
Article https://doi.org/10.1038/s41467-024-52446-8

ENCORE: a practical implementation to
improve reproducibility and transparency of
computational research
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Danial Lashgari 1,2,3, Mia Pras-Raves 5,6, Eric J. M. Wever 5,6,
Adrie D. Dane 1,2,6, Rodrigo García-Valiente 1,2,3 & Perry D. Moerland 1,2,3

Reproducibility of computational research is often challenging despite
established guidelines and best practices. Translating these guidelines into
practical applications remains difficult. Here, we present ENCORE, an
approach to enhance transparency and reproducibility by guiding researchers
in how to structure and document a computational project. ENCORE builds on
previous efforts in computational reproducibility and integrates all project
components into a standardized file system structure. It utilizes pre-defined
files as documentation templates, leverages GitHub for software versioning,
and includes an HTML-based navigator. ENCORE is designed to be agnostic to
the type of computational project, data, programming language, and ICT
infrastructure, and does not rely on specific software tools. We also share our
group’s experience using ENCORE, highlighting that the most significant
challenge to the routine adoption of approaches like ours is the lack of
incentives to motivate researchers to dedicate sufficient time and effort to
ensure reproducibility.

Reproducibility of research outcomes has become increasingly
important within all research fields, including the (bio)medical
domain1,2. The scientific community is increasingly concerned about
the so-called ‘reproducibility crisis’, which includes but is not limited to
the failure to reproduce results of published studies and lack of
transparency and completeness3. Research transparency importantly
contributes to reproducibility and refers to the degree to which
methodologies, data, and results are accessible and understandable to
others and, consequently, contributes to the overall credibility and
trustworthiness of a study4. Increased data size, increased complexity
of experimental and computational methods, and multi-disciplinarity,

make reproducibility increasingly challenging. Scientist-driven efforts
complemented with pressure from research institutes, funders, and
journals have resulted in various initiatives and approaches, covering
the different stages of the research lifecycle, to increase reproduci-
bility of scientific findings5 (Fig. 1). Typically, this cycle starts (stage 1)
with a careful preparation of the study, which includes planning in
terms of research objectives, funding, data management, ethics,
experimental design, experimental and computational approaches,
publishing, and study archiving. Stage 2 concerns the collection and
processing of (patient) samples, and the generation of data. Once data
has been collected, it is analyzed using statistical or other
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computationalmethods (stage 3). This stagemay include, for example,
quality control of experimental data, evaluation of data analysis,
mathematical modeling, and simulations depending on the research
project. Alternatively, one may solely or partially rely on existing data
from (public) repositories or conduct studies that are based on com-
puter simulations6,7. Stage 4 (publication and archiving) is increasingly
driven by initiatives aiming for open-access publications and data8,9

and open-source software10,11. Research findings are published in open-
access preprint repositories (e.g., arXiv, bioRxiv, medRxiv) and/or
peer-reviewed (open-access) journals, while additional output (e.g.,
data, code) can be archived in, for example, the major omics
repositories12, figshare13 and Zenodo14.

Despite ongoing initiatives to improve computational repro-
ducibility, results from computational analyzes, including from our
group, often remain difficult to reproduce even if data and code are
available15–18. Irreproducibility of computational research has well-
known causes, including undocumented manual processing steps,
unavailability of software or data, reliance on public repositories,
changes in web-services and software libraries, incomplete software
documentation, and unspecified parameters. Guidelines to improve
computational reproducibility have been suggested by several
groups (e.g.19–21) but their translation and application in research
practice seems to be a bottleneck given that computational studies
do not always (fully) adhere to these guidelines. Reproducibility
may also be compromised if software is not transparent and, con-
sequently, is not easy to run, understand, test, or modify. This
problem typically arises in software developed by (biomedical)
researchers without formal training in software engineering22,23.
Such software might even contain undetected (conceptual) errors
although this does not necessarily result in irreproducible results.
Nevertheless, training researchers with best practices in software
engineering is expected to improve reproducibility. Moreover,
making software available as open-source24, allows peers to inspect,
use, verify, correct, and/or extend the software. This prompts for
the use of code versioning systems like Git and GitHub25 or alter-
natives like GitLab and BitBucket, which also facilitate code hosting
and sharing, and allow collaborative software development thereby
supporting transparency and reproducibility of computational
research26,27. Note however that code versioning systems are not
necessarily persistent but that solutions are in place for example by

authorizing Zenodo to archive a specific release of a GitHub repo-
sitory and issue a DOI for this archive.

Over the last decade, FAIR (Findable, Accessible, Interoperable,
Reusable) data management has been introduced to ensure the avail-
ability and reusability of experimental data28 while newly developed
software is increasinglymade available on GitHub and other dedicated
software repositories11,29. However, in our view, the separation of data
and software in different repositories is another potential cause for
irreproducibility since manual steps may be required to link data and
software. Since such steps are generally not described in published
papers, it is left to the researcher to reconstruct the precise compu-
tational workflow. Moreover, by storing code and data in different
repositories, a direct connection with (published) results is also lost.
The lack of detailed project documentation further impedes trans-
parency and reproducibility. Therefore, we believe that computational
reproducibility is improved if data, code, and results are more tightly
integrated and well-documented. Such a self-contained project com-
pendium could also more easily be shared with peers and reviewers.

In this paper, we focus on computational reproducibility, that is, the
reanalysis of the same data using the same computational methods. We
propose ENCORE (ENhancing COmputational REproducibility)30 as a
practical approach to improve transparency and reproducibility. The
approach is based on eightmain requirements that we define below (see
Methods), and four practical principles (Supplementary Method 1). The
development of ENCORE started in 2018 and is based on existing ideas
and initiatives in particular from Spreckelsen and co-workers31 for using
a standardized way to organize research projects, but also other
initiatives5,19,21,27,32–39, discussions within our research group, and
improvements made over a five-year period. It aims to integrate all
project components in a single project compendium. ENCORE sub-
stantially improves transparency and reproducibility and demonstrates
how the eight requirements and four principles are met in practice.
ENCORE also guides researchers to structure and document the com-
putational part of a research project. It harmonizes the approach
towards reproducibility if adopted by a whole research group, which
brings additional advantages. ENCORE does not specifically address
stages 1, 2 and 4 of the research lifecycle (Fig. 1). However, (parts of) the
documentation resulting from these stages will generally be included in
the project compendiumnot only for completeness but also to correctly
design and perform the computational analyzes40. This includes but is
not limited to information about hypotheses to be tested, experimental
design, descriptions of (patient) samples and the physical experiment,
and the (FAIR) data. Conversely, the ENCORE documentation of com-
putational protocols provides information for annotating the (pre)pro-
cessed data to meet the FAIR guiding principles. The ENCORE
compendium can serve as supplementary information for research
papers. It is, however, important to recognize that ENCORE will gen-
erally contain much more information than published in a typical
research paper. Here, we describe the design of ENCORE, our experi-
ences, and results from internal evaluations. ENCORE improved repro-
ducibility and transparency of our computational projects but, at the
same time, made clear that achieving full reproducibility will require
further steps. Perhaps the most significant challenge to overcome for
routine usage of initiatives such as ENCORE is the lack of incentives to
motivate researchers to spend sufficient time and effort on reproduci-
bility. We expect ENCORE to contribute to the further development of
approaches to increase transparency and reproducibility of computa-
tional research.

Results
Initial discussions and review of publications to improve reproduci-
bility of research projects in our group started in 2018 (Fig. 2), and
consistently involved all group members (i.e., staff, postdocs, PhD
students, and internship students). This led to the aims specified in the
introduction (transparency, reproducibility, harmonization) and to a

Fig. 1 | Research lifecycle. Most (biomedical) studies go through the stages of (1)
study preparation, (2) data collection (involving sample collection and processing,
and data generation), (3) computational approaches for data analyzes, modeling
and/or simulations, and (4) (open-access/open-source) publication and archiving.
Published research findings drive new studies. ENCORE focuses on computational
reproducibility (stage 3).
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first version of ENCORE inOctober 2020. At the same time,we initiated
a GitHub organization account41 to host all ENCORE repositories from
our group. The use of ENCORE was made mandatory for all new
research projects and for everyone in our group. This initial step led to
theharmonization of project organizationwithinour group. Currently,
we have over 20 ENCORE research projects. In addition, we have over
50 ENCORE projects for data analysis services provided to other
groups.

Evolution and evaluation
ENCORE is based on a standardized file system structure (sFSS)
including pre-defined files to guide project documentation. The sFSS
serves as a self-contained project compendium. Based on experience
with ENCORE for a still increasing number of projects, internal eva-
luations, and frequent discussions about the structure, pre-defined
files, and usage guidelines, we gradually improved the initial setup.
Overall, over the past four years, this led to a simplification of the sFSS
structure, a reduced number of pre-defined files, and better ENCORE
instructions and documentation (see also Supplementary Fig. 2 in
Supplementary Methods 1).

A first evaluation was performed one month after introducing
ENCORE 1.0 to exchange user experiences, which led to ENCORE
2.0. About three months later, in January 2021, we organized a
second evaluation, during which each group member presented an
ENCORE project. This evaluation made clear that most research
projects adopted the sFSS structure, but that documentation (e.g.,
README files, lab journal) was occasionally incomplete or missing
since keeping documentation up to date was perceived as overhead
and time-consuming but also because it was often unclear what
level of detail needed to be provided since no clear objectives were
set. Some projects did not fully adhere to the sFSS naming and
structure conventions, which was partially due to unclear or implicit
ENCORE guidelines but also because some group members were
still inclined to stick to old habits. Based on this evaluation we
developed ENCORE 3.0, which comprised further simplifications of
the directory structure (fewer directory levels), renaming of pre-
defined files to improve consistency, and improved documentation
(i.e., usage rules). In September 2022, we evaluated ENCORE 3.0 to
test if ENCORE had indeed improved the reproducibility of our
projects. We selected nine ENCORE projects, which were assigned
to group members not involved in that project. Subsequently, each

project was evaluated for the correct use of the sFSS, the pre-
defined files and the level of documentation. In addition, each
group member was asked to reproduce a specific subset of project
results. The most important outcome of this evaluation was that
only for about half of the selected projects the results could be
reproduced. Various reasons prevented (full) reproducibility such
as the use of different library versions used by the software, use of
absolute directory paths that were not valid after transferring the
sFSS to a different location, differences between operating systems,
lack of instructions on which software to install and how to run the
software, compilation problems, software errors, or difficulties in
handling large datasets. In addition, some of the projects were dif-
ficult to understand due to lack of documentation (transparency)
about goals and applied methodology. Some of these problems can
easily be fixed such as changing absolute to relative directory paths.
Other problems such as dealing with different library versions
require more effort to solve (see Discussion). Several other out-
comes resulted from this evaluation. First, not being acquainted
with a specific project, it sometimes was difficult to find the (core)
information that is needed to reproduce and understand a project.
This triggered the development of the sFSS Navigator42, which was
implemented as an R application in ENCORE 3.1 and later re-
implemented in Python and extended in ENCORE 3.5. Second,
despitemore than two years of discussion and joint decisionmaking
about the structure of ENCORE, there was still debate about (how to
use) the sFSS structure and the pre-defined files. The sFSS structure
and files had been agreed upon by consensus, but still was a com-
promise of different structures previously used by individual group
members. As a result, some parts of it seemed illogical to some
members, who ideally still preferred a different setup. In addition,
although the ENCORE user guidelines and their rationales had been
discussed, agreed upon, and written down, it turned out to be dif-
ficult to memorize and apply all these rules. In our view, this is also
one of the main reasons that existing published guidelines are not
consistently applied. At the same time, the user documentation was
scattered over many files and had lost consistency over the evolu-
tion of ENCORE. This prompted the changes incorporated in
ENCORE 3.5 and 4.0. Specifically, these include the completion of
the Step-by-Step ENCORE Guide (Supplementary Method 1) and the
merger of documentation and templates directly in the README
files (e.g., Supplementary Method 3). Third, the provided level of

Fig. 2 | ENCORE evolution and evaluation. ENCORE evolved through different
versions incorporating changes based on practical experiences, evaluations, and
group discussions. This led to gradual improvements in the ENCORE approach and
documentation, broader use for research projects, and Git/GitHub proficiency

within our research group. In turn, this led to better and more transparent orga-
nization of projects and increased reproducibility. Further improvements and
extensions are expected in the future.
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detail for the documentation of most projects was inadequate,
partially caused by unclear guidelines. For example, it was not
always clear how to run the software because our guidelines didn’t
make explicit how this should be documented and at what level of
detail. One specific issue was that the lab journal often did not
contain an adequate summary of (supervisory) meetings and email
exchanges. It was therefore agreed that it is the responsibility of the
project team to ensure that all relevant documentation is incorpo-
rated in the sFSS. Finally, it became clear that project organization
and documentation often had lower priority than doing the actual
research. For these reasons, most projects did not fully adhere to
the ENCORE guidelines. Nevertheless, we decided to keep the
approach mandatory and to only make minor changes to the cur-
rent template to prevent delay in its further development.

Using remote computer systems with ENCORE
Most of our ENCORE projects reside in the cloud (e.g., the Dutch
SURFdrive, Dropbox) and are synchronized with the local computers
(e.g., laptop, desktop PC) of the project participants. However, for part
of our projects we use dedicated high performance computing infra-
structure such as computer clusters to perform computations. The
sFSS is compatible with such a scenario. Onemay simply transfer (part
of) the sFSS to the remote system and, subsequently, perform the
calculations there. Results can then be transferred back to the cloud
and local computer (Fig. 3).

Discussion
We presented ENCORE as a practical implementation, based on eight
main requirements (Methods) and four practical principles (Supple-
mentaryMethod 1, Section 2), guiding researchers on how to structure
and document computational projects according to published

guidelines5,19,31,32 in order to improve transparency and reproducibility,
and to improve harmonization within and across research groups.
ENCORE does not consider replicability (sometimes referred to as
repeatability), which is about strengthening scientific evidence from
replication studies by other research groups using independent data,
and experimental and computational methods43–46. An important
aspect of ENCORE is the integration of all project information (con-
cepts, data, code, results, documentation) in a single directory struc-
ture that can easily be shared and archived. Although we didn’t have a
pre-ENCORE baseline measurement for reproducibility in our group,
ENCOREharmonized the waywework in a broad range of projects and
provided a big step forward in termsof the organization, transparency,
and reproducibility of our projects. Integration and documentation to
achieve transparencyhave also been referred to as the third dimension
of open science47 and are in our view key to reproducibility of com-
putational research.

The most important lessons learned from ENCORE are summar-
ized by the following five points:

• A significant barrier to enhancing transparency and reproduci-
bility is the lack of incentives for researchers to invest sufficient
time and effort in these areas.

• Successful implementation requires incremental steps to mini-
mize disruption to the current ways of working of individual
researchers, along with regular discussions and evaluations to
monitor and maintain progress.

• Harmonizing the approach within a research group facilitates the
joint development of best practices for reproducibility andmakes
the inspection and use of projects from colleagues much easier.

• The next version of ENCORE should explicitly incorporate best
practices for software engineering and methods to preserve the
computing environment.

Fig. 3 | Using remote computer systemswithENCORE.A specific ENCOREproject
that contains code for data pre-processing and a simulation. An ENCORE project
may reside on a local computer (e.g., laptop, desktop PC), on a remote (cloud)
computer server such as provided by Amazon Web Services or Dropbox for easy
sharing between project participants. All or part of a project compendium can also

be temporarily transferred to a HPC facility to perform CPU intensive calculations
and transferred back with results once calculations are finished. In this example,
only the simulation branch is transferred to a HPC facility. To transfer files to a
remote computer system, onemay use common data transfer tools, such as curl or
rclone that support many data transfer protocols such as sFTP and SCP.
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• Further development of ENCORE should involve research groups
from diverse domains for further evaluation, improvement, and
extension.

Although ENCORE has been developed and tested from the per-
spective of bioinformatics and computational modeling in the cellular
and molecular biology field, it can be applied in other scientific dis-
ciplines to virtually any type of computational project: it is agnostic to
the computational infrastructure, and it can be used with any pro-
gramming language or software tool the researcher is using. We
emphasize, however, that ENCORE does not neglect existing tools that
contribute to the further improvement of reproducibility. ENCORE
users are encouraged to utilize complementary tools that enhance
reproducibility, including those for (i) preservation of the compute
environment, (ii) software development, (iii) workflow management,
(iv) (software) documentation, and (v) project management. ENCORE
does not impose these tools on researchers; instead, it allows them to
choose the most suitable options for their specific needs (Supple-
mentary Method 4). However, for many researchers, changing their
individual and favored project organization to the ENCORE sFSS may
provide a barrier. Currently, we are taking initial steps to evaluate and
further develop ENCORE in collaboration with other research groups.
For this, the ENCORE documentation is essential for introducing new
ENCORE users to the underlying philosophy and approach and to
provide background on the structure and desired level of project
documentation. Over the past few years, we have experienced that it is
crucial to use ENCORE from the start of a project and to have sufficient
self-discipline to keep everything up to date. For project documenta-
tion, we follow the guiding principle that it shouldbe at a level of detail
that one’s peer or supervisor should be able to understand all aspects
of the project (concepts, data, code, results). Early versions of (pro-
totype) code, trial results fromdata analyzes, etc. that are not expected
to be kept in the final compendium can be excluded from doc-
umentation to minimize overhead. Nevertheless, in practice, the level
of documentation detail often leads to discussion and over the years
has led to changes in the instructions and template in the README
files. In the future, emerging AI-based tools might assist to auto-
matically generate project documentation from, for example, rough
notes, or audio/video recordings of project meetings.

Different areas of reproducibility have been distinguished by
Stodden40. (i) Empirical reproducibility refers to physical experiments
and the (reporting) standards associatedwith these. (ii)Computational
reproducibility is concernedwith the reproduction of results using the
same data, computational methodology, and software versions. (iii)
Statistical reproducibility focuses on the correct use of experimental
design (including sample size calculations) and statistical analyzes. (iv)
Ethical reproducibility refers to reporting ethics methods in biomedi-
cal research48. ENCORE focuses on computational reproducibility and
statistical reproducibility, at the same time considering that doc-
umentation about the physical experiments can be important for the
computational analyzes. Ethical reproducibilitymay come into play for
specific (artificial intelligence) applications e.g.49, but currently is not
explicitly considered by ENCORE.

ENCORE promotes a pre-defined directory structure, integration
of data, methods, and results, and detailed project documentation.
This supports the continuity of research lines which are sometimes
compromised by the continuous flux of scientific personnel in aca-
demic groups. ENCORE contributes to transparency and, as such, helps
to detect software errors and conceptual methodological flaws by
(external) researchers, supervisor(s), and reviewers. Transparency
allows project supervisors to provide timely and more constructive
feedback. Co-authors of a manuscript can more easily inspect details
of the project before manuscript submission to, for example, comply
with the ICMJE authorship rules50. A recent editorial in Nature Human
Behavior51 proposed that software be part of the peer review process.

ENCORE would facilitate such efforts since, in principle, it provides
user documentation to install and use the software and datasets.
Generally, it would be very time-consuming and difficult to check the
code itself, but reviewers couldat least check if the results presented in
a paper can be reproduced by executing the software.

Increasing reproducibility, what is the problem? The main
hurdle to increasing the reproducibility of computational projects
is neither the lack of guidelines nor substantial technical barriers.
However, despite all discussions and initiatives concerning repro-
ducibility, and our personal observation that many researchers
agree on the importance of reproducibility, there still is a long way
to go. Regularly, during the development of ENCORE, group mem-
bers brought forward various arguments for not following
(ENCORE) guidelines. For example, one argument being that it
consumes time while we are virtually never asked by peers,
reviewers, or funding agencies whether our research is repro-
ducible. In fact, there is often no penalty for being non-reproducible
and, moreover, there also is no clear reward for working repro-
ducibly. Markowetz gives several examples of benefits of working in
a reproducible manner35, but he also encountered resistance from
researchers when advocating reproducible research such as “I’d
rather do real science than tidy up my data”. Indeed, an often-heard
argument concerns the amount of overhead that comes along with
(ENCORE) reproducibility approaches. However, for a typical
research project, the time spent on following the ENCORE approach
(e.g., documentation, structuring) is in our view negligible com-
pared to the time spent on the actual research. There are clear
advantages of working reproducibly, which has also been argued by
other groups (e.g.4,19,52. For example, reproducibility is important
for trust in science, it helps writing a publication, it will save time in
the long run, and it supports the sustainability of the research.
Although all true, for some researchers these arguments do not
seem to provide enough incentives to improve their practices.
Bottom line is that reproducibility requires intrinsic motivation, a
dedicated working attitude, and self-discipline, or otherwise can
only be enforced with penalties and/or rewards. Indeed, it is well-
recognized that the way in which we reward science should be
changed. For example, the Declaration on Research Assessment
(DORA) is a global initiative that proposes to change the evaluation
of researchers and scholarly research output by funding agencies,
academic institutions, and other parties53. At a broader level,
UNESCO is also discussing the costs and benefits of open science
and the incentives or motivations for open science54. Com-
plementary, at the national level similar initiatives emerged. For
example, the Dutch public knowledge institutes and research fun-
ders wrote a position paper that, among others, encourages Open
Science55. The recently initiated Dutch OpenScience.nl organization
will contribute to the implementation of some recommendations in
this position paper. In addition, projects like Osiris aim to identify
incentives for reproducibility by stakeholders, and embedding
reproducibility in research design56. Due to such initiatives, we are
slowly witnessing a change in the reward system, and we expect that
this will largely contribute to more reproducible research. Stodden
and co-workers suggested to have journals and/or professional
societies discern a yearly award for (young) investigators for
excellent reproducible practice52. Another proposal is to use sci-
entific reproducibility as a litmus test for deciding between paper
correction versus retraction57. Adoption of this guideline by jour-
nals would strongly support scientific reproducibility. ENCORE
perfectly aligns with these suggestions and contributes to building
the researcher’s scientific track record. An ENCORE project com-
pendium can be shared through public repositories and assigned a
DOI. We recently submitted the first ENCORE project to Zenodo42

and most of our future publications will be accompanied by an
ENCORE project. In addition, we are preparing a publication
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describing specific challenges encountered when using ENCORE for
a benchmark study for spatial transcriptomics deconvolution
methods.

We consider ENCORE to be a step towards reproducible science,
but it is not without several limitations and weaknesses. First, ENCORE
is a compromise based on previous ways of working and, therefore,
may not always fit the preferred way of working of an individual
researcher. However, we believe ENCORE provides sufficient flexibility
to accommodatemost researchers and research practices. Second, the
current sFSS Navigator has limited functionality, ways to present
information and configuration options. We are in the process of
improving the Navigator, which includes (i) configuration of panel
locations (including the possibility to undock to a full window), (ii)
Improve the presentation of figures and tables. (iii) improved possi-
bilities to browse results and link resultswith code anddata. (iv) Ensure
proper formatting of text-based information (e.g., markdown, code)
while ensuring that all relative hyperlinks work in the context of the
Navigator. Third, a shortcoming of ENCORE is the lack of and clear and
easy approach to specify explicit links between results, code, data, and
concepts. Currently, such links are imposed by the sFSS structure, the
paths in the code, and/or manually added links specified in the doc-
umentation. The documentation has an important function in gluing
the project parts together, but it requires effort from the researcher to
specify relations between parts of the project, and to maintain this
information. ENCORE would benefit from improved integration
approaches to enhance transparency and reproducibility. One possi-
ble approach is the use of JSON58 or YAML59 to annotate links between
items in a project compendium as demonstrated by Spreckelsen and
co-workers31. Fourth, another challenge that is only partially addressed
by ENCORE concerns the preservation of the full computing environ-
ment. This environment is defined by (interdependencies of) the
operating system, software tools, versions and dependencies, pro-
gramming language libraries, etc. Gruning and co-workers proposed a
software stack of interconnected technologies to preserve the com-
puting environment33. This stack comprises (i) (Bio)Conda60,61 to pro-
vide virtual execution environments addressing software versions and
dependencies, (ii) container platforms such as Docker62, Apptainer
(formerly Singularity)63, and Podman64 to preserve other aspects of the
runtime environment, and (iii) virtualmachines using cloud systemsor
dedicated applications such as VMware, to overcome the dependen-
cies on the operating system and hardware. We are currently investi-
gating how to best approach thiswithin the context of ENCORE but we
are already actively using Anaconda and renv65 to manage Python
libraries and R packages respectively. Reproducibility can further be
improved by using scientific workflow systems, which have been
developed to modularize and execute steps in computations. Many
workflow systems are available, including Galaxy66, KNIME67,
Snakemake68 and Nextflow69. These workflow systems improve
reproducibility and help to maintain and share computational ana-
lyzes. They alsoallow incorporationof steps thatotherwisewould have
been performed manually. Our group has used workflow systems in
the past (e.g.70,71), but we decided not to make a workflow system an
obligatory part of the ENCORE approach since we believe this may be
too disruptive for some researchers. Yet, we encourage our group
members to use a workflow system of choice. However, workflow
systems are not the holy grail since these don’t solve the versioning
problem of their (remote) components. In addition, the workflow
system itself may become outdated, remote webservices may no
longer be available, or older workflows may not run with newer ver-
sions of a workflow management system. Fifth, ENCORE projects can
easily be shared but currently we do not have a good mechanism to
removeparts that shouldnot be shared such as sensitive (patient) data,
controlled access data obtained from public repositories, or PDF
copies of copyright protected scientific publications. Finally, ENCORE
requires that all data used by the computations are within the sFSS

structure. For large datasets this implies that sufficient storage space
must be available on the computer that hosts the project, which can be
a local (private) desktop computer, computer servers of the research
institute, or remote (cloud) compute systems (e.g., as provided by
Amazon Web Services; Fig. 3). If data storage within the sFSS is not
possible then documentation and/or software should be available to
retrieve the data from another persistent location and to ensure that
this step does not break reproducibility.

Over the past two decades, an increasing number of biomedical
researchers have become involved in computational research.Many of
these researchers have never been formally trained in scientific com-
puting and software engineering (e.g., design, programming,
documentation)72,73, software version control25,27, the use of high-
performance computing infrastructures, the use of Unix/Linux which
is still the major platform for scientific computing, algorithm design,
the use of (Jupyter, R) notebooks74, etc. Lack of such skills may nega-
tively affect reliability and transparencyof software and, consequently,
reproducibility. For example, software may be poorly designed and
documented, making it difficult to understand, use, modify, and
debug. One resulting problem is that we have no way of knowing
whether the code being used to generate the computational results is
doing what the researchers think it is doing. This is one reason why
ENCORE proposes to start organizing and documenting from the start
of a project, since this increases the chance that conceptual errors or
software bugs are detected in an early stage by the researchers or their
supervisors. Software engineering is a discipline in its own and
includes the design, implementation, documentation, testing and
deployment of software. Following best practices for scripting, func-
tional programming, or object-oriented programming may sig-
nificantly improve the quality of the code but requires training and
experience. The use of integrated development environments, auto-
mated quality checks, and (unit) testing would also help to improve
software75. Furthermore, Large LanguageModels will increasingly play
a role in software development, testing, and documentation76,77. Often,
software documentation leaves much to desire. In a recent report, it
was concluded that researchers are generally not aware for whom they
write documentation andwhatdocumentation is required73. Currently,
ENCORE does not provide specific instructions for coding style (e.g.,
PEP 8 for Python and tidyverse for R78,79) and documentation design
because it is probably more effective to train scientists in the art of
software engineering. Instead, general guidelines are provided in a
README file (Supplementary Method 3). Awareness of guidelines (e.-
g.80) and tools to (automatically) generate documentation such as
Sphinx81 for Python, and r2readthedocs82 and roxygen283 for R,will also
help to improve reproducibility. We used Sphinx for the documenta-
tion of the sFSS Navigator42. Another useful resource is the software
management plan developed by the Netherlands eScience Center and
the Dutch Research Council (NWO)84. In general, appropriate training
on reproducibility approaches could already significantly improve the
current situation and will at least create awareness of the tremendous
amount of literature about many aspects of sound scientific comput-
ing practices20,39,85–88. In addition, senior researchers should strongly
promote reproducibility and support, explain, and instruct junior
researchers.

To facilitate and improve reproducibility throughout the com-
plete research lifecycle (Fig. 1), numerous guidelines, policies, and
standards have been developed89 to guide and facilitate the detailed
documentation of all steps. Many reporting guidelines provide struc-
tured tools specifying the minimum information required for specific
study types and largely contribute to the transparency, understanding,
and reproducibility of a study90. Examples include guidelines for clin-
ical trials (CONSORT)91, diagnostic accuracy studies (STARD)92, and
observational studies (STROBE)93. Virtually all these minimum infor-
mation standards and reporting guidelines require the specification of
statistical and computational methods that were used in a study.
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However, precise requirements to specify such methods are often
lacking. In addition, an increasing number of scientific journals have
their own guidelines. One example is the Nature Reporting Summary94

that partially relies on existing reporting guidelines and FAIR. Nature
also has a specific software and algorithm policy with requirements
about availability (e.g., using GitHub or Zenodo), use of an open-
source license10, and code review95. NatureComputational Science and
several other Nature journals have adopted Code Ocean, which is a
cloud-based platform to share executable code to enable review96,97.
The PLOS Computational Biology journal requires that editors and
reviewers can access the software, reproduce the results, and run the
software on a deposited dataset with provided control parameters98.
The Science journal TOP guidelines require data and computer code to
be available99. Interestingly, a study published in 2018 showed that
despite these guidelines, many computational studies were not
reproducible17. It has also been suggested to rethink the concept of a
“journal” as a community-driven information repository containing,
among others, the data and software, to enable reproducibility, reuse,
and comparisons100. In this scenario, academic publisherswouldhave a
key role in stimulating (standard-based) approaches to research dis-
semination. We believe that such an effort should be a joint under-
taking of research communities and publishers aiming to improve
reproducibility. Computational projects require their own specific
guidelines and standards to guarantee transparency and reproduci-
bility. This was also recognized by the artificial intelligence commu-
nity, which started initiatives to develop specific AI-oriented
guidelines101–103. To the best of our knowledge, there are not many
(practical) reporting guidelines nor standards available for computa-
tional research that are routinely used in practice. Nevertheless, there
are various initiatives to improve this situation. For example, the use of
directory structures to organize research projects has been proposed
in thepast, However, ingeneral these initiatives donot provide specific
templates or are limited to a specific programming language20,36,104. In
particular, the approach presented by (Marwick, 2018) is useful for
R-based projects and uses the ‘rrtools’ package to setup a project
compendium suitable for writing a reproducible manuscript. It sup-
ports Quarto (an open-source scientific and technical publishing sys-
tem), Docker, package versioning using renv, and integration with
GitHub Actions. ENCORE is inspired by the standardized file system
structure thatwasproposedby Spreckelsen and co-workers31. Theirfile
system structure comprises four top-level directories denoted as
categories (Experimental data, Simulations, Data analysis, and Pub-
lication). Each of these categories contains subdirectories to hold
specific projects in which other subdirectories may exist. This implies
that, in practice, each of the four top-level directories will contain
subdirectories and files related to multiple projects. The sub-
directories and files are manually annotated and connected using
YAML headers (key-value pairs) in README Markdown files, which
allows, for example, to trace simulations and data belonging to a
specific project. The ENCORE sFSS is project-oriented, which facilitates
sharing with peers without first having to reassemble a project. At the
same time this reduces the need to manually annotate and define
relationships, since these are implied by the sFSS structure. Never-
theless, ENCORE would also benefit from integration approaches such
as YAML to improve transparency and reproducibility. However,
ENCORE does not yet require the use of YAML since it may require too
much effort from researchers to specify and maintain. Like ENCORE,
the approach of Spreckelsen et al. has a strong focus on transparently
organizing and linking data, code, and publications to support repro-
ducibility. However, there are no further requirements except that one
should be able to re-run code fromwithin theirfile system structure. In
addition, there are no requirements by design for further user and
code documentation and the use of GitHub. Compared to the
approach of Spreckelsen et al., ENCORE also aims to translate pub-
lished guidelines into specific instructions and templates in, for

example, the READMEMarkdown files to guide researchers in making
their computationalwork reproducible. This is supportedbyproviding
our sFSS as a template together with predefined files. In contrast to the
file system structure proposed by Spreckelsen, the ENCORE sFSS is
much more detailed. ENCORE goes beyond a structured file system
and through regular internal and external evaluations we aim to gra-
dually improve the ENCORE approach to improve reproducibility.
Other examples of guidelines and standards for computational pro-
jects include the applicationof the FAIRprinciples to software105,106, the
ICERM implementation and archiving criteria for software52, the
Adaptive Immune Receptor Repertoire (AIRR) software guidelines107,
the Software Ontology to describe software used to store, manage and
analyze data108, and the EDAM ontology to describe bioinformatics
operations109. For simulation-based research, there are initiatives like
the Minimum Information About a Simulation Experiment (MIASE)
guidelines110, the corresponding simulation experiment description
markup language (SED-ML)111, COMBINE/OMEX to share and repro-
duce modeling projects112, and a range of others113. For the further
development of ENCORE, we will need to consider which of these
standards are relevant for ENCORE and how to incorporate them in the
ENCORE approach. This may require the development of ENCORE
specifications for different types of computational projects by differ-
ent specializedworking groups. However, themain challenge we see is
the development of software tools to support and use ontologies and
standards in the context of ENCORE without introducing much over-
head while providing clear benefit.

Currently, the focus of ENCORE is on human readability and not
machine readability sincemost documentation will be provided in any
of the common file types (e.g., plain text, Markdown, Word, Power-
Point and PDF), which has obvious advantages for the researcher.
However, the additional use of text-based standards such as JSON,
YAML, and RDF114, would allow to (partially) document projects in a
machine readable manner and provide several benefits. For example,
one might more easily search for specific information within a project
compendium, specify links between items in a compendium, and to
evaluate compliance of the project organization and documentation
with the ENCORE requirements. To advance ENCORE towards a
machine-readable compendium, one approach would be to associate
subdirectories and/or files with JSON annotation (meta-data) and,
where possible, to provide part of the documentation directly in a
JSON file. This approach would still allow the researcher to use the file
type of choice. Alternatively, one may integrate YAML annotation
directly into Markdown files as proposed by Spreckelsen115. Finally,
realizing that these machine-readable formats can be rendered by
front-end GUI applications (e.g., as text fields for users to enter), yet
another approach would be the development of interactive tools for
users to set up and populate the documentation in their projects. This
would remove much of the burden from the researcher to specify and
maintain the JSON/YAML/RDF annotation throughout a project.

To promote reproducibility practices using ENCORE, automating
specific steps becomes invaluable in lightening the load on research-
ers. Leveraging AI-based tools can play a pivotal role in tasks such as
code documentation or testing, summarizing project meetings,
ensuring compliance with ENCORE specifications, and using machine-
readable files effectively. These automation efforts streamline work-
flows, enhance accuracy, and ultimately contribute to the robustness
of research endeavors. We have created a separate GitHub repository
(https://github.com/EDS-Bioinformatics-Laboratory/ENCORE-
AUTOMATION) to which we will gradually add tools to automate
specific tasks. Currently, we provide scripts to automatically setup an
ENCORE project. In addition, we provide a script that generates an
ENCORE template for B-cell/T-cell repertoire sequencing
experiments116, which is prefilled with code and documentation. An
example of such generated template is found on GitHub (https://
github.com/EDS-Bioinformatics-Laboratory/ENCORE-AIRRseq-
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TEMPLATE). A similar template is currently being developed for lipi-
domics analyzes117.

Methods
ENCORE comprises a standardized file system structure (sFSS), pre-
defined (Markdown) files for documentation, a GitHub repository for
software version control, a HTML-based sFSS browser (sFSS Navi-
gator), and ENCORE documentation to initiate a self-contained pro-
ject compendium and support the researcher to use ENCORE in a
consistent manner. The sFSS template can be retrieved from the
ENCORE GitHub repository (https://github.com/EDS-Bioinformatics-
Laboratory/ENCORE)30. In principle, ENCORE can be used for any
type of (research) project and is not domain-specific.

The ENCORE approach was driven by the following main
requirements:
1. Consist of a single self-contained project compendium. The

computational project should be organized and available as a self-
contained and integrated compendium of data, code, results, and
(conceptual) documentation, stored at a single location. It should
also be easily transferable to other researchers or reviewers
without breaking its internal consistency.

2. Facilitate transparency and documentation. ENCORE should
facilitate transparency and a deep understanding (e.g., addressing
why specific methods were selected and how these were applied)
of the project through its standardized structure and doc-
umentation of concepts, methodology, data, code, and results.

3. Enable reproducibility. The project compendium should enable
an (independent) peer to autonomously execute and understand
the computational techniques and recreate the (published)
outcomes.

4. Adhere to proposed guidelines. ENCORE should follow published
guidelines for computational reproducibility as much as possible
(e.g.19,32,34,36).

5. Enable version control. ENCORE should allow version control of
code and code documentation.

6. Facilitate harmonization. The ENCORE approach itself should be
standardized and well-documented such that it can easily be
adopted by any researcher. This allows harmonization within
research groups, enabling further joint development of best
practices within the ENCORE framework. Moreover, harmoniza-
tion also facilitates checking transparency and reproducibility
prior to publication by direct colleagues.

7. Provide a generic approach. ENCORE should be agnostic to the
type of computational project (e.g., statistical analysis, mathe-
matical modeling), data, programming language, and ICT infra-
structure (e.g., operating system and computer hardware).

ENCORE should make use of a software versioning system but
otherwise should not rely on tools for project management, data
processing, etc. See also Supplementary Method 4.

8. Allow adaptation to different styles of working. ENCORE should
leave sufficient flexibility to accommodate different styles of
working. The underlying sFSS should be accessible from any
software tool the researcher might be using.

In addition to these requirements, we defined four principles to
provide practical guidance for researchers (Supplementary Method 1,
Section 2).

The sFSS in context
The sFSS is the project’s entry point (Fig. 4) and, therefore, should be
self-contained, which is the responsibility of the project team. The
software developed in the project, and the external software doc-
umentation is additionally managed through Git and the project’s
GitHub repository to enable version control and joint development.
The principled decision to only make code and code documentation
available on GitHub and exclude other project components, such as
data and results, is motivated by the requirement to create a self-
contained sFSS project compendium while GitHub is not a universal
storage platform. In addition, the size of the data and results may be
too large to host on GitHub. Consequently, in practice, an sFSS con-
tains only the software version that will be shared, while the GitHub
repository may also contain older or alternative versions not required
to reproduce the computational results. The complete project com-
pendium can be shared with other researchers or reviewers or sub-
mitted to public repositories such as Zenodo for archiving, in which
case a DOI can be assigned. Providing third parties access to the
GitHub repository is optional.

Instantiation of a new ENCORE-based project
ENCORE enables several approaches to set up a new project. The
approach used formost research projects is that the project team first
clones and initializes the sFSS template from the ENCORE GitHub
repository (Fig. 4) by the project team. Subsequently, one creates a
new project specific GitHub repository and connects this to the Pro-
cessing directory (Fig. 5) of the project to ensure that only code and
code documentation will be synchronized with the GitHub repository.
Part of the pre-defined files are provided in different formats (e.g., txt,
tex, docx) for the project team to make a quick start. They select the
format of preference and, before sharing, remove the files (e.g., Step-
by-Step ENCORE guide) that are not relevant for the compendium
recipient with whom the project will be shared in the future (Supple-
mentaryMethod 2). Finally, one starts documenting the project. These

Fig. 4 | The standardized File System Structure (sFSS) and its environment. The
green box denotes the Project Compendium (sFSS) with part of the directory
structure shown. The sFSS is the central point of entry for a project and is initially
cloned from the ENCORE template GitHub repository when starting a new project.
The project team is responsible for the organization and documentation of the

project. Only the code and code documentation within the project compendium
are synchronized to a project specific GitHub repository. An sFSS project com-
pendium can be shared with a compendium recipient. The compendium recipient
starts exploring the project by opening Navigate.html in a web browser.
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steps are described in detail in the Step-by-Step ENCORE guide (Sup-
plementary Method 1) and takes less than 30minutes to complete.
Another option is to use a pre-defined script to automatically
instantiate a new project (available from https://github.com/EDS-
Bioinformatics-Laboratory/ENCORE_AUTOMATION)118. For specific
cases one may write dedicated scripts to setup a new project (see
Discussion).

The ENCORE components
ENCORE comprises five main components (Fig. 5) to structure, inte-
grate, control code and documentation versions, and to improve
transparency and reproducibility of a project.

Component 1. The standardized File System Structure (sFSS) tem-
plate. The sFSS provides a standardized, yet flexible, template to
organize conceptual information, data, code, documentation, and
(intermediate) results (e.g., tables, figures, text files). In essence, it is a
standardized directory structure containing pre-defined files, which can
be usedwith any operating system (Fig. 6) and can be usedwith any data
analysis software that reads from andwrites to a file system. Conceptual
information includes any information considered relevant to correctly
setup the computations, but also information that helps peers to
understand the (background of the) project and information that
documents why specific choices were made. This includes information
about the research question, experimental design, samples used,wet-lab
experiments, description of computational (for example, statistical or
mathematical modeling) approaches, interpretation of results, relevant
literature, presentations about the project, and summaries from (email)
discussions during the project. Files within the sFSS may exist in dif-
ferent versions if, for example, new data were generated, code was
modified, or figures were updated based on different settings for the
computations. The information within the sFSS is implicitly and expli-
citly integrated. Implicit links correspond to relations that are imposed
due to the hierarchical structure of the sFSS. Explicit links are made in
the (code) documentation, for example, by linking a particular compu-
tation to a specific subset of the data. The sFSS allows a certain degree of
flexibility to accommodate different types of projects or different ways
of working. For example, data can be organized at different levels in the
sFSS (Fig. 5). This allows, for example, to organize the data directly
within the subdirectory of a specific computation, if that data is not used
by other computations. Similarly, if a project involves the (pre)

processing of data, then the outcome of these steps may either be
considered as a ‘Result’ in a NameOfComputation directory, or as ‘Pro-
cesseddata’ in aData directory (Fig. 6). The ‘LabJournal’ canbe copied to
other directories to accommodate more specific documentation.
Markdown README files for project documentation may be replaced
with other file types (e.g. HTML, LaTeX) if one prefers. Pre-defined sFSS
directories and files that are not used can be removed. Detailed infor-
mation about the specific structure of the sFSS directory structure can
be found in Supplemenatary Method 2.

Component 2. Pre-defined files. The sFSS contains many pre-defined
files that should be used directly from the start of the project and
maintained throughout the project (Fig. 6). Most files are inMarkdown
format, which was chosen because it is the default format for the
README file of a GitHub repository. Markdown is a markup language,
which enables adding formatting elements to plain text119 and requires
a compatible editor. However, if preferred, these may be replaced by
other file formats (e.g., docx, HTML, tex). In the sFSS root directory,
the 0_PROJECT.md file should provide basic project details, including
the project name, start date, a short description, and project team. In
addition, the 0_GETTINGSTARTED template (docx, HTML, tex, txt)
should describe the most important aspects of the project and should
provide links to the relevant sub-directories and files. This final tem-
plate is then saved as an HTML file and together with 0_PROJECT.md
used by the sFSS Navigator (see below). The LabJournal template
(docx, md, tex, txt) in the ProjectDocumentation directory should
contain general projectdocumentation, includingbut not limited to an
explanation of the project’s background and concepts, computational
approaches, summaries of project discussions, new research ideas,
and to-do lists. Preferably, the lab journal should contain pointers to
relevant sub-directories and files whenever needed (which is easy with
Markdown). Alternatively, one may maintain multiple lab journals in
different directories containing documentation for specific parts of
the project. The lab journal is important for the scientific legacy of the
research group by ensuring that others can replicate what the original
researcher(s) has done. We decided to deviate from standard practice
and to also use the lab journal to record new ideas, provide summaries
of (email) discussions, and to-do lists, since it is important to have a
record of these for the supervision of the projects and for follow-up
projects. Consequently, not all information in the lab journal can be
shared with others (see Discussion). Each directory also contains a
Markdown README file that is specific for the directory in which it is
located. In general, these README files contain an explanation of the
information found in that specific directory, instructions, and a doc-
umentation template specifying the minimum required documenta-
tion that a researcher should provide (SupplemenataryMethod 3). The
instructions and templates are basically a translation of a selection of
published guidelines to enhance the reproducibility of computational
projects. This is an essential part of ENCORE since following the
instructions and templates will likely improve the reproducibility of
the project while preventing the researcher from reading the many
publications about computational reproducibility to deduce what
should be documented and why. The instructions and templates also
support the internal consistency of the sFSS and promote consistency
between different ENCORE projects within the same research group.
One decision to be made by the project team is how to distribute the
documentation over the various README files and the lab journal(s).
However, as a rule, one should document any project file (code, data,
results) in the directories in which these are located. The lab journal
can then be used for more general documentation.

Component 3. The GitHub repository. ENCORE utilizes Git and
GitHub for version control of software and its documentation, and to
collaborate on software development. Since the sFSS project com-
pendium contains all the information of a project, it is not necessary to

Fig. 5 | Five components of ENCORE. The main component comprises the sFSS
template (1) that organizes all parts of the project. ‘Project’ corresponds to the root
directory of the template. The blocks represent project-dependent sub-directories
(Fig. 4). Project documentation resides in (pre-defined) files (2) that are found in all
subdirectories of the sFSS template. The pre-defined files contain instructions
about the minimum information that needs to be provided in terms of doc-
umentation for thedifferent parts of a project. Eachproject is complementedwith a
GitHub repository (3) for version control of the code and documentation in the
‘Processing’ (sub-)directories. The sFSS Navigator (4) allows (end) users to browse
the main contents of the project. The external ENCORE user documentation (5)
provides instructions for new users on how to instantiate a new project.
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also share the GitHub repository. However, the project team may still
share this repository or make it public in case of joint code develop-
ment or if access to previous code versions is requested or required.
To ensure that only code, (Jupyter) notebooks, software settings, and
documentation ismanaged byGit, the project teamneeds to configure
the so-called ‘.ignore’ file of which templates are provided in the sFSS
(Supplemenatary Method 1).

Component 4. The sFSS navigator. At later stages of a project, the
sFSS may contain a large amount of information potentially making
it difficult for the compendium recipient to determine the best
point of entry. Therefore, we developed the sFSS Navigator to
provide a first overview of the project. It also provides a convenient
tool to, for example, browse and show results while the project is
still active. The project team uses the 0_GETTINGSTARTED file to
provide the compendium recipient pointers to directories and files
that contain the most relevant information such as the main results
and the data and code that were used to generate these. The sFSS
Navigator itself was developed following the ENCORE approach,
and the project compendium can be found in Zenodo42. The Navi-
gator is a Python program, which scans the sFSS and generates a
web page (Navigate.html) that can be opened in any web browser.
The generated web page consists of four panels (Fig. 7). The content
of the panels is configured by the project team to guide peers to the
important parts of the project. A configuration file (Naviga-
tion.conf) allows to specify which subdirectories and files to show in
the expandable directory tree (Fig. 7a). In addition to the Python

code (Navigate.py), executables for Windows, macOS (for both
Intel- and silicon-based chips) and shell scripts for Linux/Unix using
Python v3 are provided to ensure the Navigator can be used if the
Python interpreter is not installed.

Component 5. User documentation. ENCORE is complemented with
extensive documentation to guide the user in setting up a new project
andmaintaining documentation throughout the project. In addition to
the documentation already present in the pre-defined files, we have
created a comprehensive ‘Step-by-Step ENCORE Guide’ (Suppleme-
nataryMethod 1). This guide offers a brief introduction to the ENCORE
principles and components and provides a recipe for instantiating an
sFSS for a specific project, a corresponding GitHub repository, and the
sFSS Navigator. It also includes a basic introduction to Git and GitHub
to troubleshoot problems.

General ENCORE guidelines
The initialization of an ENCORE-based project is straightforward
and does not take much time. However, it is important to keep
working according to the provided instructions and to keep the
documentation continuously up to date. Recollecting (from mem-
ory) all important details at the end of a project is virtually impos-
sible. Moreover, this will take significantly more time than
incrementally adding documentation during the project. While
organizing and documenting a project, one should assume that at
some stage the project is going to be shared with a peer who is
initially unfamiliar with the project, the computational concepts,

Fig. 6 | The standardized File System Structure (FSS) and associated pre-
defined files. Standardized directory structure of the sFSS containing pre-defined
files (gold), which include README files (in Markdown format) that provide a
documentation template and instructions. Note that the pre-defined files in the
‘Data’directories (orange) and the ‘0_SoftwareEnvironment’ subdirectories are only
shown once. The names of the directories ‘NameOfDataset_1’ and ‘Name-
OfComputation_1’ are placeholders and should be replaced with more descriptive

names. These directories can be replicated if multiple datasets are used or if dif-
ferent computation procedures are performed. Subdirectories shown in light blue
are under version control using Git/GitHub. The ‘0_’ prefix ensures that the corre-
sponding files/directories are always on top of the file list when using lexicographic
ordering. The README.md in ‘Processing’ is the default GitHub repository README
file and therefore does not have the ‘0_’ prefix.
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the type of data, and the programming language. Although itmay be
tempting to document all aspects of the project in a single docu-
ment eventually evolving into amanuscript to be submitted for peer
review, we advise not to do so for several reasons. First, it breaks the
connection between the documentation and the files (e.g., code or
data) being documented. Second, the level of documentation in an
sFSS is likely to be much more detailed than what is provided in a
typical research paper. Even the manuscript’s supplementary
information may not provide the same level of detail. Third, since
ENCORE is used right from the start of a project, it is likely that not
all parts of the project end up in a publication. For example, not all
(intermediate) results will become part of a publication. In addition,
documenting specific approaches that failed or were discontinued
may be equally important. Fourth, keeping the documentation
modular and in the directories where it belongs helps in its main-
tenance. Once the manuscript will be written those parts of the
documentation that are needed can then easily be incorporated. We
also recommend that the overall sFSS structure, names of direc-
tories (with exceptions mentioned earlier), and names of pre-
defined files are not changed. This holds in particular for research
groups that embrace this approach to achieve harmonization.
Additional directories may be added if this does not effectively
change the overall sFSS structure. For example, within the Results
directory, one may create separate sub-directories for figures and
tables, but one should not move the Results directory to the root of
the sFSS. As mentioned earlier, unused directories and files should
be removed. Since an sFSS should be self-contained, any directory
path usedwithin the code or in any of the pre-defined files should be
relative to the top-level directory.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Code availability
The ENCORE template described in this manuscript is available as
a GitHub release (https://github.com/EDS-Bioinformatics-
Laboratory/ENCORE/releases/tag/V4.1.1) (https://doi.org/10.5281/
zenodo.12938252) and licensed under CC BY NC SA 4.0. The
ENCORE_AUTOMATION GitHub repository contains the scripts
referred to from this manuscript (https://github.com/EDS-
Bioinformatics-Laboratory/ENCORE_AUTOMATION) which are
also available from https://doi.org/10.5281/zenodo.12955697 and
are Licenced under GNU GPL V2. The sFSS Navigator is available
from Zenodo (https://doi.org/10.5281/zenodo.7985655) or its
GitHub repository (https://github.com/EDS-Bioinformatics-
Laboratory/FSS-Navigator) and is licensed under GNU GPL V2.
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