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Genomic and immune heterogeneity of
multiple synchronous lung adenocarcinoma
at different developmental stages

Yue Zhao 1,2,3,11 , Jian Gao 1,2,3,4,11, Jun Wang 5,11, Fanfan Fan1,2,3,11,
Chao Cheng6,11, Danwen Qian 7,8,11, Ran Guo1,2,3, Yang Zhang1,2,3, Ting Ye1,2,3,
Marcellus Augustine7,8,9, Yicong Lin3,10, Jun Shang 1,2,3, Hang Li1,2,3,
Yunjian Pan1,2,3, Qingyuan Huang1,2,3, Haiqing Chen1,2,3, Han Han1,2,3,
Zhendong Gao1,2,3, Qiming Wang5, Shiyue Zhang5, Mou Zhang5, Fangqiu Fu1,2,3,
YuerenYan1,2,3, Shanila Fernandez Patel7,8, RobertoVendramin 7,8, Hui Yuan1,2,3,
Yawei Zhang1,2,3, Jiaqing Xiang1,2,3, Hong Hu1,2,3, Yihua Sun 1,2,3, Yuan Li 3,10,
Kevin Litchfield 7,8 , Zhiwei Cao 4,5 & Haiquan Chen 1,2,3

Multiple synchronous lung cancers (MSLCs) constitute a unique subtype of
lung cancer. To explore the genomic and immune heterogeneity across dif-
ferent pathological stages of MSLCs, we analyse 16 MSLCs from 8 patients
using single-cell RNA-seq, single-cell TCR sequencing, and bulk whole-exome
sequencing. Our investigation indicates clonally independent tumours with
convergent evolution driven by shared driver mutations. However, tumours
from the same individual exhibit few shared mutations, indicating indepen-
dent origins. During the transition from pre-invasive to invasive adenocarci-
noma, we observe a shift in T cell phenotypes characterized by increased Treg
cells and exhausted CD8+ T cells, accompanied by diminished cytotoxicity.
Additionally, invasive adenocarcinomas exhibit greater neoantigen abundance
and a more diverse TCR repertoire, indicating heightened heterogeneity. In
summary, despite having a common genetic background and environmental
exposure, our study emphasizes the individuality ofMSLCs at different stages,
highlighting their unique genomic and immune characteristics.

Lung cancer is one of the deadliest diseases worldwide, with lung ade-
nocarcinoma (LUAD) being the most common histological subtype1,2.
Advances in next-generation sequencing techniques have revolutio-
nised the field of molecular profiling, enabling personalised treatment

strategies based on specific driver mutations present in patients3–7.
Additionally, immune checkpoint inhibitors (ICIs) have shown promis-
ing results in improving the survival of lung cancer patients, although
reliable biomarkers for predicting treatment response to ICIs have not
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been fully discovered8–12. Therefore, a comprehensive understanding of
themolecular profile and immunemicroenvironmentof LUAD is crucial.

Multiple synchronous lung cancers (MSLCs) represent a unique
subtype of lung cancer, characterised by the simultaneous occurrence
of two or more lung cancers within the same individual at the time of
diagnosis13. The increased utilisation of CT scans has led to a higher
detection rate of MSLCs in recent years14–16. Differentiating between
independent tumours and hematogenous spread in MSLCs is chal-
lenging but essential, as it influences treatment decisions and
prognosis17. While the origins of different lesions in MSLCs and whe-
ther they share common ancestors are not yet fully understood, evi-
dence suggests that distinct genomic profiles may exist among
different lesions18. In a subset of MSLC patients, both pre-invasive and
invasive stages of LUAD are present. Pre-invasive stages, namely ade-
nocarcinoma in situ (AIS) and minimally invasive adenocarcinoma
(MIA), are considered to have nearly 100% 5-year survival rates fol-
lowing complete surgery19,20. Previous studies have identified differ-
ences in genomic and immune profiles between pre-invasive and
invasive LUADs21–23. However, comprehensive comparisons of the
immune microenvironment and TCR repertoire between LUADs at
different stages within the same patients have not yet been achieved.

In this work, we conduct bulk whole-exome sequencing (WES),
single-cell RNA sequencing and single-cell TCR sequencing on 16
paired pre-invasive and invasive LUADs from8MSLC patients. Our aim
is to investigate the genomic and immune heterogeneity of LUAD at
different developmental stages within the same patients. This inte-
grated approachallowsus to examine the comprehensive landscape of
molecular and immune characteristics in these tumours.

Results
Somatic mutation landscape demonstrates inter-tumour het-
erogeneity and different evolutionary patterns of multiple syn-
chronous lung cancers (MSLCs)
Clinical, pathological and radiological characteristics of the samples
are shown in Table 1, Fig. 1a and Supplementary Fig. 1. Bulk WES was
performed on all the 16 samples and their matched normal lung tis-
sues, to identify somaticmutations.We found that themost frequently
mutated genewas EGFR (50%), followedby RBM10 (25%), PIK3CA (12%),
KRAS (12%) and ERBB2 (12%, Fig. 1b, Supplementary Data 1). Median
tumour mutation burden (TMB) for AIS/MIA samples was 1.08 (range:

0.40–18.03), while for LUAD samples, it was 1.78 (range: 1.13–18.60). Of
note, one patient (FD4) demonstrated a much higher TMB than the
others, which might be due to being a smoker and having a higher
activity of smoking mutation signature (SBS4, Supplementary Fig. 2).

Interestingly, we observed only a small number of shared somatic
mutations between samples from the same patients across our study
cohort (Fig. 1c and Supplementary Fig. 3), indicating that the patients
had multiple primary lung cancers rather than intrapulmonary
metastases. To assess whether different tumours harboured the same
driver mutations, we focused on the driver mutations of LUAD. Con-
vergent evolution was found in patients FD4, FD5, FD8 and FD16,
where shared driver mutations were identified in independently ori-
ginated tumours (Fig. 1c). In patients FD1 and FD14, only one of the two
tumours harboured a driver mutation (EGFR p.L858R). Notably, in
patient FD9, the LUAD sample had an EML4-ALK fusion, while the MIA
sample contained an ERBB2 exon 20 insertion, both of which were
considered driver events in LUAD (Fig. 1c). In patient FD4, the LUAD
sample harboured RBM10 p.E165Q mutation, while the MIA sample
harboured RBM10 p.A247P mutation, suggesting parallel evolution.

In addition, a combined histomolecular algorithm was used to
further address this issue24. When taking into account the histological
manifestations,we foundpatients FD1, FD2, FD4, FD5, FD9 and FD14 all
had 1 LUAD and 1 AIS/MIA samples, while FD8 and FD16 had 2 LUAD
samples with different predominant subtypes (Table 1). These findings
collectively support the notion that different tumours within the same
patient originated independently rather than through intrapulmonary
metastases.

A single-cell atlas ofmultiple synchronous lung cancers (MSLCs)
To investigate intratumoural heterogeneity and compare the immune
microenvironment between paired tumour samples of different
developmental stages within the same patients, we conducted single-
cell RNA sequencing (scRNA-seq) on all 6 AIS/MIA and 10 LUAD sam-
ples. After quality control, a total of 92,032 cells were retained and
clustered based on their expression profiles (Supplementary Data 2).
Dimensional reduction using t-distributed stochastic neighbour
embedding (t-SNE) was employed. By utilising canonical markers, we
identified epithelial cells, stromal cells (including endothelial cells and
fibroblasts) and immune cells (such as T cells, B cells, mast cells, NK
cells,myeloid cells andplasmacells) (Fig. 2a–c, SupplementaryData 3).

Table 1 | Baseline clinical and pathological characteristics of patients included in this study

Patient Sex Age Smoking status TNM stage Tumour
location

Tumour
size (cm)

Radiology Pathology Predominant subtype

FD1 Female 73 Never IIB RUL 1.2 Solid LUAD Papillary

RUL 0.8 Subsolid MIA

FD2 Female 75 Never IIIA LLL 3.2 Solid LUAD Acinar

LUL 0.7 GGO MIA

FD4 Male 64 Ever IA3 RUL 2.4 Solid LUAD Acinar

RUL 0.9 GGO MIA

FD5 Male 57 Ever IA2 RUL 1.4 Subsolid LUAD Lepidic

RUL 0.5 Subsolid MIA

FD8 Female 54 Never IA2 RML 1.7 Solid LUAD Papillary

RLL 1.2 Subsolid LUAD Lepidic

FD9 Female 32 Never IA2 LUL 2.0 Solid LUAD Acinar

LLL 0.4 GGO MIA

FD14 Female 71 Never IA3 RLL 2.5 Subsolid LUAD Papillary

RUL 0.7 GGO AIS

FD16 Male 53 Ever IA2 LUL 2.0 Solid LUAD Papillary

LUL 0.6 GGO LUAD Acinar

AIS adenocarcinoma in situ,GGOground-glass opacity, LUAD lungadenocarcinoma, LLL left lower lobe, LUL left upper lobe,MIAminimally invasive adenocarcinoma,RLL right lower lobe,RML right
middle lobe, RUL right upper lobe.
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Fig. 1 | Study design and mutation landscape of 8 multiple synchronous lung
cancer (MSLC) patients. a Study design. 8 multiple synchronous lung cancer
(MSLC) patients were included in this study. Samples were surgically resected and
were sent for bulkwhole-exome sequencing (WES), single-cell RNA sequencing and
single-cell TCR sequencing. b Mutations in major driver genes and tumour sup-
pressor genes of sequenced tumours. c Intertumour heterogeneity of each MSLC
patient based onmutations detected. For each individual patient, tumour location
was shown on the left. A heatmap shows the mutations different tumours

harboured. Maroon, mutations that were shared by the two tumours in the same
patient; yellow, parallel evolution events; blue,mutations thatwereprivate in either
tumour in the same patient. A phylogenetic tree was constructed for each patient
demonstrating the intertumour heterogeneity. AIS adenocarcinoma in situ, MIA
minimally invasive adenocarcinoma, LUAD lung adenocarcinoma. Source data are
provided as a SourceData file. Figure 1/panels a and c, createdwith BioRender.com,
released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0
International license. https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en.
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We compared the composition of these major cell types between
AIS/MIA and LUAD samples. Remarkably, the number of B cells was
significantly higher in LUAD (p =0.0313), while the number of NK cells
was significantly higher in AIS/MIA (p = 0.0363, Fig. 2d, e). These
findings suggest that tumours at different developmental stages
exhibit distinct tumour microenvironments, despite originating from
the same immune system throughout the body.

Single-cell somatic copy number alteration (SCNA) analysis
reveals a more unstable genome in LUAD than AIS/MIA
samples
To investigate the differences between AIS/MIA and LUAD samples at
the level of tumour cells, we focused on analysing the copy number
profiles of these cells. Tumour cells were separated from epithelial
cells using single-cell expression data, with 300 endothelial cells and
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patients. a t-distributed stochastic neighbour embedding (t-SNE) plot of
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the percentages of each annotated cell type in each individual tumour; (e) Com-
parison of frequency of each annotated cell type between adenocarcinoma in situ
(AIS)/minimally invasive adenocarcinoma (MIA) and invasive lung adenocarcinoma
(LUAD). 6 AIS/MIA and 6 LUAD samples were used to derive the two-sided paired
comparisons. AIS adenocarcinoma in situ,MIAminimally invasive adenocarcinoma,
LUAD lung adenocarcinoma. Source data are provided as a Source Data file.
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300 fibroblasts included as spike-in controls. InferCNV was applied to
infer the copy number profiles for each cell, and subsequent clustering
based on these profiles was performed25. Cells with quiet copy number
profile similar to spike-in cells were classified as normal epithelial cells,
while cells withmore unstable genomeswere identified as tumour cells
(Supplementary Fig. 4). The frequency of arm-level somatic copy
number alteration (SCNA) events across the tumours was visualised in
a heatmap (Fig. 3a).

Remarkably, AIS/MIA and LUAD samples from the same patients
rarely clustered together (except for FD1), further supporting
the notion that different tumours within the same patient originated
independently and harboured distinct genomic alterations,

despite sharing the same genetic background and environmental
exposure.

Additionally, we utilised the weighted genomic integrity index
(wGII) to compare the SCNA load between AIS/MIA and LUAD
samples26. The results demonstrated that LUAD samples had sig-
nificantly higher levels of SCNA load thanAIS/MIA samples (p = 0.0017,
Fig. 3c). Finally, we calculated the genomicdistancebasedon the SCNA
profiles of the tumours using Euclidean metrics. Interestingly, the
genomic distance between two samples from the same patient (self)
did not differ from that between two randomly selected samples from
different patients (other), further indicating that different samples
within the same patient had different origins (Fig. 3d).
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data were found. Whiskers went from the minimum of data to the lower bounds of
the box and the upper bounds of the box to the maximum of data. The whiskers
were restricted to a maximum of 1.5 times the interquartile range (IQR) and data
points outside this range were considered outliers. Source data are provided as a
Source Data file.
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Compared with AIS/MIA, LUAD has a more inhibitory tumour
microenvironment (TME)
To gain insights into the composition and functional status of T cells
within the tumour microenvironment (TME), we applied clustering
analysis to single-cell expression profiles of 35,367 T cells (13,137 for
the AIS/MIA group, and 22,130 for the LUAD group, Fig. 4a). By
employing t-SNE for dimensional reduction, distinct T cell subsets
were identified (Fig. 4a). These included naïve T cells (52.17%), Treg
cells (10.13%), memory T cells (6.78%), CD8 +GZMK+ T cells (10.63%),
CD8 +GZMB+ T cells (10.14%), exhausted T cells (0.70%), two clusters
of γδT cells (1.84%), and other T cells (7.62%), as characterised by
specific markers (Fig. 4b, Supplementary Data 3). To compare the

frequencies of these T cell subsets between AIS/MIA and LUAD sam-
ples, we conducted a paired analysis. The results revealed that the
frequency of Treg cells was significantly higher in LUAD compared to
AIS/MIA (p = 0.0313, Fig. 4c). Although not statistically significant,
there was a trend suggesting a higher frequency of exhausted CD8+

T cells in LUAD compared to AIS/MIA (p = 0.2748, Fig. 4c). To further
validate these findings, we performed flow cytometry on an indepen-
dent cohort comprising 5 MIA and 7 LUAD samples. Consistently, the
frequency of both exhausted T cells and Treg cells was significantly
higher in LUAD (Fig. 4d), indicating the presence of a more immuno-
suppressive TME in LUAD compared to AIS/MIA.We further compared
exhausted CD8+ T cells and Treg cells in tumours with or without
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Fig. 4 | Clustering and comparison of T cells. a t-SNE plot showing 35,367 T cells
were further clustered and annotated into 9 subgroups. b Expression of canonical
marker genes that were used to identify different subgroups of T cells.
c Comparison of frequency of each T cell subgroup between AIS/MIA and LUAD
samples. 6 AIS/MIA and 6 LUAD samples were used to derive the two-sided paired
comparisons. dComparison of frequency of exhausted CD8+ T cells and regulatory
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derive the comparison, and two-sided Student’s t test was performed. Data were
presented as mean values ± SD. e Comparison of cytotoxicity score in CD8+T cells
using single-cell RNA-seqdata between AIS/MIA and LUAD samples. 3597 cells from
the AIS/MIA group and 3993 cells from the LUAD group were used to derive the
two-sided comparison. f Comparison of MANA score in CD8+T cells using single-

cell RNA-seq data between AIS/MIA and LUAD samples. 3597 cells from the AIS/MIA
group and 3993 cells from the LUAD group were used to derive the two-sided
comparison. AIS adenocarcinoma in situ, MIA minimally invasive adenocarcinoma,
LUAD lung adenocarcinoma. For boxplots in this figure, the centre of the boxes
indicated themedian value and upper and lower bounds of the boxes indicated the
25th and 75th percentile of data. The box covers the interquartile interval and
represents the area where 50% of the data were found. Whiskers went from the
minimum of data to the lower bounds of the box and the upper bounds of the box
to the maximum of data. The whiskers were restricted to a maximum of 1.5 times
the interquartile range (IQR) and data points outside this range were considered
outliers. Source data are provided as a Source Data file.
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mutations in specific driver genes (EGFR, TP53, RBM10, PIK3CA and
KRAS, and found tumourswith EGFRmutations tended tohave ahigher
level of Treg cells, while no significant difference was observed for
exhausted CD8+ T cells (Supplementary Fig. 5). Moreover, PD-L1
(CD274) expression between AIS/MIA and LUAD samples was com-
pared, and no significant difference was observed between the two
groups using either scRNA-seq or immunofluorescent staining (Sup-
plementary Fig. 6).

Anti-tumour T cell response is higher in AIS/MIA than in LUAD
Furthermore, we observed a significantly higher frequency of CD8 +
GZMB+ T cells in AIS/MIA samples (p =0.0156), indicating a greater
cytotoxic function in AIS/MIA compared to LUAD (Fig. 4c). To assess
the overall cytotoxicity between AIS/MIA and LUAD samples, we
defined a cytotoxic score based on established gene signatures27,
which demonstrated a significantly higher score in AIS/MIA (Fig. 4e).
To further investigate the T cell activation and cytotoxicity markers in
pre-invasive and invasive LUAD samples,weperformedflowcytometry
on an additional cohort comprising 5 MIA and 10 LUAD samples.
Consistently, the frequency of GZMA+ and GNLY+ cells was sig-
nificantly higher in MIA samples (p =0.003 and 0.015, respectively),
indicating a higher level of cytotoxicity in T cells within the TMEof pre-
invasive samples (Supplementary Fig. 7). Ki67, a marker of prolifera-
tion, was also found to be significantly higher in the pre-invasive group
(p = 0.014, Supplementary Fig. 7). It is reported that the majority of
T cells do not recognise tumour antigens and are considered bystan-
der T cells, whereas T cells recognising mutation-associated neoanti-
gens (MANA) play a crucial role in anti-tumour immune responses28,29.
Therefore, we defined a MANA score based on genes enriched in
MANA-specific T cells from a previous study28. The analysis revealed a
significantly higher MANA score in AIS/MIA compared to LUAD, indi-
cating a lower proportion of bystander T cells in AIS/MIA samples
(Fig. 4f). Collectively, these findings suggest that AIS/MIA samples
exhibit a heightened anti-tumour T cell response compared to LUAD.

TCR repertoire and neoantigen prediction analysis
To explore the T cell receptor (TCR) repertoire in the different stages
ofMSLC tumours, single-cell TCR sequencingwas conducted on the 16
MSLC samples. Firstly, we examined the relationship between TCR
diversity and tumour heterogeneity, observing that tumours with high
TCR diversity displayed greater level of heterogeneity (Fig. 5a). Sub-
sequently, we compared the number of TCR clonotypes and TCR
diversity between the two groups and found that LUAD samples had a
higher number of TCR clonotypes and greater diversity measured by
Shannon’s Diversity Index (p = 0.042 and p =0.031, respectively,
Fig. 5b, c). However, despite having a higher number of TCR clono-
types, LUAD exhibited a lower frequency of large and hyperexpanded
TCR clonotypes (p =0.056, Fig. 5d, e and Supplementary Fig. 8), as
illustrated in Supplementary Fig. 8 which depicts changes in the top
TCR clonotypes.

We next used netMHCpan (version 4.0) to predict neoantigens
and used Panpep to predict their affinity to TCRs. TCRs with an affinity
score >0.5 were considered neoantigen-committed TCRs30. Sig-
nificantly more neoantigens were detected in LUAD samples
(p = 0.016, Fig. 5f). Notably, CD8+ T cells containing neoantigen-
committed TCRs exhibited a higher MANA score compared to those
without such TCRs, indicating a reduced likelihood of being bystander
T cells (Fig. 5g). This trend remained consistent when analysing AIS/
MIA and LUAD samples separately (Supplementary Fig. 9a, b), sug-
gesting that CD8+ T cells containing predicted neoantigen-committed
TCRs were less likely to be bystander T cells. No significant difference
was observed in MANA scores for CD8+ T cells containing neoantigen-
committed TCRs between AIS/MIA and LUAD samples, indicating
comparable efficacy in non-bystander CD8+ T cells in both groups
(Supplementary Fig. 9c). Exhaustion scores, as calculated using genes

associated with T cell exhaustion27, were found to be higher in
CD8+T cells containing neoantigen-committed TCRs (Fig. 5h). This
trend was observed in both AIS/MIA and LUAD samples (Supplemen-
tary Fig. 10a, b), with the exhaustion score significantly higher in LUAD
compared to AIS/MIA for CD8+T cells containing neoantigen-
committed TCRs (Supplementary Fig. 10c). Moreover, immune
checkpoint scores, based on known immune checkpoints, were sig-
nificantly higher in CD8+T cells containing neoantigen-committed
TCRs. While this trend was not observed in AIS/MIA samples, it was
evident in LUAD samples (Supplementary Fig. 11a, b). CD8+T cells
containing neoantigen-committed TCRs in LUAD exhibited a higher
immune checkpoint score than those in AIS/MIA (Supplementary
Fig. 11c). Finally, we found genes with non-silent mutations had sig-
nificantly lower expression than genes with silent mutations, indicat-
ing that expression of neoantigens was more suppressed in more
invasive stages (Fig. 5j, Supplementary Fig. 12). Collectively, these
findings highlight the significance of neoantigens and their corre-
sponding TCRs in LUAD progression and provide additional insights
into the immune escape mechanisms within the LUAD progression.

Comparison of Myeloid cells and natural killer (NK) cells
between AIS/MIA and LUAD
Wenext performed clustering analysis onmyeloid cells and NK cells to
investigate their differences between AIS/MIA and LUAD. This analysis
revealed the presence of 10 distinctmyeloid cell types and twoNK cell
types (Fig. 6a, c). Among the myeloid cells, we observed significantly
higher frequencies of anti-inflammatory macrophages and proliferat-
ing macrophages in LUAD samples, while conventional dendritic cells
(type 1) and non-classical CD16+ monocytes were significantly more
abundant in AIS/MIA samples (Fig. 6b). Regarding NK cells, although
the difference did not reach statistical significance (p = 0.0903), a
lower frequency of CD56dimCD16+ NK cells was observed in LUAD
compared to AIS/MIA (Fig. 6d). NoTable, this trend was validated in a
flow cytometry experiment comprising 5 MIA and 7 LUAD samples,
where a significant decrease in the frequency of CD56dimCD16+ NK
cells was observed in LUAD samples (Fig. 6e).

Discussion
MSLCs present a unique subtype of lung cancer that poses challenges
in determining whether they are independent tumours or intra-
pulmonary metastases13,14,16. In this study, we conducted WES on 16
samples obtained from 8 patients. The results revealed that shared
driver mutations were only identified in 4 out of the 8 patients (FD4,
FD5, FD8 and FD16, as shown in Fig. 1). Additionally, we found few
shared passenger mutations, indicating that MSLCs within the same
patient originated independently. A combined histomolecular analysis
further validated their independency. Notably, despite being clonally
independent lesions, tumours in patients FD4, FD5, FD8 and FD16
exhibited patterns of convergent evolution. Convergent evolution has
been reported in various cancer types and is associatedwith treatment
resistance31–34. An intriguing case (FD9) was observed, where one
tumour contained the EML4-ALK fusion while the other tumour har-
boured ERBB2 exon 20 insertion. Both are driver alterations and
therapeutic targets in LUAD5,35,36. Caseswith parallel evolution in driver
genes were also identified. Taken together, these findings suggest that
MSLCs arise independently and demonstrate multiple evolutionary
subtypes.

By sequencing MSLCs from the same patients, we were able to
analyse intra-patient heterogeneity and directly compare the immune
microenvironment between pre-invasive and invasive LUAD (LUAD),
while controlling patients’ genetic background and environmental
exposure. Mutations in canonical driver genes were observed in both
AIS/MIA and LUAD samples (Fig. 1b, c). In comparison to pre-invasive
LUADs, invasive LUADs exhibited a higher level of TMB and genomic
instability, which could possibly be caused by a higher level of somatic
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Fig. 5 | T cell receptor (TCR) repertoire and neoantigen prediction of multiple
synchronous lung cancer (MSLC) patients. a Comparison of tumour hetero-
geneity between patients with different levels of TCR diversity. 8 samples with
lower TCR diversity and 8 samples with higher TCR diversity were used to derive
the two-sided comparison. b Comparison of number of TCR clonotypes between
AIS/MIA and LUAD samples. 6 AIS/MIA and 10 LUAD samples were used to derive
the two-sided comparison. c Comparison of TCR diversity between AIS/MIA and
LUAD sample, as measured by Shannon’s Diversity Index. 6 AIS/MIA and 10 LUAD
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clonal space specific clonotypes across all samples. e Comparison of number of
neoantigen specific TCRs between AIS/MIA and LUAD samples. 6 AIS/MIA and 10
LUAD samples were used to derive the two-sided comparison. f Comparison of
number of predicted neoantigens between AIS/MIA and LUAD samples. 5 AIS/MIA
and 5 LUAD samples were used to derive the paired two-sided comparison.
g Comparison of MANA score between CD8+ T cells containing non-neoantigen
committed and neoantigen committed TCRs. Two-sided Wilcoxon’s rank-sum test

was used. hComparison of exhaustion score between CD8+T cells containing non-
neoantigen committed and neoantigen committed TCRs. Two-sided Wilcoxon’s
rank-sum test was used. i Comparison of immune checkpoint score between
CD8+ T cells containing non-neoantigen committed and neoantigen committed
TCRs. Two-sided Wilcoxon’s rank-sum test was used. j Comparison of the expres-
sion of genes with silent and non-silent mutations. For boxplots in this figure, the
centre of the boxes indicated themedian value and upper and lower bounds of the
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quartile interval and represents the area where 50% of the data were found.
Whiskers went from the minimum of data to the lower bounds of the box and the
upper bounds of the box to themaximumof data. Thewhiskerswere restricted to a
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range were considered outliers. AIS, adenocarcinoma in situ; MIA, minimally
invasive adenocarcinoma; LUAD, lung adenocarcinoma; TCR, T cell receptor;
MANA, mutation-associated neoantigens. Source data are provided as a Source
Data file.
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copy number alterations, structural variations, impaired DNA mis-
match repair functions and higher activities of APOBEC signatures.
Previous studies have reported a higher frequency of mutations in
tumour suppressor genes, especially TP53, in LUAD compared to AIS/
MIA21. However, in this study, we found only one LUAD sample (FD9)
harboured a TP53 mutation (Fig. 1b, c). The low frequency of TP53
mutation could be due to the small sample size and relatively early
stage of the tumours examined.

Regarding the evolutionary patterns of tumours, we observed
convergent evolution in the driver mutation space, where the same
driver alterations were identified in clonally independent lesions from

the same patient (Fig. 1c). However, despite a significant increase in
SCNAs from AIS/MIA to LUAD, no evidence of convergent selection in
copy number space was observed, and there was no difference in
genetic similarity between matched lesions (self) and randomly sam-
pled unmatched lesions (other, Fig. 3d). Intra-tumour heterogeneity
was inferred based on single-cell level SCNAs andwasobserved in both
pre-invasive and invasive LUAD samples (Fig. 3b).

We hereby report that LUAD demonstrate a more inhibitory
tumour immunemicroenvironment (TME) than AIS/MIA, as evidenced
by an increase in exhausted CD8+ T cells and Treg cells and a con-
comitant drop in cytotoxicity (as depicted in Fig. 4c–e). Our findings
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align with a previous study that integrated single-cell RNA sequencing
(scRNA-seq) and spatial transcriptomics on 6 AIS/MIA and 3 LUAD
samples, which also reported an increase in Treg cells fromAIS/MIA to
LUAD, albeit with samples obtained from different patients37. Another
study which performed scRNA-seq on tumours and adjacent normal
lung tissues of 5MSLCpatients foundTreg cells to bemore enriched in
tumour tissue compared to normal tissue, while no significant differ-
ence was observed between pre-invasive and invasive LUADs38. The
shift towards amore inhibitory immunemicroenvironment during the
progression from pre-invasive to invasive cancer has also been
reported in pancreatic ductal adenocarcinoma (PDAC)39, highlighting
the critical role played by the local immune microenvironment in
tumour evolution. Furthermore, we observed fewer bystander T cells
in AIS/MIA, as indicated by a higher MANA score in AIS/MIA than in
LUAD (as shown in Fig. 4f), which further confirms the greater inhibi-
tion of the local immune response as tumours progress. The fre-
quencies of other immune cells, such as gamma-delta T cells,
macrophages, dendritic cells and monocytes also demonstrate sig-
nificant differences between AIS/MIA and LUAD samples, suggesting
dynamic changes as tumours progress (as illustrated in Figs. 4c and 6b,
d, e). Taken together, these results provide valuable insights into the
importanceof the local immune response in theprogressionof LUAD, as
systemic immune responses are controlled for.

Tumours express neoantigens that can be recognised by TCRs
and induce immune response40. In the current study, we performed
single-cell TCR sequencing on MSLC samples of different stages to
investigate how the TCR repertoire changes as tumours progress. TCR
diversity was found to positively correlate with tumour heterogeneity,
suggesting that differences in the TCR repertoire may arise from dis-
tinct tumour subclones. We observed a higher number of TCR clono-
types and increased TCR diversity in LUAD, while hyperexpanded
TCRs were more frequently observed in AIS/MIA. These findings indi-
cate a higher level of intra-tumour heterogeneity in LUADcompared to
AIS/MIA. To gain further insights, we predicted neoantigens and
assessed their affinity for TCRs. We discovered that both the number
of neoantigen counts and the number of neoantigen-committed TCR
counts were higher in LUAD, suggesting that distinct neoantigens
potentially drive the differences in the T cell repertoire between the
two stages. By predicting the affinity between neoantigens and TCRs,
we were able to analyse the interplay between neoantigens and TCRs,
leading to the identification of CD8+ T cells specific to neoantigens.
Notably, CD8+ T cells containing neoantigen-committed TCRs were
less likely to be bystander T cells, as evidenced by higherMANA scores
(as shown in Fig. 5g). This difference in MANA scores remained sig-
nificant when analysing AIS/MIA and LUAD individually (as shown in
Supplementary Fig. 9a, b). However, these T cells exhibited a higher
level of exhaustion and expressed higher levels of immune check-
points (Fig. 5h, i), indicating the presence of immune escape
mechanisms during the progression of LUAD. Additionally, we found
that the expression of genes with non-silent mutations was lower than
that of genes with silent mutations (as shown in Fig. 5j), suggesting
reduced immunogenicity by tumours as they progressed.

The current TNM staging system considers multiple nodules in
the same lobe to be T3 disease, and multiple nodules in a different
ipsilateral lobe to be T4 disease41. However, this classification assumes
multiple nodules are intrapulmonary metastases. Although currently
there is no definitive consensus for this specific type of patients,
patients with multiple primary lung nodules might benefit more from
surgical resections42. Our study demonstrates the different genomic
and immune profiles of independent MSLCs, providing evidence for
the feasibility for surgical resection of the lesions.

One limitation of our study is that it remains challenging to
accurately predict the affinity between TCRs and neoantigens from
computational perspective. More experimentally validated data in the
future will be crucial for improving the accuracy of such predictions.

We hope that additional data will emerge enhance our understanding
of the TCR repertoire and its association with pre-invasive cancers.

In summary, our study integrated bulk WES, single-cell RNA
sequencing (scRNA-seq) and single-cell TCR sequencing (scTCR-seq)
on MSLCs, providing evidence of the independent origins of each
lesion, the evolutionary pattern ofMSLCs and the interaction between
tumours and the immune microenvironment of MSLCs. This research
sheds light on the unique characteristics of this particular subtype of
lung cancer.

Methods
Patient cohort and sample collection
This study complies with all relevant ethical regulations and was
approved by the Committee for Ethical Review of Research (Fudan
University Shanghai Cancer Center Institutional Review Board No.
090977-1). From December 2021 to September 2022, 8 multiple syn-
chronous lung cancer (MSLC) patients who underwent surgery at the
Department of Thoracic Surgery, Fudan University Shanghai Cancer
Center were prospectively enroled in this study. Preoperative tests,
including contrast-enhanced chest computed tomography (CT) scan-
ning, were performed to determine the clinical stage of the disease.
CT-guided hookwire localisation was performed preoperatively when
nodules were too small or toodeep to localise. Resected tumourswere
sent for intraoperative frozen section pathology immediately after
they were resected, and intraoperative pathological diagnosis was
made. After surgery, tumours were sent to at least 2 pathologists to
determine the histological classification and pathological stage.
Usually, 3–5 sections of each specimen were used to reach the final
pathological stage of the tumour. Tumours were classified into AIS,
MIA and invasive adenocarcinoma according to the standards of the
International Association for the Study of Lung Cancer, American
Thoracic Society and European Respiratory Society43. For invasive
adenocarcinomas, the occupancy of each one of these several pat-
terns, namely, lepidic, acinar, papillary, micropapillary, solid and
invasive mucinous adenocarcinoma, was recorded in a 5% increment.
Informed consents of all patients were obtained.

Sample preparation, single-cell RNA sequencing and single-cell
TCR sequencing
Fresh tumour tissue samples were collected and immediately stored in
MACS Tissue Storage Solution (Miltenyi Biotec) at 2–8 °C. Within 12 h
after surgery, tumour tissues were dissociated and digested. For the
quality check and counting of single cell suspension, the cell viability
was above 80%. The cells that have passed the test were washed and
resuspended to prepare a suiTable cell concentration of 700–1200
cells/μL. Cells were then loaded onto the 10X Chromium Single Cell
Platform (10X Genomics). Each cell suspension was subjected to 5’
single-cell RNA sequencing using Chromium Next GEM Single Cell 5’
Kit v2 (PN-1000263). Generation of gel beads in emulsion (GEMs),
barcoding, GEM-RT clean-up, cDNA amplification and library con-
struction were performed following manufacturer’s instructions.
Single-cell TCR sequencing libraries were simultaneously constructed
using Chromium single cell V(D)J Enrichment Kit, Human T cell (PN-
1000252). Libraries were sequenced on the Illumina Nova6000 plat-
form to generate 150-bp paired-end reads, and mapped to GRCh38
human genome using the Cell Ranger toolkit (v2.1.0). Average reads
per cell for scRNA-seq data was 69,353, and average reads per cell for
scTCR-seq data was 24,350.

Filtering and normalisation of scRNA-seq data
Scrublet (version 0.2.3) was used to identify and remove doublet cells
with expected doublet rate 0.0644. Downstream data processing of
single-cell RNA sequencing (scRNA-seq) data was conducted using R
(version 4.1.3), and the foundational analysis pipeline was established
using the Seurat package (version 4.3.0)45. Cells with either lower than
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200 or higher than 6000 expressed genes were excluded from the
analysis. Next, cells with a percentage of RNA encoding proteins less
than 80% were also discarded. Because of the heterogeneity among
different samples, a dynamic adjustment strategy was used for addi-
tional filtering parameters. Specifically, cells with a total number of
UMIs that was greater or smaller than median ± 5 × MAD (median
absolute deviation) or a percentage of molecules mapped to mito-
chondrial genes greater than median + 6 × MAD were then excluded
from the downstream analysis. RNA expression was then log-
normalised using the scale factor of 10,000.

Identification of epithelial cells, stromal cells and immune cells
Cells were at first clustered and annotated into 3 types, namely epi-
thelial cells (EPCAM), stromal cells (MME, PECAM) and immune cells
(PTPRC) based on their gene expression profiles.

Stromal cells were further clustered and annotated as fibroblasts
(DCN, C1R, COL1A1) and endothelial cells (PECAM1, RAMP2, CLDN5),
while immune cells were further clustered and annotated as T cells
(CD3D, CD3E), NK cells (NKG7), B cells (CD79A), plasma cells (IGKC),
myeloid cells (LYZ, CD68) and mast cells (TPSB2, CPA3, MS4A2).

Regarding immune cells, T cellswerefirst clustered and annotated
intoCD4+Tcells, CD8+T cells andCD4-CD8- T cells.CD4+Tcellswere
mainly divided into Naïve T cells (TCF7, SELL, LEF1, CCR7), Treg cells
(IL2RA, FOXP3, IKZF2, TGFB1, TGFB3, TGFBI, TGFBR1), and CD8+T cells
were defined different subclusters according to the expression of
GZMK and GZMB. In addition, the expression of exhaustion marker
genes (LAG3, TIGIT, PDCD1, CTLA4, HAVCR2, ENTPD1) helped us define
a subcluster of exhausted killing T cells. The identification process of
myeloid and NK cells followed a similar approach, and the specific
markers for these cell types can be found in Supplementary Data 3.

Epithelial cells were further clustered into normal epithelial cells
and tumour cells based on the copy number alteration profiles of each
single cell (see method inferCNV).

InferCNV and tumour cell identification
In order to isolatemalignant tumour cells from all epithelial cells, copy
number alterations were inferred from the patterns of chromosomal
gene expression using inferCNV (version = 1.10.1)46. The expression
profiles of randomly selected 300 fibroblasts and 300 endothelial cells
were used as reference. We used the following parameters: denoise =
TRUE, default hidden markov model settings, and a value of 0.1 for
‘cutoff’. Arm level copy number alterations were determined based on
GRCh38 cytoband location information, and Each CNV event was
annotated as gain or loss. After the copy number landscape for all the
cells was generated, cells were clustered based on their copy number
profiles. Cells with more quiet genomes similar to reference cells were
considered normal epithelial cells, while the other cells with more
unstable genomes were considered tumour cells. Finally, phylogenetic
trees were constructed based on the copy number information, and
Uphyloplot2 was used to visualise the intra-tumour evolutionary trees
for each sample47.

Genomic distance calculation
Genomic distance was calculated by taking the Euclidean distance of
the detected genomic SCNAs. Briefly, SCNAs of all samples were
represented as a matrix, with 1 defined as an existing event and 0 as a
non-existing event. Pairwise Euclidean distances were then calculated
either between the MSLCs from the same patients or randomly selec-
ted samples from different patients.

MANA score calculation
T cells recognising mutation-associated neoantigens (MANA) play a
crucial role in anti-tumour immune responses. By using the Addmo-
duleScore function embedded in the Seurat package, we calculated
MANA score was calculated based on a set of genes thatwere reported

to be enriched inMANA-specific T cells28. The full list of genes used for
calculatingMANAscorewas shown inSupplementaryData4.Wilcoxon
one-sided test was employed to calculate the significance level, where
the Cohen’s d value was used to measure the effect size.

Calculation of exhaustion score, cytotoxic score and immune
checkpoint score
To quantify the level of exhaustion and cytotoxicity of CD8+ T cells in
the TME, we utilised the AddmoduleScore function embedded in the
Seurat package to calculate exhaustion score and cytotoxicity score
based on the expression of specific sets of genes (Supplementary
Data 4). To explore the expression level of immune checkpoints, we
defined immune checkpoint score using a list of genes that were
regarded as immune checkpoints (CTLA4, PDCD1, LAG3, HAVCR2, TIGIT
and ENTPD1). AddmoduleScore function embedded in the Seurat
packagewas used to calculate the immune checkpoint score.Wilcoxon
one-sided test was employed to calculate the significance level, where
the Cohen’s d value was used to measure the effect size.

Flow cytometry
Fresh pathologically confirmed LUAD or MIA tumour tissues were
transported in ice-cold H1640 (Gibco, Life Technologies) immediately
after surgical resection and thenwere dissected,mechanicallyminced,
treated with RPMI 1640 supplemented plus collagenase IV (1mg/ml,
Gbicol) and DNase I (100μg/ml, Sigma) for 1 h at 37 °C and filtered to
single-cell suspension (70μm, Corning). The single-cell suspensions
were washed in phosphate-buffered saline twice, enriched by Lym-
phoprep density gradient centrifugation, washed and resuspended in
phosphate-buffered saline to gain peripheral mononuclear cells. Live/
dead stainingwasperformedusing the Zombie Yellow Fixable Viability
Kit (BioLegend #329920). For extracellular staining, antibodies were
incubated with cells for 20min in FACS buffer. For intracellular stain-
ing, cells were fixed with the Foxp3/Transcription Factor Staining
Buffer Set (eBiosciences) and then stained with intracellular anti-
bodies, as per themanufacturer’s instructions. After staining, data was
collected using a LSR Fortessa (BD Biosciences) and analysis was per-
formed using FlowJo software (v.10.5.3, TreeStar). A full list of anti-
bodies used in flow cytometry is shown in Supplementary Data 5.
Gating strategies are shown in Supplementary Fig. 13.

Multiplex immunofluorescence staining
We used the PD-L1 rabbit anti-human antibody (clone: SP142, Cat:
ab228462, Abcam) and the PanCK mouse anti-human antibody
(clone: IHC-M067, Cat: AE1/AE3, Novus) to perform three-colour
immunofluorescence staining. Briefly, lung sections were depar-
affinized and rehydrated successively, followed by antigen retrieval
and incubation in 3% H2O2 and normal goat serum. Then, sections
were serially stained with primary antibodies, secondary antibodies
and DAPI. Slides were scanned using the PerkinElmer Vectra3 plat-
form and analysed by inform (v2.3, PerkinElmer) using machine
learning algorithm with a visual cutoff followed by single-cell–based
mean pixel fluorescence intensity to achieve accuracy and
calculate48. A full list of antibodies used in flow cytometry is shown in
Supplementary Data 5.

Whole-exome sequencing (WES)
Genomic DNA the 16 tumour samples obtained from 8 patients and
their matched normal tissues were extracted using the QIAamp DNA
Mini Kit (Qiagen #51304) following the manufacturer’s instructions.
Extracted DNA was fragmented into an average size of ~200bp before
they were amplified and purified. DNA was captured to generate
indexed, target-enriched library amplicons. Twist Human Core Exome
EF Multiplex Complete Kit, 96 Samples was used for library prepara-
tion (Twist Bioscience #PN-100803). Constructed libraries were then
sequenced on the Illumina Novaseq6000 and 150 bp paired-end reads
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were gererated. Sequence depth was 200x for tumour samples and
100x for matched normal lung tissues.

Qualification control, alignment and mutation calling of
WES data
To ensure the quality of raw sequencing data, fastp (version 0.23.2)
was employed with the relevant quality threshold set to 25 (default
20)49. Sequencing data were aligned against reference human genome
(hg38) using BWA-MEM50. The Genome Analysis Toolkit (GATK, ver-
sion 4.2.3.0) was used to perform base quality recalibration and re-
alignments51. Somatic single-nucleotide variants (SNVs) and indels
were called using Mutect252, and annotated using ANNOVAR53. TMB
was calculated as the total number of nonsynonymous SNVs and indels
divided by 30, given coverage of ~30Mb.

Detection of ALK, ROS1 and RET rearrangement events
A capture-based targeted sequencing panel was used to analyse
selected introns in ALK, RET and ROS1 for the detection of rearrange-
ment events. Libraries were prepared by amplifying the targeted
regions using multiplex polymerase chain reaction, followed by
adapter DNA ligation. Multiplexed sequencing was then performed
using the Illumina HiSeq 2500 platform. Rearrangements were iden-
tified using Illumina suite software.

Neoantigen prediction
We first used scHLACount to calculate the HLA molecular subtypes of
each sample54. Based on the mutation sites called from WES data and
HLA subtypes calculated, we utilised netMHCpan (version 4.0) to cal-
culate the affininty score between each mutant peptide and HLA
molecule55. Binding activity was divided into three groups: strong
binding, weak binding andnon-binding.We focusedonmutationswith
strong and weak binding activities for predicting the affinity between
neoantigens and TCRs.

TCR clonotype calling and prediction of affinity between
neoantigens and TCRs
TCR clonotypes were called using ScRepertoire56. TCR clones with a
copy number greater than 5 in each sample were used as candidate
libraries. By utilising the neoantigens calculated by netMHCpan, the
affinity between neoantigens and the TCRs of the sample was calcu-
lated using Panpep30. We specifically sought combinations where the
affinity between the neoantigen and the corresponding TCR was
strong (affinity score ≥0.5), and defined those TCRs as neoantigen-
committed TCRs. T cells containing neoantigen-committed TCRs were
matched using shared barcodes. There were occasions wheremultiple
strong binding TCRs were matched to one neoantigen. In this situa-
tion, we chose the TCR with the highest affinity score as the
neoantigen-committed TCR.

TCR diversity calculation
We utilised the widely employed diversity metric, the Shannon’s
Diversity Index (SDI), to compute TCR diversity and population het-
erogeneity. The formula is as follows:

Shannon’s Diversity Index = �
Xn

i = 1

ðPi*ln ðPiÞÞ

where as n represents the total number of types of elements in the
overall composition, and Pi denotes the proportion of an individual
element in the overall composition.

When calculating TCR diversity, the frequency of all TCRs in a
single sample was input. Two tumour samples from the same patient
were categorised into two groups based on the median value of SDI.
Tumours with a TCR SDI less than the median value was considered of

low TCR diversity and tumours with a TCR SDI more than the median
value was considered of higher diversity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated in this study have been deposited in the GSA-
human data repository with the accession numbers HRA005685 for
whole-exome sequencing data (https://ngdc.cncb.ac.cn/gsa-human/
browse/HRA005685), HRA005684 for single-cell RNA-seq data
(https://ngdc.cncb.ac.cn/gsa-human/browse/HRA005684) and
HRA005697 for single-cell TCR-seq data (https://ngdc.cncb.ac.cn/gsa-
human/browse/HRA005697). The data used in the figures in this study
are provided in the Source Data file. All other data are available in the
article and its Supplementary files or from the corresponding author
upon request. Source data are provided with this paper.

Code availability
Custom codes for data analysis were stored in the GitHub repository:
https://github.com/yuezhao97/FUSCC_MSLC-paper-codes57.
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