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Genome-wide discovery and integrative
genomic characterization of insulin
resistance loci using serum triglycerides to
HDL-cholesterol ratio as a proxy

Natalie DeForest1, Yuqi Wang1, Zhiyi Zhu1, Jacqueline S. Dron 2,3,
Ryan Koesterer3, Pradeep Natarajan2,4, Jason Flannick 3,5, Tiffany Amariuta6,7,
Gina M. Peloso 8 & Amit R. Majithia 1

Insulin resistance causesmultiple epidemicmetabolic diseases, including type 2
diabetes, cardiovascular disease, and fatty liver, but is not routinelymeasured in
epidemiological studies. To discover novel insulin resistance genes in the
general population, we conducted genome-wide association studies in 382,129
individuals for triglyceride to HDL-cholesterol ratio (TG/HDL), a surrogate
marker of insulin resistance calculable from commonly measured serum lipid
profiles. We identified 251 independent loci, of which 62 were more strongly
associated with TG/HDL compared to TG or HDL alone, suggesting them as
insulin resistance loci. Candidate causal genes at these loci were prioritized by
fine mapping with directions-of-effect and tissue specificity annotated through
analysis of protein coding and expression quantitative trait variation.
Directions-of-effect were corroborated in an independent cohort of individuals
with directly measured insulin resistance. We highlight two phospholipase
encoding genes, PLA2G12A and PLA2G6, which liberate arachidonic acid and
improve insulin sensitivity, and VGLL3, a transcriptional co-factor that increases
insulin resistancepartially throughenhanced adiposity. Finally,we implicate the
anti-apoptotic gene TNFAIP8 as a sex-dimorphic insulin resistance factor, which
acts by increasing visceral adiposity, specifically in females. In summary, our
study identifies several candidatemodulators of insulin resistance that have the
potential to serve as biomarkers and pharmacological targets.

Insulin resistance is a major cause of multiple chronic and epidemic
diseases, including type 2 diabetes (T2D), non-alcoholic fatty liver
disease (NAFLD), cardiovascular disease (CVD), and cancer1,2. Envir-
onment, lifestyle and genetics3 contribute to the pathogenesis of

insulin resistance, with heritability estimates for genetic factors ran-
ging from 24 to 73%4,5. Family-based studies have implicated several
insulin resistance genes6–8, but modern genome-wide association stu-
dies (GWAS) accommodate larger sample sizes and enable the
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identification of genetic factors contributing to insulin resistance in
the general population9. GWAS for insulin resistance, however, are
challenging toperform in large population cohorts as the protocols for
directly measuring whole-body insulin sensitivity, such as the
hyperinsulinemic-euglycemic clamp10, are difficult to perform at scale.
To circumvent this limitation, GWAS have been conducted using sur-
rogate markers of insulin resistance such as glycemic traits11,12 and
anthropomorphic measurements13, which have successfully identified
numerous risk loci. Larger sample sizes have further enabled sex-
stratified analysis and the discovery of sex-dimorphic risk loci13,14.
These studies have revealed valuable insights, but each surrogate
marker only captures a portion of insulin resistance pathophysiology.
For instance, GWAS for glycemic traits have identified genes related to
hepatic glucosemetabolism, and findings from anthropomorphic trait
GWAS have largely implicated adipose tissue insulin resistance. The
variation in loci/genes identified by these studies suggests that genetic
mapping of other complementary insulin resistancebiomarkerswould
deepen our knowledge of genetic factors modulating insulin
resistance.

The triglyceride (TG) to HDL-cholesterol (HDL) ratio (TG/HDL) is a
widely available surrogate marker of insulin resistance that is calculable
from commonly measured clinical lipid profiles. It is highly correlated
with hyperinsulinemic-euglycemic clamp based measurements15 across
multiple ethnicities16,17 and weight categories18,19, but can also capture
information about lipid metabolism similar to individual TG or HDL
measurements.

Here, to characterize the genetic basis of TG/HDL and system-
atically identify novel insulin resistance genes, we conducted a GWAS
for TG/HDL in 382,129 UK Biobank (UKBB) participants and prioritized
target genes at top genomic risk loci through statistical fine-mapping
and combined single nucleotide polymorphisms (SNP)-to-gene linking
strategies. Prioritized genes were further interrogated in multiple
orthogonal genetic and genomic analyses to determine directional
effects and tissue specificity.

Results
GWAS for TG/HDL in 382,129 UK Biobank participants identifies
251 associated loci
To confirm the relationship between TG/HDL and insulin resistance
measurements, we compared the TG/HDL value concurrently obtained
from a previous study of 45 individuals undergoing hyperinsulinemic-
euglycemic clamp, the gold standard of insulin sensitivity
quantification20 (Supplementary Fig. 1A). We observed a strong and
significantly negative phenotypic correlation between TG/HDL and
clamp-based glucose disposal rate (Rd) (ρ = −0.48, p = 0.003, Spearman
rank correlation) as well as with other commonly used surrogate mar-
kers such as fasting insulin (FI) (ρ = 0.42, p = 0.009).

Aiming to identify associated loci for TG/HDL, we conducted a
GWAS on serum TG/HDL levels in 382,129 individuals from the UK
Biobank who had both TG and HDL measurements available. Median
age of the included individualswas 58 years, median BMIwas 26.7, 54%
were female, and 93% were of European ancestry. After quality control
and filtering based on the Global Lipids Genetics Consortium
standards21,22 (Supplementary Fig. 1B), approximately 12 million SNPs
were tested for association with TG/HDL using whole-genome linear
regression as instantiated in REGENIE23, including the first 20 principle
components of genetic ancestry as covariates. The raw SNP associa-
tions were clustered into 251 TG/HDL loci using the FUMA platform24

(Supplementary Data 1, Supplementary Fig. 2A). The genetic archi-
tecture of the 251 identified TG/HDL loci was consistent with a highly
polygenic trait with the majority of identified loci tagged by common
SNPs (223/251 lead SNPs with minor allele frequency (MAF) > 0.05) of
relatively smaller effect sizes and fewer low-frequency variants (MAF <
0.01) with effect sizes 2–3x larger than those of lead common variants
(Fig. 1a). Known insulin resistance signals from prior GWAS were re-

identified including GCKR12, IRS125, PPARG26, FAM13A27, ANGPTL428, and
LPL29,30. Lipid-associated loci for TG and HDL alone were also re-iden-
tified, includingMLXIPL, FADS2,CETP, and PLTP22. Overlapping the lead
SNPs marking these loci with tissue-specific regulatory elements (as
instantiated in GREGOR31), we found enrichment in adipose tissue,
liver, pancreatic islets, and skeletal muscle (Supplementary Fig. 3), all
of which have been implicated in insulin sensitivity and insulin action32.

Given the known sexual dimorphism in insulin resistance and
metabolic disease risk33, we also conducted a sex-stratified GWAS for
TG/HDL in the same UKBB cohort (176,117 males vs. 206,012 females,
Supplementary Fig. 2B, Supplementary Data 2) assessing each of the
251 genomic risk loci from the sex-combined TG/HDL GWAS (“Meth-
ods”, Supplementary Data 1) for evidence of sexually dimorphic sig-
nals. Of the 251 loci, 17 showed significant evidence of sex-dimorphic
genetic association (p < 0.05/251 t-test, Fig. 1a, Supplementary Data 1),
with six of these having a stronger association in females (positive t-
statistic). Among these were known sex-dimorphic insulin resistance
genes KLF1434 and RSPO335.

We attempted to corroborate these associations in the Mass
General Biobank (MGBB, n = 37,545)36, an independent dataset from
the UKBB. Given the MGBB cohort was ten percent the size of the
UKBB, we did not attempt to corroborate individual loci for lack of
statistical power (only 11 loci had greater than 80% power for replica-
tion, Supplementary Data 1). Instead, we compared all loci in which
UKBB discovery analysis that had proxy SNPs available in MGBB (n =
240), finding 40 loci robustly replicated (p-value < 0.05/240), 130 loci
nominally replicated (p-value < 0.05), and 226 loci (94%) had the same
direction of effect between UKBB and MGBB (Supplementary Data 1).

Having observed a phenotypic correlation between TG/HDL,
clamp-based glucose infusion rate, and surrogate markers of insulin
resistance (Supplementary Fig. 1A), we sought to quantify the degree
towhichTG/HDL, other surrogate insulin resistancemarkers, glycemic
traits, and metabolic disease outcomes shared similar genetic influ-
ences. We computed the genetic correlations37 between our TG/HDL
GWAS and previous association studies of Homeostatic Model
Assessment for Insulin Resistance (HOMA-IR)12, Homeostatic Model
Assessment for Beta Cell Function (HOMA-B)38, fasting insulin (FI)14,
fasting glucose (FG)14, waist-hip ratio adjusted for BMI (WHR)13, 2 hour
glucose (2 h glucose)11, glycated hemoglobin (HbA1c)11, Modified
Stumvoll Insulin Sensitivity Index (ISI)39 as well as metabolic disease
sequelae including NAFLD40, T2D41, CVD42 (Fig. 1b, Supplementary
Data 3). Positive genetic correlations were observed between TG/HDL
andmetabolic disease outcomes: T2D (rg = 0.51, p = 1.9 × 10−36), CVD (rg
= 0.31, p = 2.8 × 10−28), and NAFLD (rg = 0.74, p = 0.001).

When considering glycemic traits and insulin secretion, the
magnitude of genetic correlation between TG/HDL and HbA1c (rg =
0.12) or 2 h glucose (rg = 0.23) are comparable to FG (rg = 0.17) and
smaller than genetic correlation between TG/HDL and FI (rg = 0.49),
HOMA-IR (rg = 0.49) or ISI (rg = −0.47). Even though HOMA-B and
HOMA-IR are calculated from the same fastingmeasurements, HOMA-
IR (rg = 0.49, p = 4.11 × 10−10) had a stronger and more significant
correlation with TG/HDL than HOMA-B (rg = 0.41, p = 4.78 × 10−7).
Overall, these analyses show that TG/HDL is more genetically corre-
lated with measures of insulin resistance than glycemia or insulin
secretion.

Prioritizing “boosted” TG/HDL associations to identify insulin
resistance loci
Given that TG/HDL as a surrogate measure of insulin resistance is
derived from serum TG and HDL, we next sought to identify signals
that were “boosted” for association with TG/HDL versus TG or HDL
alone under the model that boosted loci would be more likely to
contain genes related to insulin resistance than lipid regulation. Using
the lead SNP of each TG/HDL risk locus, we computed a “boost score”
(TG/HDLBS) utilizing the association p-values for TG/HDL, TG, andHDL
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for that SNP in theUKBiobank (computed from the same sampleswith
identical QC and analysis; “Methods”). Of the 251 loci identified in our
study, 109 (43%) had boost score > 0, indicating increased significance
in GWAS for TG/HDL compared to TG or HDL alone (Fig. 2a, red line).
Focusing on known loci, we highlight that the LPL locus met the
threshold for genome-wide significance for TG, HDL, and TG/HDL and
had the highest boost score (TG/HDLBS = 50.4; TG/HDL p-value < 10−411,
TG p-value < 10−324, HDL p-value = 10−362). These results are highly
concordant with the well-characterized role of LPL in regulating both
insulin sensitivity and serum lipid levels43. Other previously known
and recently characterized insulin resistance loci including IRS125

(TG/HDLBS = 2.1), PPARG26 (4.4), RSPO335 (6.0), KLF1434 (12.2), and
COBLL144 (9.0) demonstrated highly positive boost values as well
(Fig. 2a). On the other hand, genes known to regulate lipids without
relation to insulin sensitivity showed strongly negative boost scores.
For example, the locus containing CETP had the lowest boost score
(TG/HDLBS = −1539.8) driven by its substantially stronger association

withHDL (p< 10−1952) compared toTG/HDL (p< 10−412); this is consistent
with the known role of CETP as a lipid transfer protein responsible for
transferring cholesterol esters from HDL to other lipoproteins45.
ANGPTL3 also had a negative boost score (TG/HDLBS = −166.5) due to
a stronger association with TG (p < 10−309) compared to TG/HDL
(p < 10−143), as would be expected from its role in inhibiting TG
hydrolysis through the inhibition of lipoprotein lipase46. Notably, the
boost value does not perfectly segregate insulin resistance from lipid
loci; for example, APOB, a known lipoprotein structural component,
had a strongly positive boost score (TG/HDLBS = 5.5). We proceeded to
rank the 251 associated loci according to their boost score and focused
further investigation on the top quartile of loci (n = 62, TG/HDLBS > 1.5,
Supplementary Data 1).

Given the shared genetic basis of TG/HDL, other surrogate
insulin resistance biomarkers, and metabolic disease outcomes, we
performed a locus level comparison with previous biomarker/meta-
bolic disease association studies to surveywhich genetic signals were
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coefficient of genetic correlation, and statistical significance is indicated in the
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metabolic diseases.
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common and distinct with our TG/HDL GWAS and top-quartile
boosted loci (Fig. 2b). We scored the overlap of SNPs identified from
studies of WHR (n = 694,649)13, FI (n = 105,056)14 or HOMA-IR (n =
37,037)12, T2D (n = 180,834 cases vs. 1,159,055 controls)41, and CVD (n
= 181,522 cases vs. 1,165,690 controls)47 with regard to their positional
overlap with any of 251 TG/HDL loci identified in our study (Fig. 2b,
Supplementary Data 4). WHR shared the largest number of over-
lapping associated loci with TG/HDL (n = 93 loci), followed by T2D (n
= 61 loci), CVD (n = 42 loci), and loci associated with either FI or
HOMA-IR (n = 27 loci). Of the 251 loci identified in our TG/HDL study,
118 had not previously been implicated as insulin resistance or
metabolic disease risk loci (Fig. 2b). Considering the subset of the 62
top-quartile boosted loci, 29 had not previously been identified.
These positional overlaps were largely concordant with formal
genetic colocalization analysis (Supplementary Fig. 4, Supplemen-
tary Data 5).

Putative causal gene identification and integrative genomics to
infer direction-of-effect of “boosted” TG/HDL loci
For the top quartile of TG/HDL associated loci with positive boost
scores (i.e., TG/HDLBS > 1.5, n = 62 loci), we employed an integrative
statistical fine-mapping approach instantiated in the “Sum of Single
Effects” (SuSiE) model48 (“Methods”) to identify likely causal variants
and genes. The SuSiE fine-mapping algorithm converged for 57 of the
62 loci, resulting in credible sets of SNPswith 95%posterior probability
of containing a putative causal variant (Supplementary Data 6). Across
the 57mappable loci (i.e., algorithm converged to produce at least one
credible set with one SNP), the defined credible sets contained a
median of 66 variants (range 1–196); at 25 of these loci, at least one
credible set consisted of only a single, high-confidence variant (pos-
terior inclusion probability (PIP) > 95%).

Having defined the sets of potentially causal variants, we then
used this information to nominate the most likely causal gene at each
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locus applying commonly used practices49. Fifty fine-mapped loci
contained at least one putative “causal” variant (defined as a variant
with PIP > 0.1) (Table 1). These putative causal variants were cross-
referenced with genomic and functional annotations (e.g., exons,
promoters, expression quantitative trait associations) to assign a gene
at each locus49. If the putative causal variant did not overlap with any
known functional/genomic association, the nearest gene was assigned
to be causal49 (n = 27/50). This data-driven approach to identify can-
didate causal genes recovered several well-established insulin resis-
tance genes at their respective risk loci, including LPL, IRS1, and PPARG
(Table 1).

For eachnominated candidate causal gene, we integrated diverse
sources of gene-level evidence to identify the direction-of-effect on
insulin resistance and evaluate tissue specificity (Fig. 3, Supplemen-
taryData 7). Todetermine directionalitywith respect to gene function
and TG/HDL levels in carriers, we utilized two complementary
approaches leveraging rare and common genetic variation, respec-
tively: (1) aggregation of rare, loss-of-function coding variants within
each gene identified from exome sequencing of the UKBB partici-
pants (i.e., burden tests)50 and (2) functional annotation of individual
putative causal SNPs with sufficiently large MAF to permit individual
association with predicted protein function or modification of gene
expression (eQTLs). We further extended the analysis of eQTLs to all
50 putatively causal genes using established methods (Functional
Summary-based Imputation (FUSION))51 to correlate genetically pre-
dicted tissue-specific gene expression in metabolically relevant tis-
sues (subcutaneous and visceral adipose, liver, and skeletal muscle)
with TG/HDL in carriers.

This gene-level integrative genomics approach successfully re-
captured the direction-of-effect and tissue specificity of several well-
characterized insulin resistance effector genes, including LPL, PPARG
and ANGPTL4, as well as a more recently characterized gene COBLL1.
Gene-level burden tests showed that loss-of-function (LOF) protein-
coding variation in LPL and PPARG is associated with an increase in
TG/HDL (LPL: effect size = 0.04, p = 3.1 × 10−23; PPARG: effect size = 0.04,
p = 5 × 10−6), consistent with the well-characterized roles of LPL and
PPARG in insulin resistance43,52. At the ANGPTL4 locus, fine-mapping
identified causal SNPs rs116843064 (PIP = 1) and rs140744493 (PIP =
0.98) which encodemissense variants in ANGPTL4 (p.E40K and p.R336C
respectively) that are computationally predicted by Ensembl Variant
Effect Predictor (VEP)53 to be deleterious. These SNPs were strongly
associatedwith decreases in TG/HDL (rs116843064: effect size = −0.25, p
= 1.0 × 10−189; rs140744493: effect size = −0.01, p = 1.2 × 10−5) in our data
suggesting that LOF in ANGPTL4 increases insulin sensitivity, a finding
congruent with LOF mouse models of ANGPTL4 resulting in reduced
serum triglycerides and improved glucose homeostasis28. At the COBLL1
locus, our genetically predicted gene expression analysis indicated that
increased gene expression of COBLL1 primarily in adipocytes (sub-
cutaneous: t-statistic = −8.8,p= 2 × 10−16; visceral: t-statistic =−9.7,p=4.8
× 10−20; liver: t-statistic = 3.0, p = 0.03; muscle: t-statistic = −3.5, p =
0.007) is associated with decreased TG/HDL which aligns with recent
work showing that LOF in COBLL1 results in insulin resistance through
adipose-specific mechanisms44.

Evaluation of TG/HDL associated loci nominate PLA2G12A,
PLA2G6, and VGLL3 as novel insulin resistance genes
In an effort to identify novel insulin resistance genes, we focused our
attention on loci that had not previously been associated with insulin
resistance and metabolic diseases (Fig. 2b).

PLA2G12A. One such locus on chromosome 4, defined by lead SNP
rs114816312 (effect size = 0.1, p = 6 × 10−25), was strongly boosted
(TG/HDLBS = 3.7) and contained many genes (Fig. 4a). Fine mapping
narrowed the credible set of SNPs to overlap with three genes:
PLA2G12A, MCUB and CASP6. The lead variants with greatest

probability of being putatively causal both encoded missense variants
in the PLA2G12A gene (rs114816312: p.D111N, PIP = 0.7; rs41278045:
p.C131R, PIP = 1.0) strongly suggesting this as the candidate causal
gene (Fig. 4a). PLA2G12A encodes a ubiquitously expressed (Supple-
mentary Data 8), secreted member of the family of phospholipase A2
enzymes that hydrolyze phospholipids to release arachidonic acid54.
Computational variant effect prediction with Ensembl Variant Effect
Predictor (VEP)53 predicted both putative causal missense variants to
be deleterious to PLA2G12A protein function, and both variants were
associated with increased TG/HDL levels suggesting that PLA2G12A
promotes insulin sensitivity. As PLA2G12A was ubiquitously expressed
but was not estimated to have significantly heritable gene expression,
we therefore could not associate genetically predicted gene expres-
sion with TG/HDL values. Rather, we sought to independently corro-
borate the direction-of-effect with insulin sensitivity by investigating
rare coding variation in the gene obtained from the UKBB exomes.
Hypothesizing that LOF in PLA2G12A increases insulin resistance, we
performed a series of genetic burden tests55 aggregating LOF variants
with decreasing stringency and computing association with TG/HDL.
The most stringent filter for LOF variants (variants predicted deleter-
ious by all five tools (see “Methods”)) was associated with increased
TG/HDL levels (effect size = 0.20, p = 9 × 10−21, Supplementary Data 9)
supporting our hypothesis. As the stringencywas relaxed (“Methods”),
additional missense variants were included in the LOF group,
increasing the significance of association between LOF in PLA2G12A
and increased TG/HDL (Fig. 4b, Supplementary Data 9). Even after
conditioning upon or removing the missense variants rs114816312 and
rs41278045 described above, an independent exome-wide significant
signal for association (p < 2.5 × 10−6)56 between LOF in PLA2G12A and
increased TG/HDL was identified (Fig. 4b, Supplementary Data 9).

PLA2G6. Another novel locus located on chromosome 22 marked by
lead SNP rs200725415 (effect size = −0.02, p = 9.3 × 10−25) was also
strongly boosted (TG/HDLBS = 4.0) (Fig. 4c). Fine-mapping of this
locus produced only a single credible set containing variants with PIP
> 0.1 which overlapped two genes PLA2G6 andMAFF. However, all of
the variants in the credible set with PIP > 0.1 were located within
PLA2G6, nominating it as the candidate causal gene. PLA2G6 encodes
another member of the family of phospholipase A2 enzymes which
hydrolyze phospholipids to release arachidonic acid but functions
intracellularly57.

In contrast to PLA2G12A, PLA2G6 was estimated to have sig-
nificantly heritable gene expression in skeletal muscle (heritability h2 =
0.04, p = 9.9 × 10−4, see web resources51). Predicted skeletal muscle
expression of PLA2G6 was negatively associated with TG/HDL (t-sta-
tistic = −5, p = 6.7 × 10−7), suggesting increasing muscle expression of
PLA2G6 would potentially enhance insulin sensitivity. Concordantly,
we found that genetically predicted muscle-specific PLA2G6 expres-
sion was negatively associated with FI (t-statistic = −2.4, p = 0.016) in
the MAGIC study (n = 105,056, Fig. 4d)14. To evaluate the potential
consequence of muscle-specific PLA2G6 expression on metabolic dis-
ease, weperformed a similar associationanalysis with T2D (n = 180,834
cases vs. 1,159,055 controls)41, CVD (n = 181,522 cases vs. 1,165,690
controls)47, and NAFLD (n = 1483 cases vs. 17,781 controls)40. We found
a significantly negative association of predicted gene expression with
T2D only (t-statistic = −3.2, p = 0.001, Fig. 4d). These genetic analyses
suggest that the heritable component of PLA2G6 gene expression in
muscle improves insulin sensitivity and reduces T2D risk.

To corroborate these genetic association analyses, we examined
measured PLA2G6 gene expression in biopsied skeletal muscle of 35
individuals undergoing insulin-sensitizing treatment with PPARG
agonists, or thiazolidinediones (TZDs)20. Skeletal muscle PLA2G6
expression was increased in paired samples after 3 months of TZD
treatment relative to baseline (fold-change = 1.11, p = 0.038; Fig. 4e,
Supplementary Data 10). We also identified a strong PPARG binding
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motif (JASPAR58: MA0066.1; chr22:38524661-38524680) in the
intron of PLA2G6 located 2231 bp upstream of the transcription start
site (Fig. 4f). Taken together, these data suggest that PLA2G6 may
function through muscle to increase insulin sensitivity and decrease
T2D risk.

VGLL3. A third novel TG/HDL locus identified on chromosome 3 was
defined by lead SNP rs13066793 (effect size = −0.03, p = 2 × 10−11,
Fig. 4g), which was located within an intron of the gene VGLL3
and annotated as an eQTL for VGLL3 expression in muscle (effect
size = −0.25, p = 8 × 10−7) and nominally in subcutaneous adipose

(effect size = −0.1, p = 0.02). These data suggest that increased
expression of VGLL3, which encodes a transcriptional co-activator for
TEAD family transcription factors59, increases insulin resistance. We
note that despite the highly significant muscle eQTL, VGLL3 was lowly
expressed in human skeletal muscle (median transcripts per million
(TPM): muscle = 0.9 TPM), whereas it was highly expressed in
human adipose tissues (subcutaneous adipose: 24.8 TPM, visceral
adipose: 17.4 TPM, GTEx60: Supplementary Data 8). Thus, we attemp-
ted to corroborate adipose VGLL3 expression with insulin sensitivity
in transcriptomically profiled adipose and skeletal muscle tissue
biopsies obtained from 31 individuals undergoing hyperinsulinemic-
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Fig. 3 | Causal gene identification and integrative genomics to infer direction-
of-effect of “boosted” TG/HDL loci. Overview of the gene prioritization strategy
for 251 TG/HDL associated loci. The top quartile of TG/HDL boosted loci (n = 62)
was selected for finemapping to obtain 95% credible sets of causal SNPs (n = 57). Of
the loci with at least one causal variant identified from fine-mapping (n = 50), causal
genes were assigned by incorporating genomic and functional annotations,
including exonic variation and expression quantitative trait loci (eQTLs). Direction-
of-effect on insulin resistance and tissue specificity of causal geneswas assigned by
examination of the following gene level evidence: (left) causal variants in exons
were annotated as UTR (untranslated region; purple) or protein-coding with loss-

of-function (LOF harmful: LOF increases TG/HDL (red); LOF protective: LOF
decreases TG/HDL (blue)). (Middle) Causal variants thatwere eQTLs are assigned as
LOF harmful or LOF protective if decreasing expression increases (red) or
decreases TG/HDL (blue). (Right) Association of tissue-specific predicted gene
expression with TG/HDL in the UK Biobank. All statistics were derived using a
weighted linear regression model. Direction and magnitude of effect are repre-
sented by color, with positive and negative associations of gene expression with
TG/HDL shown as blue and red, respectively, and darker shades demonstrating
stronger effect sizes. Significant associations are outlined in black.
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euglycemic glycemic clamps20. We identified a significantly negative
correlation between glucose disposal rate (Rd) and adipose tissue
VGLL3 expression (estimate = −8.7, p = 1.9 × 10−6, Fig. 4h, Supplemen-
tary Data 11), but no significant correlation with skeletal muscle VGLL3
expression (estimate = 1.2, p = 0.56). We additionally adjusted gene
expression for subject-specific covariates and found no effect for age

or sex but a strong effect for BMI (estimate = −0.24, p = 3.2 × 10−4).
Formalmediation analysis comparing regressionmodels of Rd against
adipose VGLL3 expression with and without BMI revealed approxi-
mately 50% of the effect of VGLL3 adipose expression on glucose dis-
posal is mediated by BMI. Taken together, these data suggest that
VGLL3 increases insulin resistance by altering adiposity.
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set for the PLA2G6 TG/HDL locus. d Associations of predicted muscle PLA2G6
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plot and 95% credible set for the VGLL3 TG/HDL locus. h Association of adipose
tissue VGLL3 expression with glucose disposal rate (Rd) measured by
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1.9e-6; linear model).
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TNFAIP8 increases insulin resistance through the alteration of
adipose tissue depots in a female-specific manner
Among the TG/HDL “boosted” association signals, a locus on chro-
mosome 5 marked by lead SNP rs1045241 stood out as demonstrating
strong evidence for sexual dimorphism, indicating a stronger effect in
females (tsex = 4.0, psex = 6.0 × 10−5; Supplementary Data 1). Sex-
stratified analysis in the female (n = 206,012) and male (n = 176,117)
UKBB participants showed that the association with TG/HDL was
highly female-specific with little evidence of association in the

subgroup of male participants (effect sizefemale = −0.03, pfemale = 1.6 ×
10−19; effect sizemale = −0.01, pmale = 3.5 × 10−4; Fig. 5a, Supplementary
Data 1). In fact, despite half the sample size, the association was
stronger in the subgroup of female participants than in the sex-
combined discovery cohort (n = 382,129). Fine-mapping at the locus
produced a single credible set with six putatively causal variants, all of
which were located within the gene TNFAIP8 (Fig. 5a, inset panel). The
lead variant rs1045241 (chr5:118729286:C:T) had the highest prob-
ability of being putatively causal (PIP = 0.24) and was located in the 3’
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Fig. 5 | TNFAIP8 increases insulin resistance through the alteration of adipose
tissue depots in a female-specific manner.WHRwaist-hip ratio, ASAT abdominal
subcutaneous adipose, VAT visceral adipose, GFAT gluteofemoral adipose, T2D
type 2 diabetes, FI fasting insulin, TG triglycerides, HDL HDL cholesterol, GGT
gamma glutamyl transferase, HbA1c glycated hemoglobin, ApoA apolipoprotein A.
a (top) LocusZoom plot of the TG/HDL associated locus containing TNFAIP8 from
the sex-combined GWAS. The lead SNP (rs1045241, shown as purple diamond) and
GWAS p-value (whole-genome regression model) are labeled, and color represents
the LD (r2) between each variant with the lead SNP. (Inset panel) Zoom in of the 95%
credible set region consisting of 6 SNPs (purple). (Bottom) LocusZoomplots of the
TNFAIP8 TG/HDL locus from the sex-stratified GWAS. The association is only sig-
nificant in females. b Association of TNFAIP8 lead SNP rs1045241 in meta-analyzed
metabolic disease/trait association studies. T2D, WHR, FI and HbA1c are sig-
nificantly decreased by the TG/HDL lowering effect allele. Effect estimates (beta)

and 95% confidence intervals are plotted as diamonds and whiskers, along with
association p-values (fixed-effect meta-analysis) and sample sizes. c Sex-stratified
associations of rs1045241 with metabolic phenotypes. Effect estimates (beta) and
95% confidence intervals are plotted as diamonds and whiskers, and shown for
female (blue) and male (orange) stratified GWAS, along with association p-values
(linearmixedmodel) and sample sizes. TheTG/HDL lowering effect allele decreases
VAT and increases GFAT and ASAT in a female-specific manner. d Upregulation of
TNFAIP8 expression in human pre-adipocytes during in vitro differentiation. Linear
mixed model was used to obtain the p-value; n = 3 biological replicates per time
point. eGenemodel of TNFAIP8 highlighting the transcriptional start site (TSS) and
first intron (top). (Second track) PPARG ChIP-seq profiling in human adipocytes
(human adipose stem cells, hASC). (Bottom) ESR1 ChIP-seq profiling in human
breast cell line ZR-75-1.
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UTR of TNFAIP8. Overall, four of the six variants were located within
this last exon of TNFAIP8—one coding and three in the 3’ UTR (Sup-
plementary Data 6, Fig. 5a) strongly nominating it as the candidate
causal gene. TNFAIP8 encodes the tumor necrosis factor accessory
protein 8 which has been found to play an anti-apoptotic role for
TNFalpha-induced tumor apoptosis61, but has no known role in insulin
resistance or metabolic disease.

In a serumproteomics study of 35,559 individuals62, the effect allele
(chr5:118729286:C:T) of the lead putatively causal variant rs1045241,
which was associated with decreased TG/HDL also was significantly
associated with decreased plasma levels of TNFAIP8 (effect size = −0.05,
p = 8.7 × 10−10), suggesting TNFAIP8 promotes insulin resistance. To
corroborate this direction-of-effect, we examined other metabolic dis-
ease/trait associations for rs1045241 (meta-analyzedwithin theCommon
Metabolic Diseases Knowledge Portal (see Web Resources)) and found
that the effect allele (chr5:118729286:C:T) was also associated with
decreased waist-to-hip ratio (WHRadjBMI effect size = −0.02, p = 8.5 ×
10−22, n = 1,973,800), decreased FIadjBMI (effect size = −0.01, p = 9.8 ×
10−6, n = 271,876), decreased glycated hemoglobin (HbA1c; effect size =
−0.01, p = 2.7 × 10−9, n = 1,329,990) and decreased risk for T2D (odds
ratio = 0.98, p =6.4 × 10−6, n = 1,693,350) (Fig. 5b). These complementary
associations support an insulin-sensitizing effect from decreasing serum
TNFAIP8 levels.

To further corroborate these findings, we directly examined
TNFAIP8 levels in 54,219 serum samples from the UK Biobank gener-
ated using the Olink Explore 3072, a platform for high throughput
proteomics that quantified 2945 proteins63. We found that plasma
TNFAIP8 levels correlated with increased TG/HDL, HbA1c, and WHR
levels, with a notably stronger association in females than in males
(pTG/HDL:female < 2 × 10−16, pTG/HDL:male = 3.23 × 10−4, Supplementary
Data 12).

We further investigated the WHR association where the UK
Biobank-GIANT consortium13 had made available sex-stratified sum-
mary statistics. rs1045241 had a much stronger association with
WHRadjBMI in females (pfemale = 4.1 × 10−38) and no evidence of asso-
ciation in males (pmale = 0.8) (Fig. 5c). As WHRadjBMI is a surrogate
measure for enhanced visceral adiposity64, we examined the associa-
tion of rs1045241 with MRI quantified visceral adipose tissue
(VATadjBMI), gluteofemoral adipose tissue (GFATadjBMI), and
abdominal subcutaneous adipose tissue (ASATadjBMI) from a prior
study of 19,038male and 20,038 female participants in the UKBB65.We
found that the effect allele (chr5:118729286:C:T) that lowered both TG/
HDL and WHR with a female-biased effect concordantly decreased
VATadjBMI and increased GFATadjBMI in females (effect sizeVAT =
−0.4, pVAT = 4.8 × 10−4; effect sizeGFAT = 0.05, pGFAT = 5.2 × 10−5; n =
20,038) but not in men (Fig. 5c, Supplementary Data 13). ASATadjBMI
was also increased in women (effect sizeASAT = 0.03, pASAT = 7.9 × 10−3)
but not in men. The sexual dimorphism in these associations was so
strong that the association signalwas lost in a sex-combined analysis of
rs1045241 with VATadjBMI (p = 0.2, n = 39,076) despite doubling the
number of samples. These data suggest that TNFAIP8 may operate in
adipose tissue in a sex-specific manner to promote insulin resistance.

To corroborate these findings at a cellular andmolecular level, we
analyzed TNFAIP8 expression levels during the course of human adi-
pocyte differentiation and found it to be significantly upregulated
(fold-change = 2.5, p = 1.4 × 10−8) during the conversion of pre-
adipocytes into mature adipocytes in vitro66 (Fig. 5d). We analyzed
data of chromatin immunoprecipitation and DNA sequencing (ChIP-
seq) of PPARG67, a master regulator of adipocyte differentiation68, and
found a strongpeakof binding (chr5:118606764-118607039) 2377 base
pairs downstream of the TNFAIP8 transcriptional start site in the first
intron (Fig. 5e). Given the female-specific association of TNFAIP8, we
next examined publicly available estrogen receptor (ESR1) ChIP-seq
data at the TNFAIP8 locus and identified a strong binding peak of
binding (chr5:118607354-118607660) in human breast cell line ZR-75-

169 approximately 600 base pairs downstream of the PPARG binding
site. This points to a potential molecular mechanism for the female-
specific signals of association observed between TNFAIP8 and meta-
bolic traits.

Discussion
In this study, we conducted aGWAS for TG/HDL, a surrogatemarker of
insulin resistance, identifying 251 associated loci, of which 62 asso-
ciated more strongly with TG/HDL compared to TG or HDL alone, and
118 which had not been previously reported in prior insulin resistance
GWAS studies12–14,41,47. At 50 of these loci, we identified causal variants
and genes performing integrative genomic analysis to propose
directions-of-effect and tissue of action. For selected genes, we inde-
pendently corroborate these genetic findings by interrogating gene
expression in biopsied skeletal muscle and adipose tissue in indivi-
duals with directly measured insulin resistance by glycemic clamp. We
highlight two phospholipase encoding genes, PLA2G12A and PLA2G6,
which enhance insulin sensitivity, a transcriptional co-activator VGLL3
which decreases insulin sensitivity, and a TNFα accessory protein
TNFAIP8 which decreases insulin sensitivity specifically in females.

The re-identification of loci known to encode insulin signaling
components (e.g., INSR, IRS1), as well as those identified by previous
surrogate biomarker studies, confirms the fidelity of TG/HDL as a
surrogate marker of insulin resistance, providing confidence that the
29novel loci in the top-quartile of boost scores identified could be true
mediators of insulin resistance. Compared to prior surrogate marker
studies, the new signals identified in our study could arise for two
reasons: (1) sample size and (2) physiological/biological heterogeneity.
Regarding sample size, our study (n = 382,129) is larger than other
serumderivedbiomarkers (FI:n= 105,05614), but is exceeded in sample
by anthropometric biomarker studies (WHR: n = 694,64913). If sample
size related statistical power were a major determinant of locus iden-
tification, we would expect that association strength for known causal
insulin resistance genes (e.g., PPARG, IRS1) would be proportional to
study size, but in fact found no such relationship for PPARG (pPPARG-FI =
1.5 × 10−21, pPPARG-TG/HDL = 2 × 10−17, pPPARG-WHR = 3.8 × 10−25) or IRS1
(pIRS1-FI = 8.5 × 10−39, pIRS1-TG/HDL = 2.5 × 10−85, pIRS1-WHR = 1.6 × 10−9;
Supplementary Data 1 and 4). Regarding biological/physiological het-
erogeneity, insulin is known to signal in a tissue-specific manner—e.g.,
the level of insulin required physiologically to suppress ketogenesis or
lipolysis is orders of magnitude less than required to induce glucose
uptake70. Thus, each surrogate biomarker may capture overlapping
but distinct aspects of insulin resistance physiology. Surrogate bio-
marker GWAS demonstrating differing patterns of tissue enrichments
of associated loci support this idea. The loci associatedwith TG/HDL in
our study aremost highly enriched in adipose tissue, followed by liver
and skeletal muscle (Supplementary Fig. 3), whereas for FI (skeletal
muscle enrichment = adipose > liver) and for FG (liver enrichment >
skeletal muscle > adipose)11. Taken together, these observations sug-
gest surrogate biomarker studies of insulin resistance capture com-
plementary aspects of physiology, and distinct loci from these studies
could point to new mechanisms of molecular pathogenesis.

Among the loci uniquely associated with TG/HDL, we prioritized
two phospholipase A2 enzymes, PLA2G12A and PLA2G6, that function
in the release of arachidonic acid, a precursor of the bioactive lipid
molecules eicosanoids71. Eicosanoids are known to be involved in
inflammation and insulin sensitivity72, suggesting dysregulation of
PLA2s may increase insulin resistance and related metabolic disorders
via disruption of eicosanoid signaling. Through examination of rare
protein-coding variation from exome sequencing, we find that loss-of-
function in PLA2G12A increases insulin resistance as measured by
TG/HDL. PLA2G12A is secreted to the blood, ubiquitously expressed
across tissues, and does not have any tissue-specific associations,
indicating that it may function across several tissues to affect whole-
body insulin sensitization. On the other hand, our analyses propose a
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tissue-specific role for PLA2G6 in muscle under the regulation of
PPARG to increase insulin sensitivity and decrease T2D risk (Fig. 4d–f).
The metabolic role of PLA2G6 in pancreatic islets has previously been
examined in vitro and inmurinemodels73, but to our knowledge, this is
the first study implicating it in human insulin resistance.

Another uniquely associated TG/HDL locus is VGLL3, a transcrip-
tional cofactor74 whose adipose expression is inversely correlated with
glucose disposal rate in humans suggesting VGLL3 promotes insulin
resistance (Fig. 4h). We also found that adipose VGLL3 expression is
correlated with human BMI and this accounts for about half of the
effect on clamp-based glucose disposal. In contrast to our findings in
humans, previous investigation in mice has shown that VGLL3
expression is negatively correlated with murine adiposity59 and that
VGLL3 can suppress murine adipocyte differentiation in vitro. Further
investigation, including gain and loss-of-function studies in human
adipocyte models, would shed light on this interspecies discordance.

Through sex-stratified GWAS, we prioritized TNFAIP8 as a female-
specific insulin resistance gene that promotes visceral adipose tissue
accumulation at the expense of subcutaneous depots (GFAT and
ASAT, Fig. 5c). Prior investigators have identified TNFAIP8 as an anti-
apoptotic protein induced in immune cells by TNFɑ75 capable of
binding free fatty acids. Its reported biological function has been as an
inducer of autophagy and steatosis in an oncogenic context, poten-
tially through interaction with ATG family proteins and inhibition of
the AKT/mTOR pathway61. Our study reveals a sex-dimorphic func-
tional role for TNFAIP8 in adipocytes potentially through the control of
PPARG and estrogen (Fig. 5d, e) that increases insulin resistance and
T2D risk, specifically in women. Furthermore, wefind that serum levels
of TNFAIP8 are potentially causal for these effects. These findings
warrant further investigation into the downstream mechanisms of
TNFAIP8 in adipose insulin resistance and evaluation of its potential as
an intervenable biomarker for insulin resistance-related diseases
in women.

A recent publication by Oliveri et al.76 also examined the genetic
association of TG/HDL in the UK Biobank, providing an opportunity
for direct comparison. Despite including different numbers of sam-
ples (n = 402,398 (Oliveri) v.s. n = 382,129 in our study) due to some
methodological differences in sample selection (e.g., Oliveri et al.
included white European participants only) and QC (e.g., we per-
formed sample level filtering as per the GLGC standard protocols21,22;
Supplementary Fig. 1B), we found a high degree of concordance in the
identified signals. In total, 241 of the 251 independent loci we identi-
fied (Supplementary Data 1) were matched directly or via proxy SNPs
toOliveri with a strong correlation in effect sizes (r = 0.986, p < 0.001,
Pearson correlation) and p-values (r = 0.985, p < 0.001, Pearson cor-
relation). Of the remaining variants not found in the Oliveri study, 9
were on the X chromosome, which was specifically excluded from
analysis in Oliveri et al., and one rare variant (rs138611280; MAF =
0.001) could not bematched. In addition to including X chromosome
variants, our study importantly differs due to the inclusion of indel
variants and low-frequency variants (MAF ≥ 0.001 vs. Oliveri MAF ≥
0.01) which impact gene identification. For example, at the PLA2G6
locus (Fig. 4c), the lead variant identified in our study is a deletion
(rs200725415, 22:38575498:CT:C) and has the highest PIP for being a
causal variant in finemapping analysis (Supplementary Data 6). While
this locus is also identified in Oliveri et al. via the proxy SNP
(rs2267373, 22:38600542:C:T), it does not meet the threshold
(PIP > 0.1) for a causal variant, and the more likely causal variant
identified by our study is filtered out in Oliveri et al. because it is a
deletion. Similarly, at the PLA2G12A locus, the higher MAF threshold
employed by Oliveri filters out causal coding SNPs (rs114816312,
4:110638824:C:T; Fig. 4a).

Our study has several important limitations that should be con-
sidered. First, we used the TG/HDL ratio as a surrogate marker of
insulin resistance, which may not reflect the true causal relationship

betweengenetic variants and insulin resistanceas is the casewithother
surrogate marker GWAS12–14. We believe this trade-off is reasonable
given the vast increase in sample size possible through the use of TG/
HDL and its strong phenotypic and genetic correlations with directly
measured insulin resistance and metabolic diseases (Supplementary
Fig. 1A andFig. 1). These genetic correlations areobserved even though
the UK Biobank TG/HDL ratio was computed from non-fasting mea-
surements, which could confound the use of TG/HDL as a surrogate
insulin resistancemarker. Moreover, the TG/HDL ratio is influenced by
the individual levels of TG and HDL, which share loci with the TG/HDL
ratio and could result in true locus associations but false positives for
insulin resistance. Therefore, we prioritized “boosted” genes that
showed a stronger association with the TG/HDL ratio than with TG or
HDL alone, but we cannot exclude the possibility that some of these
genes are also involved in lipid metabolism (e.g., APOB, TG/HDLBS =
5.5). Second, we inferred the tissue specificity of the genes based on
their heritable expression patterns in metabolic tissues, which have
some limitations. For example, gene expression can be correlated
across different tissues, making it difficult to identify the primary tis-
sue of action for each gene77. Also, due to linkage disequilibrium, the
genetic determinants of gene expression (eQTLs) may not be specific
to the gene of interest but may tag other nearby or distant genes that
have functional effects on insulin resistance. Furthermore, the herit-
ability of gene expression is sensitive to sample size andmay be lowor
nonsignificant for many genes in relevant metabolic tissues. In our
analysis, we find nonsignificant heritability estimates for over half
(52.5%) of our 50 genes of interest in relevant metabolic tissues, not a
surprising proportiongiven less thanhalf of all genes have significantly
heritable gene expression in blood at existing sample sizes78. There-
fore, while we were able to corroborate tissue specificity for several
genes highlighted in this study (PLA2G6, VGLL3, TNFAIP8), our tissue
specificity analysis cannot be considered comprehensive for the
nominated genes. Further study of these genes is needed to elucidate
the causal mechanisms and target tissues underlying the modulation
of insulin resistance.

In conclusion, our study reports on GWAS of TG/HDL ratio at
population scale expanding our knowledge of the genetic determi-
nants of insulin resistance to include dozens of new candidate loci/
genes not previously implicated. At four loci PLA2G12A, PLA2G6,
VGLL3, and TNFAIP8, we validate direction-of-effect, potential reg-
ulatory mechanisms, and sex-specific effects. These findings provide
specific, testable hypotheses for future investigation to credential
thesegenes as potential new therapeutic targets and/or biomarkers for
insulin resistance.

Methods
Our research complies with all relevant ethical regulations. The UK
Biobank study was approved by the Research Ethics Committee, and
informed consent was obtained from all participants. Analysis of UK
Biobank data was conducted under application numbers 51436 and
26041. The experimental protocol for tissue biopsies of subcutaneous
adipose tissue and skeletal muscle was approved by the Institutional
Review Board for Human Subjects of the University of California, San
Diego, and informed consent was obtained from all participants20.

Phenotypic correlations of TG/HDL with insulin resistance bio-
markers in a clinical cohort
To assess the relationship between TG/HDL and other surrogate
insulin resistance phenotypes, we examined a clinical cohort of 45
human participants who underwent hyperinsulinemic-euglycemic
clamp and additionally had other metabolic phenotypes measured20.
We included participants across all insulin sensitivity classes and only
included biological samples from before TZD treatment in the fasting
state, pre-glycemic clamp. Pairwise correlations of TG/HDL with glu-
cose disposal rate measured by hyperinsulinemic-euglycemic clamp,
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fasting insulin, and HOMA-IR were assessed using Spearman rank
correlation.

Genome-wide association analyses
UK Biobank data. Analysis of UK Biobank data was conducted under
application numbers 51436 and 41189. TheUKBiobank is a prospective
cohort study with genotypic and phenotypic data that enrolled
approximately 500,000 individuals aged 40–69 from across the Uni-
ted Kingdom79. To remove potential outliers and individuals with poor
data quality, we applied several sample-level filters to the UK Biobank
participants following the published standards21,22. Specifically, we
retained only those individualswith a sample call rate greater than 95%
and with heterozygosity values less than the median + 3x the inter-
quartile range (IQR) and excluded those with reported gender-genetic
sex mismatch (Supplementary Fig. 1B). After filtering, 382,129 UK
Biobank participants with TG and HDL measurements available
remained of which 206,012 were female and 176,117 were male.

For quality control of SNPs from the UK Biobank genotypes, we
includedonly variantswith SNP call rate > 98%,MAF >0.001, HWE p> 5
× 10−8, and for imputed SNPs included thosewith INFO scores >0.4. For
imputation, the Haplotype Reference Consortium (HRC) and UK10K /
1000 Genomes reference panels were used as described in Bycroft
et al.79 We excluded duplicated SNPs and removed any monomorphic
markers. After filtering, 489,897 genotype array SNPs and 12,024,213
imputed SNPs remained.

Association testing using REGENIE. REGENIE was run following the
published recommendations for UK Biobank analysis (https://rgcgithub.
github.io/regenie/recommendations/) to conduct genome-wide asso-
ciation analyses for TG/HDL, TG, andHDL using the 382,129 participants
and 12,024,213 SNPs which passed QC. In brief, TG and TG/HDL were
natural log-transformed, and all phenotypes (TG, HDL, and TG/HDL)
were inverse rank normalized using the REGENIE --apply-rint parameter.
In the statisticalmodels, the covariates includedwere age, age2, sex, and
the first 20 principal components of ancestry to correct for population
stratification. As recommended, Step 1ofREGENIEwasfirst runusing the
489,897 genotype array SNPs which passed QC to fit the whole-genome
regression model to the phenotypes and produce genomic predictions,
then Step 2 was run to perform association testing of the 12,024,213
imputed SNPs.We next estimated the genomic inflation for the TG/HDL
GWAS (λ = 1.35) and subsequently performed correction for inflation
using the genomic control method80. Lead SNPs and genomic risk loci
from the conducted GWAS were then defined using the FUMA platform
using the default parameters24,80.

Replication GWAS for TG/HDL in Mass General Biobank (MGBB).
GWAS for TG/HDL was conducted in the MGBB (n = 37,545) using
consistentmethodology as conducted in the UKBiobank. TheMGBB is
an enterprise-wide biobank that has enrolled patients aged 20–99
from across Mass General Brigham, a healthcare system located pri-
marily in the Boston area of the United States36. Lead SNPs of each of
the 251 TG/HDL genomic risk loci were examined in the MGBB, and if
the lead SNP was not present in the MGBB, the next most significant
SNP within the locus clump was used as a proxy SNP for replication
(Supplementary Data 1). Statistical power for replication in the MGBB
was calculated using the power calculator for genetic association
studies (R genpwr v1.0.4)81.

Sex stratified analysis. Sex-stratified GWAS for TG/HDL were con-
ducted following the samemethods above exceptwith sex removed as
a covariate and the --sex-specific female/male REGENIE parameter
added. To quantify sex differences in genetic effects of each TG/HDL
risk locus defined in the sex-combined GWAS, we calculated the
t-statistic andp-value (by two-tailed Student’s t-test) for the leadSNPof

each locus using the sex-stratified GWAS beta estimates and standard
errors as previously described82.

Tissue enrichment of TG/HDL genomic risk loci
We used GREGOR (v.1.4.0)31 to determine the enrichment of the
identified TG/HDL genomic risk loci that overlapped tissue-specific
stretch enhancers, using the lead SNP at each locus as input. Genomic
regions of stretch enhancers in each tissue were defined as in Chen
et al.11. The GREGOR default parameters were used to run enrichment
analyses (r2 threshold = 0.8, LD window size = 1Mb, and minimum
neighbor number = 500).

Examining the genetic overlap between TG/HDL and insulin
resistance phenotypes
We assessed the genetic correlation between TG/HDL and insulin
resistance phenotypes using cross-trait LD Score regression with the
default settings as instantiated in LD SCore (LDSC v1.0.1)37,83. All asso-
ciation statistics were harmonized prior to computing genetic corre-
lations, ensuring consistent genome build and effect alleles across
studies.

We further examined the positional overlapbetween genomic risk
loci associated with TG/HDL with other previously identified insulin
resistance-related genetic risk loci. Overlap of genomic risk loci was
defined if a lead SNP defining an insulin resistance-related locus fell
within the locus boundaries as defined by FUMA of a TG/HDL genomic
risk locus identified in our GWAS (Supplementary Data 4).

We further assessed for the presence of genetic overlapping sig-
nals between genomic risk loci associated with TG/HDL and associa-
tions for CVD42, T2D41, WHR13, and FI14 using COLOC84. Suggestive
overlapping signal at a locus between TG/HDL and insulin resistance-
related phenotype was defined with a threshold of posterior prob-
ability Bayesian factor H3 (PP.H3.abf) + posterior probability Bayesian
factor H4 (PP.H4.abf) ≥ 0.99.

Computing TG/HDL boost score
To quantify the difference in the association between TG/HDL com-
pared to TG or HDL alone, a SNP-wise “boost score” (TG/HDLBS) was
computed from GWAS performed in the UK Biobank for TG, HDL and
TG/HDL. For each lead SNP in the TG/HDL study, the more significant
association p-value (-log10(p)) between TG or HDL was subtracted
from the -log10(p-value) of the TG/HDL association. TG/HDLBS =
−log10(pTG/HDL) − max{−log10(pTG), −log10(pHDL)}.

Fine-mapping and nomination of top candidate causal gene at
top quartile boosted loci
To determine causal SNPs at each TG/HDL genomic risk locus, statis-
tical fine-mapping was performed using the “Sum of Single Effects”
(SuSie) model48 using default parameters. UK Biobank genotypes were
down-sampled to 10,000 individuals to be used as an LD reference85,
and regions for fine-mapping risk loci were defined by taking a 1Mb
window around the lead SNP of each locus. Upon fine-mapping each
region, 95% credible sets were defined, and posterior inclusion prob-
abilities (PIP) per SNP in the fine-mapping region were computed to
evaluate variant causality.

To nominate the top candidate causal gene at each locus, we
employed the combined SNP-to-gene linking strategy elaborated by
Gazal et al.49, integrating genome annotations (i.e., exonic, promoter
regions) and functional annotations (i.e., fine-mapped cis-eQTL, reg-
ulatory annotations) with the putatively causal variants in each locus
determined by fine-mapping. We were able to apply this SNP-to-gene
method on the 50 fine-mapped loci, which contained a credible set
with at least one SNP with PIP > 0.1. Twenty-three of these 50 loci
resulted in a predicted causal SNP-gene pair, and the remaining 27 loci
were assigned the nearest gene to the SNP with the highest PIP.
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LOF burden tests
Results from gene-level burden tests of predicted LOF protein-coding
variants (pLOF mask as defined by LOFTEE86) in nominated genes of
interest with TG/HDL among the exome-sequenced individuals in the
UK Biobank50 (n = 343,470 with TG/HDL measurements available) was
extracted from https://app.genebass.org/ (Accessed: June 16, 2022).
For eachgene, we filtered the phenotype to “ratio TGHDL custom,” set
the burden set to “pLOF,” set the burden testing method to “burden,”
and extracted the resulting p-value and effect size.

To perform LOF burden tests for PLA2G12A in the UK Biobank
exome sequenced individuals, we used different definitions for LOF
variants (masks) with increasing stringency to classify variants. Themost
stringentmask included disruptive variants, as described in the previous
paragraph. In subsequentmasks, additional variantswere includedusing
the following five computational prediction tools: Polyphen2_HDIV87,
Polyphen2_HVAR87, SIFT88, LRT89, and MutationTaster90. “High con-
fidence LOF variants” included variants predicted deleterious by all five
tools, “Moderate confidence LOF variants” included rare (MAF < 1%)
variants predicted deleterious by at least 1 tool, and the least stringent
mask included all rare variants (MAF < 1%).

Gene-based burden tests were performed using REGENIE as
detailed in the documentation (https://rgcgithub.github.io/regenie/
options/#gene-based-testing). In brief, variants in PLA2G12A were
extracted from the helper file ukb23149_450k_OQFE.sets.txt.gz using
the “swiss-army-knife” tool from the UK Biobank Research Analysis
Platform (https://dnanexus.gitbook.io/uk-biobank-rap). A site VCFwas
generated, and variants were annotated with Variant Effect Predictor
(r110.1)53 for mask filtering downstream. The interim BGEN release
(“Population level exome OQFE variants, BGEN format - interim 450k
release”) was converted to PGEN format to produce a filtered dataset.
We retained samples with a sample call rate greater than 95% and with
heterozygosity values less than themedian + 3x the interquartile range
(IQR) and excluded those with reported gender-genetic sexmismatch.
Variantswith genotype call rate <98%,MAF<0.01,HWEp< 1 × 10−8, and
minor allele count <100 were excluded to create a genome-wide
representative dataset for Step 1 (Ridge Regression) of REGENIE v3.1.2.
TG, HDL, age, sex, and the first 20 principal components of ancestry
were extracted using the “table-exporter” from the UK Biobank
Research Analysis Platform. The TG/HDL ratio was natural log-trans-
formed, and the covariates included were age, age2, sex, and the first
20 principal components of ancestry for statistical models. A total of
396,335 samples were included in the analysis. In Step 2 of REGENIE, a
rank inverse normal transformationwas applied on the phenotype and
a burden test (“maximum method” in REGENIE) was conducted on
variants included in 4 masks of increasing deleteriousness. We also
performed the same model after conditioning upon as well removing
the two missense variants rs114816312 and rs41278045.

Assessment of directional effects using functional genomic
annotations of putative causal SNPs
To annotate the direction-of-effect of genes on TG/HDL, we examined
putative causal fine-mapped variants (PIP > 0.1), which were annotated
to be exonic or fine-mapped eQTLs for consequences on protein
function or gene expression, respectively. For causal eQTLs, the
direction-of-effect was inferred based on concordance of the variant’s
effect on gene expression (eQTL beta) and the effect on TG/HDL
(GWAS beta) in the respective study in which the eQTL was fine-
mapped for (GTEx60, eQTLGen91). For example, a positive eQTL beta
and GWAS beta would indicate that an increase in gene expression
would increase TG/HDL. Similarly, the functional consequence of each
putative causal coding variant on protein functionwas predicted using
established computational tools PolyPhen-287 and SIFT88 as deter-
mined by Ensembl Variant Effect Predictor (VEP)53 and then compared
with the direction of effect of the variant on TG/HDL (GWAS beta).

Associationsof heritable geneexpressionwithTG/HDL in theUK
Biobank
To examine the effect of heritable gene expression on TG/HDL
for the top nominated genes of interest in relevant tissues (sub-
cutaneous and visceral adipose, liver, and skeletal muscle), we first
assigned per-tissue gene expression scores to each UK Biobank parti-
cipant using established methods (Functional Summary-based Impu-
tation [FUSION])51. In brief, gene expression reference weights from
the Genotype-Tissue Expression (GTEx) Project v8 for tissues of
interest were extracted from the FUSION archive (http://gusevlab.org/
projects/fusion/#gtex-v8-multi- tissue-expression). The expression
weights per gene and their corresponding imputed genotypes in the
UK Biobank genotyped population were combined into a predicted
gene expression score for each individual by computing a linear
combination across the SNPs expression weights and genotypes, then
dividing by the number of non-missing SNPs as implemented in the
Plink score utility92. TG/HDL measurements were normalized as
described above and regressed onto predicted gene expression scores
as done previously93.

Association of heritable PLA2G6 muscle expression on meta-
bolic outcomes
Using the same PLA2G6 muscle expression weights as described pre-
viously, we investigated the role of predicted PLA2G6 muscle expres-
sion on metabolic outcomes T2D41, FI14, CVD47, and NAFLD40 using the
FUSION association test function (FUSION.assoc_test) with default
parameters51.

Differential expression of PLA2G6 in skeletal muscle upon TZD
treatment
Skeletal muscle biopsies were obtained from individuals before and
after 3 months of TZD treatment (n = 35)20. Total RNA was extracted
(Qiagen #74104) and sequenced (Illumina TruSeq) according to the
manufacturer’s protocol to a depth of at least 30 million reads per
sample with paired-end 100bp reads. Raw reads were aligned using
Kallisto94 with default parameters and normalized for library size to
generate counts per million (CPM) mapped reads. Differential
expression analysis for PLA2G6 upon TZD treatment was performed in
dream (variancePartition v1.20.0, edgeR v3.32.1)95 with pre/post TZD
treatment as the fixed effect and patient ID as a random effect to
account for paired samples.

Correlations between adipose tissue and skeletal muscle VGLL3
expression and glucose disposal rate in human participants
Subcutaneous adipose tissue and skeletal muscle biopsies were
obtained and RNA-sequenced, and clinical measurements of insulin
sensitivity alongwithothermetabolic healthmetricswere assessed in a
clinical cohort (n = 35) as previously described20. Total RNA was
extracted (Qiagen #74104) and sequenced (Illumina TruSeq) accord-
ing to the manufacturer’s protocol to a depth of at least 30 million
reads per sample with paired-end 100 bp reads. Raw reads were
aligned using Kallisto94 with default parameters to generate gene
counts and normalized for library size to generate counts per
million (CPM) mapped reads. VGLL3 muscle and adipose expression
levels were regressed on glucose disposal rate measured by
hyperinsulinemic-euglycemic clamp in the 35 individuals using linear
regression (lm function, R stats v3.5.1). To avoidconfounding effects as
a result of insulin-sensitizing treatment tested in this clinical test, only
data from tissue biopsies obtained before treatment were used in this
analysis. Mediation analysis to quantify the proportion of effect of
VGLL3 expression on Rd mediated by BMI was conducted using the
mediate function as implemented in R package mediation v4.5.096

using the following linearmodels: (1) Rd ~ VGLL3 expression + BMI, and
(2) VGLL3 expression ~ BMI.
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RNA-sequencing of human adipocytes through differentiation
Human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cells
were differentiated as we have previously described66. Total RNA was
extracted (Qiagen #74104) from cells at days 0, 4, 8, and 15 and
sequenced (IlluminaTruSeq) according to themanufacturer’s protocol
to a depth of at least 50 million reads per sample with paired-end
100bp reads. Raw reads were aligned using Kallisto94 with default
parameters to generate gene counts. Genes with a count greater than
15 in all replicates of any differentiation day were retained for analysis.
Following normalization for library size, differential expression ana-
lysis for TNFAIP8 was conducted using a linear mixed model with dif-
ferentiation days 0 vs. 4 as a fixed effect as instantiated in dream
(variancePartition v1.20.0, edgeR v3.32.1)95.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Full GWAS summary statistics from this study are available at the GWAS
Catalog (https://www.ebi.ac.uk/gwas/) under study accession codes
GCST90435481, GCST90435482, GCST90435483. Individual-level
genomic and phenotypic data from the UK Biobank are available to
researchers upon application (https://ukbiobank.ac.uk). The RNA-seq
data for Human SGBS preadipocyte cells from this study are available at
the GEO under accession code GSE274839. The raw RNA-seq data for
skeletal muscle and subcutaneous adipose tissue biopsies before and
after TZD treatment cannot be made available to the public due to lack
of patient consent. They will be made available from the corresponding
author upon request under a Data Transfer Agreement (DTA) and
transferred via FTPwhen theDTA is complete. The summary statistics of
previous insulin resistance-related GWAS used in this study are available
as described in Supplementary Data 3. The functional genomic anno-
tations for SNP to gene linking used in this study were downloaded
(November 2023) from https://alkesgroup.broadinstitute.org/cS2G. The
Genebass exome-based association statistics in the UK Biobank (acces-
sed November 2023) are available here: https://app.genebass.org/. The
Functional Summary-based Imputation (FUSION) GTEx v8 multi-tissue
expression statistics used in this study were downloaded (November
2023) from http://gusevlab.org/projects/fusion/#gtex-v8-multi-tissue-
expression. The metabolic disease/trait associations meta-analyzed in
this study (accessed November 2023) were obtained from the Common
Metabolic Diseases Knowledge Portal (cmdkp.org) https://hugeamp.
org/variant.html?variant=rs1045241. The ChIP-seq of PPARG in human
adipose stem cells67 and estrogen receptor (ESR1) in human breast cell
line ZR-75-169 used in this study were downloaded from the GEO under
accession codes GSM534493 and GSM798427, respectively.
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