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Spatial transcriptomics defines injury
specific microenvironments and cellular
interactions in kidney regeneration and
disease

Michal Polonsky 1,5, Louisa M. S. Gerhardt2,4,5, Jina Yun1, Kari Koppitch2,
Katsuya Lex Colón1, Henry Amrhein1, Barbara Wold 1, Shiwei Zheng3,
Guo-Cheng Yuan 3, Matt Thomson 1, Long Cai 1,6 &
Andrew P. McMahon 2,6

Kidney injury disrupts the intricate renal architecture and triggers limited
regeneration, together with injury-invoked inflammation and fibrosis. Deci-
phering the molecular pathways and cellular interactions driving these pro-
cesses is challengingdue to the complex tissue structure. Here,we apply single
cell spatial transcriptomics to examine ischemia-reperfusion injury in the
mouse kidney. Spatial transcriptomics reveals injury-specific and spatially-
dependent gene expression patterns in distinct cellular microenvironments
within the kidney and predicts Clcf1-Crfl1 in a molecular interplay between
persistently injured proximal tubule cells and their neighboring fibroblasts.
Immune cell types play a critical role in organ repair. Spatial analysis identifies
cellular microenvironments resembling early tertiary lymphoid structures and
associated molecular pathways. Collectively, this study supports a focus on
molecular interactions in cellular microenvironments to enhance under-
standing of injury, repair and disease.

The mammalian kidney removes waste products from the blood,
maintains fluid homeostasis, and releases hormones that control
blood pressure1. These and other renal functions hinge on a stereo-
typic organization of diverse renal cell types along a cortico-
medullary axis2. Nephrons, the primary filtering units of the kidney,
contain over twenty distinct and spatially organized cell types,
including species-specific sexual diversity in proximal tubule seg-
ments, to ensure recovery of key molecules from the primary glo-
merular filtrate1,3. Proximal tubule cells are highly active

metabolically and are, therefore, particularly susceptible to acute
kidney injury (AKI), an abrupt loss of excretory kidney function that
can be caused by multiple insults, including ischemia, sepsis, and
nephrotoxic drugs4. AKI affects approximately 20 − 25% of all hos-
pitalized patients in the western world and is associated with
increased morbidity and mortality5, including the development of
Chronic Kidney Disease (CKD)6. CKD is characterized by renal
inflammation and fibrosis7,8 and is predicted to become the fifthmost
common cause of death by 20409. Despite its high prevalence and
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medical burden, therapeutic strategies for treating AKI and pre-
venting the AKI-to-CKD transition are lacking.

The heightened risk of CKD following AKI has been linked to the
limited regenerative capacity of the mammalian kidney10. Murine
models of ischemicAKI predominantly result in pronounced cell death
of the proximal tubule, particularly within the S3 segment9–14. The
injury also invokes compensatory de-differentiation and cell division
of surviving proximal tubule cells, which can lead to at least partial
restoration of kidney structure and function11,12. However, even mild
injury is associated with epithelial scarring and the persistence of
maladaptive epithelial cells expressing inflammation-inducing cyto-
kines and fibrosis-associated secretory factors. Inflammation, fibrosis,
and vascular rarefaction are key features of the pathological niche
surrounding maladaptive epithelial cells13–24. Several molecular and
cellular features of the AKI response are conserved between mice and
humans25–28 andpersistent pro-inflammatory andpro-fibrotic signaling
are believed to promote the AKI-to-CKD progression29–31.

Single-cell studies have generated new insight into AKI through
the identification of cell types associated with pathology and under-
lying transcriptional programs8,13,15,28,32,33. However, tissue dissociation
in these studies removes the spatial context of interacting cell types,
and so precludes a deeper understanding of the complex local cellular
interactions following renal injury. In contrast, spatial transcriptomics
with single-cell resolution provides a readout of cell type-specific
transcriptional activity while preserving information about cellular
organization in tissues34–38. As such, this approach is well-suited to
provide new insight into the pathophysiological mechanisms driving
the progression of kidney disease and identifying cell interactions for
potential therapeutic intervention.

Sequential Fluorescence In Situ Hybridization (seqFISH)35,39,40, a
spatial transcriptomics approach, can detect and quantify thousands
ofmRNA transcripts at single-cell resolution in intact tissues. seqFISH’s
high capture efficiency and sensitivity, coupled with the capability of
examining a large number of genes, facilitates the identification of
cellular subtypes and enables theprediction of specific patterns of cell-
cell interactions35,41. In this work, we focused on the mammalian kid-
neys response to AKI at the single-cell level, leveraging seqFISH to
investigate changes in cell composition, gene expression, and cell-cell
interactions. This approach uncovered AKI-specific cellular neighbor-
hoods and cell-cell interactions relevant to inflammation and fibrosis
and identified target molecules and pathways potentially driving AKI
progression.

Results
seqFISH profiling of acute kidney injury
ToexamineAKI outcomes after the initial phaseof injury-invoked renal
repair27, we subjected C57BL/6 J male mice (8–13 weeks of age) to a
mild ischemia-reperfusion injury (IRI; serum creatinine levels at 48 h
0.3–1.7mg/dL), waited fourweeks and then collected and analyzed the
kidneys. We selected 1300 target genes for seqFISH profiling based on
key cell-type enriched markers from single-cell studies of normal and
IRI kidney3,13,15 and a long-term study of injury-associated expression
during the AKI to CKD transition in mice (27; Fig. 1A). We used Cellpose
2.042 andDAPI based segmentation to achievemaximal accuracyofour
analysis and minimize segmentation errors. Integration of control
(n = 3) and post AKI (n = 3) samples resulted in a data set comprising
245,171 single cells, with an average of 185 ± 153 (mean ± SD) total
transcripts and 87 ± 53 individual genes detected per cell, with a strong
concordance between samples (Supplementary Fig. 1 and Supple-
mentary Fig 4). Following rigorous quality filtering, we retained
220,753 cells for subsequent analysis. By clustering on single-cell gene
expression, we identified all major kidney cell types, highlighting the
segmental cell diversity along the conjoined epithelial networks of the
nephron and collecting system (Fig. 1B and Supplementary Data 1), as
well as divergent vascular endothelial sub-sets, interstitial fibroblasts

and distinct immune cell types (Fig. 1B, C). The cell types identified by
seqFISH were concordant with cell types previously identified using
single-cell RNA sequencing (scRNAseq) (Supplementary Fig. 2A, B).
Further, their spatial localization conformed to well-documented kid-
ney anatomy (Fig. 1C, D, F and Supplementary Figs. 3, 5). However, the
seqFISH analysis captured a notably larger fraction of several kidney-
resident cell types relative to that previously reported in scRNA-seq
studies43,44, where the tissue dissociation procedures cause certain cell
types to be over- or under-represented43,45,46. For instance, in past
work,fibroblastswere reported to comprise ~ 4–10% andmacrophages
less than 5% in kidney single cell- and single nucleus-RNAseq datasets,
whereas our data showed that fibroblasts comprise close to 20% and
macrophages ~ 10% of all cells (Supplementary Fig. 2C). These results
are consistent with the idea that detecting cell types in kidney tissue by
seqFISH will be less biased compared with contemporary single cell-
RNAseq protocols.

We next compared AKI with control samples to identify changes
in the abundance and spatial locations of specific cell types. At the
cortico-medullary boundary, which is known to be most sensitive to
AKI47, the proximal tubule segment 3 (PTS3) and vascular endothelium
(Vasc_2) were strongly reduced (Fig. 1E, F and Supplementary Figs. 2D,
5). Conversely, a marked increase was observed in injured proximal
tubule cells, as identified by the expression of Vcam1 (13,15; Injured PT).
In addition, fibroblast, macrophage, T cell, and dendritic cell popula-
tions were all elevated in proportion in AKI samples relative to control
(Fig. 1E, F and Supplementary Fig. 2D, 5). In contrast to T cells and
dendritic cells, the increase in fibroblasts and macrophages was asso-
ciated with a cortical expansion in injured kidney samples (Fig. 1F and
Supplementary Fig. 5); fibroblasts and macrophages predominated
within the medulla of the uninjured kidney. In addition, we observed
an over-representation of a Slc12a1+/Ptger3+ subset of thick ascending
limb (TAL)-subtypes in the distal medullary loop-of-Henle (Fig. 1E48;).
Thus, AKI induces global changes in both cell type composition and
location.

Distinct cellular microenvironments are specific for AKI and
normal kidneys
We next sought to understand whether changes in cell populations
also lead to the re-organization of the local kidney architecture.
Specifically, we asked whether we could detect localized micro-
environments (MEs) with distinct cell type compositions within the
kidney and whether those environments changed following AKI. To
this end, we calculated the frequencies of each cell type within a
30 µm radius of each of the cells in the kidney tissue. We reasoned
that this radius is of physiological relevance as it represents ~ 2 cell
layers around each cell, which is a distance scale that allows for short-
range paracrine and juxtacrine signaling49. We then used the result-
ing cell-by-neighbor matrix to cluster individual cells using Leiden
clustering (Fig. 2A and Supplementary Fig. 6). To determine the
sensitivity of ME clustering to different radii, we varied the radii and
repeated the neighboring calculation maintaining the same cluster-
ing parameters (Supplementary Fig. 6). Interestingly, this clustering
approach detected MEs with similar compositions within a radius
range of 10–50 µm (Supplementary Fig. 6A). However, smaller (10,
20 µm) and larger (50, 100 µm) radii resulted in multiple redundant
MEs with highly similar cellular compositions (Supplementary
Fig. 6B). In addition, larger radii produced multiple MEs that were
sample specific reflecting slight differences in the orientation of
sections, and potentially, biases caused by individual imaging Fields
Of View (FOVs) (Supplementary Fig. 6C). In summary, decreasing or
increasing the radius for neighborhood analysis from 30 µmdoes not
improve the capture of biologically relevant cellular interactions and
can introduce redundancy or bias.

Using a 30 µm radius for neighborhood analysis, we detected 17
MEs with a distinct cell type composition and spatial location
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(Fig. 2B, C and Supplementary Fig. 7). Eight MEs were not markedly
different between individual control and AKI samples, five were enri-
ched in the control kidneys and four were specific to AKI samples
(Fig. 2B and Supplementary Fig. 7). To limit sampling bias, we focused
our analysis on MEs that were equally enriched or depleted in all
control and AKI replicates (indicated by an asterisk in Fig. 2B, gray –

enriched in control and blue-enriched in AKI). In Fig. 2C, we show

examples of MEs that are similar between control and AKI (ME-0),
absent from AKI (ME-3), or enriched in AKI (ME-5, ME-15, ME-16). AKI-
specific MEs were largely a combination of injured epithelium, fibro-
blasts, and immune cells in varying proportions, and were mostly
depleted of the primary tissue cells. Interestingly, dendritic cells,
macrophages, T cells, and fibroblasts were distributed across different
MEs in the control samples, but concentrated within specific MEs in
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AKI samples (Supplementary Fig. 7B). Therefore, the emergence of
these cells, whether by differentiation, proliferation, or recruitment
from the blood, results in redistribution into distinct local environ-
ments upon AKI.

Characterization of the pathogenic niche in AKI
Recent studies in mouse and humans have drawn attention to the
tissue micro-environment around injured proximal tubule cells,
which have been associated with renal pathology13,15,28. Injured
proximal tubule cells display the cell adhesion molecule Vcam1 and
adopt a senescence-associated secretory phenotype (SASP)13,15,28,33.
We identified a similar population of Vcam1-positive epithelial cells
in our data set by unsupervised clustering (Cluster Injured PT, Fig.
1B, E). The majority of these injured epithelial cells reside within a
single ME (ME-5, Fig. 2B, D). As a means of internal validation, we
stained with anti-Vcam1 antibody concurrently with seqFISH analysis
and found that Vcam1 protein is mainly present in cells within
ME-5 (Fig. 2E).

Figure 2F plots the mean expression of top injured PT marker
genes in control (left) and AKI (right), comparing the expression of
these genes in injured PT cells outsideME-5 to the expression of their
counterparts within ME-5. Interestingly, while the expression of
injury genes was elevated in injured PT cells in AKI samples com-
pared to control, the expression within ME-5 is significantly higher
than in cells outside ME-5 for both AKI and control samples. Injured
PT cells have been detected in normal samples and are thought to be
naturally occurring senescent cells13,15,17. Our analysis suggests that
the cellular neighborhood of injured cells correlates with a more
severe injury phenotype even within AKI and that cellular interac-
tions within this neighborhood could be a driver of injury
progression.

Proximal tubule cells undergo a de-differentiation in response to
AKI that manifests in several morphological changes, including a loss
of the apical brushborder, and aflattening of the epithelium, and likely
with this, the nucleus of the cell50. To assess whether nuclear mor-
phology might be an informative parameter, we correlated changes in
the expression of injury genes to the eccentricity of the nucleus in
Injured PT cell masks. An eccentricity value of 0 represents a perfect
circle, and values between 0 and 1 represent an ellipse. We found that
eccentricity analysis could sub-divide Injured PT cell expression pro-
files. With increasing eccentricity values (corresponding to a flattening
of the nucleus), Vcam1 expression increased, while expression of other
injury-related genes did not correlate with high eccentricity (Fig. 2G).
Thus, morphological criteria can have a predictive value of the injury
state of the cell. Taken together, our findings show that ME-5 repre-
sents an injured and likely pathogenic niche. The majority of injured
PTs and injury-associated fibroblasts, vasculature, and immune cells
reside within this niche, andmorphological changes within the injured
epithelium are associated with elevated expression of injury-
response genes.

Clcf1 - Crlf1 interactions between injured PT and fibroblasts
shape the injured niche
We sought to identify signaling between Injured PT and the other cell
types present within ME-5 (fibroblasts, macrophages, T cells, DCs,
Vasc_1, few normal PT cells), thatwould be potential drivers organizing
the injured niche. We first identified predicted signaling initiated by
the Injured PTs using Nichenet51 and found that Clcf1 – Crlf1 and Jag1-
Notch3 signaling were upregulated between Injured PTs and fibro-
blasts within the AKI samples (Fig. 3A and Supplementary Fig. 9A).
Upregulation of Crlf1 and Clcf1 in kidney injury and disease has been
indicated in several prior studies27,52–54, andCrlf1 upregulationhas been
reported in the fibrotic lung55. Single-cell RNAseq data analyzing IRI in
the mouse kidney has predicted a Clcf1-Crlf1 signaling axis between
injured PT cells and fibroblasts15. Clcf1 encodes a member of the Il-6
cytokine family, which is thought to engage Crlf1 as a chaperone in
signaling through the receptor Cntfr56,57. While Clcf1 was specifically
expressed within injured PTs (Fig. 3A and Supplementary Figs. 9A, 10),
Crlf1 was predominantly expressed in a distinct subset of ME-5 asso-
ciated fibroblasts (Fig. 3A and Supplementary Figs. 9A, 11).

Our analysis also identified upregulation of Cxcr6 in T cells and
Itgax in DCs within AKI samples suggestive of Injured PT signaling to
T cells and to dendritic cells through Cxcl16 - Cxcr6 and Icam1 – Itgax
signaling axes, respectively, recruiting immune cells within AKI (Sup-
plementary Fig. 9A). In the context of liver fibrosis, Cxcr6-dependent
recruitment of CD8 T cells and NKT cells is known to contribute to
disease progression58–60 and a similar role has been suggested for a
Cxcl16 - Cxcr6 axis in kidney fibrosis61–63. Macrophages in AKI also
express Cxcl16, consistent with a contribution to T-cell recruitment
(Supplementary Fig. 9A). Csf1 - Csf1r signaling axis between injured PTs
and macrophages was also upregulated within AKI samples (Supple-
mentary Fig. 9A), in line with previous studies that link injured epi-
thelial Csf1 production to macrophage-mediated recovery following
AKI64. Analysis of two published scRNAseq and snRNAseq datasets of
dissociated human and mouse kidney samples showed that the ele-
vated expression of the top ligands identified here, including Clcf1 and
Csf1 as well as Cxcl16, Icam1, and Tgfb2, was conserved across species
(Supplementary Fig. 9B).

We hypothesized that spatially localized ligand-receptor interac-
tions (distance dependent; Fig. 3B) will contribute specifically to the
structuring of the microenvironment around and via injured PTs as
opposed to signaling with no spatial preference (distance indepen-
dent; Fig. 3B). To assess the spatial localization of the signals, we
quantified the fraction of receptor-expressing target cells as a function
of the distance of the target cells from the nearest Injured PT,
regardless of ME assignment. Figure 3C plots the fraction of Crlf1 + (
left) and Notch3 + (right) fibroblasts over distance from injured PTs.
While there is a relatively constant fraction of Notch3 + fibroblasts at
varying distances from injured PT cells, the fraction of Crlf1 + fibro-
blasts decreases as the distance from the injured cells increases.
Similar toNotch3, little to no spatial preferencewas detected for other

Fig. 1 | seqFISH reveals allmajorkidney cell types and their locationswithin the
kidney, as well as compositional and spatial changes following AKI.
A Experimental overview: mice were subject to IRI at day 0 to induce AKI. Control
and AKI kidneys were collected on day 28, and seqFISH was performed on frozen
kidney sections. B Umap depicting all cell types identified using seqFISH. Normal
kidney-specific cell types are highlighted and their locationswithin the nephron are
illustrated. DC – dendritic cells; Macroph – macrophages; DCT-CNT – distal con-
voluted and connecting tubule; Fib– fibroblasts; IC– intercalated cells; Injured PT–

injured proximal tubule cells; LOH-TL-C – thin limb of the loop of Henle (com-
prising cells of the thin descending limb of the loop of Henle of cortical nephrons
and the thin ascending limbof the loopofHenleof juxtamedullarynephrons); LOH-
TL-JM – thin limb of the loop of Henle of juxtamedullary nephrons; PC – principal
cells; Per – pericytes; Podo – podocytes; PT – proximal tubule; PTS1/2/3 – proximal
tubule segment 1/2/3; T – T cells; TAL – thick ascending limb of the loop of Henle;

Uro – urothelium; Vasc – endothelial cells. C Spatial location of all cell types in one
representative control sample. Left - all cell types, right - 10 cell types out of the
total 22 that were identified when plotted individually. These cell types span the
cortex and medulla, showing that seqFISH analysis captures all major cell types in
different areas of the kidney. D Representative field of view outlined in panel (C)
showing the cell masks color-coded by cell type (top) and a zoomed-in image
showing RNA expression of representative marker genes (bottom). The image is
comprised of the sum of the background and DAPI image to illustrate the under-
lying tissue morphology. E Violin plot showing the normalized expression of
marker genes for each cell type. The bar plot shows the relative abundance of each
cell type within the control and AKI samples. F Spatial locations of PTS3, Vasc_2,
Injured PT, fibroblasts, and macrophages within one representative control (top)
and one AKI (bottom) sample.
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Fig. 2 | Cellular microenvironments define the spatial architecture of Control
and AKI kidneys. A Zoomed in image of one field of view in the AKI sample: The
cellular composition within a 30um radius around each cell is calculated, and these
compositions are then clustered to create 17 distinct MEs. B Cellular composition
within each ME is calculated as the relative mean abundance of each cell type.
Barplot showing the relative frequency of each ME within the Control and AKI
samples. Gray asterisk represents enrichment in control andblue enrichment inAKI
(*p <0.05; **p <0.01 of a one-sided t test). Source data are provided as a Source
Data file. C Spatial locations of five MEs in one representative control and one AKI
sample.D Spatial locations of all injured PT cells in one AKI sample plotted in color
over the locations of all cells belonging toME-5 plotted in gray. E Zoomed-in image

of the box plot in D showing an overlay of cell masks on Vcam1 antibody and DAPI
signal. The cell masks are colored according to theME assignment of each cell. The
Vcam1 signal is shown in white over the DAPI gray signal. F Expression of top injury
marker genes in injuredPTcellswithinME-5 and the Injured PTcells outsideME-5 in
Control samples (left) and AKI (right). (*p <0.05; **p <0.01 of a paired two-sided t
test). Source data are provided as a Source Data file. G Normalized expression of
injury markers in Injured PT cells within ME-5, sorted by the eccentricity of each
cell. Cells were sorted according to eccentricity values, and the gene expression
was averaged using a moving window with a window size of 10% total number of
cells. Expression values were normalized for each gene in the heatmap.
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receptors associated with Injured PTs signaling to fibroblasts, vascu-
lature, and different immune cell types (Supplementary Fig. 12). To
validate the predicted expression and spatial distribution of the Clcf1-
Crlf1 pairings, we combined anti-Vcam1 immunodetection with serial
RNA-FISH on control and AKI samples. Consistent with seqFISH ana-
lysis, Crlf1 + cells were specifically concentrated adjacent to Clcf1 +
Vcam1+ Injured PTs (Fig. 3G, H and Supplementary Fig. 13). Contrary
to the specific localization of Crlf1 around injured cells, Acta2, a well-
documented marker of inflammatory myofibroblasts15, exhibited het-
erogeneous expression (Supplementary Fig. 14). Clcf1, the predicted
target of Crfl1 activity, signals through Cntfr. Cntfr expression coloca-
lized with Crlf1 in peri-epithelial myofibroblasts but was not limited to
this population (Fig. 3G, H).

Taken together, our findings implicate injured PT signals in the
remodeling of vasculature, recruitment of immune cells, and

reshaping of the fibroblast population within the AKI samples. We
show that while several signaling events are upregulated within AKI
samples, only Clcf1-Crlf1 interactions are highly spatially localized.
Signaling which is upregulated but does not show spatial localization
could present global changes following AKI or past events leading to
the formation of the injured niche. Our combined spatial data and
validation suggest that Crlf1 is a specific identifier of fibrotic processes
closely coupled to Injured PTs and that Clcf1 - Clcf1 interaction with
fibroblast cells is a constitutive defining feature of the injured niche.

Fibroblasts show distinct expression patterns between
different MEs
To determine whether gene expression changes could be identified
more precisely in differentMEs,we analyzedfibroblastswithin the four
AKI-specificMEs (ME-5,ME-9,ME-15, andME-16). Both the composition
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of cell types and location in the tissue were distinct for each ME
(Fig. 4A – left, middle). ME-5 localized to the cortex and corticome-
dullary boundary, ME-15 extended from the corticomedullary bound-
ary to the medulla, ME-9 was concentrated around TAL_2 cells in the
medulla, andME-16, comprising predominantly immune cell types, was
scattered throughout the kidney (Fig. 4A and Supplementary Fig. 8).

The top enriched fibroblast gene sets for each ME, shown in
Fig. 4A, B, revealed specific ME-associated gene expression (see Sup-
plementary Data 1 for a full list of differentially expressed genes).
Figure 4A shows that the expression of the top ME-associated genes is
highly restricted to the location of each ME in the physical space.
Interestingly, we found that many of these genes were not detected
when clustering fibroblasts based on gene expression alone without
considering spatial ME information (Fig. 4C). Out of the four ME-
specific fibroblast maker genes Crlf1, Actg2, Igfbp5 and Iigp1, only
Igfbp5 was enriched in the gene expression-based cluster (cluster 3 in
Fig. 4C), while the other genes did not show cluster-specific expres-
sion. These data underscore the importance of considering the spatial
environment offibroblasts to identify geneswith a potential functional
significance.

We found that Crlf1, Npr3 (which encodes the natriuretic peptide
receptor 3), and Timp1 (which encodes TIMP metallopeptidase inhi-
bitor 1) were markedly enriched in the ME-5 fibroblasts (Fig. 4A, B). In
previous work, Npr3, a known blood pressure regulator, reduced dis-
ease severity upon inhibition in a model of cardiac fibrosis65, whereas
upregulation of Timp1 was reported to increase kidney scarring66,67.
Here, we validated the co-expression of Crlf1 and Npr3 in association
with injured PTs using immunostaining and serial RNA-FISH
(Fig. 4F, G). In ME-15, which comprises fibroblasts and macrophages,
Actg2, encoding a member of the smooth muscle actin family, was the
top gene identifier of ME-15 fibroblasts (Fig. 4A). Actg2 has not pre-
viously been associated with kidney disease, although a recent study
identified Actg2 as a candidate in long term kidney impairment fol-
lowing acute decompensated heart failure68. ME-15 fibroblasts also
elevate the expression of Apoe and C1qa, key inflammatory genes
highly expressed by macrophages, suggesting both macrophages and
fibroblasts contribute to the inflammatory environment. Fibroblasts in
ME-16 were distinguished by the expression of Ligp1, which encodes
the interferon-induced GTPase1, and the expression of Bcl3, an inhi-
bitor of apoptosis, and the caspase Casp4. In contrast to ME-5, -15, and
-16 fibroblasts, ME-9 fibroblast marker genes were not highly expres-
sed within the total AKI fibroblast population, and several genes were
higher in control fibroblasts. One of the most strongly enriched
fibroblast genes in this ME was the insulin growth factor binding pro-
tein (IGFBP), encoded by the Igfbp5 gene. IGFBPs have been linked to
CKD progression69 and disease progression in a mouse model of dia-
betic kidney disease70.

Spatially dependent stromal gene expression in the mouse and
human kidney
Given the highly distinct gene signatures of fibroblasts across the
different MEs, we next asked if the expression of the identified
ME-specific fibroblast marker genes changes along the AKI-to-CKD
transition. To answer this question, we analyzed published mouse
snRNA-seq15 collected at five-time points post IRI-invoked AKI (4 h,
12 h, 2days, 14 days, and6weeks; Fig. 4D).We calculated aMEscore for
fibroblasts, defined as the combined expression of all the ME-specific
genes for eachof theAKI-enrichedMEs (ME-5,ME-15,ME-9, andME-16).
We also calculated scores for fibroblast marker genes in control and
AKI samples regardless of ME assignment (Control-Fib and AKI-fib).
Figure 4D presents the average score for all the samples in each con-
dition, normalized such that the minimum score for each gene set = 0.

As expected, followingAKI, the control-fibroblast score is reduced
immediately and remains relatively low until 6 weeks post AKI, while
the AKI-fibroblast score is low in control samples, but increases and

peaks at day 2 after AKI, remaining elevated at 6weeks. This timeframe
suggests that the injury induces fibroblast differentiation and recruit-
ment, as captured in the AKI-fibroblast score, and that AKI-induced
fibroblasts persist 6 weeks after injury. We observed divergent pat-
terns in theME-specific fibroblast scores, whereME-5 andME-15 scores
were similar to the score of AKI-fibroblast, peaking at day 2 post AKI,
withME-15 score remaining high also at later time points. However, the
ME-9 score was significantly delayed and peaked at 14 days post-AKI,
suggesting a later appearance for this fibroblast population following
AKI. Although ME-16 genes were highly specific to AKI samples in our
data (Fig. 4B), theME-16 score was low throughout the time course. As
this population of fibroblasts is relatively small, the signal may be
diluted within other populations within the sequencing data.

We repeated this analysis with a scRNA-seq data set from human
patients with AKI, CKD, or normal kidneys as control28(Fig. 4E). Simi-
larly to the mouse data, we find that here, too, ME-5 and ME-15 scores
are high in AKI relative to control andCKD.ME-16 scoreswere elevated
in both AKI and CKD, although at lower levels. Assuming that the
sequencing data is capturing cells fromdifferent sites of the tissue, our
analysis suggests that the abundanceof the differentfibroblast subsets
detected in each condition reflect changes along the AKI-to-CKD
transition and that these populations are common to the mouse and
human kidney. Thus, beyond spatial mapping, seqFISH analysis pro-
vides additional molecular granularity as to how cell populations
acquire distinct properties during a biological process.

Spatial distribution of immune cells correlates with inflamma-
tory potential
Next, we focused on immune cells as drivers of inflammatory fibrosis.
To identify T cell subtypes present in our data, we mapped T cell
populations onto a referencedata set ofmouseT cells71, using SEURAT.
We identified knownT cell populations, including CD4 and Tregs (high
Cd83 and Ctla4 expression), naïve, effector (high Cxcr3 expression and
expression of cytotoxic genes such as Nkg7), and exhausted (no Cxcr3
expression but expression of the inhibitory molecule Pdcd1) CD8
T cells (Fig. 5A). When we quantified the fraction of each T cell subtype
within MEs − 5, − 15 and − 16 in the AKI samples, we found a difference
in the fraction of CD4 T cells amongst all T-cells: ~ 40% inME-5, 50% in
ME-15 and 55% in ME-16 (Fig. 5B). We noticed a similar trend for Tregs,
although, as expected, Tregs represented a smaller subset of the T cell
population (Fig. 5B). The inverse trend was apparent for effector CD8
T cells, and no clear trend was evident for naïve and exhausted CD8
cells (Fig. 5B).

Sincemacrophages represent a large fraction of the immune cells
in AKI-specific MEs, we measured marker genes linked to differential
activation states of M1 and M2 macrophages. In general, M1 macro-
phages promote disruptive, disease-associated inflammatory respon-
ses, whereas M2 macrophages promote constructive, inflammatory-
associated tissue repair72. We found that the average expression of the
M2-related genesMrc1, Cd163 and Arg1 was increased in macrophages
within the ME-5 and ME-15 groupings, while M1-related genes Cxcl10,
Ccr7, Cd40 and Cd86, were expressed at higher levels on the average in
ME-16 macrophages (Fig. 5C). In agreement with these data, Mrc1+
macrophages were more prevalent in ME-5 and ME-15, and Ccr7 +
macrophages were more prevalent in ME-16 (Fig. 5D, E).

Tertiary Lymphoid Structures (TLS), increasingly recognized as
contributors to chronic inflammation22, are organized lymphoid
aggregates that form ectopically in response to a disturbance in
tissue homeostasis and then act as localized hubs that enable signal
exchange between immune cells, which in turn promotes the
development of adaptive immunity within a tissue. Unlike second-
ary lymphoid structures (such as the lymph nodes and the spleen),
TLS is unencapsulated, exposing cells within to multiple signals
from the environment. In the context of autoimmune and chronic
inflammation, the presence of TLS is correlated with severe disease,
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is of one representative control sample out of two. G Same as in (F) on the AKI
sample. The image is of one representative AKI sample out of three.
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and in the context of chronic kidney disease, with more severe
inflammation and fibrosis20. Mechanistically, the emergence of TLS
in a long-term model of the AKI to CKD transition was linked to the
maturation of B cell-directed autoimmunity against the target kid-
ney tissue27,73.

We found that the cellular composition and appearance of ME-16
show characteristics of immune aggregates reminiscent of nascent
TLS. ME-16 is composed of T cells, DCs, and macrophages with a small
number of fibroblasts (Fig. 4A). ME-16 clusters also appear scattered
without a preference for the cortex or themedulla (Figs. 2C, 4A).When
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overlaid on the locations of ME-16 (Fig. 5F), the spatial distribution of
CD4 and CD8 T cells were dispersed within and outside of ME-16, with
CD4 T cells clearly aggregated in ME-16. Thus, ME-16 has the expected
properties of early-forming immune aggregates in which CD4 T cells
and Tregs are providing instructive signals to CD8 and other immune
cells. Further, employing RNA-FISH detection of Cd4,Cd8a, and theDC
markerClec9, we detect early aggregation ofDCs, CD4, andCD8T cells
4 weeks following AKI (Fig. 5G, H and Supplementary Fig. 15). CD8
T cells trend towards cortical prevalence and CD4 towards medullary
enrichment. Moreover, elevated Cxcr6 expression in CD8 T cells
(Supplementary Fig. 16) suggests interaction with Cxcl16-expressing
Injured PTs (Supplementary Fig. 9A).

Although the clear enrichment of T cells and DCs within ME-16 is
consistent with localized antigen presentation, we did not detect any B
cells, in line with kidney profiling data showing a later engagement of
the B cell response26,73. Because M1 macrophages are preferentially
enriched within ME-16, we propose that ME-16 represents an early
lymphoid aggregate that propagates inflammation. In contrast, the
presence of M2 macrophages in ME-15 and ME-5 suggests that these
MEs are undergoing a combination of inflammatory and fibrotic pro-
cesses where the inflammatory response is sequestered and replaced
by fibrotic processes74.

Discussion
Cell identity is largely defined by gene expression profiles. However,
unique microenvironmental interactions within tissues also represent
important determinants of both gene expression and cell identity. To
gain a more granular understanding of how cell identity and function
are shaped by such micro-level interactions, we need to incorporate
information about gene expression with cellular locations within tis-
sues. Transcriptionally heterogeneous cellular populations character-
ized by scRNA-seq analysis are typically clustered into sub-
populations. However, without a specific reference to a correspond-
ing purified cellular subtype, this approach is prone to over- or under-
clustering, and may even fail to identify important cellular
populations41. Spatial transcriptomics overcomes this limitation as we
first cluster cells globally into well-characterized cell types, and then
integrate this informationwith the cellular locations to identify cellular
microenvironments (MEs) for each individual cell. Thus, each cell is
given two identifiers – cell type, based on its gene expression, and a
cellular ME, based on the composition of its close neighbors.

We leveraged seqFISH to study cellular and structural changes
following kidney injury, which dramatically disrupts the highly com-
plex kidney architecture and triggers two parallel responses: regen-
eration of the damaged epithelia and fibrosis leading to the
development of CKD. Based on our analysis, we have created a com-
prehensive map of the cellular, molecular, and structural changes
following AKI, which can be leveraged to enhance our understanding
of pathophysiologic processes underlying the AKI-to-CKD transition.
To ease data accessibility for the scientific community, we have cre-
ated an interactive website through which the data can be explored
(https://woldlab.caltech.edu/ci2-celltiles/Mouse-Kidney-Fibrosis/).

Our approach allowed us to gain a deeper understanding of an
injured ME undergoing responses specific for the AKI-insult; here
referred to as ME-5. WithinME-5, we identified injured PTs, fibroblasts,
macrophages, as well as immune cells (T, DC), and normal kidney cell
types (PTS1, PTS2, PTS3, and vasculature). Injured cells within the ME
expressed specific ligands, which were conserved in human-injured
PTs. When we used spatial coordinates to identify specific ligand-
receptor interactions that were highly spatially localized, we found
that Clcf1-Crlf1 interactions were upregulated within the injured ME,
and spatially localized between injured PTs and fibroblasts. This find-
ing suggests that Crlf1 expression within fibroblasts is a highly specific
determinant for the fibrotic processes surrounding the injured cells. At
a broader level, our approach illustrates that analyzing localized

interactions at a microenvironmental level can help us gain a multi-
faceted view of how cell-cell communication contributes to tissue
organization under both normal and injury settings.

Following injury, global gene expression and cellular populations
differed across the emerging MEs. Importantly, we detected gene
markers delineating ME-specific fibroblast subpopulations that we did
not detect by our initial gene expression-based clustering. Specifically,
we found thatCrlf1, together with Timp1 andNpr3, are specificmarkers
for fibroblasts localized around injured cells, possibly contributing to
fibrosis. Conversely, Actg2, Apoe, and C1q labeled fibroblasts, which
were more medullary and distant from the injured cells, suggesting
that these propagate inflammation. Interestingly, we identified ME-16,
a specific microenvironment that resembled a tertiary lymphoid
structure both in terms of morphology and cell type composition. In
this ME, we found preferentially CD4 T cells and Tregs, as well as
macrophages with a pro-inflammatory gene expression. Thus, our
spatial analysis was able to identify discrete cellular subsets not iden-
tified by gene expression alone and revealed a morphological struc-
ture with potential functional importance.

Although our extensive gene panel allowed us to detect all major
kidney cell types as well as location-specific gene expression patterns
and intercellular interactions, our panel is still limited. To compre-
hensively capture the consequences of intercellular interactions, there
is a need to identify additional molecular pathways and, therefore,
scale up the number of measured genes in future studies. In addition,
since intercellular signaling was inferred from RNA expression of
ligands and receptors, identifiedmolecular interactions will have to be
validated using additional approaches in future studies. We have
demonstrated that the identification of MEs captures the kidney
morphology and is highly coherent between the different samples.
However, similarly to cell type clustering, the process of ME identifi-
cation required thresholding the data (30 µm neighborhoods) and
manual curation, which could potentially introduce biases. Further-
more, our analysis suggests that, upon injury, specific fibroblast
populations appear in earlier time points, and TLS-like MEs, which can
develop into larger TLS, form in later timepoints. To verify these
hypotheses, performing a time-course experiment ranging from very
early timepoints following injury (2 days) and up to several months
would be required. This can be addressed in future work.

In conclusion, this study employed high-resolution spatial infor-
mation to characterize injury-invoked changes in the kidney, including
the formation of injured microenvironments and lymphoid aggre-
gates, localized AKI-specific inter-cellular interactions, and fibroblasts
subtypeswith potential functional roles in injury progression. Our data
highlight the importance of spatial context and cellular interactions in
shaping cellular responses to kidney injury. We envision that this kind
of data can be leveraged beyond constructing spatial microenviron-
ments where correlations between cell types and gene expression
within their neighbors can be used to find continuous changes and
flow of information between cells within the tissues.

Methods
Mice
Mouse handling, husbandry, and surgical procedures were performed
according to the guidelines of the Institutional Animal Care and Use
Committee at the University of Southern California (protocol number
11911). Mice were kept on a 14/10 light/dark cycle, with an average
humidity range of 45–50% and temperatures of 21–23 °C.

Ischemia-reperfusion injury model and tissue collection
Warm bilateral renal ischemia-reperfusion injury (IRI) was performed
as previously described on male C57BL/6 J (weight 26–27 g, age
8–13 weeks)27. Male non-surgery C57BL/6 J mice were used as controls.
Kidneyswere collected 28days post-IRI. After organperfusionwith ice-
cold RNase-free phosphate-buffered saline (PBS), the kidney capsule
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was removed and the kidneys were fixed in RNase-free 4%
paraformaldehyde-PBS overnight at 4 °C. Kidneys were then equili-
brated overnight in RNase-free 30% sucrose-PBS, embedded in O.C.T.
compound (Tissue-Tek) in a dry-ice ethanol bath and stored at− 80 °C.
Ten-micrometer cryostat sections were cut from embedded kidneys
and placed on the functionalized coverslips on dry ice for subsequent
seqFISH experiments. Secondary validation experiments used sections
adjacent to those analyzed by seqFISH.

Readout probe design and synthesis
Readout probes 15 nt in length were designed as previously
described75. In brief, a set of probe sequences was randomly generated
with combinations of A, T, G, or C nucleotides. Readout-probe
sequences within a GC-content range of 40–60% were selected. We
performed a BLAST search against themouse transcriptome to ensure
the specificity of the readout probes. To minimize cross-hybridization
of the readout probes, any probes with ten contiguously matching
sequences between readout probes were removed. The reverse com-
plements of these readout-probe sequences were included in the pri-
mary probes according to the designed barcodes. The fluorophore-
coupled 15-nt readout probes (Alexa 488, 647 (Thermo Fisher Scien-
tific) and Cy3B (GE Healthcare).

Primary probe design
Primary probes were designed as previously described35,76 with some
modifications. The probe length was set to 35nt. Any gene with less
than 16 probes was discarded. Housekeeping genes and highly
expressed genes were discarded to avoid optical crowding of the
fluorescence probes. The probes were divided into two pool designs:
the first pool comprised 131 cell marker genes; this pool was barcoded
with 4 pseudocolors to be decoded over 16 hybridization rounds in
total. The second pool contained the rest of the genes and was bar-
coded with 9 pseudocolors to be decoded over 36 hybridization
rounds in total. Each pool was read in three channels, however we used
the seqFISH+35 design scheme where a set of genes was only decoded
over one channel to avoid chromatic aberration. The first cell marker
pool was designed such that there were 44, 43, and 44 genes barcoded
in the first, second, and third fluorescent channels respectively. The
second pool contained 390, 389, and 390 genes in the first, second,
and third channels, respectively. The codebooks and probe sequences
are available as Supplementary Data 2 and 3.

Serial probe design and hybridization
To ensure detection of the injury specific markers Vcam1 and Havcr1,
we created primary probes which were not barcoded for these two
genes. Vcam1 was targeted with 30 probes and Havcr1 with 27 probes.
The probesweredesigned such that eachone carried twobinding sites
for the same readout (without splitting into 4 readout barcodes). The
probes were obtained from IDT and no further synthesis was per-
formed. Probes were hybridized on the samples together with the
barcodedprobepool at a concentration of 10 nMperprobe. Theprobe
sequences are available as Supplementary Data 4.

Primary probe synthesis
Primary probes were generated from oligoarray pools (Twist
Bioscience) as previously described35. In brief, probe sequences were
amplified from the oligonucleotide pools with limited two-step PCR
cycles, and PCR products were purified using QIAquick PCR Pur-
ification Kit (Qiagen 28104). Then, in vitro transcription (NEB
E2040S) was performed, followed by reverse transcription (Thermo
Fisher EP0751). After reverse transcription, the single-stranded DNA
(ssDNA) probes were alkaline hydrolyzed with 1M NaOH at 65 °C for
15min to degrade the RNA templates and neutralized with 1M acetic
acid. Finally, probes were ethanol precipitated, and eluted in
nuclease-free water.

Coverslip functionalization
Coverslips were cleaned with a plasma cleaner on a high setting (PDC-
001, Harrick Plasma) for 5min. Then coverslips were rinsed with 100%
ethanol three times and heat-dried in an oven at > 90 °C for 30min.
Next, the coverslips were treated with 100μgμl−1 of poly-D-lysine
(P6407; Sigma) in water for > 3 h at room temperature, followed by
three rinses with water. The coverslips were then air-dried and kept at
4 °C for no longer than 2 weeks.

Probe hybridization
Tissue sections were permeabilized in 70% ethanol at − 20 °C for > 1 h,
clearedwith 8%SDS (AM9822; Invitrogen) in 1 × PBS for45min at room
temperature, then washed in PBS and left to dry. Once dry, a house-
made flow cell was attached to the coverslip to allow the flow of
hybridization reagents. A hybridization mix with 1 nM of each oligo in
50% Hybridization Buffer (50% HB: 2 × SSC, 50% Formamide (v/v)
(Invitrogen AM9344), 10% Dextran Sulfate (Sigma D8906) in Ultrapure
water) was applied to the tissue section. Sections were then incubated
for 30 h at 37 °C, washed in 55% Wash Buffer (55% WB: 2 × SSC, 55%
Formamide (v/v), 0.1%TritonX-100 (Sigma93443)) for 30min at 37 °C,
and then washed twice in 2× SSC at room temperature.

Microscope setup and seqFISH imaging
Setup, sequential hybridizations, and imaging were performed as
previously described35,77 with some modifications. Data was captured
on a Leica DMi8 microscope equipped with a confocal scanner unit
(Yokogawa CSU-W1), fiber-coupled lasers (643, 561, 488 and 405 nm)
from CNI, Shanghai Dream Lasers Technology and filter sets from
Semrock, a sCMOS camera (Andor Zyla 4.2 Plus), 63 × oil objective lens
(Leica 1.40 NA), and a motorized stage (ASI MS2000). A custom-made
automated sampler moved designated readout probes in the hybri-
dization buffer from a 2.0-ml 96-well plate through a multichannel
fluidic valve (IDEXHealth & Science EZ1213-820-4) to the custom-made
flow cell with a syringe pump (Hamilton Company 63133-01). The
syringe pump was also used to move other buffers through the mul-
tichannel fluidic valve to the custom-made flow cell. Integration of the
imaging and the automated fluidics delivery system was controlled by
custom-written scripts in μManager.

For hybridization and imaging, the sample within the custom-
made flow cell was first connected to the automated fluidics system on
themotorized stage of the microscope. The fields of view (FOVs) were
registered using nuclear signals revealed bypreincubation in 5μgml−1
DAPI (SigmaD8417) in 4 × SSC. Imagingwas performedwith sequential
hybridization and imaging routines. The serial hybridization buffer
contained three unique readout probes (12.5 nM each) with different
fluorophores (Alexa Fluor 647, Cy3B, or Alexa Fluor 488) in 10% EC
buffer (10% ethylene carbonate (Sigma E26258), 10% dextran sulfate
(SigmaD4911) and 4 × SSC) andwaspicked up froma 96-well plate and
distributed into the flow cell for a 20min incubation. After the serial
hybridization, the sample was washed with 1ml of 4 × SSCT (4× SSC
and 0.1% Triton-X), followed by a washing stepwith 500μl of the 12.5%
wash buffer. Then, the samples were rinsed with 500μl of 4 × SSC, and
stained with 200μl of the DAPI solution for 60 s to visualize nuclei.
Next, the anti-bleaching buffer was flown through the sample for
imaging. The anti-bleaching bufferwasmadeof 50mMTris-HCl pH8.0
(Invitrogen 15568025), 300mM NaCl (Invitrogen AM9759), 2 × SSC,
3mM trolox (Sigma 238813), 0.8%D-glucose (SigmaG7528), 1000-fold
diluted catalase (Sigma C3155) and 0.5mgml−1 glucose oxidase
(Sigma G2133).

Snapshots were acquired with 643, 561, 488, and 405- nm fluor-
escent channels per field of view (FOV). After image acquisition, 1ml of
the 55% wash buffer was flown for 1min to strip off readout probes,
followed by a 5min incubation before rinsing with 4 × SSC. The serial
hybridization, imaging and signal extinguishing steps were repeated
until all rounds were completed. Blank images displaying only cellular
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autofluorescence were imaged at the beginning and end of the
routines.

Anti-Vcam1 antibody staining was performed as the last step of
the hybridizations. Prior to antibody labeling, the tissue was washed
multiple times with 1X PBS and a blocking buffer containing 1x PBS
(Ambion, AM9625) ultra-pure BSA 1% (Ambion, AM2616) TritonX-100
0.3% (Sigma-Aldrich, 93443) Dextran Sulfate Low MW 0.1% (Sigma-
Aldrich, D4911-10G) Salmon Sperm DNA 0.5mg/ml (Invitrogen,
am9680) was applied and incubated with the sample for 15min at
room temperature. Then, primary rabbit anti-Vcam1 antibody
(Abcam, ab134047) was introduced at a 1:100 dilution in the blocking
buffer and the sample was incubated at room temperature for 1 hr,
washed three times in 1X PBS and a secondary anti-rabbit 647 anti-
body (Invitrogen, A32733) applied at 1:500 dilution for 1 hr at room
temperature. Finally, the sample was washed extensively in > 2ml of
PBS and incubated for 30min with PBS at room temperature to
remove excess antibodies. Finally, DAPI and anti-bleach buffer were
applied before imaging. The same FOVs were then imaged with the
antibody label.

Immunofluorescence and RNAscope
Immunofluorescence and RNAscope experiments were performed as
previously described19. using the following antibodies and probes:
mouse IgG2a anti-alpha Smooth Muscle Actin (aSMA, 1:2000, Sigma-
Aldrich, A5228), goat anti-Vcam1 (1:200, R&D Systems, AF643), rabbit
anti-Vcam1 (1:200, Abcam, ab134047), donkey anti-rabbit AlexaFluor
594 (1:500, Molecular probes, A21207), donkey anti-goat AlexaFlour
594 (1:500, Life Technologies, A11058), chick anti-rat AlexaFluor 647
(1:500, Molecular Probes, A21472). RNAscope Mm-Acta2 (ACD,
319531), RNAscope Mm-Cd4-C3 (ACD, 406841-C3), RNAscope Mm-
Cd8a-C2 (ACD, 401681-C2), RNAscope Probe - Mm-Clcf1-C1 (ACD,
457971), RNAscope Mm-Clec9a-O1 (ACD, 537731), RNAscope Probe -
Mm-Cntfr-C3 (ACD, 457981-C3), RNAscope Probe - Mm-Crlf1-C2 (ACD,
446891-C2), RNAscope Probe -Mm-Npr3-C3 (ACD, 502991-C3). Images
were acquired on Leica Sp8.

Image analysis of seqFISH data
Image registration. Image registration was performed using phase
cross-correlation on DAPI-stained images for each FOV. The initial
hybridization round was used as a reference for estimating required
translational shifts.

Image preprocessing. Aligned images underwent background sub-
traction using dilated blank images to further remove unwanted
background noise. Post background subtraction, further background
removal was performedusing a 5 × 5 high passGaussian filter, followed
by a 3 × 3 lowpassGaussianfilter tomitigate hot pixels andmake spots
more Gaussian-like for improved 2D Gaussian fitting. Image intensities
across channels and serial hybridizations were normalized by 80-
99.999% percentile clipping and rescaling between 0-1.

Spot calls and spot feature generation. Sub-pixel centroids of iden-
tified spots were obtained using DAOStarFinder, a spot-picking algo-
rithm from Astropy that performs fast 2D Gaussian fits. The full-width
half-max (FWHM) was numerically optimized to find the best para-
meter for spot calling. Features such as flux, peak amplitude, sharp-
ness, bilateral to four-fold symmetry, and symmetry of Gaussian fits
were recorded and stored for each spot from the DAOStarFinder
algorithm. To obtain additional features such as total spot area, a 7 × 7
bounding box was used to isolate each spot, and then a local adaptive
threshold using a Gaussian kernel was used to obtain the area of
the spot.

Maskgeneration and spotmapping. Cellmaskswere generated using
Cellpose 2.0. As cell borders are hard to discern unambiguously, to

maximize the accuracy of single-cell detection, we segmented based
on proximity to the nucleus (DAPI visualization), not the cell mem-
brane. This resulted in lower RNA counts per cell but increased the
confidence of single-cell analysis. Masks touching the edges of the
imagewere removed toprevent edgebiasor undercountingof spots in
cells where a cell will be truncated because it touches an edge. In
addition, 2 pixels were deleted between two ormoremasks that touch
to prevent spot mixing between cell masks. Spots were mapped to
each cell mask to assign cell IDs.

Decoding. Super-resolved, mapped spots were decoded using a sup-
port vector machine (SVM) embedded, feature-based symmetrical
nearest neighbor algorithm. First, the decoder removed unwanted
noise through anSVMmodelwith a radial-basis function or polynomial
kernel to filter false spots based on their spot characteristics. Post-
filtering, each spot was assigned a probability score on the likelihood
that a given spot corresponded to a true barcode based on its spot
features. Then, the algorithm performed a nearest neighbor radial
search for each spot at a distance of 1-2 pixels across barcoding rounds
(ignoring spots within the same barcoding round). Searches are per-
formed comparing each round to the other individual rounds in a
parallel fashion. When multiple spots fell within the search radius of a
given reference spot, each spot was assigned a score based on dis-
tance, intensity, and size. The highest scoring spot was chosen, and an
overall codeword score was assigned after picking the best spot for
each barcoding round. These scores (including the overall codeword
score) are influenced by the number of total neighbors encountered.
Each codewordwas also assigned anambiguity score, which is the total
number of additional neighbors found over the expected for each
barcoding reference round. The probability score (obtained from
individual spot probabilities) and the codeword score were used to
generate the overall score for each decoded barcode. Each completed
barcode also underwent a parity check to distinguish true signal from
noise, while also allowing one drop in spot calls. Once the best set of
spots was chosen, they were filtered based on the number of times the
same set of spots was picked when changing the barcoding round
reference, keeping spot sets that appear >= 3 times. If there are any
codewords that have overlapping spots, then their overall codeword
score was used to pick the best one. If they had the same score, then
the codewordwith the smallest total distance between spots was used.
After the 1st round of decoding, unused spots were resubmitted for
additional roundsof decoding (up to 2) to try and assign leftover spots.
Decoded spots, including “trues” and “fakes”, were combined to gen-
erate a final decoded spots table. These decoded spots were sorted
based on their overall codeword score and subsampled to calculate
false positive rates (FPR). Generally, the codeword score had a direct
relationship with fake spots with low scores corresponding more with
fake spots andhigh scores corresponding to true spots.Once an FPRof
15% was reached, only those subsets of true and fake codes were used
for analysis. Once the desired barcodes are obtained, a gene-by-cell
matrix is generated for downstream analysis.

SVM training. Called spots underwent a quick pass decoding to
obtain labels for true and fake spots. The number of fake spots must
be 500–500,000 for the SVM classifier to become active. The num-
ber of true spots is down-sampled tomatch the number of fake spots
for balanced training. Eighty percent of the data was used for training
and 20% for validation. Spot features were normalized using a Min-
Max Scaler and stored, then the SVM model underwent hyper-
parameter tuning of C, gamma, and degree parameters using Grid-
SearchCV with 8-fold cross-validation using either a polynomial or
radial-basis function kernel. Once the optimal parameters were
obtained, the test set underwent the same feature scaling parameters
that were used for the training data to gauge out-of-sample
performance.
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False Positive Rate. The false positive rate was calculated as follows:

νof f = Nof f =Mof f ð1Þ

FPcounts = Mon x νof f ð2Þ

FPR= FPcounts=Non ð3Þ
The frequencyof off-targets (νof f ) was estimated as the number of

observed off-target codes ðNof f Þ divided by the number of off-target
codes in the codebook (Mof f ). Assuming that on-target codes have the
same frequencyof error as off-target codes, wecanmultiply the νof f by
the number of on-targets (Mon) in the codebook to obtain estimated
false positive counts (FPcounts). FPcounts were then normalized by the
number of observedon-targets ðNonÞ to obtain false positive rate (FPR).

Image analysis of serial probes
Images of the serial probes were subjected to the same background
subtraction and processing as described above. The RNA spots were
thenmanually threshold based on visual inspection of the images. The
same threshold was used for all experiments.

Gene expression preprocessing and clustering
The R package Seurat (version 4.1.0)78 was used to process the data.
Low-quality cells (RNAcount≥ 25 and/or genes/cell ≤ 2)were removed,
and the datawas normalized and scaled using theNormalizeData() and
ScaleData() functions. Principal component analysis was performed
using RunPCA(), considering all genes in the dataset. Batch effects
were removedusing theHarmony algorithmwithin the Seuratwrapper
RunHarmony()79. The functions RunUMAP(), FindNeighbors(), and
FindClusters() (resolution 0.8) were used for dimensionality reduction
and cluster identification, resulting in a total of 31 clusters. The dis-
tribution of clusters across samples and imaged positions was exam-
ined, and six clusters with a strong position bias caused by technical
issues such as imaging in a different focal plane (9452 cells in total)
were excluded from downstream analysis, resulting in a final data set
of 220,970. Differentially expressed genes between clusters were
identified using the FindAllMarkers() function with a Wilcoxon Rank
Sum test.

ME detection
Detecting the Microenvironments (MEs) was done in the following
steps: first, the Euclidean distance between all cells in each sample was
calculated. For each cell in the sample, a 30μmradius was defined, and
the number of cells within this radius that belong to each cell type was
counted. Then, the cell-by-neighbor matrix was centered to have a
mean of 0, PCA was performed, followed by Leiden clustering using
Scanpy with sc.pp.neighbors() with n_neighbors = 20 and sc.tl.Leiden()
with resolution =0.5. This process resulted in 19 clusters. The results
were filtered to remove clusters with < 500 cells total - this resulted in
the removal of one cluster. Then the cell type composition in each
cluster was evaluated by calculating the mean counts of each cell type
within the clusters as in Fig. 2D. Two clusters that shared a highly
similar cell type compositionweremanuallymerged to create a total of
17 clusters (Fig. 2D) with 220,753 total cells.

NicheNet analysis
NicheNet51 was used to detect signaling between injured cells to the
other cell types within the injured niche (ME-5, Fig. 3A and Supple-
mentary Fig. 9A). The Seurat implementation NicheNet was used. Only
cell types which had ≥ 500 total cells in ME-5 were considered for the
analysis. The calculation of the top ligand-receptor was run for each of
the cell types within ME-5 using nichenet_seuratobj_cluster_de() where
the senderwas set tobe InjuredPT, the receiver_reference = cell type in

Control and receiver_effected = cell type in AKI. The top 10 ligand-
receptor pairs were chosen as pairs with the highest ‘weight’ term out
of all pairs that NicheNet identified. Supplementary Fig. 9A plots the
mean expression of the top ligand-receptor pairs for all cell types in
ME-5.

Fibroblasts differential expression analysis
To reduce noise, we first calculated the average expression of all genes
across all cell types and z-scored average expression values. All genes
with a z-score <0.1 within fibroblasts were removed from differential
expression analysis. We then identified the differentially expressed
genes between fibroblasts within the different MEs using the FindAll-
Markers() function in Seurat with the following parameters: min.pct =
0.1,logfc.threshold =0.25,only.pos =T. Figure 4B shows the average
expression of the genes detected in each of the AKI enriched or AKI
depleted MEs - as calculated by the enrichment of each ME in the
control or AKI using a one sided students’ t-test (significance values
shown in Fig. 2B). To calculate the score of each gene set on RNAseq
data presented in Fig. 4D, E the function AddModuleScore() was used
with the differentially expressed genes as features, to apply a score to
fibroblasts in the sequencing data as identified by the authors. Score
values were averaged for all fibroblasts in each mouse/patient in the
data, and then averaged for all mice/patients in each condition. Num-
ber of mouse samples n = 3 per time point. Number of patients: n = 11
for AKI, n = 13 for CKD, and n = 14 for normal controls. The minimum
values were subtracted for each score such that minimum score =0.

Reference mapping
For reference mapping of kidney cell types presented in Supplemen-
tary Fig. 2B, we mapped our data onto two mouse kidney sequencing
datasets from Kirita et al.15 and Ransick et al.3. We compared the un-
injured kidney cell types from our control to those of male control
samples from both datasets. RunUMAP() was run on the reference
object to return the UMAP model and then reference mapping was
done using the common genes present in both datasets. Anchors were
found with the FindTransferAnchors() functions with normal-
ization.method = “LogNormalize” and reference.reduction = “pca”.
Then, MapQuery() was performed with the detected anchors with
reference.reduction = “pca” and reduction.model = “umap”. We then
enumerate the fraction of cells with the original label that received
each of the new labels in each comparison. This data is presented in
Supplementary Fig. 2B.

For T cell reference mapping A reference atlas of T cell subsets
was used71 reference RDS object can be found here: https://figshare.
com/articles/dataset/ProjecTILs_murine_reference_atlas_of_tumor-
infiltrating_T_cells_version_1/12478571/2. RunUMAP() was run on the
reference object to return the UMAP model and then reference map-
pingwas done using 1121 genes present in both datasets. Anchors were
found with the FindTransferAnchors() functions with normal-
ization.method = “LogNormalize” and reference.reduction = “pca”.
Then, MapQuery() was done with the detected anchors with refer-
ence.reduction = “pca” and reduction.model = “umap”. Reference cell
types that were mapped with ≤ 100 cells in total were removed.

Statistics and reproducibility
No statistical method was used to determine sample size. The two
serial probe sets against Vcam1 and Havcr1 were not used on one AKI
sample (AKI1). Therefore, this sample was excluded from the analysis
presented in Fig. 1E andmain Fig. 2F, G, which include these genes. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The raw and processed data generated in this study were deposited in
the Dryad database (https://datadryad.org/stash/dataset/doi:10.5061/
dryad.bnzs7h4hj) and Zenodo (https://doi.org/10.5281/zenodo.
12709329). The codebooks and probe sequences used to generate
seqFISH probes used in this study are available as Supplementary
Data 2 and 3. The probe sequences used to generate serial probes are
available as Supplementary Data 4. Processed data can be browsed
interactively at https://woldlab.caltech.edu/ci2-celltiles/Mouse-
Kidney-Fibrosis/. Mouse sequencing data generated by Ransick et al.
and by Kirita et al. and used in this study are available on GEO with
accessions GSE129798 and GSE139107. Mouse T cell expression pro-
files were obtained from figshare (https://figshare.com/articles/
dataset/ProjecTILs_murine_reference_atlas_of_tumor-infiltrating_T_
cells_version_1/12478571/2). Human sequencing data was obtained
from cellxgene (https://cellxgene.cziscience.com/collections/
bcb61471-2a44-4d00-a0af-ff085512674c). Source data are provided
with this paper.

Code availability
Scripts used for processing seqFISH images can be found in GitHub
(https://github.com/CaiGroup/pyfish_tools) and Zenodo (https://doi.
org/10.5281/zenodo.12192195).
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