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Multi-omic lineage tracing predicts the
transcriptional, epigenetic and genetic
determinants of cancer evolution

F. Nadalin 1,2,5 , M. J. Marzi1,5, M. Pirra Piscazzi 1,5, P. Fuentes-Bravo 1,5,
S. Procaccia 1, M. Climent1, P. Bonetti1, C. Rubolino1, B. Giuliani1,
I. Papatheodorou 2, J. C. Marioni 2,3,4 & F. Nicassio 1

Cancer is a highly heterogeneous disease, where phenotypically distinct sub-
populations coexist and can be primed to different fates. Both genetic and
epigenetic factors may drive cancer evolution, however little is known about
whether and how such a process is pre-encoded in cancer clones. Using single-
cell multi-omic lineage tracing and phenotypic assays, we investigate the
predictive features of either tumour initiation or drug tolerance within the
same cancer population. Clones primed to tumour initiation in vivo display
two distinct transcriptional states at baseline. Remarkably, these states share a
distinctive DNA accessibility profile, highlighting an epigenetic basis for
tumour initiation. The drug tolerant niche is also largely pre-encoded, but only
partially overlaps the tumour-initiating one and evolves following two
genetically and transcriptionally distinct trajectories. Our study highlights
coexisting genetic, epigenetic and transcriptional determinants of cancer
evolution, unravelling the molecular complexity of pre-encoded tumour
phenotypes.

Cancer adopts evolutionary pathways that sustain the disease.
Aggressive tumour behaviours, such as the dissemination to distant
organs, diminished susceptibility to treatment, and disease relapse,
result from either selection or adaptation processes, possibly
intertwined1. When a selective process occurs, the fate of a cancer
clone is determined at the root of the evolutionary process. In this
case, the heterogeneity of tumourphenotypes can, at least in principle,
be identified ahead of selection2. The pre-existence of aggressive
phenotypes has been linked to the so-called cancer stem cell (CSC)
theory3 and observed in leukaemia4,5 and solid tumours, such as colon6

and breast cancer7,8, as well as glioma9,10. According to such a model,
tumour cells are not all equal, instead a stem-like cancer niche exists
that is primed to sustain most of the aggressive phenotypes, such as

tumour re-initiation, metastatic dissemination potential, and capacity
to survive cytotoxic treatments11.

Predicting cancer phenotypes requires linking the molecular state
of a clone to its fate with high precision. Without a priori information,
tumour phylogeny can be inferred from somatic mutations12–15; how-
ever, this approach is limited by the high sparsity of single-cell data.
Single-cell lineage tracing consists in inserting barcodes in the genome
of the cells with the aim of tracing their progeny16–19. In cancer, this
approach has beenused to investigate clonality inmetastases20, survival
uponcytotoxic treatment21,22, aswell as todissect the clonal originof the
primary tumour andmetastasis growth23–26, possibly in vivo27. However,
these studies mainly focus on the evolutionary trajectories, rather than
on the driving molecular features of pre-existing phenotypes.
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Tumour evolutionary diversity can have either a genetic or non-
genetic origin28,29. Single-cell multi-omics has recently emerged as a
promising tool to study cancer evolution30. Here, we combine single-
cell multi-omics with lineage tracing in a unique framework, which
allows simultaneous clonal, gene expression, and chromatin accessi-
bility profiling at single-cell resolution. Using phenotypic assays on
barcoded cells, we identify the clones endowedwith aggressive cancer
behaviours typical of the stem-like cancer niche, specifically tumour-
initiating capacity and drug tolerance. Subsequently, weextract robust
transcriptional, epigenetic, and genetic features of naïve cells and
associate them to clonal subpopulations. By integrating thesemultiple
layers of information, we identify the regulatory elements that predict
cancer evolution in response to adverse environmental conditions.
Finally, by tracing the transcriptional changes of clones across time, we
unravel the role of pre-existing molecular features in shaping the dif-
ferentiation breadth of stem-like subpopulations.

Results
SUM159PT exhibits high transcriptional plasticity and com-
prises three distinct subpopulations: S1, S2, and S3
To investigate the potential of cancer cells to promote tumour initia-
tion and escape cytotoxic treatment, we combined single-cell
sequencing with phenotypic assays. We selected SUM159PT, a triple-
negative breast cancer cell line (TNBC), as a model system. SUM159PT
belongs to the claudin-low mesenchymal subtype31 and is char-
acterised by (i) a nearly diploid genotype, but bearing a specific set of
mutations typically associated with TNBC (HRAS, PIK3CA, TP53 and
MYC amplification32); (ii) an intrinsic heterogeneity, with an underlying
variability in the expression of epithelial andmesenchymal genes and a
small proportion of cells in a CSC state33,34; and (iii) an aggressive
phenotype driven by the CSC component, which is highly tumouri-
genic and invasive in vivo33–35. A single-cell lineage tracing approach
was used to link the molecular state of a cell to its fate (Fig. 1a and
Supplementary Fig. 1a). To obtain ∼10,000 distinct genetic barcodes
(GBC), 100,000SUM159PT cellswere infectedwith a lentiviral pool at a
multiplicity of infection (MOI) = 0.1 and subsequently FAC-sorted to
retain only the transduced fraction18. Endogenous as well as GBC-
carrying transcripts were then captured by single-cell RNA-seq (scRNA-
seq). The parental population was sampled and processed at two time
points, T0 and T1, separated by 13–15 days (Fig. 1b). At basal state,
between 5017 and 5996 unique clones were found in the two replicates
and between 83% and 88% of high-quality cells were assigned a clone
identity (Supplementary Fig. 1b and Supplementary Data 1), making
the lineage of even rare cell subpopulations accessible to analysis. The
distribution of clones at the two time points was similar, highlighting
that no spontaneous clone selection occurs in the timeframe (Sup-
plementary Fig. 1c). Moreover, 68% and 57% of the clones respectively
detected in T0 and T1 were shared between the two time points, with
>50% of clones constituted by a single cell in each sample (Supple-
mentary Fig. 1d and Supplementary Data 1). When evaluating the
relationship between clonality and gene expression profile at basal
state, cells stemming from a common clone at the moment of infec-
tion, hereafter sister cells, were on average only slightlymore similar to
one another compared to non-sisters (Fig. 1c). We next asked whether
the transcriptional similarity between sister cells is clone-specific—in
other words, whether some clones show a distinctive gene expression
profile and other clones are more plastic [a similar approach is pro-
posed in ref. 17]. We detected seven distinct gene expression clusters
in T0 and T1, respectively (Fig. 1d, Supplementary Fig. 1e, f and Sup-
plementary Data 1) and compared the clone content of every cluster
pair across the two time points using a clone sharedness score (see
section “Methods” and Fig. 1e). Most clones that clustered together in
T0 were mapped to multiple distinct clusters in T1, and vice versa,
suggesting a high transcriptional plasticity already at baseline. In
contrast, three cluster pairs in T0 and T1, respectively, comprising 28%

and 23%of the cells at the two timepoints, showedmutually high clone
sharedness (see section “Methods” and Fig. 1f); we conclude that these
subpopulations are transcriptionally stable andwewill refer to themas
S1, S2, and S3 hereafter. They respectively comprise 3.6%, 14.7%, and
7.4% cells on average. We obtained a gene expression signature for
eachof them (Fig. 1g and SupplementaryData 2) that is independent of
cell-culture effect. Of note, S1 was enriched in genes involved in col-
lagen processing and matrix remodelling (Supplementary Fig. 1g and
Supplementary Data 3). S1 cells showed upregulation of S100A4, a
gene associated with metastatic behaviours20,36,37, and TM4SF1, whose
role in promoting cell proliferation and invasion in epithelial tumours
has been assessed38–41. The microRNA-205 host gene (MIR205HG) was
found as S2-specific and has been associated to basal cells42, epithelial-
to-mesenchymal (EMT) transition, and multiple cancer diseases43,44.
The oncogene HMGA1 is part of the S2 signature and has been asso-
ciated to the TNBC subtype45. S3 was distinguished by the expression
of FEZ1, a microtubule adaptor46, and RPS25, a gene acting on cellular
response to stress by downregulating p5347. In conclusion, single-cell
lineage tracing revealed that SUM159PT exhibits high transcriptional
plasticity, but comprises three distinct, transcriptionally stable
subpopulations.

SUM159PT transcriptional heterogeneity is recapitulated in
primary tumours
To assess the relevance of stable SUM159PT transcriptional pro-
grammes in primary TNBC tumours, we leveraged the Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC48)
and The Cancer Genome Atlas (TCGA49). Figure 1h reports the strati-
fication of breast cancer tumours according to high, medium and low
gene expression classes (see section “Methods”) in TCGA and
METABRIC datasets. S1 and S2 signatures were associated with the
basal tumour subtype (including claudin-low, which accounts for 9.8%
of all tumours in METABRIC) in both datasets (adj. p value < 0.001),
whereas S1 and S3 with the claudin-low subtype (adj. p value < 0.001;
Benjamini–Hochberg correction), suggesting that the stable tran-
scriptional programmes identified in SUM159PT capture broad basal
tumour features. We noted that the S1 signature genes were organised
into few distinct co-expression blocks (Supplementary Fig. 2a), hinting
that theymay be part of a network also in tumours. Therefore, we next
evaluated whether S1, S2, and S3 recapitulate intra-tumour hetero-
geneity in scRNA-seq datasets from primary samples. In primary TNBC
tumours50, we could detect both S1 and S3 programmes and identify
S1+ and S3+ cell subsets accordingly (Supplementary Fig. 3a–c); in
particular, we detected a strong upregulation of S100A4 in the S1+

subset (see Supplementary Fig. 3d and Supplementary Data 4). Then,
we leveraged the Curated Cancer Cell Atlas (3CA, https://www.
weizmann.ac.il/sites/3CA/), containing scRNA-seq data for over 1000
primary tumour samples from over 70 studies, along with the asso-
ciated gene meta-programmes51. We reasoned that a high association
of SUM159PT subpopulations with key tumour meta-programmes
would be a strong indication for the generalisability of the signatures
we defined. We noted that the aggregatemeta-programme expression
across SUM159PT clusterswas non-stochastic (Supplementary Fig. 2b),
suggesting a common pattern of gene expression heterogeneity;
specifically, the 3CA meta-programme “EMT-III” was enriched in
S1 cells, “Interferon/MHC-II (II)” both in S1 and S3 cells, and “Transla-
tion initiation” in S2 cells (Fig. 1i and Supplementary Fig. 2c), in
agreement with pathway enrichment analysis (see Supplementary
Fig. 1f). “EMT-III” contains genes involved in the maintenance of a
hybrid EMT state and belonging to the S1 signature (e.g., S100A4,
TM4SF1, and LGALS3); thismeta-programme is recurrent acrossdonors
and cancer types, notably in breast51. Finally, we performed scRNA-seq
on the TNBC cell line MDA-MB-231 TGL. Two of the seven clusters we
detected in MDA-MB-231 TGL showed high expression of top
S1 signature genes (CDA, S100A4, LGALS3, COL6A1, COL6A2;
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Supplementary Fig. 2d, e and Supplementary Data 5, 6); importantly,
these clusters also showedhigh “EMT-III”meta-programme expression
(Supplementary Fig. 2f, g). Taken together, these results suggest that
the transcriptionally stable signatures of SUM159PT, notably S1, are
recurrent in other TNBC models and primary breast tumours, and are
also shared across other cancer types.

Cancer clones promote tumour initiation in a non-
stochastic manner
To investigate the tumour-initiating capacity of SUM159PT, we trans-
planted barcode-labelled cells into the mammary fat pads of nine NSG
(NOD/SCID/IL2Rγc

−/−) immunodeficient mice and then evaluated the
barcode composition in each primary tumour.We isolated tumour cells
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and extracted the genomic DNA (gDNA), which was then amplified and
sequenced (Fig. 2a). Noteworthy, the GBC count measured in bulk
(parental cells) recapitulates the actual clone abundance, measured as
the relative number of cells per clone in single-cell samples (Supple-
mentary Fig. 4a, b). Clone selection was heterogeneous across tumours
—a stochastic effect that we observed also in other cohorts of tumours
transplanted in mice (data not shown). Only between 3% and 33% of
SUM159PT clones contributed to tumour formation (Fig. 2c and Sup-
plementary Data 7), showing a deep clone selection. The size of clonal
subpopulations greatly varied within a tumour; on average, the top 1%
abundant clones covered more than 50% of the entire tumour mass
(Supplementary Data 7), and this was not merely a consequence of
higher initial abundance (see below). This picture suggests a variable
tumour-initiation potential among surviving clones in vivo. In epithelial
cancers, the tumour-initiation potential has been regarded as an
intrinsic feature of cells, rather than a feature acquired during tumour
formation8. Consistently, we observed that a limited set of clones was
recurrent and covered a high proportion of the tumourmass compared
to sporadic ones (Fig. 2c). To exclude bias in the detection of expanded
clones, we considered GBC abundance relative to pre-implantation
(Fisher’s exact test, see section “Methods”). In total, 138 clones were
significantly more abundant in at least 6 out of 9 tumours compared to
their average abundance at basal state. We refer to these as tumour-
initiating clones (TICs) hereafter (Fig. 2d).We conclude that the tumour-
initiating capacity of SUM159PT cells is largely pre-encoded.

The baseline programmes S1 and S3 predict tumour initiation
To determine which transcriptional states are primed to tumour initia-
tion, we traced TICs back to their parental population. TICs were
strongly associated with S1 and S3 transcriptomes at baseline, with the
two subpopulations showing a similarly strong enrichment (average
odds ratio 4.4 and 4.1 for S1 and S3, respectively; Fig. 2e, Supplementary
Fig. 4c and SupplementaryData 7). Both S1 and S3were transcriptionally
stable in culture in a timeframeof 2weeks, as shown inFig. 1f, suggesting
that the gene expression profile of TICs at baselinemay be predictive of
the phenotype. S1 and S3 gene signatures partially overlap: 9 out of the
29 gene expressionmarkers of S3 are shared with S1, including some of
the top ranked in S1 (COL1A1, NPTX2, NREP; see Fig. 1g). However, the
two subpopulations showed different gene expression patterns, with S1
being clearly separated from all the other clusters in gene expression
space (average silhouette width 0.29 and 0.30, respectively; Supple-
mentary Fig. 1e), suggesting that TICs stem from two distinct tran-
scriptional programmes. We then askedwhether the clones in S1 and S3
differ in terms of their expansion potential in vivo. When the sub-
population identity was mapped on tumours, clones in S1 and S3 highly
contributed to the tumour mass, relative to their initial abundance at
baseline, compared to the other clones (Fig. 2f and Supplementary
Fig. 4d); upon transplant, the expansion rate of S1was high compared to
S3 (12.7-fold for S1 and 6.9-fold for S3, on average; Supplementary

Data 7). We profiled the transcriptome of SUM159PT tumours by bulk
RNA-Seq. Neither the S1 nor the S3 signatures as a whole were upregu-
lated in SUM159PT tumours with respect to the parental population,
including some among the top significant genes (Supplementary
Fig. 4e, f and Supplementary Data 8), hinting that clones undergo
transcriptional reprogramming upon transplant. This change in gene
expressionprofile is in linewith the cancer stem-cell hypothesis, where a
small, stem-like, cell subpopulation exhibits both tumourigenic and
differentiation potential. Of note, S100A4, TM4SF1, and LGALS3, three
among the top significant genes in the S1 signature belonging to the
EMT-III meta-programme (see Fig. 1g and Supplementary Fig. 2c), were
upregulated in SUM159PT tumours (log2(FC) = 2.24, 3.40, 3.76 and adj. p
value = 1.09e − 27, 2.85e − 34, 2.09e− 30, respectively). TIC signature
gene expression was persistent in metastatic pancreatic cancer mouse
models20 and in the pre-metastatic niche of lung adenocarcinoma52

(Supplementary Fig. 4g, h). Notably, the metastatic potential in these
tumour models has been associated with the adoption of late hybrid
EMT states and the activation RUNX2, a transcription factor mediating
extracellular matrix remodelling, in agreement with our findings (see
Fig. 1i and Supplementary Figs. 1g, 2g). We conclude that the tumour-
initiating niche of SUM159PT shares markers across different cancer
diseases and, although plastic, could be partially reminiscent of its
molecular state at baseline. To directly verify the tumour-initiating
potential of TICs, we searched for surface markers for prospective iso-
lation and identified transmembrane 4 L6 family member 1 (TM4SF1), 1
of the top 20 significant genes of the S1 signature and highly upregu-
lated in SUM159PT tumours; we could not identify any S3-specific sur-
face marker. High TM4SF1 protein expression has been linked to CSCs
and previously employed for prospective isolation of cancer sub-
populations in human and murine breast models53,54. Therefore, we set
up a strategy for isolating TM4SF1high cells by FAC-sorting (gated on top
5%; Fig. 2g and Supplementary Fig. 5a–d); the TM4SF1high population
showed extensive upregulation of several genes in the S1 signature
compared to the bulk population, and this was not the case for genes in
S2 and S3 signatures (RT-qPCR andRNA-seq; Fig. 2g and Supplementary
Fig. 6a–c). Of note, the expression of the S1 signature was maintained
even after several passages in culture (Supplementary Fig. 6c and Sup-
plementary Data 9). TM4SF1high-associated genes were mainly related to
invasion andmetastasis pathways and suggestive of TWIST1, STAT3, and
HIF1A activation (Supplementary Fig. 6d). Limiting dilution transplan-
tation is a well-established approach to quantify the tumour-initiating
content of a cell population. We injected orthotopically serial dilutions
from bulk and TM4SF1high populations (Fig. 2h and Supplementary
Fig. 5a) into NSG (NOD/SCID/IL2Rγc

−/−) immunodeficient mice. At the
lowestdilution (100cells), TICnumber is a limiting factor andTM4SF1high

cells developed tumours with higher efficiency than mice transplanted
with the same number of bulk cells (26% average latency reduction;
Fig. 2i and Supplementary Fig. 6e, g), suggesting that the TIC content of
the TM4SF1high subpopulation is higher. We conclude that S1 holds an

Fig. 1 | Lineage tracing identifies transcriptionally stable TNBC cell sub-
populations. a SUM159PT cells were infected with a lentiviral library of unique
barcodes (Perturb-seq GBC library) at 0.1 multiplicity of infection (MOI). The
readout of each cell is its lineage (genetic barcodes) and gene expressionprofile (3′-
end cDNA sequencing). Clone information is overlaid on single-cell gene expres-
sion space. b Experimental design, passive propagation. Top: barcoded
SUM159PT cells from the same infection experiment were processed by scRNA-seq
at two passages (T0 and T1, n = 2 replicates each). Bottom: number of detected
clones and cells assigned to clones. cGaussiankernel density of Euclideandistances
between sister cells (solid line) and non-sister cells (dashed line) computed on a
joint T0 and T1 space (see section “Methods”). d UMAP representation of T0 (9395
cells) and T1 (13,562 cells) coloured by cluster; only cells assigned to clones are
shown. e Definition of clone sharedness score between clusters i and j. f Left: rows
are clusters in T0 (as in d), columns are clusters in T1, and entries are clone
sharedness scores for each pair. Rows and columns are ordered by higher to lower

scores. The three top-scoring pairs, referred to as subpopulations (S1, S2, S3), are
shown onUMAP (right). g Subpopulation gene signatures. Rows are the 25 genes in
the subpopulation signature showing the highest log2(FC) in T0, columns are
subpopulations split by time point, and entries are log2(FC) values between a
subpopulation and its complement at the same timepoint. The top 15 (S1) and top 4
(S2, S3) genes are labelled. The surface marker TM4SF1, highlighted in red, is used
for sorting the S1 subpopulation. h Stratification of breast cancer samples into
molecular subtypes by subpopulation signature activity in TCGA (top) and
METABRIC (bottom) datasets (NC not classified). i Association with tumour meta-
programmes from the Curated Cancer Cell Atlas. The columns are the cells at T0
ordered by non-decreasing module score, computed on the union of the top
50significant genes of themeta-programme (in rows); genes in S1 andS2 signatures
are labelled. The bar plots show the binned cell count for each subpopulation
[a, b created with Biorender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license].
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increased tumour-initiating capacity compared to the whole SUM159PT
population.

The S3 programme confers a selective growth advantage upon
chemotherapy
We next investigated the response of cancer clones upon drug
response in vitro on cultured cells and in vivo on transplanted

tumours, using paclitaxel, an anti-mitotic chemotherapy agent used
to treat many cancer types55. We treated barcode-labelled
SUM159PT cells at 50nM (which corresponds to ~IC95; Supplemen-
tary Fig. 7a) for 3 days in culture, with the untreated condition as a
control (Fig. 3a, top). To evaluate the drug response in vivo, we
transplanted barcode-labelled SUM159PT cells into the mammary fat
pads of sixNSG immunodeficientmice; once tumourwas formed,mice
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were treated with paclitaxel every 5 days (Fig. 3a, bottom). In vitro,
treatment induced a deep clonal selection: between 9% and 22% of the
initial clone pool survived ≥10 days post-paclitaxel removal, while cells
cultured for a comparable time span in the absence of treatment did
not undergo clonal selection (Fig. 3b, top, and Supplementary Fig. 7c
and Supplementary Data 7). A comparable effect was observed in an
independent barcoding experiment (Supplementary Fig. 7c). In vivo,
paclitaxel treatment delayed tumour growth, but did not trigger
remission of the disease (Supplementary Fig. 7d); the major driver of
clone selectionwas the tumour-initiation capacity (Fig. 3b, bottom).Of
note, the clones able to survive and expand were not randomly
selected, but recurrent upon independent treatments, both in vitro
and in vivo (SupplementaryFig. 7e, f); therefore, we reasoned that both
survival and proliferation potential were pre-encoded. We defined the
drug-tolerant clone (DTC) pool as the set of clones that were sig-
nificantly more abundant after treatment in at least four out of six
samples compared to their average abundance at basal state (Fisher’s
exact test; see section “Methods” and Fig. 3c). We detected 171 and 164
DTCs in vitro and in vivo, respectively. When traced back to their
baseline transcriptional state, clones surviving drug insult in vitro were
depleted in S1, but weremore abundant in S3 than expected by chance
(Fig. 3d, left, and Supplementary Fig. 8a, c and Supplementary Data 1).
In contrast, clones surviving drug treatment in vivo were belonging to
either S1 or S3 (Fig. 3d, right, and Supplementary Fig. 8b and Supple-
mentary Data 1). Note that 71% of TICs were also drug-tolerant in vivo
(Supplementary Fig. 8d and Supplementary Data 7), confirming that
the effect of paclitaxel in vivo wasmodest. When assessing the relative
abundance of S1 and S3 clones in tumours treated with paclitaxel,
S3 showed a higher fitness over S1 (Fig. 3e, and Supplementary Fig. 8e
and Supplementary Data 7), in agreement with in vitro results. We
deduced that the drug tolerance phenotype is different from the
tumour-initiating capacity in SUM159PT and is primarily associated
with the S3 baseline programme.

GALILEO links cancer clones with transcriptional programmes
and DNA accessibility states at single-cell resolution
To investigate the epigenetic state of cancer clones and relate it to the
transcriptional readout, we developed Genomic bArcoding pLus
sIngLE-cell multi-Omics (GALILEO). Specifically, we performed single-
cell Multiome ATAC plus gene expression sequencing on barcode-
labelled SUM159PT nuclei in two biological replicates (Fig. 4a). This
assay enables access to gene expression, DNA accessibility, and clone
information simultaneously at single-nucleus resolution. At baseline,
we identified 2023–2024 unique clones and assigned a clonal identity
to between 73% and 86% of high-quality nuclei (Supplementary Fig. 9a
and Supplementary Data 1). We obtained seven and six clusters for the
two replicates, respectively, and retrieved the subpopulations S1, S2,
and S3 previously identified by scRNA-seq (Fig. 4b and Supplementary

Fig. 9b, c), with largely overlapping gene signatures (Supplementary
Fig. 9d and Supplementary Data 10). When evaluating their DNA
accessibility state, nuclei fromS1, S2, and S3 showeddistinct profiles in
the scATAC-seq space, comparable to the scRNA-seq results (Supple-
mentary Fig. 9e). To identify patterns of co-accessibility in the set of
~105 regions detected from scATAC-seq, we used cisTopic56, a tool for
scATAC-seq data analysis based on a topic modelling framework.
Briefly, topics56 are hidden variables represented as probability values
across all ATAC regions in the dataset, and, conversely, cells are
represented as probability values over topics; the benefit of this
approach is that the number of topics is typically much smaller than
the number of regions. Groups of regions and groups of cells where
these regions are co-accessible are thus simultaneously captured via
their associationwith topics.Next,we compared the regionprobability
across every topic pair between the two replicates using the irrepro-
ducible discovery rate (IDR; see section “Methods” and Supplementary
Fig. 10a). We defined a subset of reproducible regions (i.e., satisfying
IDR <0.05) for each topic pair, referred to as ATAC module hereafter,
and assigned a reproducibility score to them (Fig. 4c, left, and Supple-
mentary Fig. 10b and Supplementary Data 11). Note that our approach
based on topic modelling discards ubiquitously accessible regions;
combined with IDR filtering, this results in a substantial reduction of
the size of the dataset (see pie chart in Fig. 4c). Most reproducible
regions were found in few, large ATAC modules containing more than
400 regions, the largest one containing 1511 regions (Fig. 4d and
Supplementary Fig. 10c). This few-to-few mapping across replicates
suggests that the grouping of the regions into ATAC modules is non-
stochastic. Therefore, each of these modules is expected to identify a
pool of genomic elements that jointly participate in the regulation of
gene expression. More than 90% of the regions could be assigned a
regulatory element, according to the ENCODE cCRE registry: 9% were
annotated as promoter-like signatures (PLS), within 200bp of tran-
scription start sites (TSS) of genes, 7% and 75% as proximal and distal
enhancer-like signatures (pELS, dELS), respectively (Fig. 4c).

ATAC modules recapitulate the multiple DNA accessibility pro-
files of gene expression clusters
The regions found in the sameATACmodule are accessible in the same
cells, and, by definition, are reproducible across replicates. We inves-
tigated the relationship between ATACmodules and transcriptional or
clonal subpopulations.We computed a score for each ATACmoduleM
and for each cell c (AUC; see section “Methods”), representing the
overall accessibility of the regions ofM in c, and referred to asmodule
AUC hereafter. Using module AUC, we associated several large ATAC
modules with either S1, S2, or S3 (Fig. 4d and Supplementary Fig. 10c).
Among the 20 highly reproducible modules, 8 (highlighted in bold in
Fig. 4d) could be associated to any of S1, S2, or S3, with Module 1 (1511
regions) being the top predictor of both S1 (AUC=0.98) and S3

Fig. 2 | Tumour-initiating clones are recurrent and originate from S1 and
S3 subpopulations. a Tumour-initiation assay. Barcoded SUM159PT cells were
injected orthotopically in NSG mice; gDNA from parental (n = 3) and tumours
(n = 9) were sequenced. b Left: clone count as number of distinct GBCs (bounds of
box: upper (q75) and lower (q25) quartiles; centre: median; upper whisker: min{-
max(x), q75 + 1.5·IQR}; lowerwhisker:max{min(x), q25 − 1.5·IQR}). Right: cumulative
clone frequency, where GBCs are ordered by non-increasing abundance. c Each
graph refers to a tumour and each dot is a clone; clones are groupedby the number
of times they are observed across tumours (x = k) and their frequency over the total
tumour size is shown on y. d Left: detection of tumour-initiating clones (TIC) by
comparison between clone abundance in tumour t in the parental population.
Right: fraction of clones (top) and relative clone abundance (bottom), in parental
and tumour samples, grouped by clone class. e Mapping of TICs at parental state
(T0). Top: UMAP representation of T0 cells in gene expression space (TICs in blue).
Bottom: log-odds ratio of cluster assignment vs TIC labelling at T0. f Association
between T0 clusters and clone expansion in vivo. Top: normalised cluster

abundance in each tumour (unassigned clones in grey). Bottom: TIC odds ratio in
subpopulations. g Prospective isolation of S1 cells by FAC-sorting with TM4SF1
antibody (see Fig. 1g). Top: gate used for TM4SF1high sorting. Bottom: differentially
expressed genes (RNA-seq) between TM4SF1high and bulk at days 0, 9, and 43 (n = 2
each). Entries are expression log2(FC) between conditions at the same time point.
scRNA-seq andMultiomegene signatures are highlighted in colour (sharedgenes in
black) and the 20 top upregulated genes in TM4SF1high cells labelled. h TM4SF1high

cells are enriched for TICs. Top: TM4SF1high or bulk cells are injected orthotopically
at different dilutions. Bottom: response and average latency. i Tumour growth and
disease-free survival. Top: growth dynamics (in days) of each primary tumour
derived from transplantation of 100 cells (n = 7). Data are mean± SEM. Asterisks
mark the significance two-sided, unpaired t-test (*p <0.05, **p <0.01, ***p <0.01).
Bottom: Kaplan–Meier curve reporting the time-dependent appearance of primary
tumours derived from injection of 100 cells (Log-rank Mantel–Cox test)
[a, h Created with Biorender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license].
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Fig. 3 | Drug-tolerant clones are recurrent and are enriched in S3 cells.
a Experimental design, drug tolerance assay. Top: in vitro assay. Barcoded
SUM159PT cells were treatedwith paclitaxel in vitro and harvestedwhen single-cell
colonies were grown (n = 6). GBC loci were PCR amplified and sequenced. The
untreated parental population at T0 (n = 3) and T1 (n = 3) was also sequenced as a
control. Bottom: in vivo assay. Barcoded SUM159PT cells were injected orthoto-
pically in NSGmice; after tumour formation, mice were treated or not (see Fig. 2a)
with paclitaxel. Parental samples (n = 3) were also sequenced as a control. b Clone
selection upon treatment. Top: comparison of total clone count (left) and cumu-
lative clone distribution (right) in parental, untreated, and treated in vitro samples
(bounds of box: upper (q75) and lower (q25) quartiles; centre: median; upper
whisker: min{max(x), q75 + 1.5·IQR}; lower whisker: max{min(x), q25− 1.5·IQR}).
Bottom: same as above, for parental, untreated tumour (as in Fig. 2a), and treated
tumour samples (see also Fig. 2b legend). c Detection of drug-tolerant clones
(DTC). Top: cartoon showing the comparison between clone abundance in each
sample compared to the (average) abundance in the parental population; clones

significantly more abundant in k = 4 out of 6 samples are defined as drug tolerant.
Bottom: bar plot showing the relative clone abundance in parental and treated
samples in vitro and in vivo, respectively, and grouped by class (drug tolerant or
not). d Mapping of the drug-tolerant clones at parental state (T0). Top: UMAP
representation of T0 cells on gene expression space, with cells classified as DTC
in vitro (left) or in vivo (right) coloured inorange. Bottom: log-odds ratios obtained
from the contingency table comparing cluster assignment and DTC labelling
in vitro (left) or in vivo (right) across cells at T0. e Association between parental
state (T0) and clone expansion in vivo, without and with treatment. Top: bar plot
showing the relative normalised abundance of T0 clusters in every untreated (left,
as reported in Fig. 2f) or treated tumour (right), respectively (unassigned clones
shown in grey). Bottom: cartoon highlighting the subpopulations enriched inDTCs
(odds ratio values reportedbelow) [aCreatedwith Biorender.com releasedunder a
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license].
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(AUC=0.84) (Fig. 4e). Module 20 (50 regions) showed an equally
strong association with S3 (AUC=0.84). To further assess the rela-
tionship between ATAC modules and subpopulations, we correlated
genome accessibility (using module AUC, see above) with gene
expression across cells (Spearman’s ρ; Fig. 4f and Supplementary
Data 12). This approach ensures thatmechanisms involving either cisor

trans genomic elements can be captured, as no constraint on region-
gene proximity was used. Overall, module AUC was positively corre-
lated with the expression of genes of the associated subpopulation
signature (Fig. 4f and Supplementary Fig. 10d). These results support
the hypothesis that ATACmodules contain regulatory elements jointly
involved in the control of specific transcriptional programmes.

Fig. 4 | AmajorDNAaccessibility programmepredicts tumour initiation and is
associated with S1 and S3 subpopulations. a Genomic bArcoding pLus sIngLE-
cell multi-Omics (GALILEO) strategy. Barcoded SUM159PT cells are processed with
Multiome. The readout of each cell is lineage, gene expression profile and DNA
accessibility state. b UMAP representation in gene expression space coloured by
cluster (replicate 1, 2446 nuclei). c Topic modelling on ATAC-seq regions. Left:
comparison of the output of topic modelling on the two replicates; and entries are
reproducibility scores (see section “Methods”); topics highly correlated with cov-
erage are not shown (see Supplementary Fig. 10b). Centre: topic pairs ordered by
non-increasing score (yellow: non-empty modules). Right: reproducible region
fraction and their annotation by ENCODE registry (bottom) of candidate cis-reg-
ulatory elements (cCREs) as PLS (promoter), pELS (proximal enhancer), or dELS
(distal enhancer) (replicate 1). d Comparison between ATAC modules and gene
expression in single nuclei (replicate 1). Rows are the top 20 scoring modules,
columns are nuclei and entries are module AUC scores representing the overall

accessibility of amodule. The association (AUC) of amodule to subpopulations (S1,
S2, and S3) and cancer fates (TIC and DTC) in vitro is shown on the right; high
associations (AUC>0.75) with any subpopulation are highlighted in bold. Columns
areclusteredonEuclideandistances using a completemethod fromhclust package.
e Module 1 AUC as a predictor of S1 (red), S3 (black), or TICs (grey) on replicate 1.
f Association between module AUC scores and gene expression (replicate 1). Each
dot is a gene and its value represents the (positive) Spearman’s ρ correlation
coefficient between its expression and module AUC score. Genes are coloured
according to scRNA-seq and Multiome gene signatures. Transcription factors with
ρ ≥0.2 in either module are labelled. g TF enrichment on the genes whose
expression is positively correlatedwithModule 1 AUC. Left: TFs sorted by rank,with
top 10 rankedTFs labelled.Right: fractionof genes (coloured inpink)whose locus is
≤100 kbp away from any region in Module 1, for the 10 top-ranked TFs [a Created
with Biorender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license].
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Tumour-initiating clones share a common chromatin
priming state
We then sought to investigate the role of ATAC modules in cancer
phenotypes, namely, tumour-initiation and drug-tolerance capacity.
Importantly, Module 1, the top reproducible accessibility state, pre-
dicted TICs with high specificity and sensitivity (Fig. 4e and Supple-
mentary Fig. 10e), consistently with it being associated with S1 and S3,
which, in turn, are enriched in TICs (see also Fig. 2e, f). This suggests
that the tumour-initiating capacity may be linked to a specific and pre-
existing epigenetic state and may explain the phenotypic relationship
between the cells of S1 and S3. Subsequently, we used transcriptional
and epigenetic information jointly and at single-cell resolution to
highlight the gene regulatory networks and the epigenetic determi-
nants involved in the tumour-initiating capacity. For each module m,
we used the set Gm of positively correlated genes (see above) as input
tomeasure the transcription factor activity inm given a set of putative
targets for each TF57 (Fig. 4g and Supplementary Data 13). Among the
top-ranked TFs for Module 1, we detected several TFs that have been
previously linked to tumour-initiation capacity, including TWIST2,
PRRX1, and RUNX2; note that the S1 gene signature is enriched in
RUNX2 targets (see Supplementary Fig. 4h). TWIST2 is a member of
the TWIST family of TFs, which has been extensively associated with

poor tumour prognosis, EMT, and stem-cell activity in breast
cancer58–60. Similarly, RUNX2 activity has also been linked to the reg-
ulation of EMT, matrix remodelling, and invasive phenotypes52, which
lead tometastasis, notably in breast cancer35,61; finally, PRRX1 has been
recently shown to sustain metastatic dissemination and induce a
switch to a mesenchymal-like state in a melanoma cancer model26.
RUNX2, TWIST2, andPRRX1were top ranked inModule 1 alsousing the
set of genes proximal to Module 1 ATAC regions as input (Supple-
mentary Fig. 10f). For each TF, we identified its regulon by the set of
positively correlated target genes whose locus is proximal (<100 kbp)
to any region of Module 1. Several genes in the S1 signature, including
procollagen C-endopeptidase enhancer 1 (PCOLCE) and collagen-
encoding genes (COL6A1, COL6A2, COL5A1, COL5A3), were found as
part of PRRX1 and TWIST1 regulons (Fig. 5a and Supplementary
Fig. 10g). To directly verify the role of the genomic elements of
Module 1 in gene regulation, we selected two regions located in
the proximity of COL6A1 and COL6A2, highly accessible in S1 cells
(Supplementary Fig. 10h) and classified as dELS by ENCODE cCRE
(Fig. 5b, top). Subsequently, we targeted the two regions by means of
an inducible CRISPR interference strategy62,63 (Fig. 5c). We observed
that repression of either region led to a consistent and reproducible
reduction in COL6A1 (up to 36% and 46%) and COL6A2 expression
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Fig. 5 | Silencing of selected Module 1 regions triggers a reduction in tran-
scription of proximal genes. a The “PRRX1 regulon” includes the set of genes
whose expression is positively correlated with Module 1 AUC and that (i) are pre-
dicted as PRRX1 targets byChEA3and (ii) lie at≤100 kbp fromany region inModule 1.
b COL6A1 and COL6A2 loci; shown are the scATAC-seq peaks (aggregate signal,
replicate 1). Red dots label Module 1-specific regions. In the magnification is shown
the region containing the two enhancers, ENH1 and ENH2, together with ENCODE
regulatory tracks for H3K4Me1, H3K27Ac, and DNase clusters and the position of

sgRNAs for CRISPRi (see also d). c Scheme showing the CRISPRi approach and the
model of Enhancer-Gene pair regulation. d RT-qPCR data showing the impact in
COL6A1 and COL6A2 expression in TM4SF1high SUM159PT_KRAB cells observed upon
expressing sgRNAs targeting ENH1 (in pink) or ENH2 (in blue) (see also b). Data are
measured at day 3 (top) or day 10 (bottom) after dCas9-KRAB induction by dox-
ycycline (n =6 and7 sgRNAs, respectively) and compared to a groupof non-targeting
sgRNAs (n= 4) [c Created with Biorender.com released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license].
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(up to 43% and 62%; Fig. 5d), both at early (3 days) and late time points
(10 days) post-dCas9-KRAB induction.

A subset of the drug-tolerant subpopulation exhibits a pre-
existing genomic amplification
Module 20 predicts S3 with high specificity and sensitivity (AUC=0.84
and 0.75 in the two replicates; Fig. 6a and Supplementary Fig. 11a). As
shown in Fig. 3, the S3 programme is associated with increased drug
tolerance, both in vitro and in vivo. We noticed that most regions of
Module 20, aswell as several genes of the S3 signature, were located on
a 5.5Mbp-long region of chromosome 11 (Supplementary Fig. 10i). The
odds are low that an epigenetic regulatory mechanism involves a
cluster of highly localised genomic elements and thuswe reasoned that
a genetic alteration might better explain the transcriptional profile of
S3. When interrogating the whole-exome sequencing profile of
paclitaxel-treated samples and comparing it to that of untreated cells
(n = 3; see Fig. 3a), we detected 18 recurrent copy-number variants
(CNVs; Fig. 6b and Supplementary Fig. 11b). Notably, the top amplified
region (average log2(FC) = 0.53 and p value = 5.65e − 185) lied on
chromosome 11, specifically across bands 11q23–11q24 (Fig. 6c). These
results suggest that the amplification was already present in S3 cells
before treatment and that Module 20 captures a specific genetic
background of S3, rather than a localised increase in chromatin
accessibility. This implies that the drug tolerance phenotype is, at least
in part, genetically determined, and, in turn, suggests that a subset of
DTCs could maintain a stable memory of the treatment. Therefore, we
investigated the susceptibility of cells to paclitaxel upon a recovery
period of 24 days after a first round of treatment (see section “Meth-
ods”, Fig. 6d, top, and Supplementary Fig. 11c). Upon a second roundof
treatment, clonality was reduced by 63% (average recovery at day ≥ 17
compared to day ≤ 3; Fig. 6d, bottom), suggesting that chemotherapy
was still effective; however, drug sensitivity was low compared to a
single roundof treatment,whereonly 19%of clones survived. Finally, to
verify the specificity of the association observed between the chr11
region amplification and resistance to paclitaxel, we examined a drug
resistance model, where SUM159PT cells were repeatedly treated with
increasing doses of paclitaxel (see section “Methods”, Fig. 6e, top, and
Supplementary Fig. 11c) up to theonset of a drug resistancephenotype.
The WES profile confirmed an amplification on chromosome 11 whose
locus overlaps 75% of the above-detected one (Fig. 6e, bottom, and
Supplementary Fig. 11d and SupplementaryData 14).We conclude that,
in SUM159PT, paclitaxel-based chemotherapy causes a clonal expan-
sion of a subpopulation harbouring the amplification of 11q23–11q24.

Two distinct clone lineages can enter a drug tolerance state
We note that the 11q23–11q24 amplification is only found in S3. How-
ever, in vitro, many DTCs fall outside S3 (see Fig. 6a and Supplemen-
tary Fig. 8a), highlighting theirmolecular heterogeneity at baseline. To
further characterise the pathways leading to drug tolerance in vitro,
we designed a single-cell time-course experiment on barcoded
SUM159PT cells (Fig. 7a, top). To minimise technical variability, we
treated cells for 3 days with paclitaxel, collected samples every 2 days
after drug removal (days 5–15) and sequenced them simultaneously
using a reverse time course as in ref. 64. Consistent with untreated
samples, we assigned a clonal identity to most of the high-quality cells
(80–84%, Supplementary Fig. 12a, b). Treatment elicited a progressive
clone selection, from 1126 distinct clones at day 5 to 433 at day 15
(Fig. 7a and Supplementary Data 15). An independent experiment
confirmed the clone selection dynamics (Supplementary Fig. 12b, c).
Chemotherapy induced a substantial transcriptional change (Fig. 7b, c,
and Supplementary Fig. 12c, d and Supplementary Data 16). At initial
timepoints (d5–d9),most cells were drug-sensitive and developed two
distinct responses to treatment: the one characterised by the induc-
tion of stress response pathways, including amino-acid deprivation,
unfolded protein response, and inflammation (cluster 1); the other

mostly characterised by autophagy (cluster 2; Fig. 7d, and Supple-
mentary Fig. 12e and Supplementary Data 17). At late time points,
surviving cells showed enhanced translation activity (cluster 3). At
initial time points (d5 and d7), cells belonging to the surviving pool
(i.e., DTCs) accounted for only 9% of the whole sample and their
transcriptional profile was scattered (Fig. 7b and Supplementary
Fig. 12d). DTCs survived the treatment by remaining in a state of sus-
pended proliferation for several days and, starting from days 9 to 11,
entered an intense proliferation phase; from day 13 on, DTCs con-
stituted 73%–85%of surviving cells (Fig. 7a and SupplementaryFig. 12c)
and acquired a distinguishing transcriptional profile (Fig. 7e). At late
time points (days 13–15), cells stemming from the same clone at
baseline overall displayed a divergent transcriptional programme
(solid line), comparable to that of cells belonging to different clones
(dashed line, Fig. 7f). Then, we asked whether any distinguishing
transcriptional footprint exists in highly expanded clones. To do this,
we devise an unsupervised approach to find sets of mutually similar
clones (by defining a pair propensity score across gene expression
neighbourhoods; see section “Methods” and Fig. 7g). Two groups of
clones, or lineages, showed mutually high transcriptional similarity
(Fig. 7g, h and Supplementary Fig. 13a), suggesting that multiple
pathways to drug tolerancemay exist in SUM159PT cells. Both lineages
contained highly abundant clones, indicating that the transcriptional
readout is not associatedwith proliferation potential. The two lineages
were reproducible both across time points and across independent
experiments (Supplementary Fig. 13b, c). On average, they accounted
for 50% (lineage 1) and 35% (lineage 2) of the cells at late time points
(the remainder fraction belongs to unclassified clones). Notably,
clones in lineage 1 stemmed from S3 and were characterised by a pre-
existing genomic amplification on band 11q23–11q24. Among the
upregulated genes in lineage 1, we detectedMT1E, whose relevance in
breast and other cancer types has been extensively proven65,66, as well
as FEZ1 and RPS25, top significant genes in the S3 signature (Fig. 7i, j
and Supplementary Data 16). Consistently, genes located within the
11q23–11q24 amplification, which is specific to S3, were upregulated in
clones belonging to lineage 1 (Fig. 7k and Supplementary Fig. 13d, e).
This showed that the transcriptional differentiation breadth of the two
lineages is determined by the genetic background of the ancestor
clone, specifically, depending on whether it carries the 11q23–11q24
amplification or not. In contrast, we did not detect any lineage
2-specific copy-number aberration (Supplementary Fig. 13f). The top
upregulated genes in the lineage 2 signature, namely, S100A2, IGFBP2,
IFI27, and PVT1, were most highly expressed immediately following
treatment in both DTCs and non-DTCs (Fig. 7j), suggesting that the
transcriptional programme of lineage 2 is not DTC-specific. The early
response to paclitaxel includes upregulation of PVT1, a long non-
coding gene acting as a negative regulator of the transcription factor
MYC, a key regulator of growth and cellular metabolism, frequently
associated to breast cancer67,68. Consistently, we observed that MYC
activity decreased immediately after treatment and increased during
adaptation in response to it (Supplementary Fig. 13g), with only slight
differences between the two lineages (Supplementary Fig. 13h). Con-
sistent with our findings, recent evidence showed that reduced MYC
activity promotes a chemotherapy survival phenotype in breast cancer
via the adoption of an embryonic-like diapause state69. In conclusion,
we mapped the transcriptional response upon drug treatment at a
clonal level and isolated different pathways of cancer transcriptional
evolution leading to resistance, one of them being invariably linked to
a pre-existing genetic rearrangement.

Discussion
One of the main challenges in cancer biology is predicting how
tumours evolve in response to changes in the tumour environment.
The capacity of one or more clones to sustain tumour growth at distal
sites or to trigger disease relapse upon cytotoxic treatment may
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depend on a specific set of molecular characteristics. Their identifi-
cation has been the focus of intense research efforts, both for the
clinical applications and for the understanding of the mechanisms
underlying tumour plasticity.

Recently, it has been suggested that the cancer stem-like pool
might be heterogeneous, with distinct subpopulations primed to dif-
ferent fates4–10. The SUM159PTmodel is one representative example, in
which distinct states coexist in equilibrium33. Here, we provided the

Fig. 6 | Drug-tolerant clones display chr11 amplification. aModule 20 AUC as a
predictor of S3 (black) or DTCs in vitro (grey) on Multiome replicate 1. Bottom:
UMAP representation of T0 cells on gene expression space coloured as in Fig. 3d.
b Copy-number variants (CNVs) pre- and post-treatment (drug tolerance assay,
replicate 1). ATAC-seq coverage (Multiome) on CNV loci52. Rows are consensus CNV
frompaclitaxel-treated samples (day 15; n= 3; experiment as in Fig. 3a); columns are
nuclei in Multiome replicate 1; entries are cumulative ATAC counts per CNV locus
per nucleus. The coverage log2(FC) between each treated sample and the parental
(left) and chromosome location (right) are indicated. Columns are clustered with a
complete method on Euclidean distances using hclust. c Circos plot showing the
association betweenModule 20 regions at baseline (see Fig. 4c) and CNVs in treated
condition. In thedot plot, the y axis is the IDR for the regions inModule 20;CNVs for
each replicate are coloured by log2(FC); consensus CNVs are shown in black. dDrug

tolerance assay, second round. Top: SUM159PT cells were treated with paclitaxel
and clone selection was stabilised until T0′; cells were subsequently infected with
theGBC library sortedbyBFP expression, subjected to a second roundof treatment,
and harvested at T1′. The three populations (T0, T0′, and T1′) were sequenced.
Bottom left: total clone count at T0′ and T1′ (bounds of box: upper (q75) and lower
(q25) quartiles; centre: median; upper whisker: min{max(x), q75 + 1.5·IQR}; lower
whisker: max{min(x), q25 − 1.5·IQR}). Bottom right: cumulative clone distribution
after either one round (see also Fig. 3b, top) or two rounds of treatment. eTop: long-
term drug resistance assay in vitro. SUM159PT cells were repeatedly treated with
increasing doses of paclitaxel until resistant clones were obtained, which were then
processed by WES. Bottom: ATAC-seq coverage (Multiome) on CNV loci52, as in (b)
[d, e Created with Biorender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license].
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distinctive transcriptional and epigenetic traits of each sub-pool. We
analysed tumour initiation and drug tolerance at single-cell level on
lineage-barcoded cells and on the same system, providing a high-
resolution representation of tumour complexity.

We initially asked which clonal subpopulations lie in a defined
transcriptional or epigenetic state. In the case of SUM159PT, only a
fraction of clones displayed a stable transcriptional profile at the
subpopulation level, hinting that these may encode for specific func-
tions. Indeed, the TICs were almost exclusively associated with either
S1 or S3 signatures, with S1 showing the strongest enrichment and S3
also encoding for DTCs. The third signature (S2) was not attributable

to any cancer property, although it contains basal markers (e.g., miR-
205HG, HMGA1).

An important and direct conclusion of our study is that TICs and
DTCs do not coincide but coexist in the same cancer population,
sharing a minor subset of clones (belonging to S3). TICs and DTCs can
significantly change their transcriptional profile during cancer evolu-
tion, adapting to the environment and conditions. In transplanted
tumours, TICs lose their baseline signature upon expansion and
maintain upregulation of only a handful of markers (e.g., S100A4,
TM4SF1), whose phenotypic relevance is confirmed in the
literature20,37,39,52. Similarly, DTCs undergo a massive transcriptional
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reprogramming after treatment and, thus, are strikingly distinct from
their non-DTC counterpart, a behaviour observed in other cancer cell
models64,69. Using lineage tracing information alongside a time-course
single-cell profiling, we could describe two distinct and co-occurring
transcriptional trajectories in drug adaptation. Differently from TICs,
the DTC subpopulation did not show a strong transcriptional or epi-
genetic determinant at the baseline. However, a subset of DTCs, lying
in S3, shows amplification of a 5.5Mbp-long region of chromosome 11
(bands 11q23–11q24). This genetic background also reproducibly seg-
regated with chronic treatment resistance in the SUM159PTmodel. To
our knowledge, this amplification is not reported as a recurrent
alteration in cancer (https://cancer.sanger.ac.uk/cosmic). We con-
firmed the existence of a large amplicon spanning the
chr11:118M–126M region in a small fraction of primary breast tumour
samples from the TCGA dataset (73 out of 1084 cases; cBioPortal), but
we could not assess its association with resistance to chemotherapy
treatments, nor the role in the phenotype of the individual genes lying
in the locus. However, among the genes lying in the chr11:118M–126M
region isMIR100HG, a long non-coding RNA that encodes for miR-100
and miR-125b, the latter being a miRNA known to confer resistance to
taxol treatment in TNBC cell lines70,71.

A key innovative element of our study is the use of a cutting-edge
approach combining single-cell multi-omic profiling (transcriptome
and DNA accessibility) with lineage tracing (clone information at an
arbitrary time t, which we call the baseline—P0). Specifically, we found
aputative regulatoryprogramme (ModuleM1) common to both S1 and
S3, which elegantly links the two tumour-initiating states. Moreover,
the inferred transcription factors and the corresponding regulons
comprise both genes and regulatory regions, including non-coding
components (lncRNAs and enhancers). Note that theseelementsmight
be detectable in bulk experiments, but only the single-cell resolution
can explain their relationship, which may be subpopulation-
dependent. The TF hubs of the predicted regulons are fully sup-
ported by the literature; for instance, PRRX1, TWIST2 and RUNX2 have
been linked to breast cancer and to the EMT, a founding element
shared by both tumour aggressiveness and stem cell identity
programmes52,72,73.

An important question is whether the molecular traits distinctive
of TIC are specific to SUM159PT or are generalisable. In large breast
cancer datasets, the upregulationof S1 and S3 signature genes predicts
basal features, which are typically associated with cancer stemness74.
S1 signature genes have also been found as upregulated within cell
subpopulations in other breast cancer models (MDA-MB-231 TGL), as
well as associated with general cancer meta-programmes across over
1000primary tumour samples51. Of note, the strongest associationwas
found with the hybrid EMT meta-programme, which shares several
markers with S1, including TM4SF1, used to enrich for functional TICs
in SUM159PT (in this work) and in other experimental models, such as
MDA-MB-231, murine 4T1 breast cancer cells, and MMTV-Neu
tumours53,54. Furthermore, by employing either lineage tracing or

single-cell omics, recent literature highlighted programmes with
remarkable similarities to the ones we reported. In a mouse model of
metastaticpancreatic cancer, Simeonovet al. highlighted ahybridEMT
state in metastatic dissemination which shares S100 family gene
expression (see Supplementary Fig. 4g) and is predictive of reduced
survival in both pancreatic and lung cancer patients20. In a genetically
engineered mouse lung cancer model, a co-accessibility module
characterised by RUNX2 activity was identified and linked with the
acquisition of a pre-metastatic state and the outcome of human lung
cancer52. Interestingly, the S1 signature genes that are also significantly
associated with the hybrid EMTmeta-programme are putative RUNX2
targets (see Supplementary Fig. 4h). In line with this observation, the
KP-tracer approach for in vivo lung cancer lineage tracing allowed to
show that tumours evolve through stereotypical trajectories, with the
transient activation of cellular plasticity programmes and a sub-
sequent clonal sweep of highly fit subpopulations marked by an early
or late mesenchymal transition27. Finally, single-cell lineage tracing
revealed the underlying programme of a pool of metastatic initiating
cells in melanoma, characterised by high PRRX1 expression and pro-
moting the establishment of a mesenchymal-like cell state26.

Our and published evidence suggest a model where the
mechanisms influencing clonal fate and tumour evolution tend to
converge towards a common epigenetic state, often established
before a challenge and, therefore, predictable. The main programme
we identified was a hybrid EMT and the associated transcription fac-
tors (e.g., RUNX2 and TWIST). It is worth noting that one of the results
obtained with GALILEO approach is the precise reconstruction of the
network of genes and specific regulatory elements related to the above
programme in TNBC cells. Indeed, these elements can potentially
highlight cancer dependencies with clinical impact. We foresee that
combining cutting-edge molecular tools at the genome scale, like the
ones presented here, as well as genetic ones, with suitable computa-
tional frameworks, could critically contribute to further dissect the
role played by different transcriptional, epigenetic and genetic layers
in cancer evolution. Our study has made it clear that a multi-layered
framework is feasible and an invaluable resource to this end. Finally,
our work directly shows that both genetic and epigeneticmechanisms
can promote cancer evolution towards specific fates, and that these
mechanisms may coexist in the same tumour within specific cell
subpopulations.

Methods
Mice
All animal studies were conducted with the approval of the Italian
Ministry of Health and in compliance with the Italian law (D.lgs. 26/
2014), which enforces Dir. 2010/63/EU (Directive 2010/63/EU of the
European Parliament and of the Council of 22 September 2010 on the
protection of animals used for scientific purposes) and EU 86/609
directive. Proper permit and consent were granted (Protocol No. 779/
2020) by the institutional organism for ethics and animal welfare on

Fig. 7 | Drug-tolerant clones stemfromtwodistinct lineages. aTime-course drug
tolerance assay (exp1). Top: SUM159PT cells were treatedwith paclitaxel for 3 days,
harvested every 2 days post-paclitaxel removal (n = 1/time point), and processed
with scRNA-seq using reverse time-course multiplexing. Bottom: fraction of DTC
in vitro (see Fig. 3c, top) across timepoints.bDrug-tolerant clone selection. In total,
7884 treated cells are shown and coloured by clone class. cUMAP representationof
cells at days 5, 7, 9, 11, 13, and 15 and coloured by cluster. dCluster signatures: rows
are genes, columns are clusters, and entries are log2(FC) values between a cluster
and its complement. Significantly upregulated genes in any cluster are shown and
order by average log2(FC) and adjusted p value ranking (lower to higher; MAST
method, Bonferroni correction). The top 10 genes for each cluster are labelled.
eGaussian kernel density of Euclidean distances in gene expression betweenDTCs,
non-DTC, and between DTCs and non-DTC, before (T1, left) or after treatment
(exp1, right). f Gaussian kernel density of Euclidean distances between sister and

non-sister cells at day 15. g Gene expression similarity bias by pair propensity. Left:
calculation of pair propensity between clones (see section “Methods”). Right: pair
propensity for top expanded clone pairs at day 15 (clones i with pii< 1 not shown);
clones are annotated with clone abundance (count per thousand cells, rows) and
lineage (columns). h UMAP representation of cells at days 13 and 15 coloured by
lineage assignment (unassigned clones in grey). i Rows are lineage gene signatures,
columns are independent experiments, and entries are average log2(FC) values
between lineages 1 and 2 after treatment. Genes are ordered by non-increasing
log2(FC) in exp1. The 10 DEGs with higher and lower log2(FC) are labelled. j UMAP
plot of cells at day ≥ 5 coloured by log-normalised gene expression of the four top
log2(FC) genes of lineages 1 and 2. k Rows are genes whose locus lies in
chr11:118307287–123754518 (see Fig. 6b), columns are cells at day 15 and entries are
scaled log-normalised UMI counts. Rows are sorted by non-increasing average
expression; columns are clustered with complete method on Euclidean distances.
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experimental procedures (OPBA, Cogentech). Animals were bred and
maintained under pathogen-free conditions in a controlled environ-
ment (18–23 °C, 40–60% humidity and with 12-h dark/12-h light cycles)
at the certified Cogentech mouse facility located at IEO/IFOM campus
(The FIRC Institute of Molecular Oncology, Milan, Italy).

In vivo xenograft
Immunodeficient NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJ (also known as
NOD/SCID/IL2Rγc

−/−) mice were anesthetised by intraperitoneal injec-
tions of 1.25% solution of tribromoethanol (0.02ml/g of body weight).
Barcode-bearing SUM159PT cells were resuspended in a mix of 14μl
PBS and 6μl Matrigel and implanted in the fourth inguinal mammary
gland of 10-week-old animals. Miceweremonitored twice aweek by an
investigator. For the chemotherapy treatment studies, tumours were
allowed to grow to palpable lesions (~20–30mm3), then mice were
randomised into groups and each group was treated intraperitoneally
with either paclitaxel (PTX) (10mg/kg in PBS) or vehicle (PBS) every
5days for a total of three injections.Micewere euthanised according to
our experimental protocol and institutional guidelines when tumours
euqalled 1.2 cm in their largest diameter. Maximal tumour burden was
not exceeded. Tumour growth dynamics were monitored every 3 days
by calipers measurements. For in vivo limiting dilution assay trans-
plantation experiments, decreasing dilutions (1:10,000; 1:1000; 1:100)
of SUM159PT were resuspended in amix of 14μl PBS and 6μl Matrigel
and transplanted in the fourth inguinalmammaryglandof 10-week-old
animals. Animals were monitored as before and euthanized after
1.5–3 months (depending on tumour latency).

Tissue harvest and processing
The primary tumours were removed when the tumour reached an
approximate diameter of 1.2 cm. The animals were anesthetised with
tribromoethanol, and the tumours were resected. The solid tissue was
rinsed with PBS, minced with scalpels, followed by mechanical dis-
sociation using gentleMACS (Miltenyi) in a digestionmix (collagenase,
hyaluronidase, 5μgml−1 insulin, Hepes, hydrocortisone). The cell sus-
pensionwas incubated for 25′ at 37 °C followedby anadditional stepof
gentleMACSdissociation. Following awashwith basemedium the cells
were consecutively passed through 100, 70 and 40μm filters. Primary
tumour cells were treated with ACK lysis buffer (Lonza) followed by
resuspension in 1% BSA/PBS and processed using the Mouse and Dead
Cell depletion kits according to the manufacturer’s directions
(Miltenyi).

Cell cultures
We maintained HEK293T and MDA-MB-231 TGL cells in Dulbecco’s
Modified Eagle’s Medium (DMEM) with 10% of TET-FREE foetal bovine
serum (FBS) and 1% penicillin–streptomycin. Cells were grown in a
humidified atmosphere at 5% CO2 at 37 °C. SUM159PT cell line and
derivatives (Asterand) were cultured in Ham’s F12 medium with 5%
TET-FREE FBS, human insulin (5μg/ml), hydrocortisone (1μg/ml), and
Hepes (10mM). Barcoded SUM159PT and CRISPRi cell line medium
was supplemented with 2μg/ml puromycin for selection. Cells were
grown in a humidified atmosphere at 10% CO2 at 37 °C.

Perturb_SUM159PT cell line generation
Perturb-seq GBC library18,75 was a gift from Jonathan Weissman
(Addgene ID #85968). The library contains a random 18-nt guide bar-
code (GBC) close to the polyadenylation signal of the blue fluorescent
protein (BFP). The estimated complexity of the library is >5 million
unique GBCs. We amplified the Perturb-Seq GBC library in Escherichia
coli (E. coli) ElectroMAXTM DH5α-ETM electro-competent cells
(Thermo Fisher Scientific), as indicated by the authors75. DNA extrac-
tion was performed with NucleoBond Xtra Maxi (Macherey-Nagel) kit
according to the manufacturer’s instructions. Viruses were produced
in HEK293T at 80% of confluency with the following transfection mix:

20μg Transfer Vector, 13μg of psPAX2 (gag&pol) (Addgene #12260),
7μg of pMD2G (envelope) (Addgene #12259), 94 μL of RT CaCl2 and
water up to 750μL. Then, 750μL of 2xHBS were added dropwise and
500μL/10 cm plate of transfection mix was added to the cells. The
medium was changed after 6 h and viruses harvested after 48 h, fil-
tered (0.22μm) and ultracentrifuged for 2 h at 50,000× g (rotor SW32
Ti, Beckman Coulter), at 4 °C. The viral pellet was resuspended in
300μL of PBS 1X and stored at −80 °C. To produce the Perturb
SUM159PT cell line for lineage tracing experiments, 75,000 cells were
seeded and infected with an estimated MOI of 0.1 in the presence of
8μg/ml of polybrene (Sigma-Aldrich). After selection, transduction
efficiency wasmeasured by FACS analysis, which revealed that 8.6% of
cells were successfully infected.

SUM159PT_KRAB cell line generation and CRISPRi experiments
For the generation of the PB-TRE-dCas9-KRAB plasmid, the DNA
sequence of KRAB repressor domain was amplified by PCR from the
pHAGE TRE dCas9-KRAB (Addgene plasmid #50917) and cloned in
frame into the PB-TRE-dCas9-VPR backbone (Addgene plasmid
#63800) within the AscI/AgeI sites. The cloning was sequence-verified
by Sanger sequencing. SUM159PT cells were transfected in MW6
plates, following Lipo3000 transfection protocol (ThermoFisher Sci-
entific) with 500ng of transposon DNA (PB-TRE-dCas9-KRAB) and
200ng of SuperPiggyBac transposase helper plasmid (System-
sBioscience). After at least 72 h from transfection, cells were selected
with 200μg/ml Hygromycin B. The PB-TRE-dCas9-KRAB SUM159PT
cell line is referred in the text as SUM159PT_KRAB. We expressed
sgRNAs upon cloning into lentiGuide-Puro sgRNA backbone (Addgene
#52963) within BsmBI (Esp3I) sites. Lentiviruses were generated in six-
well plates, following the Lipofectamine 3000 (Thermo Fisher) pro-
tocol. The transfection was performed by mixing the construct of
interest, psPAX2 (gag&pol)(Addgene #12260) and pCMV-VSV-G
(envelope) (Addgene #8454) plasmids at a ratio of 4:3:1. Viruses were
collected after 24 h, filtered and frozen. We generated stable cell lines
expressing single sgRNAs by lentiviral infection of 150,000/well
SUM159PT_KRAB cells. Lentiviral supernatants (1:3 dilution) were
added to cells, supplemented with 1μg/ml of polybrene. After 24 h,
cells were selected with 2μg/ml puromycin (Gibco). For the CRISPRi
experiment, we plated sgRNA-expressing stable cell lines with 100 ng/
ml of doxycycline and harvested cells after 3 days.

Paclitaxel treatment
A stock aliquot of paclitaxel (obtained from the IEO hospital) was
prepared (70μM) in PBS and used to treat cells. The dose of paclitaxel
used for in vitro experiments was established by a dose–response
curve of SUM159PT treated for 72 h. IC50 concentrations were esti-
mated by parallel fit estimation (JMP software, n = 4). For short-term,
single-treatment experiments, paclitaxel was used at the final con-
centration of 50nM (~IC95). After 3 days of treatment, themediumwas
changed every 3 days without adding the drug. For the analysis of the
susceptibility of pre-treated cells (shown in Fig. 6d), SUM159PT cells
were treatedwith paclitaxel (50 nM) and surviving cloneswere allowed
to recover for 21 days. Subsequently, cells were infected with the GBC
library, sorted by BFP expression and subjected to a second round of
treatment (50nM). For the generation of the drug resistant model
(shown in Fig. 6e), SUM159PT cells were treated multiple times with
increasing doses of paclitaxel (10, 20, 50, and 100 nM). Drug-adapted
cells were able to survive even when treated with 100 nM paclitaxel
and were collected 90 days after treatment for WES analysis.

TM4SF1high flow cytometry
SUM159PT_KRAB cells were stained with anti-TM4SF1-APC (clone:
REA851Miltenyi Biotec) antibody for 10′ at 4°C, in the dark and sorted
using Fusion Aria Sorter. The bulk population was FAC-sorted using
FSC/SSC gate, while for the TM4SF1high subpopulation different gating
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strategies were tested (top 5% or top 10%APC fluorescence intensity as
shown in Supplementary Fig. 5d); top 5% showed the best enrichment
for S1 markers (shown in Supplementary Fig. 6b) and was used in
subsequent experiments. After passive propagation in vitro, 9 days
after sorting, both populations were transplanted into NOD/SCID/
IL2Rγc, mice and tumours were collected as described above.

RNA sequencing. RNA was extracted frommouse-depleted and dead-
cell-depleted samples. The bulk andTM4SF1high sorted cells were either
immediately processedbyRNA-seqor passively propagated in vitro for
43 days (corresponding to passage 19). Cells after 9 and 43 days from
sorting were also collected and finally processed by RNA-seq. RNAwas
harvested using Maxwell RSC miRNA Tissue Kit according to the
manufacturer’s protocol. Libraries for RNA-seq were prepared from
1μg of total RNA using Truseq Total RNA Library Prep Kit (Illumina)
following the manufacturer’s protocols. Samples were sequenced
paired-end 50bp on an Illumina Novaseq6000 instrument.

Whole-exome sequencing. Sequencing was performed with the Agi-
lent SureSelect All Exon v5 (experiments shown in Fig. 6c, d) or v7
(experiments shown in Fig. 6a, b), as per manufacturers’ instructions.
Libraries were sequenced with coverage >200X on a Novaseq 6000,
with a PE 100 reads mode.

Multiseq—single-cell time-course for assaying drug tolerance
The single-cell time-course experiment for drug tolerance (shown in
Fig. 7) was designed in order to process all time points at the same
time. To do so, we performed an en-reverse experiment (i.e., starting
from the last time point, d15). The same batch of cells was used for
the entire experiment. Cells were passaged every 2 days and seeded
either for passive culture or paclitaxel treatment (5 × 106 cells in
150mm dishes). After 3 days of treatment (50 nM as described
above), the medium was changed every 3 days without adding the
drug. At day 15, all paclitaxel-treated time points were collected
together, counted and processed with the Multiseq protocol76.
Briefly, 500,000 cells for each sample (d5, d7, d9, d11, d13, d15) were
resuspended in 180μL of PBS and then labelled with 20 μL of a
reactionmix composed of 2 μMof a sample-specific Barcode, 2 μMof
LMO-Anchor (a kind gift of the Gartner Lab) and PBS. After 5′ of
incubation in ice, we added 20 μl of reaction mix composed of 2 μM
of co-anchor in PBS. After 5′ of incubation we stopped the reaction
adding PBS/BSA 1%. We centrifuged and washed twice the cells
before resuspending each sample in 125 μl PBS/BSA and pooling.
After filtering, 25,000 cells were loaded on theChromiumController.
Multi-seq library was isolated from the amplified cDNA and
sequenced at 5000 barcode reads/cell depth.

RT-qPCR
Total RNA was extracted using Maxwell RSC miRNA Tissue Kit
according to the manufacturer’s protocol. One microgram of total
RNAs was reverse-transcribed using ImProm-IITM Reverse Transcrip-
tion System (Promega) and genes were analysed with Quantifast SYBR
green master mix (Qiagen). RPLP0 was used as a housekeeping gene.
The complete list of primers used in this study is reported in Supple-
mentary Data 18.

GBC library preparation from gDNA
The genomic DNA was extracted from 1 to 3 million cells (typically 3
million, coverage 300×) using the NucleoSpin Tissue kit (Macherey-
Nagel). To enrich forGBCs, six parallel PCR reactionswere performed in
a final volume of 50μl using 200ng of genomic DNA, 0.2μM of dNTPs
mix, 0.5μM of the following primers: F1: GGGTTTAAACGGGCCCTCTA
and R4: GCCTGGAAGGCAGAAACGAC and amplified using PhusionTM

High-Fidelity DNA Polymerase at the final concentration of 0.02U/µl
(Thermo-Scientific) (coverage 50×–500×), in its 5X Phusion HF buffer

according to the following PCR protocol: (1) 98° for 30 s, (2) 98° for 7 s,
then 60° for 25 s and 72° for 15 s (for 30 cycles), (3) 72° for 5min.

At the end of the PCR, reactions were pooled and purified using
QIaquick PCR purification kit (QIAGEN). Then, the eluted DNA samples
were run on a 2% agarose gel and the 280 bp band was purified using
the QIAquick Gel extraction kit (QIAGEN). Illumina libraries were
generated from 10 ng of DNA, which was blunt-ended, phosphory-
lated, and tailed with a single 3′ A. An adapter with a single-base “T”
overhang was added and the ligation products were purified and
amplified to enrich for fragments that have adapters on both ends.

Libraries with distinct adapter indexes were multiplexed and
sequenced (50 bp paired-end mode) on a Novaseq 6000 sequencer.

Single-cell library and GBC sublibrary preparation (scRNA or
snRNA assays)
Single-cell suspensions (500–1000 cells/μl) were mixed with reverse
transcription mix using the 10x Genomics Chromium Single-cell 3′
reagent kit protocol V2 (T0MDA-MB-231 TGL andpaclitaxel time-course
exp2) or V3.1 (T1, paclitaxel time-course exp1) and loaded onto 10x
Genomics Single-Cell 3′ Chips (www.10xgenomics.com). Libraries were
generated as permanufacturers’ instructions and sequencedon Illumina
Novaseq 6000 Sequencing System (with a single- or dual-indexing for-
mat according to themanufacturer’s protocol V2 or V3.1). We aimed at a
coverage of 50K reads/cell in each sequencing run. Multiome experi-
ments were performed with the Chromium Single-Cell Multiome
ATAC+Gene Expression Reagent Kits (V1). Nuclei suspensions
(2000nuclei/μL) were transposed and loaded onto Chromium Next
GEM Chip J Single-Cell. Libraries were generated as per manufacturers’
instructions and sequenced on Illumina NOVAseq 6000, aiming at 50K
RNAand50KATAC reads/cell. To enrich forGBC reads, in afinal volume
of 50μL, we amplified by PCR the Perturb-library cassette from 5ng of
the amplified cDNA (as in ref. 18) using 0.3μM of dual-indices primers
(forward: 5′-AATGATACGGCGACCACCGAGATCTACACCTCCAAGTTCA-
CACTC TTTCCCTACACGACGCTCTTCCGATCT-3′; reverse: 5′-CAAGCA-
GAAGACGGCATACGAGATCGAAGTATACGTGACTGGAGTTCAGACGTG
TGCTCTTCCGATCTTAGCAAACTGGGGCACAAGC-3′) and amplified
using Q5 2X master mix (M0541S, NEB) according to the following
protocol: (1) 98° for 10 s, (2) 98° for 2 s, then 65° for 5 s and 72° for 10 s
(25 cycles), (3) 72° for 1min. The fragment band of the expected length
(350–425 bp) was purified using EGEL 2% Power Snap Electrophoresis
System (Thermo-Scientific) and checked at bioanalyzer before
sequencing.

sgRNAs list
CRISPRi sgRNAs sequences targeting the two putative enhancers of
COL6A1 and COL6A2 were designed using the web tool CRISPick
(Broad Institute). The design regionwas defined bymerging the ATAC
module regions with the overlappingH3K27Ac signal fromEncode (as
shown in Fig. 5b) and exploiting the CRISPRi Range format for
unstructured targeting provided by CRISPick. Inputs were: Enh_1
NC_000021.9:+:46048857-46050195 and Enh2 NC_000021.9:
+:46052113-46053945. Selected sgRNAs were named according to the
position relative to the start of the design window. We selected
sgRNAs to cover the entire design window, choosing the sequences
with higher on-target activity and filtering out those with potential
off-target complementarity. As a negative control, we included three
scrambled-sequence-sgRNAs for the CRISPRi experiments selected
from the previous genome-wide CRISPRi screening library designed
by theWeissman lab77. The sgRNAs chosen to target the promoters of
COL6A1 and COL6A2 were also chosen from the same study. The list
of sgRNAs sequence is reported in Supplementary Data 18.

Genetic barcode analysis
Genetic barcode calling. A GBC library is built for each sample
separately, starting from the FASTQ files, in two steps. First, the 18nt-
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long sequences located in the GBC locus are extracted using seqkit
amplicon command from seqkit v2.1.078, with either 23–40nt- (DNA
reads) or 12–29nt-long (cDNA reads) flanking regions and allowing one
mismatch. A set Sof sequences of length 18 is obtained and each s2 S is
assigned a weight w(s), corresponding to its frequency in the FASTQ
file. Note that, since the relative GBC abundance in a sample is
unknown, not accounting for sequencing errors can result in an infla-
ted estimate of sample clonality. Only sequencing errors in the formof
mismatches are considered. The underlying assumption is that, if s,s′∈
S are sequenced from the same GBC species and carry d and d′ mis-
matches, respectively, and that d < d′, thenw(s) ≥w(s′). Thus, eachGBC
species i is associated with a subset Si ⊆ S, where the true GBC
sequence is the s ∈ Si with maximal weight. The frequency of i is the
cumulativeweight of the sequences in Si. We infer the set of “true”GBC
sequences and simultaneously correct for sequencing errors with the
following procedure. Let G = (V, E, w) be an undirected graph, where
V = S, E is the set of edges connecting sequences at Hamming distance
≤D, and w(s) is the frequency of s. We iteratively detect a collection of
disjoint subgraphsGi = (Si, Ei) induced by Si, called stars, where a node s
∈ Si is the hub and all the other nodes are neighbours of s. Stars are
defined according to the following conditions: (i) the hub s has max-
imum weight w(s) in Si, (ii) the cumulative weight across stars is max-
imal, and (iii) the fraction of neighbours of s inG that do not belong to
Si is < f, where 0 ≤ f < 1 is a fixed parameter. We compute a heuristic
solution with a greedy approach. First, nodes are ordered by non-
increasingweight. At each iteration, a new star is created, whose hub is
the first node in the list and the other nodes are its neighbours, and the
included nodes are removed from the list. The procedure ends when
the first star that violates (iii) is found.We setD = 1 and f =0.2. The final
set of true GBC sequences is defined as the collection of detected hubs
and their frequency is the cumulative weight across stars. We
approximate the clone content of bulk DNA-Seq sequencing samples
as the set of GBCs and their associated frequencies.

Definition of tumour-initiating clones and drug-tolerant clones. In
bulk DNA-seq samples, we approximate clone content with GBC con-
tent and clone abundance with count per million reads (CPM). Clones
whose frequency significantly differs between conditions are deter-
mined as follows. For each clone, we test if the CPM in the condition
sample (treated or untreated) is significantly greater compared to the
average across control samples (parental), using a Fisher’s exact test.
The universe is defined as the union of all clones across control and
condition samples. P values are adjusted using the Bonferroni cor-
rectionmethod. Clones with adjusted p value < 0.05 in at least d12ne+ 1
condition samples are labelled TICs (if condition is “untreated
tumour”) or DTCs (if condition is “treated sample” or “treated
tumour”), where n is the number of condition samples.

Single-cell RNA-seq data analysis (SUM159PT)
Cell barcode calling. A GBC reference is defined as the union of the
GBC species obtained from cDNA reads, as described in the section
“Genetic barcode calling”, across all samples in the same experiment.
Read alignment, UMI counting, cell-containing barcode (CB) calling,
and GBC counting are performed using cellranger count from
CellRanger v6.0 on the human reference genome GRCh38 v2020-A
and the GBC reference. Parameter --expect-cells is set to 7500
(T0), 20,000 (T1 and exp1), and 3000 (exp2). Feature-CB count
matrices are obtained, where features denote either genes or GBC
species, and entries are UMI counts. Cellular barcodes with <5000 (T1
and exp1) or 10,000 (T0, exp2) gene UMIs are filtered out. Data post-
processing is done with R79.

MULTI-seq sample demultiplexing. Samples belonging to T1 and
exp1 are demultiplexed using MULTI-seq barcodes (MBCs), as follows.
MBC-containing reads are aligned to the reference barcode sequences

using the R package deMULTIplex v1.0.276. MBC-CB countmatrices are
obtained. EachMBCunivocally identifies a sample, and a sample canbe
labelled with multiple MBCs. The automatic quantile-based thresh-
olding procedure implemented in deMULTIplex fails to assign a
unique MBC label to most of cellular barcodes in exp1, thus a custom
demultiplexing procedure is used for both experiments. First, allMBCs
with UMI count <2 are removed from every CB. For every cellular
barcode i, an MBC j is marked as detected if cj ≥ 15, cj/cmax ≥0.5, and
p < 1e − 5, where cj is the UMI count of j in i, cmax is the UMI count of the
top abundant MBC in i, and p is the probability of observing a value
equal or greater than cj given a Poisson distribution with λ = average
UMI count of j across cellular barcodes in the sample. Only cellular
barcodes with exactly one detected MBC are retained and assigned to
the corresponding sample.

Clone detection. Expressed GBCs in CBs are identified using the same
procedure applied to MBCs and described in the section “MULTI-seq
sample demultiplexing”, using cj ≥ 10 and cj/cmax ≥0.3. A p value
threshold is set only for samples d11–13–15 for exp1 (p < 1e − 5) and
sample d17 for exp2 (p < 1e − 10). Note that GBC frequency at earlier
time points is very low, hence the p value criterion has no effect. CBs
can be assigned 0, 1, or >1 GBCs, the latter being an effect of multiple
cell encapsulation (doublets) or multiple GBCs infecting the same cell
(co-infection). We extract clone information from multi-GBC CBs by
distinguishing co-infection and doublet events. High UMI doublets are
removed using a sample-specific cutoff. Assuming that GBC expres-
sion is approximately constant across GBC species and across cells,
differences in GBC UMI count are essentially due to droplet-specific
mRNA capture. Moreover, the transcriptome size of a cell line model
should be constant as well. We deduce that a single cell infected with k
GBCs should display a higher GBC UMI fraction compared to that of
multiple cells encapsulated in the samedroplet that jointly account for
k infection events. For simplicity, GBC species for multiple infection
events within the same droplet are assumed to be pairwise distinct.
The procedure works as follows. First, each CB set with k expressed
GBCs is sorted by non-increasing values of ci/ui, where ci and ui are the
GBC UMI count and the gene UMI count for CB i, respectively. We
obtain a list of sets S2, …, Sm, where m is the maximum number of
distinctGBC species expressed in a CB. Then, we iteratively classify the
CBs of each set Sk separately, starting from the smallest k. A CB i is
labelled as co-infection in two cases: (a) all GBCs expressed by i are also
expressed in at least five CBs, including i, or (b) the “doublet prob-
ability” of i (i.e., the cumulative sample frequency of each single GBCs
expressed in i) is below a sample-defined threshold. If neither (a) nor
(b) hold, i is labelled as doublet. The procedure continues until the
fraction of co-infection events inmulti-GBC CBs is ≥1-D, whereD is the
expected doublet fraction in multi-GBC CBs. D is a sample-specific
doublet rate estimate based on 10× guidelines and the number of
called CBs. The clone pool of a single-cell sample is defined as the
collection of single GBCs that occur in single infection and doublet
events with k = 2 GBCs, plus all multi-GBC sets from co-infection
events.

Clone comparison between single-cell and bulk samples. To assess
the accuracy of clonality estimates frombulk samples, we compare the
GBC species content between bulk DNA and single-cell RNA GBC
sequencing samples from the samecondition.Wedefine the frequency
of a GBC species in a bulk sample byCPM. Then, for a given pair (Xb, Xs)
of bulk and single-cell samples, we define the value y = f(x) as the
fraction of GBC species with frequency ≥x in Xb found as expressed in
at least one cell of Xs. In practice, we compute f(x) in steps of 20 CPM
units. Consistent clone estimates in bulk and single-cell samples in a
condition result in amonotonically non-decreasing trend of f(·). A cell c
is classified as tumour-initiating or drug-tolerant (see section “Defini-
tionof tumour-initiating clones anddrug-tolerant clones” above) if and
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only if all GBCs expressed in c are tumour-initiating or drug-tolerant,
respectively. Conversely, the single-cell cluster labelling is transferred
to a bulk sample as follows: the GBC abundance (CPM) in the bulk
sample is first normalised by its average abundance at baseline; then,
the abundance of cluster C in the bulk sample is calculated as the
contribution of all GBCs expressed by any cell in C.

Quality filtering and normalisation. All CBs with no expressed GBCs
or classified as doublets are removed from subsequent analysis. Sam-
ples from technical replicates (same vial) are concatenated and pro-
cessed using Seurat v4.0.580. UMI counts are added a pseudocount = 1,
divided by library size, multiplied by 10,000, and log-transformed
(natural logarithm), to obtain log-normalised counts.

Dimensional reduction and clustering. Highly variable genes
detection is performed on log-normalised counts using two different
approaches: min.var.plot and vst. We set xmin = 0.1 and xmax =
10 for min.var.plot. The input parameters for each algorithm are
let vary in a pre-defined set: dispersion.cutoff in {0.5, 1, 1, 5} for
min.var.plot, and nfeatures in {1000, 2000, 5000} for vst. A
cell-cycle score is computed using the Seurat function CellCy-
cleScoring with default parameters. We observe a high cell-cycle
effect in parental samples (T0 and T1); hence, the cell-cycle score
computed as above is regressed out before scaling and centreing.
PCA is performed on z-scores of the log-normalised counts on the
reduced space of highly variable genes. A total of 50 PCs is com-
puted. The optimal number n of PCs to retain for clustering is defined
as the minimum n such that the standard deviation explained by the
nth PC exceeds 50% of the average across the 40–50th PCs. Multiple
Louvain clustering runs are performed on the selected PCs, for each
highly variable gene set, by varying the number of neighbours k in the
knngraph and the resolutionparameter r in a pre-defined set: k∈ {30,
40, 50} and r from0.1 to 0.8 in steps of 0.1. A second and third round
of highly variable gene selection, PCA, and clustering are possibly
performed after the removal of small clusters with very low UMI
count, found in specific solutions, until the average UMI count is
homogeneous across clusters. We redo the whole clustering proce-
dure instead of just removing the small, low-quality clusters, because
they are usually outliers in the expression profile of the sample and
can affect the definition of highly variable genes. We obtain 9395 and
13,562 cells for T0 and T1, and 7884 and 10,698 cells for exp1 and
exp2, respectively. For T0 and T1, (i) a silhouette score is computed
for each clustering solution on the Euclidean distances calculated on
the same PCs used for clustering and (ii) a ROGUE score81 is com-
puted for each clustering solution on the UMI counts, using default
parameters, except for span =0.6. The clustering solution with the
highest silhouette score is defined as optimal. To increase the num-
ber of detected clusters, we set a higher value for the resolution
parameter, while maintaining the other parameters of the optimal
solution unchanged (the highly variable gene set and the number of
neighbours in the knn graph). The final clustering solutions for T0
and T1 are obtained with vst method by setting nfeatures = 1000
and clustering parameters k = 40 and r = 0.5, resulting in seven clus-
ters for both experiments. Resolution 0.5 turned out to be a good
compromise between silhouette width and ROGUE score on both T0
and T1. For exp1, we obtain three clusters using the following set-
tings: vst method, nfeatures = 5000, k = 30, and r = 0.1. UMAP
reduction82 is run with RunUMAP using default parameters on the
same input used for clustering.

Differential expression analysis. A differential expression analysis is
run between conditions via FindMarkers function from Seurat with
MAST method83 accounting for sample ID as a covariate. We only test
for genes detected (UMI count > 0) in at least 10% cells in either con-
dition such that |log2(FC)|≥0.25. A gene is defined as differentially

expressed if its adjusted p value is < 0.05 (Bonferroni correction)
between the two conditions.

Computation of cell–cell distance distributions. To evaluate the
relationship between clonality and gene expression at basal state, we
compare sister cells (same clone) and non-sister cells (different clones)
at T0 and T1. We note that a sister cell similarity measure within the
same experiment would be biassed towards clones with vial-specific
frequency >1, thus we opt for a comparison between experiments
(1886 common clones). Cells of T0 and T1 are projected on a common
latent space using canonical correlation analysis (CCA)84, using the
intersection of highly variable gene sets (defined as in the section
“Dimensional reduction and clustering”) between experiments. By
definition, this integration approach removes dataset-specific com-
plexity by keeping only shared correlations, hence the contribution of
the experiment covariate to cell–cell similarity should be minimised
compared to more conservative approaches. Inter-sample cell–cell
Euclidean distances are computed on the CCA latent space on sister
cell pairs and a random subset of non-sister pairs of the same size. A
Gaussian kernel density estimation is computed for sister and non-
sister distances separately to obtain a global distance distribution.
Then, to evaluate the relationship between andwithin the DTC and the
non-DTC pool before and after treatment, we computed the Euclidean
distances between cells at T1 (baseline) and in exp1 (after treatment);
finally, we evaluated the relationship between clonality and gene
expression on the treated condition by computing intra-sample
Euclidean distances at day ≥13 on the PC space of exp1 and exp2, as
defined in the section “Dimensional reduction and clustering”. We
obtained Gaussian kernel density estimates for both cell–cell distance
matrices as above.

Computation of clone sharedness and detection of cell sub-
populations. To assess whether sister cell similarity is uniform across
clones or is rather clone-specific, we introduce a clone sharedness
score across clusters (see section “Dimensional reduction and
clustering”). It is defined, for each pair of clusters i and j in T0 and T1,
as cs(i,j) = (nij·n′ji)/(Ni·N′j), where nij (n′ji) is the numberof cells in i (in j)
with at least one sister in j (in i) and Ni (N′j) is the total number of cells
in i (in j). Each cluster i in T0 ismatchedwith the cluster jmax in T1 with
maximum clone sharedness with i, namely, jmax = arg maxj cs(i,j). The
three clusters belonging tomaximal clone sharedness pairs (i,jmax) are
defined as subpopulations and labelled by non-increasing value of
cs(i,jmax) as S1, S2, and S3. Transcriptionally stable clones are defined
as the ones only found in one of the three subpopulations in both T0
and T1, they are 437 in total. This approach is independent of single-
cell data integration, whose accuracy is difficult to assess when reli-
able markers are unknown85,86. We define the gene signature of S ∈
{S1, S2, S3} as the set of genes that are differentially upregulated
between S and its complement in both T0 and T1. We obtain 109, 29,
and 27 genes for signatures S1, S2, and S3.

Definitionof clone–clonepair propensity.Wedefine apair propensity
score tomeasure the pairwise gene expression similarity bias between
clones. For each cell, we consider its directed neighbourhood of size k,
i.e., each cell has exactly k nearest neighbours and the neighbour
relationship is not symmetric. Given two clones labels i and j, possibly
identical, the observed (i,j) frequency fijobs is the number of cell pairs
(ci,cj) such that ci and cj belong to clones i and j, respectively, and cj is a
neighbour of ci. The expected (i,j) frequency fijexp is calculated basedon
the frequency of clones i and j and the neighbourhood size k, as fol-
lows. Given theneighbourhoodof ci, theprobability that a given cell c≠
ci in the neighbourhood is labelled with j is given by (nj − I(i,j))/(N − 1),
where nj is the number of cells labelled with j, N is the total number of
cells in the sample, and I(i,j) is the indicator function (I(i,j) = 1 if i = j and
I(i,j) =0 if i ≠ j). We obtain fijexp = ni·k·(nj − I(i,j))/(N − 1), where ni is the
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number of cells labelled with clone i. The pair propensity of i and j is
defined as pij = fijobs/fijexp. By iterating across all clone pairs, we obtain a
non-symmetric n × nmatrix P, where n is the number of distinct clone
labels. The value of pij indicates the propensity of clones i and j to be
closer (pij> 1) or farther (pij < 1) from each other in the sample than
expected by chance, where pij = 1 denotes random association. Finally,
we obtain a symmetric matrix P0 = ðPTPÞ12.

Detection of clone lineages. We use the above pair propensity defi-
nition to find groups of clones with mutually similar gene expression
profiles on the treated condition at day ≥13. We first define the
neighbour relationship, as follows. The top 1000 highly variable genes
are computedwith vstmethod on the union of the timepoints in exp1
andexp2, respectively. For each sample, a knngraphwith k = 40 is built
on the top n PCs (see section “Dimensional reduction and clustering”).
Matrix P′ (see section “Definition of clone–clone pair propensity”) is
computed on the top 20 highest frequency clones, clones i such that
pii < 1 are discarded, and the matrix obtained is clustered using the
hclust function with ward.D2 method on Euclidean distances. We
obtain two clusters A and B that serve as “anchor” to add the remaining
clones. Clones not yet included in A nor in B are sorted by non-
increasing frequency and we iteratively add one clone at a time, as
follows. The first clone i in the ordering is considered and a pair pro-
pensity piA (piB) is computed between i and the union of clones in A (in
B). If piB < 1 and piA > piB + 1, then i is added to A (likewise for B),
otherwise it is discarded. The procedure continues until the last clone
in the ordering is considered. Starting from the sets A and B computed
on each of the four samples, we define lineage L1 (lineage L2) as the set
of clones always assigned to A (to B) and detected at least once in both
exp1 and exp2. We detect 11 clones for L1 and 17 clones for L2. We
define the gene signature of L1 (of L2) as the set of genes that are
differentially upregulated (downregulated) between cells in L1 and L2
in both exp1 and exp2. We obtain 42 and 46 genes for L1 and L2.

Functional annotation. We perform pathway enrichment analysis
(REACTOME87) as follows. Genes with official gene symbols are first
converted to ENTREZ identifiers, using limma v3.49.588 and cluster-
Profiler v4.1.489 packages, respectively. Enrichment significance is cal-
culated with a Fisher’s exact test using the enrichPathway function
from clusterProfiler. Benjamini–Hochberg method is used to correct
for multiple testing. We perform Gene Set Enrichment Analysis
(GSEA90) as follows. Given a query case-control, the list of genes (uni-
verse) is ordered by non-increasing log2(FC) values; GSEA is run with
GSEA function from clusterProfiler, with nPerm = 1000 sample per-
mutations. MYC activity was computed with ModuleScore function
from Seurat on T0 and exp1 cells using HALLMARK_MYC_TARGETS_V1
and HALLMARK_MYC_TARGETS_V2 (www.gsea-msigdb.org) as MYC
target gene lists.

Single-cell RNA-seq data analysis (MDA-MB-231 TGL)
Read alignment, UMI counting, and CB calling are performed as for
SUM159PT cells, with parameter --expect-cells set to 3000. CBs
with < 200detected genes (UMI >0) and genes detected in < 3 cells are
filtered out. Normalisation, scaling, cell-cycle regression, dimensional
reduction, clustering and differential expression analysis are per-
formed as described for SUM159PT cells. The final clustering solution
is obtained with vst method by setting nfeatures = 1000 and clus-
tering parameters k = 40 and r = 0.5, resulting in seven clusters.

Single-cell Multiome data analysis
Cell barcode calling. A GBC reference is defined as the union of the
GBC sets computed from the scRNA-seq reads, as described in the
section “Genetic barcode calling”. Read alignment, UMI count, peak
calling, and CB calling are performed using cellranger-arc count

from CellRanger v6.0 on genome reference GRCh38 v2020-A-2.0.0.
GBC counts are extracted using cellranger count, setting
--expect-cells to 6200 (M0_1) and 8800 (M0_2) and --include-
introns. CBs with < 10,000 UMIs are filtered out.

Clone detection and quality filtering. Expressed GBCs in CBs are
identifiedusing the sameprocedure applied to scRNA-seq samples and
described in the section “Clone detection”, using cj ≥ 10 and cj/
cmax ≥0.3, and no p value threshold. All CBswith no expressedGBCs or
classified as doublets are removed from subsequent analysis. We
obtain 2446 and 2377 nuclei for M0_1 and M0_2, respectively.

Gene expression analysis. Cell clusters are defined using gene
expression information only, onM0_1 andM0_2 separately. UMI count
normalisation is calculated as for scRNA-seq datasets with Seurat
v4.0.6. Highly variable genes are selected using FindVaria-
bleFeatures function from with method =vst and nfeatures =
5000. PCA is performed on the set of highly variable genes using
RunPCA function with default parameters. The first 30 PCs are used to
compute a Shared Nearest Neighbours graph via the FindNeighbors
function, then FindClusters function is used to cluster the cells,
using the SLMalgorithmwith resolution ranging between0.2 and 1.2 in
steps of 0.1. A silhouette width is calculated for each clustering solu-
tion on the Euclidean distance matrix computed on the same input
used for clustering. Subpopulations S1, S2, and S3 in the two replicates
are detected by matching the clusters to T0 and T1 using the shared-
ness score (see section “Computation of clone sharedness and detec-
tion of cell subpopulations”). The selected resolution value is the one
that maximises the average silhouette width while keeping the three
subpopulations distinct. We select resolution 0.4 and 0.6 forM0_1 and
M0_2, respectively, and obtain 7 and 6 clusters. UMAP projection is
calculated using RunUMAP with default parameters on the same input
used for clustering. Cluster markers are extracted with the Wilcoxon
rank-sum test implemented in FindAllMarkers function using
default parameters. Differentially expresseSingle-cell RNA-seq data
analysis (SUM159PT)”. Subpopulation gene signatures are defined as
for the scRNA-seq samples.

Chromatin accessibility analysis—data preprocessing. The region-
cell count matrices, where regions are ATAC peaks and entries are
fragment counts, are processed as follows. Raw fragment counts are
normalised using term frequency-inverse document frequency (TF-
IDF), which assigns higher importance to highly cell-specific regions.
The active regions (fragment count ≥ 1) in at least ten cells are selected
using the FindTopFeatures function from Signac v1.7.091. Latent
semantic indexing (LSI) is applied to reduce the dimensionality of the
dataset. We compute 50 LSI dimensions. We keep dimensions from 2
to 50, as dimension 1 shows a positive correlation with sequencing
depth. UMAP projection is calculated on the same LSI space, using
default parameters.

We define pairs of regions associated with the same transposition
event between replicates as those lying at a distance≤ d on the gen-
ome. findOverlap function from GenomicRanges v1.46.192 is used to
determine such pairs, by varying the gap size (i.e., the value of d) from
−1000 (overlap) to 1000 (padding) in steps of 10. Depending on d,
each region in M0_1 can have 0, 1 or multiple matching regions with
M0_2, and vice versa. The idea is that a low d would fail to recognise
regions stemming from the same transposition event, whereas a high d
would result in many spurious matches. Low (high) values for d result
in few (many) multiple matches. The value of d is chosen such that
both ud and ud/(Nd −u d) are maximised, where ud is the number of
unique matches between M0_1 and M0_2 and Nd the total number of
matches. We select d = 0 and obtain 120,414 and 120,377 matched
regions in M0_1 and M0_2, respectively.
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Chromatin accessibility analysis—topic modelling. We use a topic
modelling approach to group regions that are consistently open in the
same sets of cells while reducing data sparsity. Given a region-cell
matrix, topicmodelling outputs a set of topics, where each region has a
probability of being assigned to a topic and each topic has a prob-
ability of being assigned to a cell. Modelling chromatin accessibility in
this way has three advantages: first, the number of topics is typically
orders of magnitude smaller compared to the number of regions;
second, a cell’s epigenome is expressed as the contribution ofmultiple
topics; third, the importance of a region in a cell is interpretable,
namely, as the combination of the weight of the region in a topic and
the contribution of that topic in the cell’s epigenome.

Specifically, we use the Latent Dirichlet allocation (LDA) model
implemented in cisTopic v0.3.056 on each replicate separately, on the
set of matching regions between the two replicates (both unique and
multiple matches, see section “Chromatin accessibility analysis—data
preprocessing”). The input to cisTopic is a raw region-cell count
matrix, binarised by setting a cutoff at one fragment per region per
cell. cisTopic is run using a total number of 1000 iterations and a burn-
in period of 500 iterations to the Collapsed Gibbs Sampler. The pro-
cedure is repeated by varying the number of output topics n between
10 and 50 in steps of 10. We select the maximum log-likelihood solu-
tion and obtain n = 40 for both M0_1 and M0_2. Topics with Pearson
correlation coefficient >0.5 between topic-cell probability and frag-
ment count are discarded. We select 31 topics for M0_1 and 34 topics
for M0_2.

Chromatin accessibility analysis—detection of ATAC modules. To
select the topics that represent robust biological signals,we compute a
topic reproducibility score between replicates, as follows. To this aim,
an IDR93 is calculated between every pair of topics in M0_1 and M0_2,
respectively, on region-topic probabilities, using idr v2.0.3 tool with
parameters --peak-merge-method max --idr-threshold 0.05
--max-iterations100. Given topics t1 and t2 inM0_1 andM0_2 and a
region r, the IDR statistic expresses the probability that the region-
topic probabilities of r in t1 and t2 are different. We say that r is
reproducible between t1 and t2 if IDR < 0.05. For each topic pair (t1,t2) in
M0_1 and M0_2, we define the reproducibility score as the weighted
mean between the number of reproducible regions and the 75th per-
centile of min {−125 log2(IDR), 1000} across those regions. We define
the sets of regions with IDR <0.05 in topic pairs with reproducibility
score > 0 as ATAC modules. For each cell and for each module, we
compute a module AUC (Area Under the Receiver Operating Char-
acteristic curve) score, where the TF-IDF value is the predictor variable
and the membership to the module is the response variable, using the
auc function frompROC v1.18.094 and direction “<”. The set of regions
resulting from the union of all ATAC modules were annotated using
the ENCODE registry of Regulatory Elements v2 (cCRE)95 with a mini-
mum overlap of 1 bp.

Relationship between epigenetic modules and subpopulations. We
detect the ATAC modules explaining specific cell subpopulations as
follows: for each ATAC module, we compute an AUC score where the
predictor variable is the module AUC defined above and the response
variable is either the subpopulation membership (S1, S2, S3) or the
phenotype (TIC,DTC). Then, we compute Spearman’s ρ between the
module AUC for each of the top 40 reproducible ATAC modules and
each gene among those detected in at least 20 cells in the highly
variable gene pool (vstmethod, nfeatures = 5000) across all nuclei.
We annotate eachgene according towhether theybelong toS1, S2, and
S3 signatures (obtained from both scRNA-seq and Multiome gene
expression data) or are annotated as human TF by Uniprot96

(GO:0003700, taxon= human, gene product type = protein; 1435 TF in
total). To identify putative cis-regulatory regions, we extract the genes
in the transcriptional signatures of S1, S2, and S3 that are proximal to

reproducible regions in epigenetic modules, with a neighbourhood
size of ±50kbp around the region, using findOverlaps function from
GenomicRanges package.

Identification of enriched TFs. For a given module, we extract two
sets of genes according to the following criteria: (i) Spearman’s ρ ≥0.2
between the module AUC and gene expression across nuclei (see
above), or (ii) gene locus lying ≤100 kb away from any region in the
module, as by GREAT 4.0.497 analysis, using the basal plus extension
gene regulatory domain definition. These two sets are separately used
as input to ChEA v.398 and the output ranked list of enriched TFs is
obtained.

Whole-exome sequencing data analysis
Read alignment, variant calling, and extraction of reproducible
CNVs. Reads were aligned with BWA (-t 16) v0.7.1799 and CNVs were
calledwithCNVkit v0.9.8100 withdefault parameters, using theparental
SUM159PT cells as a normal reference sample and providing the
appropriate Agilent bed file (v5 or v7) as target. The chromosomal
CNVs detected with CNVkit were retrieved. CNVs were intersected
across replicates using bedtools intersect from bedtools
v2.30.0101, requiring ≥1 bp overlap. Only regions covered by all repli-
cates are retained. A CNV consensus is then defined as the set of
regions that span >80% of a CNV in each replicate.

Comparison with single-cell sequencing data. Regions from
scATAC-seq assays of M0_1 and M0_2 are intersected with CNV con-
sensus regions using subsetByOverlap function from GenomicRanges
v1.45.0 with default parameters. Genes from scRNA-seq assays are
intersected with CNV consensus regions using the same approach but
allowing ±100 kbp around the CNV consensus regions. Gene loci
coordinates are extracted from the annotation used in the single-cell
Multiome analysis.

Bulk RNA-seq analysis of SUM159PT and tumours
Reads were trimmed, filtered and aligned using STAR v2.7.3102. Read
count extraction and TPM normalisation were performed using Fea-
tureCounts. The TM4SF1high signature, consisting of 433 DEGs, was
defined using edgeR (within Galaxy v3.36), considering the sorting
batch as a factor, and selecting genes with log2(FC) > 1 and p value <
0.05 (N = 3 independent sorting batches). The functional analyses of
TM4SF1high DEGs were generated through the use of IPA (QIAGEN Inc.).
Differential gene expression analysis in tumours vs 2D samples was
performed with the Bioconductor Deseq2 package v1.34103 using
default parameters.

Analysis of gene signatures (S1, S2, S3) in bulk TCGA and
METABRIC datasets
RNA expression data from primary bulk breast cancer patients were
retrieved from Cbio Cancer Genomics Portal104, selecting as studies
METABRIC and TCGA and as Genomic Profiles “mRNA expression”
(METABRIC: “mRNA expression z-scores relative to all samples (log
microarray)”; TCGA: “mRNA expression z-scores relative to all samples
(log RNA Seq V2 RSEM)”). Only complete samples were considered for
this analysis. Molecular subtyping information was retrieved from the
Cbio Portal. For each signature, the sum of the z-scores of all the
expressed genes (genes expressed in <50% of the samples were
excluded from the analysis) was calculated. Then, patients were stra-
tified according to score quartiles (1st quartile, S1-high; 2nd and 3rd
quartile, S1-mid; 4th quartile, S1-low; likewise for S2 and S3). The sig-
nificance of the association with SUM159PT-derived signatures was
calculated with a Chi-square test. Individual genes of the signatures
were also analysed through multivariate linear correlation and visua-
lised by a colour map of clustered correlations (K-means) using
JMP17.2 (SAS).
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Comparison with single-cell sequencing datasets from the
literature
Triple-negative breast cancer (TNBC) scRNA-seq. Concatenated
scRNA-seq data from primary TNBC samples were retrieved from
GSE16152950. Filtered cell-count matrices were processed as in the
section “Quality filtering and normalisation”. Epithelial cells were
defined by normalised EPCAM expression greater than the local
minimum between the top two local maxima in the distribution. Cells
with UMI count >20,000 were removed, resulting in 9063 epithelial
cells for downstream analysis. Highly variable gene detection, PCA,
and clustering are performed with Seurat_preprocessing function
from Scissor 2.0.0105. We obtained nine clusters. Pseudo-bulk positive
andnegative phenotypes aregenerated for each subpopulation (S1, S2,
S3) and its complement, respectively, on each scRNA-seq sample at
baseline separately (T0_1, T0_2, T1_1, T1_2), resulting in n = 8 samples/
phenotype pair (4 replicates/condition). Scissor is run on the single-
cell dataset for eachof the three phenotypepairs. Parameteralpha for
the logit regression is let vary in {0.7, 0.8, 0.9}, until ≤15% phenotype-
associated cells (both positive and negative) are detected (cutoff =
0.15). To quantify the enrichment of S1, S2, and S3 signatures across
clusters, we computed the odds ratio for each signature–cluster pair.
UMAP is run with default parameters on the top 10 PCs.

Curated Cancer Cell Atlas (3CA). We obtained the top 50 significant
genes for each of the meta-programmes (MP) associated to malignant
cells51. Gene symbols were first converted to synonyms to match the
gene symbols in the gene-cell expression table, using Update-
SymbolList function from Seurat. We computed a joint gene
expression for each gene list, using theModuleScore function. Finally,
we computed the area under the curve AUC(C,M), where the predictor
variable is theModuleScore associated to themeta-programmeM and
the response variable is true when a cell belongs to C, false otherwise.

Pancreatic ductal adenocarcinoma (PDAC) scRNA-seq. Association
with subclonal dissemination for 2010 genes was retrieved from
Simeonov et al.20. To map S1 and S3 signature genes, murine gene
symbols were converted to human gene symbols with limma v3.49.5.

Lung adenocarcinoma scATAC-seq. Pre-metastatic gene scores for
20564 genes for Module 9 (RUNX2) were retrieved from LaFave et al.52.

Statistics & reproducibility
No statisticalmethodwas used to predetermine the sample size, which
was comparable to that reported inprevious studies. Regarding single-
cell experiments, the required number of individual single-cell profiles
was determined to capture a sizable portion of the total number of
GBCs, which was first assessed by bulk DNA sequencing. Statistical
significance was measured as indicated in the figure legends. No data
were excluded from the analysis performed in vivo. One single-cell
time-course batch (MULTI-seq) was removed due to poor library
quality. All experiments were replicated at least twice. The experi-
ments were not randomised, as the study was performed on uniform
biologicalmaterial (i.e., a commercial cell line). For comparative in vivo
experiments (e.g., TM4SF1 high vs bulk), animals were allocated ran-
domly into the experimental groups. The investigators were not blin-
ded to allocation during experiments and outcome assessment for the
in vivo experiments (e.g., TM4SF1 high vs bulk).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated in this study have been deposited in the
ArrayExpress database under accession codes E-MTAB-13064, E-MTAB-

13066 and E-MTAB-13896, in the GEO database under accession code
GSE222596 and in the SRA database under accession code
PRJNA922938. The processed data generated in this study have been
deposited in Zenodo106 and are provided in the Supplementary Infor-
mation/Source Data file. The raw data used in this study are available in
the GEOdatabase under accessionGSE161529. The processed data used
in this study are available at https://doi.org/10.1016/j.ccell.2021.05.005
(https://ars.els-cdn.com/content/image/1-s2.0-S1535610821002713-
mmc6.xlsx), https://doi.org/10.1038/s41586-023-06130-4 (https://www.
dropbox.com/scl/fi/22xtcdh0z7bnn5g5ugz33/meta_programs_2023-
07-13.xlsx?rlkey=2e7d718s46zybiyvjuptm67n4&dl=1) and https://doi.
org/10.1016/j.ccell.2020.06.006 (https://www.cell.com/cms/10.1016/j.
ccell.2020.06.006/attachment/f5a9ca73-3dc5-413d-99b0-
24d348abf2f3/mmc4.xls). Source data are provided with this paper.

Code availability
The code used to reproduce the analysis reported in this study is
available on github at https://github.com/nicassiolab/GBC_SUM159PT_
paper and https://github.com/nicassiolab/GBC_SUM159PT_paper_
figures. All codes have been deposited in Zenodo107,108.
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