 4, whereas
morbidity and antibiotic treatment in the gestation period of dams

R=0.7422, P=0.001000
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Fig. 1 | Dynamics of microbial diversity in the calf hindgut. a Alpha diversity of
fecal microbiota at different time points. The significance was assessed using
Kruskal–Wallis test.Different superscripts of English letters represented the significant
differences between groups (p < 0.05). The error pounds in the bar charts were
represented bymean ± SD. b Beta diversity of the gut microbiota of calves at different
ages. Significance was assessed using ANOSIM. c Relative abundance of genera
Achromobacter and Corynebacterium. d Relative abundance of genera Collinsella and
Escherichia-Shigella. eRelative abundanceof generaBifidobacteriumandLactobacillus.

fRelative abundance of generaBlautia andBacteroides. gRelative abundance of genera
unclassified Muribaculaceae family and Oscillospiraceae_UCG-005. The total samples
were generally distributed according to age and the samples of the same age were
arranged in the order of actual collection time on x-axis. h Top 20 age-related bacteria
of the calf hindgut based on the mean square error of predictions (%IncMSE). i The
distinct capability for age prediction based on the gut microbiota of calves from 0 to
70 days of age.
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Fig. 2 | Characteristics of four calf enterotypes associated with age and diet. aCH
index of enterotype robustness. b Principal coordinate analysis of the four differ-
ential clusters based on all samples. c Proportions of the four clusters at different calf
ages. d Distribution of enterotypes at different calf ages. The significance between
groups was assessed using ANOSIM. e Box plots of relative abundance of the major
bacterial contributor of each enterotype. The five horizontal lines in the box plots

represented the upper limit, the upper quartile, the median, the lower quartile, and
the lower limit. f Sanky diagram of transitioning of the four enterotypes at different
calf ages. gMarkov chain analysis with subject-independent transition probabilities
among the four enterotypes. h PERMANOVA analysis of the amount of variance
explained by multiple factors influencing the gut microbiota. Only the significant
differences were marked (*p < 0.05, **0.01< p < 0.05, ***p < 0.001).
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influenced the hindgut microbiota of cluster 1. Gestational weight had a
profound effect on the microbial community of cluster 4.

The co-occurrence networks of bacteria were established (Supple-
mentary Fig. 4) to better understand the interactions among hindgut bac-
teria in the different enterotypes. For the network encompassing the entire
evaluation period (Supplementary Fig. 4a), we identified signatures of each
enterotype clustered by close associations using linear discriminant analysis
(LDA) effect size (LEfSe), with cutoffs of LDA > 2 and p < 0.05 (Supple-
mentary Fig. 5). In the cluster 1 network (Fig. S6B), most correlations
between bacteria were negative, and the signature taxa were loosely dis-
tributed throughout the network. However, with the enterotype transition
from cluster 2 to clusters 3 and 4 (Supplementary Fig. 4b–e), there were
more positive interactions among the bacteria in each network, and the
signatures of each enterotype had higher degrees of aggregation (Supple-
mentary Fig. 4f). The network parameters proved that the network com-
plexity of clusters 3 and 4was higher than that of clusters 1 and 2,with lower
node numbers and higher edge numbers. Moreover, anti-interference
testing revealed that cluster 4 exhibited the highest network stability, fol-
lowed by clusters 3, 2, and 1 (Supplementary Fig. 4g).

We further analyzed functional variations of the four enterotypes using
PICRUSt functional prediction to investigate the potential effects of enter-
otype evolution and transition on calf growth and development. Consistent
with themicrobial communities of the enterotypes, functional profiling also
showed four distinct clusters (Supplementary Fig. 6b, ANOSIM,
p = 0.0001). The clusters 3 and 4 exhibited a relative similar functional
structure due to a large

number of overlapping samples. Conversely, clusters 1 and 2 showed a
considerably distinct difference in functional distance, despite both being
dominant clusters at the birth of calves.

Next, we focused on the metabolic pathways underlying the remark-
able specificity of enterotype with age. At level 2 of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database, a prevalent difference of 46
functional categories was observed between the enterotypes (Supplemen-
tary Fig. 6a, Kruskal–Wallis test, p < 0.05). We further compared pathways
associated with the synthesis and metabolism of substances at level 3. As
shown in Supplementary Fig. 4h, “butanoate metabolism” and “glyoxylate
and dicarboxylate metabolism” were enriched in clusters 1 and 2 and
depleted in clusters 3 and 4. In contrast, pathways associated with amino
acid metabolism and carbohydrate metabolism showed higher abundance
in clusters 3 and 4 than in clusters 1 and 2. Among these, the pathways of
“starch and sucrose metabolism” and “amino sugar and nucleotide sugar
metabolism” in cluster 3 were the most abundant. Ultimately, considering
the advantages of gutmicrobiota in carbohydrate decomposition and amino
acid and fatty acid metabolism, we selected three related representative
pathways in which to explore temporal changes across all the calves (Sup-
plementary Fig. 4i). As expected, the pathways of “starch and sucrose
metabolism” and “alanine, aspartate and glutamate metabolism” increased
in abundance with age, whereas “butanoate metabolism” showed the
opposite pattern. We further grouped calves by enterotype to track the
functional changes of each enterotype. The abundance of the “starch and
sucrose metabolism pathway” increased with age in clusters 1 and 3, but
decreased with age in cluster 4. The abundance of the “butanoate metabo-
lism” pathway significantly decreased with age in clusters 1 and 3, but
showed no changes in cluster 4. These three clusters all exhibited a con-
sistentupward trend in abundanceof thepathwayof “alanine, aspartate, and
glutamate metabolism”.

An enterotype dominated by Bifidobacterium shaped favorable
phenotypes of calves
We also explored the relationships between different enterotypes and their
corresponding phenotypes, focusing on the 70-day-old calves due to their
detailed growth data and relative bodily maturity. Although the 70-day-old
calves were classified into two enterotypes (clusters 3 and 4) in the previous
section, to avoid the influence of other age samples on the enterotyping, we
performed a separate enterotype analysis of fecal samples from 70-day-old

calves. In agreement with the above results, two enterotypes (PAM 1 and
PAM 2) exhibited the most accuracy with the highest CH indexes (Fig. 3a).
As shown in the Wayne diagram, most of the samples in cluster 3 (17/18)
and PAM 1 (17/19) were shared, suggesting the high stability of enterotype
classification in the 70-day-old calves (Fig. 3b). We then compared the
phenotypes among the shared calves (cluster 3/PAM 1) and all other 70-
day-old calves, which revealed that the shared calves had better growth
performance, includinghigher bodyweight,ADG, and feed conversion (Fig.
3c, one-way ANOVA, p < 0.05). Regarding serum indicators, the con-
centration of albumin (ALB) was higher and that of glutathione peroxidase
(GSH-PX) was lower in the shared calves, with no other indicators showing
differences between these two groups (Supplementary Fig. 7). To further
clarify the mechanism of enterotype-mediated regulation of host growth
performance, 10 calves were selected randomly from each group (shared
and others), and fecal samples and blood samples were collected for multi-
omics sequencing (fecal metagenomics, and fecal and serum metabo-
lomics). We defined the subgroup of 10 shared calves as the excellent
phenotype group (EPG) and the subgroupof 10 other calves as the prevalent
phenotype group (PPG).These 20 fecal sampleswere sequenced~2.1 billion
quality-filtered reads were obtained after removing host contamination and
~6.6 million contigs were assembled. A distinct distance of hindgut
microbiome structurewasobservedbetweenEPGandPPG(Supplementary
Fig. 8a, ANOSIM, p = 0.001), with a significantly higher alpha diversity in
PPG as measured by the Chao1 index (Supplementary Fig. 8b, Wilcoxon
rank-sum test,p = 0.0001).Next, we examined themicrobial compositionof
each group at the species level (Fig. 3d). In EPG, the dominant species were
B. pseudocatenulatum, B. longum, B. bifidum, and B. pseudolongum
belonging to genus Bifidobacterium, S. gallolyticus belonging to genus
Streptococcus, and S. azabuensis belonging to Sharpea. In PPG, the domi-
nant species were Oscillospiraceae bacterium, Lachnospiraceae bacterium,
Clostridia bacterium, and Bacteroidales bacterium. Correlation analysis
indicated that S. gallolyticus, C. aerofaciens, B. pseudocatenulatum, and F.
prausnitziiwere significantly positively associated with phenotypic features
including body weight, ADG, and feed conversation (Feed conversion =
Average daily intake/average daily gain). Conversely, the O. bacterium, L.
bacterium, Bacilli bacterium, and Muribaculaceae bacterium were sig-
nificantly negatively associated with these features (Fig. 3e, Spearman
analysis, p < 0.05). Hungate1000 collection16, a database of bacterial and
archaeal species isolated and cultured from the GIT of a variety of rumi-
nants, was used to further deepen our microbial taxa identification at the
strain level (Fig. 3f). A total of 406 strains were identified, 193 of which
showed significant differences between the two groups. We focused on
strains belonging to those species known to be the main hosts of critical
metabolic functions. Bifidobacterium members, including B. bifidum
Calf96, B. RP2, and B. longum AGR2137, Blautiamembers including B. sp.
SF-50 and B. wexlerae AGR2146, Sharpeamembers including S. azabuensis
DSM 18934 and S. azabuensis DSM 20406, and Streptococcus members
including S. gallolyticus LMG 15572 and S. gallolyticusVTM1R29, were the
dominant taxa in EPG. The Bifidobacterium members favored starch uti-
lization and production of acetate and lactate. Streptococcus members
showed the ability to use starch and protein and produce lactate. Two
methanogenic strains of the genusMethanobrevibacter—M. millerae DSM
16643 andM. wolinii SH—were identified as representative taxa in PPG.

Characteristics of metabolic functions of the hindgut micro-
biome in phenotypically favorable EPG calves
Metagenomic functional analysis was performed to characterize the func-
tions performed by hindgut coremicrobes of calves. The pathways involved
in the organic substance metabolic process showed significant differences
between EPG and PPG (Fig. 4b, Wilcoxon rank-sum test, p < 0.05). Speci-
fically, EPG calves showed higher abundances of amino acid metabolism
pathways, including “valine, leucine, and isoleucine biosynthesis”, “phe-
nylalanine, tyrosine, and tryptophan biosynthesis”, “histidine metabolism”,
“arginine and proline metabolism”, and “glutathione metabolism”. The
pathways related to vitamin metabolism, such as “retinol metabolism”,
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“vitamin B6 metabolism”, “riboflavin metabolism”, and “biotin metabo-
lism”, showed similar trends in EPG. Additionally, the carbohydrate
metabolism pathways of “starch and sucrose metabolism”, “galactose
metabolism”, and “propanoate metabolism”, and the lipid metabolism
pathways of “biosynthesis of unsaturated fatty acids” and “fatty acid bio-
synthesis” were abundant in EPG. In PPG, the carbohydrate metabolism

pathways of “pyruvate metabolism“, “butanoate metabolism”, and “citrate
cycle”, and the energy metabolism pathways of “methane metabolism”,
“arabinogalactan biosynthesis”, and others were higher in abundance. Next,
we tracked themicrobial hosts of the fourmajormetabolic functions (amino
acid, carbohydrate, energy, and lipid metabolism) through metagenomic
assembly (Fig. 4a). Firmicutes, Actinobacteria, and Bacteroidota were the

Fig. 3 | Contribution of the Bifidobacterium-
dominant enterotype to favorable calf pheno-
types. a CH index of enterotype robustness and
Principal coordinate analysis of the two differential
clusters based on samples taken at 70 days of age.
The significance was assessed using ANOSIM.
bWayne diagram showing the intersection of cluster
3 and PAM 1. c The comparison of growth perfor-
mance in calves between the Shared and Others
groups. The significance was assessed using one-way
ANOVA. The error pounds in the charts were
represented bymean ± SD.dComposition of the gut
microbiota at the species level in EPG and PPG.
e Spearman correlation analysis between species and
phenotypes. f Identification of cultured strains in the
Hungate1000 collection. Feed conversion = Average
daily intake/average daily gain. c, e Only the sig-
nificant differences weremarked (*p < 0.05, **0.01<
p < 0.05, ***p < 0.001).
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dominant phyla harboring the functional genes involved in the major
metabolic activities. The Methanobrevibacter belonging to phylum Eur-
yarchaeota was found to be an important host of energymetabolism. At the
species level, distinct between-group differences in the metabolic functions
ofmicrobial hostswere observed. Consistentwith themicrobial community
composition, Bifidobacterium members were the primary hosts in EPG,
including B. pseudocatenulatum, B. longum, and unclassified Bifidobacter-
ium. Additionally, S. azabuensis, S. gallolyticus, and Phocaeicola coprophilus
were also dominant host bacteria in EPG. In PPG, O. bacterium, L. bac-
terium, C. bacterium, and B. bacterium were the main microbial hosts

(Fig. 4c). We also analyzed the microbial host composition of the top 10
metabolic sub-pathways and found that it was similar to that of the above
metabolic functions (Supplementary Fig. 9). In the “methane metabolism”
sub-pathway, Methanobrevibacter_sp. was dominant, explaining its
important contribution to energy metabolism.

A total of 3005 genes with significant differences were identified
between the two groups: 1078 genes enriched in EPG and 1927 genes
enriched in PPG. The KEGG enrichment analyses of these genes in each
group were visualized using the KEGG Mapper. As shown in Supplemen-
tary Fig. 10a, the differential genes in EPG were enriched in lipid

(%)

: 

Fig. 4 | Differences in KEGG metabolic functions encoded by the gut micro-
biomes of EPG and PPG. a Sankey diagram connecting the four major metabolic
pathways (2nd column) from EPG and PPG (1st column) to the predicted bacterial
hosts at the phylum (3rd column) and genus (4th column) levels. b Significant

between-group differences in KEGG pathways related to metabolism of the fecal
microbiota. The significance was assessed using Wilcoxon rank-sum test. c Bubble
plots depicting differences in metabolic functions of the microbial hosts at the
species level.
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metabolism. Genes common to both groups were enriched in amino acid
metabolism and carbohydrate metabolism. Specifically, the pathways of
“biosynthesis of amino acid” and “fatty acid metabolism” were activated in
EPG through the upregulation of genes related to biosynthesis of valine,
leucine, histidine, and isoleucine, and elongation of fatty acid chains (Sup-
plementary Fig. 10b, c). Conversely, methane metabolism-related genes
were higher in abundance in PPG (Supplementary Fig. 10d).

Next, considering that the decomposition of carbohydrates was an
important characteristic of nutritional metabolism of microbiome, we
focused on carbohydrate-active enzyme (CAZyme) in these two groups.
Glycoside hydrolases (GHs) were the most abundant of the seven CAZyme
classes, showing a distinct difference between EPG and PPG (Fig. 5a,
ANOSIM, p = 0.009). Therefore, we further compared the abundances of
GH members in the two groups, illustrating the top 10 GH members with
significant differences in Fig. 5b (Wilcoxon rank-sum test, p < 0.05). Spe-
cifically, EPG exhibited higher abundances of GH1, GH32, GH23, and
GH42, which were mainly assigned to families Bifidobacteriaceae, Copro-
bacillaceae, Lachnospiraceae, and Streptococcaceae. In PPG, the abundances
of GH3, GH78, GH28, GH97, GH94, and GH105 were higher and were
assigned to families Bacteroidaceae, Oscillospiraceae, Lachnospiraceae, and
unclassified_Clostridia (Fig. 5c).

Significant metabolic profile differences between EPG and
PPG calves
Metabolomic analyses were also performed on feces and blood samples
from EPG and PPG calves, which allowed us to determine the differences
between the two groups from the perspective of host and microbial meta-
bolic profiles. Partial least squares-discriminant analysis (PLS-DA) showed
distinct metabolic profiles of feces from EPG and PPG (Fig. 6a). A total of
2281 fecalmetabolites were quantified, of which 402 differentialmetabolites
were identified: 118 upregulated metabolites and 284 downregulated
metabolites (Fig. 6b). Given the close interaction between the hindgut
microbiota and the host, we conducted MetOrigin analysis17 to better
characterize the origin of these metabolites (host, bacteria, or both). The
results showed that 27 metabolites were derived from the host, 59 meta-
boliteswere fromthemicrobiota, and22metaboliteswere sharedby the two;
the remaining 381 metabolites were from other sources (drugs, food,
environment, and unknown) (Fig. 6c). Functional enrichment analysis of
themetabolites from host,microbiota, and both sources (Fig. 6d) revealed a
total of 48 metabolic pathways comprising 30 shared pathways, 21
microbiota-specific pathways, and four host-specific pathways. Consistent
with the results ofmicrobial functional enrichment, the pathways of “valine,
leucine, and isoleucine biosynthesis”, “vitamin B6 metabolism”, “sphingo-
lipidmetabolism”, “D-aminoacidmetabolism”, and “alanine, aspartate, and
glutamate metabolism” were enriched by multiple differential metabolites.
These include upregulated L-glutamine, lactaldehyde, indoleacetic acid, and
5-phosphoribosylamine, (Fig. 6e) and downregulated L-phenylalanine,
isopropylmaleic acid, 5-hydroxyindoleacetate, and (S)-2-aceto-2-hydro-
xybutanoic acid (Fig. 6f). The bloodmetabolomics also revealed remarkable
between-group differences in metabolic compounds (Supplementary Fig.
11a). In total, 302 significantly differential bloodmetaboliteswere identified
(114 upregulated and 188 downregulated) (Supplementary Fig. 11b),
among which 33 and 57 metabolites were derived from the microbiota and
the host, respectively (Supplementary Fig. 11c). The pathways of “lysine
biosynthesis”, “valine, leucine and isoleucine degradation”, “arachidonic
acid metabolism”, “phenylalanine, tyrosine and tryptophan biosynthesis”,
and “tryptophan metabolism” (Supplementary Fig. 11d) were enriched by
differential metabolites, including PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/
16:1(9Z)), PC(15:0/22:4(7Z,10Z,13Z,16Z)), allysine, succinic acid, and
methylmalonic acid (Supplementary Fig. 11e, f).

Multi-omicsanalysis of theactivemetabolic pathways in theEPG
calf hindgut
Joint analysis of multi-omics data was also performed to understand how
the fecal microbiome affected the growth performance of the host through

microbial metabolism and co-metabolismwith the host. Usingmultiple co-
inertia analysis (MCIA)18 projection plots, we observed close co-
relationships and trends between three high-dimensional datasets and a
distinct division between EPG and PPG. We then calculated the pseudo-
eigenvaluesassociatedwith thefirst twoprincipal components (PCs) of each
dataset, which could explain the contribution of each dataset to the total
variance and correlation between the datasets. Fecal microbiota and blood
metabolites had the highest degree of explanation values onAxis 1 andAxis
2, respectively, with fecal metabolites showing a stronger correlation with
the fecal microbiota than with blood metabolites (Fig. 7a). The co-
occurrence network also indicated potential associations between the
dominant microbes and critical metabolites (Fig. 7b). Combined with the
enrichmentpathways sharedby themicrobiomeandmetabolomicsdata,we
identified and described the predominant metabolic functions regulated by
the hindgutmicrobiome of calves. As shown in Fig. 7c, genes involved in the
degradation of exogenous carbohydrates (e.g., SurA, INV, K00847, treY,
treZ, celC, and celB), including sucrose, starch, and cellobiose, were upre-
gulated in EPG. In the subsequent glycolysis process, most of the related
genes (ppgk, pfkB, gapN, aceE, and others) and one metabolite
L-lactaldehyde were increased, whereas only a few related genes (CPI,GloB,
and LarA) were decreased in abundance in EPG. Similarly, VFA and amino
acid metabolism were activated in EPG, including the upregulated genes
ilvC, ilvD, leuC, leuD, accC, paaF, and IcdB. Notably, genes (gudB, k00261,
pdxS, pdxT, and pdxK) and metabolites (L-glutamine and 5-phosphor-
ibosylamine) related to synthesis of vitamin B6 were also increased in EPG.
Conversely, genes involved in methane metabolism (cdhD, cdhE, CooF,
cooS, EC1.2.7.12, EC 2.1.1.86, EC 2.8.4.1, and others) were all upregulated
in PPG.

Transplantation of the Bifidobacterium-dominant EPG gut
microbiota promoted the growth of mice
According to the above analysis, we confirmed the close relationship
between Bifidobacterium and calf phenotype, and evaluated the potential
regulatory mechanisms. However, it was necessary to provide more direct
evidences thatBifidobacterium-dominated fecalmicrobiome could promote
the growth and development of the host (not only to calves), which was a
prospective step for the development of universal probiotic preparations.
Therefore, mice as the conventional animal model were used to conduct the
FMT experiment (Fig. 8a). We observed that BW in the last 3 days of FMT
was significantly higher in EPGmice than in PPG andCONmice. The EPG
mice also showed a higher ADG (Fig. 8b, one-way ANOVA, p < 0.05).
Anatomical comparison revealed that EPGmice had a larger body size and a
longer colon length compared with the other groups (Fig. 8c, one-way
ANOVA, p < 0.05). Furthermore, histological analysis revealed that EPG
mice had a more complete and compact colonic epithelial structure and a
shallower recess, suggesting ahigherdegreeof colonicdevelopment (Fig. 8d).
The phenotypic characteristics of these mice proved that the hindgut
microbiota of EPGcalves could promote the growth and gut development of
another species of young animals. In addition, we also conducted 16S
sequencing to detect the microbial composition in the feces of mice in each
group. As shown in the Fig. 8e, f, Bifidobacteriumwas prevalent with higher
abundance in the EPG mice compared with other groups (Kruskal–Wallis
test, p < 0.05) and showed the significant correlationswithADGand theBW
of the last 3 days of the experiment (Fig. 8g, Spearman analysis, p < 0.05),
demonstrating the successful colonization of Bifidobacterium in the gut of
EPG mice and its close correlation with growth performance.

Discussion
The early colonization and evolution of the hindgut microbiota have pro-
found effects on the growth and productivity of calves. Prior to this study,
the hindgut core microbes in the early life of calves had not been fully
summarized and the characteristics had not been deeply probed. This is the
first study to integrate large-sample multi-omics analyses to identify the
enterotypes of young ruminants, revealing how the dominant core bacteria
of each enterotype regulated the hindgut metabolism to influence the
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growth phenotype. Our classification produced precise, dynamic calf
enterotypes, highlighting that the Bifidobacterium-dominated microbiome
improved calf growth by regulating the metabolism of substances in the
hindgut.

Consistent with previous studies19,20, the meconium was distinguished
from the feces of other growth stages by its high microbial diversity and
unique composition. Diarrhea caused by pathogenic Escherichia coli
infection is an important threat to the health of calves, especially newborn

Fig. 5 | Distinct enrichment of CAZyme coding genes in the fecal microbiome of
EPG calves. a Relative abundance of all CAZyme genes in EPG and PPG. Only the
significant differences were marked (*p < 0.05, **0.01< p < 0.05, ***p < 0.001).
b Principal coordinate analysis of the GH enzyme family in EPG and PPG. The

significance was assessed using ANOSIM. c Abundance of the top 10 significantly
different GH enzymes, with the predicted enrichment of the corresponding
microbial hosts. TPM Transcripts Per Million. a, c The significance was assessed
using Wilcoxon rank-sum test.
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calves under 3 weeks of age6,20,21. Similarly, we also detected the high
abundance of Escherichia-Shigella in the feces of our calves at the first week
of age, suggesting a high susceptibility to diarrhea in calves at this stage.
Fortunately, consistent with previous studies22,23, beneficial bacteria that
persisted from 7 days of age to the post weaning phase were also observed,
including Bifidobacterium, Lactobacillus, Blautia, and Bacteroides,

suggesting that the microbial community of the calf hindgut gradually
matures and becomes more diverse. Furthermore, we observed that
unclassified Muribaculaceae family and Oscillospiraceae_UCG-005, which
are reportedly enriched in animals with high-fiber diets and positively
correlated with fatty acid concentrations24,25, were present at 35 days of age,
becoming the dominant genera at 70 days of age. In this study, calves

Fig. 6 | Fecal metabolic profiles of EPG and PPG.
a PLS-DA of the fecal metabolomes between EPG
and PPG calves. b Volcano map of metabolites
identified by fecal metabolomics. c Identification of
fecalmetabolites fromdifferent sources. dMetabolic
pathway enrichment analysis of different categories
of metabolites from different sources. Abundance of
upregulated (e) and downregulated (f) metabolites
involved in the enrichment of metabolic pathways.
The error pounds in the bar charts were represented
by mean ± SD.
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consumed more forage with increasing age, which might have provided an
abundance of nutritional substrate for the proliferation of these two kinds of
bacteria. Notably, even among individual calves of the same age, the com-
positions of the microbiota were not completely consistent, implying the

existence of different gut types among calves. Additionally, studies in other
livestock have confirmed that the various gut microbes could be used to
predict host chronological age26,27. Indeed, in this study, we used a random
forest regressionmodel to identify a set of fecalmicrobes that predict calf age

Fig. 7 | Joint analysis of multi-omics data. aMCIA of the fecal microbiome, fecal
metabolites, and blood metabolites in EPG and PPG. b Network analysis of inter-
actions among the fecal microbiome, fecal metabolites, and blood metabolites.

c Integration of different metabolic pathways involved in starch and sucrose
metabolism, glycolysis, amino acid metabolism, vitamin metabolism, VFA meta-
bolism, and methane metabolism.
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Fig. 8 | Effects of FMT from EPG and PPG calves on growth performance and
colonic development of mice. a Experimental design diagram. b Body condition
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group. c Representative images (left) and length data (right) of the colon in each
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Bifidobacterium in each group. The significance was assessed using Kruskal–Wallis
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regression relationship between Bifidobacterium abundance and growth perfor-
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with high accuracy. Hence, it was unsurprising that some bacteria involved
in nutrient digestion were correlated with calf age and physiological
alteration.

In this study, although a total of four enterotypes were detected, only
two (cluster 3 dominated by Bifidobacterium and cluster 4 dominated by
Oscillospiraceae_UCG-005) were resident in the calf hindgut from birth to
post weaning, and thus identified as representative enterotypes. The most
variation in enterotypes occurred in the first week of life. During this period,
clusters 1 and 2 (dominated by Achromobacter and Corynebacterium,
respectively) rapidly transitioned to cluster 3. Although the proportion of
cluster 3 bacteria continued to decrease and be replaced by cluster 4 bacteria
with age,Bifidobacterium undeniably remained as the dominant bacteria in
some of our post-weaning calves. In other studies, Bifidobacteriumwas also
identified as one of the earliest colonizers in the gut of newborn calves28.
Although its abundance in some individuals decreasedwith the ages, we still
observed the prevalence of Bifidobacterium in the fecal microbiota of lac-
tating dairy cow, and its abundance was positively correlated with cows’
healthy status29. These evidences indicated that Bifidobacterium was not
unique to a specific age of host, but its abundance and prevalence varied
among hosts of different ages, whichmight be attributable to host condition
and dietary regime. As expected, the functional profiles of the enterotypes
showed remarkable temporal characteristics. Even at the same time point,
the pattern of metabolic function between clusters 3 and 4 was different,
whichmight be involved in promoting phenotypic differentiation of calves.

Therefore, in calves at 70 days of age, we identified a significant asso-
ciation between enterotype and phenotype. Calveswith the Bifidobacterium
enterotype showed the best growth performance. By applyingmetagenomic
sequencing, we further identified several species of Bifidobacterium with
high abundance in EPG, namely B. pseudocatenulatum, B. longum, and B.
bifidum, which showed positive correlations with body weight and ADG.
Probiotic effects of Bifidobacterium members on other animals have been
reported, including improvement of hostmetabolism30, inhibition of tumor
growth31, promotion of infant growth32, and relief of gut inflammation33. In
this study, we used calves as a model to verify that probiotics can also
promote the growth of young animals. Of note, some Bifidobacterium
members originate from specific hosts34. Relying on the exclusive database
of ruminant GIT, we identified several Bifidobacterium strains in calf feces,
among which Bifidobacterium longum AGR2137 has reportedly been suc-
cessfully isolated only from the feces of calves35. These results suggested that
the favorable growth phenotype of calvesmay be driven by hindgut-specific
Bifidobacterium.

Metabolic liability also significantly differed between EPG and PPG.
The prediction of microbial host bacteria executing metabolic functions
showed that Bifidobacterium species were the primary microbial origins of
metabolic function genes inEPG, suggesting that the difference indominant
bacteria drove the heterogeneity of corresponding metabolic functions.
Specifically, processes involving degradation of exogenous carbohydrates
(starch, sucrose, and cellulose) were more active in EPG. Most Bifido-
bacterium taxa tend to use monosaccharides, disaccharides, and oligo-
saccharides, whereas the genomes of B. longum and B. pseudocatenulatum
contain various glycan-active enzymes, which are recognized for the ability
to efficiently degradeplant-basedcarbohydrates36,37. Therefore, in this study,
adequate daily intake of milk replacer (MR) before weaning promoted the
proliferationandmetabolismofBifidobacterium, and thehighabundanceof
B. longum and B. pseudocatenulatum explained the higher level of forage
consumption by EPG calves. In the downstream metabolic pathways,
metabolism of VFAs was also enriched by the upregulated functional genes
in EPG; specifically, the processes of acetate, propanoate, and butanoate
synthesis became active. VFAs were the most abundant substance in the
degradation of carbohydrates by gut microbiota. As an important bridge,
VFAs produced by the gut microbiota constitutes the interaction network
between the microbiome and its host38. Butyrate has been identified as the
most important energy substance for intestinal development. Up to 95% of
the butyrate produced by the microbiota is absorbed and used by the colon
to maintain and develop epithelial structure39. In addition, as a ligand,

butyrate binds to histone deacetylases to regulate the expression of per-
oxisome proliferator-activated receptors and maintain intestinal
homeostasis40. Propanoate produced by the microbiota can be converted to
glucose through gluconeogenesis in the liver for consumption by the host41.
Acetate is themost abundant fatty acid produced by the gutmicrobiota. The
lack of acetate is closely related to abnormal lipid consumption and meta-
bolism of hosts42. As an important precursor of VFAs, lactate is one of the
main products of Bifidobacterium43. Furthermore, Bifidobacterium has the
ability to directly convert starch into short chain fatty acid (SCFAs). In this
study, we speculated that a variety of Bifidobacterium members in the
hindgut of EPG calves were the main driving force of VFA synthesis.
Similarly, Bifidobacterium also stimulated the synthesis of amino acids in
EPG. One study demonstrated that different types of Bifidobacterium were
responsible for a specific and diverse set of gene functions. These functions
include Bifidobacterium bile salt hydrolase (BSH), which hydrolyzes bound
bile salt into free bile acids and amino acids44, for whichB. longum showed a
stronger ability in amino acid synthesis and metabolism compared with
other strains45. Bifidobacterium has also been shown to influence or directly
participate in the synthesis of vitamins, which are indispensable active
substances that promote the development of young animals and maintain
their health. B. longum improved colitis in mice by regulating the meta-
bolism of vitamin B646. B. brevis produced glutathione and vitamin B6 to
meet the host’s demands for antioxidants47. Consistently, we also observed
the activation of vitamin B6 synthesis in this study.

Interestingly, compared with the enrichment of methanogens and the
methanogenicpathway inPPG,methane synthesis seemed tobe inhibited in
EPG. Statistically, greenhouse gas emissions from the entire animal hus-
bandry production chain account for about 15% of global man-made
greenhouse gas emissions48. As one of the main greenhouse gases, it is of
great ecological significance to effectively reduce methane emissions from
animal sources. Previous studies revealed that high abundance of metha-
nogens in the animal gut was negatively correlated with fat deposition49;
thus, regulation of gut methanogens might be an effective way to promote
animal growth50. Mechanistically, the inhibition of methane production
essentially involves a competition for hydrogen ions between methanogens
and other nutrient-metabolizing bacteria. One study reported that acetate-
producingbacteria,which aremore attracted tohydrogen (H2), promote the
production of volatile acids rather than methane by the gut microbiota51.
Hence, we reasoned that the more abundant Bifidobacterium in EPG
compared with PPG used more H2 to produce lactose and acetate. The
resulting construction of a nutrient-producing microbial community
instead of a methane-producing one led Bifidobacterium to occupy a more
dominant niche in EPG, thus increasing the hindgut energy harvested for
calf growth.

In this study, it was a limitation that the present studydidnotweigh the
male calves due to the feeding andmanagement protocol of the commercial
farm, and it would be better if the future study could include growth phe-
notype from both male and female animals. Additionally, although in this
experiment, we proved the beneficial effect of Bifidobacterium-enriched
fecal microbiome on the host, due to the complexity and diversity of fecal
microbial community, we could not remove potential interferences of other
bacteria, especially pathogens, on the host, which posed a challenge for us to
further explore the probiotic mechanism of Bifidobacterium and screen
related marker metabolites. Therefore, we anticipated that the functional
identification and verification of single Bifidobacterium strain and related
metabolites might be a future research direction that could help guide the
development of more accurate, efficient growth-promoting probiotics for
animal development.

This study investigated the invasion and dynamic changes of core
bacterial taxa in the early life of calves. Enterotype analysis based on large
samples generated four calf enterotypes, two of which (dominated by Bifi-
dobacterium and Oscillospiraceae_UCG-005) were identified as repre-
sentative enterotypes. The frequency of conversion between enterotypes
shifted from variable to stable with age. Functional profiling revealed dis-
tinct, enterotype-specific characteristics and transition trends. Additionally,

https://doi.org/10.1038/s41522-024-00534-4 Article

npj Biofilms and Microbiomes |           (2024) 10:59 13



we observed a close relationship between phenotype and enterotype, with
the Bifidobacterium-dominant enterotype showing better growth perfor-
mance. The Bifidobacteriummembers improved calf growth by promoting
the use of carbohydrates, activating the synthesis of VFAs, amino acids, and
vitamin B6, and inhibitingmethane production in the hindgut. The FMT in
mice further validated the beneficial effect of theBifidobacterium-dominant
microbiota on animal growth and hindgut development.

Methods
Animals and experimental design
The animal experiment was conducted at the Gansu Tianmu Farm (Jin
Chang, Gansu Province, China). A large cohort of 408Holstein dairy calves
(150 female and 258 male) were enrolled in this study and they were all fed
followed by the dietary regime of farm from birth to 70 days of age (Sup-
plementary Table 2). Specifically, the calves were fedmilk andmilk replacer
(MR) twice a day (08:00 and16:00) according to theTable S1.The calves had
unrestricted access towater, concentration, and forage frombirth to 70 days
of age. The nutritional composition of each feed was shown in the Sup-
plementary Table 3. During the period, considering feeding and manage-
ment protocol of the commercial farm, we only tracked and recorded the
growth performance and health of 150 female calves from their birth to
70 days of age. The feed intake (milk, concentration, and forage), diarrhea
condition, and antibiotic treatment of each female calf were recorded every
day. Their body weights weremeasured utilizing a calf weighingmachine at
specific time points: 0, 14, 28, 42, 56, and 70 days of age. We also collected
related information about the cow corresponding to each calf, including
BCS, BW, morbidity, gestation day, parity, age, and antibiotic treatment.

Collection of calf samples
Fecal samples (n = 1045) were collected from each calf at their corre-
sponding 0, 14, 28, 42, 56, or 70 days of age. The sampling time points of
fecal samples at 14, 28, 42, 56, and 70 days of age were all at 06:00 before the
morning feeding of calves. Notably, the meconium samples from calves on
day 0 were collected within half an hour of birth before colostrum admin-
istration. All fecal samples were collected using sterilized gloves and stored
in the 5mL sterilized frozen storage tubes. Blood samples were collected
from female calves at 06:00 at 70 days of age by jugular vein sampling and
stored in 10mL evacuated tubes. The blood samples were further cen-
trifuged at 3000 × g for 10min at 4 °C to collect the serum in the 5mL sterile
frozen storage tubes. Both fecal and serum samples were snap frozen in
liquid nitrogen and then stored in −80 °C refrigerator for the subsequent
analysis.

DNA extraction, PCR amplification, and data processing
A total of 1,045 fecal samples of calves were collected for 16S sequencing. A
Dneasy PowerLyzer PowerSoil Kit (Qiagen, Inc., Germantown, MD, USA)
was used to extract microbial DNA from fecal samples. The quality of total
DNA preparations was checked using a Thermo NanoDrop 2000 UV
microphotometer and 1% agarose gel electrophoresis. The V3-V4 region of
the bacterial 16S rRNAgenewas amplified using the primer pair 338 F (5′-A
CTCCTACGG GAGGCAGCAG-3′) and 806 R (5′-GGACTACHV
GGGTWTCTAAT-3′) in anABIGeneAmp®9700PCRthermocycler (ABI,
CA, USA). Of note, we also set up negative and positive controls in the PCR
amplification process to ensure that the samples did not receive reagents or
environmental contamination (Supplementary Fig. 12). The PCR products
were extracted from 2% agarose gels and purified using the AxyPrep DNA
Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA), in accor-
dance with themanufacturer’s instructions, and quantified using Quantus™
Fluorometer (Promega, Madison, Wisconsin, USA). Amplicon libraries
were sequenced using an Illumina Miseq PE250 platform (Illumina, San
Diego, CA, USA).

Raw FASTQ files were de-multiplexed using an in-house Perl script,
then quality-filtered by fastp version 0.19.6 and merged by FLASH version
1.2.1152. DADA2 was chosen to de-noise the optimized sequences. Taxo-
nomic assignment of amplicon sequence variantswas then performedusing

the naive Bayes consensus taxonomy classifier implemented in Qiime2 and
the SILVA 16S rRNA database (v138), and then adjusted for the rRNA
operon copy number estimated using data from the rrnDB database53.

Metagenomic sequencing and processing
A total of 20 fecal samples (10 replicates per group) were selected randomly
from the calves in the different enterotype groups of 70 days of age to
perform themetagenomic shotgun sequencing.Moreover,we calculated the
statistical power using G*Power software (version 3.1.9.7; https://g-power.
apponic.com) to obtain power (1− β prob) of 0.80 and α err prob error of
0.05. The effect size for microbial difference was determined referred by the
previous research3 (value = 1.678). The result of calculation showed the
minimum sample size was 10. Therefore, the sample size of 20 fecal samples
was sufficient to the microbial analysis.

ExtractedDNAwas fragmented to an average size of about 400 bp by a
Covaris M220 ultrasonicator (Gene Company Limited, Shanghai, China)
for construction of a paired-end library using NEXTFLEX Rapid DNA-Seq
(Bioo Scientific, Austin, TX, USA). Paired-end sequencing was performed
on an Illumina Novaseq 6000 (Illumina Inc.) using a NovaSeq 6000 S4
Reagent Kit, in accordance with the manufacturer’s instructions at www.
illumina.com. The raw sequencing reads were trimmed of adapters, and
low-quality reads (length < 50 bp; quality value < 20; or presence ofNbases)
were removed by fastp (https://github.com/OpenGene/fastp, version
0.20.0). Readswere aligned to theBos taurus genome and anyhits associated
with the reads or their mated reads were removed. The quality-filtered data
were assembled using MEGAHIT (https://github.com/voutcn/megahit,
version 1.1.2). Contigs with a length ≥ 300 bp were selected as the final
assembling result.Open reading frames (ORFs) fromeach assembled contig
were predicted using Prodigal (https://github.com/hyattpd/Prodigal, ver-
sion2.6.3), and ORFs ≥ 100 bp in length were retrieved. A non-redundant
gene catalog with 90% sequence identity and 90% coverage was constructed
using CD-HIT (http://weizhongli-lab.org/cd-hit/, version 4.7). Gene
abundance for a specific sample was estimated with 95% identity by
SOAPaligner (https://github.com/ShujiaHuang/SOAPaligner, version soa-
p2.21release). The best-hit taxonomy of non-redundant genes was obtained
by aligning them against the NCBI NR database using DIAMOND (http://
ab.inf.uni-tuebingen.de/software/diamond/, version 2.0.11) with an e-value
cutoff of 1e-5. The functional annotation of non-redundant genes at KEGG
and CAZy was similarly obtained54.

Metabolite extraction and quality control
Similarly, the fecal and serum samples from the same 20 calves were also
used to detect the metabolic profiles. Each 50-mg fecal and serum sample
was added to a 2-mL centrifuge tube, followed by a 6-mmdiameter grinding
bead. The samples were ground by a Wonbio-96c frozen tissue grinder
(Shanghai Wanbo Biotechnology Co., Ltd., Shanghai, China) for 6min
(−10 °C, 50 Hz) and extracted for 30min (5 °C, 40 kHz) using low-
temperature ultrasonication. After leaving the samples at (−20 °C for
30min) and centrifuging for 15min (4 °C, 13,000 × g), the supernatant was
collected for subsequent analysis. Quality control samples comprising a
mixture of equal volumes of all samples were prepared to monitor the
stability of the analysis.

Metabolomics data analysis
The liquid chromatography-tandemmass spectrometry analysis of samples
was conducted on a Thermo UHPLC-Q Exactive HF-X system equipped
with an ACQUITY HSS T3 column (100mm length × 2.1 mm inner dia-
meter; 1.8 μm particle size; Waters Corp., Milford, Massachusetts, USA).
Under both positive and negative ion modes, a TripleTOF 5600 Plus high-
resolution tandem mass spectrometer (SCIEX, Warrington, UK) was used
to identify metabolites eluted from the column. Acquired data were
exported into the mzXML format using XCMS software55. Analyses of
traceability and enrichmentofmetaboliteswereperformedusingMetOrigin
(http://metorigin.met-bioinformatics.cn/app/metorigin)17. At the MetOr-
igin online server, the Simple MetOrigin Analysis (SMOA) mode, which
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requires a list of metabolites with KEGG or HumanMetabolome Database
IDs, was chosen for our data. The SMOAmode allows identification of the
origins of metabolites based on seven well-known metabolite databases.
After loading the dataset, metabolic pathway enrichment analysis analysis
was carried out. A bar plot was created to summarize the total number of
metabolites from the host, microbiota, both host andmicrobiota, and other
sources.

FMT in mice
The operation of fecal microbial suspension was performed in the ultra-
clean worktable, and the related equipment and consumables were also
sterilized under high temperature and high pressure. The frozen fecal
samples of the EPG and PPG stored at −80 °C were thawed in a constant
temperature water bath at 37.5 °C (about 10min). Next, a 1 g fecal sample
for each calf in the two groups (10 g per group) was homogenized and
diluted in 90ml PBS buffer containing 0.2 g/l Na2S and 0.5 g/l cysteine.We
used sterile screens with 200 mesh, 400 mesh, and 800mesh in sequence to
filter out insoluble particles and impurities and centrifuged the filtrate at
600 × g for 5min, and removed the supernatant fluid into 10mL centrifuge
tubes. Then adropof suspension absorbedby a strawwasplacedon the edge
of the cover slide in the center of the XB-K-25 blood cell count board,
keeping it to slowly seep into the counting room. According to the estab-
lished counting method and calculation formula, the concentration of
suspension was determined (over than 108 CFU/mL in the both group).
Finally, we added 10% sterile glycerol to the fecal microbial suspension,
sealed the centrifuge tubes with sealing films and stored them in a refrig-
erator at −80 °C for the following FMT.

A total of 24, 3-week-old female specific pathogen free (SPF)C57BL/6 J
mice (Sibeifu Biotechnology Co., Ltd., Beijing, China) were enrolled in the
FMT experiment and underwent a 7-day acclimatization stage before
treatment. All themicewere kept in the SPF animal barrier facilities and fed
with a normal diet and purified water. The feeding conditions were room
temperature (23.0 ± 2.0 °C), relative humidity of 50–60%, and 12 h of light
every day. Next, the mice were treated with antibiotics cocktail (ampicillin
1 g/l, neomycin 1 g/l, metronidazole 1 g/l, vancomycin 0.5 g/l, diluted in
ultra-pure water) for 7 days to deplete the gut microbiome. In detail, the
mice had unrestricted access to antibiotics cocktail water and also admi-
nistered an additional 200 μL/day of antibiotics cocktail. After 7 days, the
mice experienced4-daywash-outperiod to eliminate the residual antibiotics
before FMT. Subsequently, thesemicewere randomly divided into 3 groups
(n = 8; 4 mice/cage; CON, EPG and PPG), which were colonized by oral
gavagewith 200 μL/d of PBS, fecalmicrobial suspension fromEPGcalves or
PPG calves for 2 weeks. During the period, we measured the weight of the
mice every day. At the end of 14-day FMTexperiment, themicewere placed
in a sealed euthanasia boxconnected to the carbondioxide (CO2) inputpipe,
then the inputvalvewasopenedandCO2was infused into theboxat a rate of
10–30% of the volume of the euthanasia box per minute. When the mice
weremotionless, not breathing, and their pupils were dilated.We closed the
valve and observed the mice for another 2–3min to determine their death.
The colonic tissues of mice were collected to make the paraffin sections for
subsequent histological observation. The colonic contents were also col-
lected in the 5mL sterilized frozen storage tubes and stored in the −80 °C
refrigerator for the next microbial analysis.

Histomorphologic examinations
Colonic tissue samples were dehydrated in a series of ethanol solutions,
embedded in paraffin sections, and cut into 6-μM sections. The sections
were stained with hematoxylin, and the colonic structure was observed
under anOlympus BX-51 light microscope (Olympus Corporation, Tokyo,
Japan) at 10× magnification. The microscopic evaluations were conducted
blindly by an experienced pathologist.

Statistics
Alpha diversity (Shannon and Chao1 indexes) in the groups was compared
using the Kruskal–Wallis test and a post-hoc Dunn’s multiple comparison

with a Bonferroni adjustment. Beta diversity based onBray-Curtis distances
was calculated and tested using an analysis of similarity (ANOSIM). The
outputs of diversity were visualized using the ggplot2 R package (version
3.6.0). LEfSe, an analytical tool for discovering and interpreting biomarkers
of high-dimensional data, was used to identify the signature microbiota.
p < 0.05 and LDA score > 2 were used as a criterion for judging the sig-
nificant effect size.

The enterotype analysis was performed using Jensen-Shannon diver-
gence distance and PAM clustering. The optimal number of clusters was
calculated using the CH index.

The random forest regression model was used to identify age-related
bacteria in calf feces.The randomForestRpackage (version4.6-14, available
at https://cran.r-project.org/web/packages/randomForest/) was used, with
the parameters of ‘importance’ and “proximity” set as “True”, and “ntree”
set to 10,000 trees.

Spearman’s analysis was performed to calculate correlations between
bacteria in different clusters using the psych R package, and the related
interaction networks were visualized using Gephi (https://gephi.org/). Only
significant coefficients (P < 0.05, |r| > 0.5) are shown in the networks. The
degree of nodeswas applied to represent the network sparsity; the lower the
degree, the sparser the network is. The natural connectivity of a complex
network was used to reveal the robustness of the network. Line plots were
illustrated using the ggplot2 R package.

Ethics approval
The animal experiment in this study was performed in accordance with the
Regulation of the Administration of Laboratory Animals (2017 Revision)
promulgatedbyDecreeNo. 676of the StateCouncil, China.The animal care
protocol was approved by the Animal Care and Use Committee of China
Agricultural University (Protocol Number: AW10803202-3-2).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The accession for the 16S sequencing andmetagenomicsdata in this study is
NCBI Sequence Read Archive: # PRJNA1052964. The metabolomic data
has been deposited in National Genomics Data Center (https://ngdc.cncb.
ac.cn) under the BioProject PRJCA027522.
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