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OmicScope unravels systems-level insights
from quantitative proteomics data

Guilherme Reis-de-Oliveira 1,2 , Victor Corasolla Carregari1,
Gabriel Rodrigues dos Reis de Sousa3 & Daniel Martins-de-Souza 1,3,4,5,6,7

Shotgun proteomics analysis presents multifaceted challenges, demanding
diverse tool integration for insights. Addressing this complexity, OmicScope
emerges as an innovative solution for quantitative proteomics data analysis.
Engineered to handle various data formats, it performs data pre-processing –

including joining replicates, normalization, data imputation – and conducts
differential proteomics analysis for both static and longitudinal experi-
mental designs. Empowered by Enrichr with over 224 databases, OmicScope
performs Over Representation Analysis (ORA) and Gene Set Enrichment Ana-
lysis (GSEA). Additionally, its Nebula module facilitates meta-analysis from
independent datasets, providing a systems biology approach for enriched
insights. Complete with a data visualization toolkit and accessible as Python
package and aweb application, OmicScope democratizes proteomics analysis,
offering an efficient and high-quality pipeline for researchers.

Mass spectrometry-based proteomics has emerged as an indis-
pensable tool for unraveling the intricate molecular mechanisms
underlying complex diseases and biological phenomena. This techni-
que enables simultaneous interrogation of thousands of proteins,
allowing for the discovery of novel protein candidates without prior
knowledge or defined targets. The flexibility provided by shotgun
proteomics enables large-scale exploration of protein-protein inter-
action (PPI) networks1, subcellular processes2,3, protein thermal
stability4,5, protein-drug interactions6,7, and signaling pathways8. Fur-
thermore, due to the pivotal role of proteins in bridging genotypic
information to phenotypic outcomes, proteomics complements other
‘omics disciplines, including genomics, transcriptomics, and metabo-
lomics. Despite its widespread adoption and continuous technical
advancements, proteomics continues to present substantial chal-
lenges, with data analysis complexity remaining a prominent issue9,10.

To achieve comprehensive information fromproteomicsdata, the
current approach requires the use of an array of software tools9–11. This
encompasses rawdata processing, protein identification, quantitation,
differential proteomics, and enrichment analysis (e.g., MaxQuant12,

PatternLab V13, DIA-NN14, Perseus15, PatternLab V, Progenesis QI for
Proteomics, MSstats16; DAVID17, Enrichr18). While this conventional
pipeline forms the core of proteomics data analysis, additional steps
like exploring PPIs, conducting network analyses, and customizing
data visualization are often necessary.

The complexity and number of computational tools present an
initial barrier, particularly for non-programmers and newcomers to
proteomics, asmastering the functions, capabilities, and limitations of
each software tool demands a steep learning curve9. Furthermore, the
challenge with tools for differential proteomics analysis involves
accommodating the wide spectrum of data formats generated by
search engines and quantitative proteomics software (Supplementary
Data 1). Considering the distinctive features and necessities of each
tool, encompassing data structure, normalization, and treatment of
missing values, any new software tool must account for these varied
input options. Additionally, a versatile and generic format is crucial to
facilitate data importation from emerging proteomics tools, incorpo-
rate innovative statistical analyses, and integrate data from other
‘omics’ platforms, such as genomics and transcriptomics.
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Statistical analysis for differential proteomics can exhibit sub-
stantial variations contingent upon the experimental design adopted
by researchers. Typically, experimental designs can be broadly cate-
gorized into two main types: static and longitudinal19. Despite the
common occurrence of both static and longitudinal analyses, many
proteomics tools often lack comprehensive coverage of the wide
spectrum of experimental designs (Supplementary Data 1).

Within the proteomics workflow, enrichment analysis assumes a
pivotal role in aiding researchers to uncover system-level biological
insights. One widely adopted approach is over-representation analysis
(ORA), wherein experimentally derived entities are compared against
annotated databases to ascertain whether biologically relevant prop-
erties are overrepresented in the experimental gene list20. Alter-
natively, gene-set enrichment analysis (GSEA) compares two
conditions to find coordinated changes in gene expression in biolo-
gically relevant databases21. While enrichment analysis is widely uti-
lized in proteomics,many existing proteomics tools have limitations in
this regard (Supplementary Data 1), prompting researchers to explore
web-based tools offering extensive datasets for conducting such ana-
lyses. Enrichr, for instance, offers access to over 224 distinct and reg-
ularly updated libraries18.

Despite the importance of enrichment analysis within the broader
proteomics workflow, its power can be significantly enhanced by
comparing individual experiments with independent results or data
published by third-party research groups. Thismeta-analysis approach
reduces false discovery rates and enables a more reliable assessment
of molecular features associated with biological phenomena, as
numerous sources contribute to a systems-level investigation9,22.While
specific enrichment tools support the analysis of multiple gene lists,
many existing proteomics tools frequently lack the capacity to con-
duct a broad analysis across multiple experiments and integrate data
withother omics technologies (SupplementaryData 1). For researchers
aiming to analyze multiple gene lists, several web-based tools are
accessible, including Metascape9 and DAVID17. Nevertheless, these
tools often overlook crucial protein statistics, such as protein fold
changes, and offer a restricted array of figures that can integrate
enrichment outcomes with respective protein attributes.

Considering the complexities inherent in the proteomics work-
flow, we introduce OmicScope—an integrative solution designed to
streamline proteomics data analysis from differential expression to

system-level integration. Here, we elucidate the features of Omic-
Scope, available both as a Python package and a web application
(https://omicscope.ib.unicamp.br/), providing a unique environment
capable of handling and integrating quantitative proteomics data,
enrichment outcomes, and comparing independent studies. Omic-
Scope performs differential analysis across diverse platforms, con-
ducts enrichment analysis using 224 Enrichr libraries, and integrates
independent studies to enhance biological insights. Additionally, we
offer a comprehensive suite of graphical outputs, encompassing gold-
standard proteomics figures and a unique set of plots tailored to
enhance comprehension in individual experiments and systems-level
analyses. OmicScope also provides a versatile array of output files for
integration with third-party software, including tables, vectorized
images, network files, and its own output format. Together, Omic-
Scope stands asa user-friendly tool engineered to facilitate proteomics
data analysis, integration, and interpretation for the entire research
community.

Results
Overview
TodevelopOmicScope, we conducted a survey of computational tools
designed to conduct proteomics downstream analysis, with a parti-
cular focus on those capable of performing differential analysis. Our
survey identified 15 computational environments, which were eval-
uated based on criteria such as tool distribution (package, web tool,
desktop application), input formats, features for conducting differ-
ential proteomics analysis, capacity for enrichment analysis, data
integration capabilities, meta-analysis functionalities, export options,
and code availability. The details of all evaluated tools are provided in
Supplementary Data 1, which served as the basis for defining the fea-
tures of OmicScope.

OmicScope was designed to be an integrative pipeline for pro-
teomics data analysis, encompassing differential proteomics, enrich-
ment analysis, and meta-analysis. Developed as Python package,
OmicScope pipeline includes three primary components: OmicScope,
EnrichmentScope, and Nebula (Fig. 1). Once quantitative data is
inserted into the workflow, the OmicScope determines differentially
regulated proteins (DRPs). These DRPs are then subjected to enrich-
ment analysis using the EnrichmentScope algorithm, aiming to eluci-
date key biological features. Additionally, individual studies analyzed
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Fig. 1 | OmicScope workflow. The OmicScope workflow begins with the import of
data from various sources, including outputs from proteomics tools and generic
formats. Once imported, the OmicScope module determines differentially regu-
lated proteins. These proteins are then directed to the EnrichmentScope module,
which facilitates over-representation and gene-set enrichment analyses. Data

derived from both OmicScope and EnrichmentScope can be seamlessly used as
input for Nebula, a module that integrates results from multiple studies using a
systems biology approach. Each module within OmicScope is equipped with its
ownvisualization toolset and allows for the exportof tables, vectorized images, and
graphML files.
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using the OmicScope and/or EnrichmentScope algorithms can be
exported and used as input for Nebula. In Nebula, users can analyze
multiple studies collectively, establishing correlations and identifying
shared features across independent results. Each component, when
activated, generates a set of figures and tables, streamlining user
interactions for both the package and web application.

To facilitate the access of non-programmers to OmicScope’s
pipeline,we implemented thewhole package’s functionalities in a user-
friendly and highly interactive web application (See details in Appen-
dix and Supplementary Figs. 13–15). OmicScope Web allows users to
extract proteome information fromdynamic plots, including bar plots,
dot plots, and networks. In addition to providing explanations for each
plot and its corresponding parameters, the web application enables
users to customize the OmicScope workflow to meet their specific
requirements. To enhance user experience by minimizing clicks and
simplifying data handling, the OmicScope web application auto-
matically generates all results and figures based on user input, which
are accessible throughout the analysis process.

Furthermore, OmicScope workflow prioritizes the reporting of
proteomics results to the scientific community, providing broad range
of export methods, including tables, figures, and networks. Our tool
exports figures in a vectorized and high-definition manner, tables
containing data used for plots, and networks using the universal
graphML file format.

Input methods
Proteomics research exhibits substantial diversity in experimental
workflows, includingmass spectrometer selection, acquisitionmodes,
fragmentation methods, and quantitative approaches. This inherent
diversity requests a wide array of software tools for protein identifi-
cation andquantitation, eachwith its strengths and limitations, leading
to interoperability challenges10,23.

To address these challenges, OmicScope offers eight data import
methods (See Methods, Appendix, and Fig. 1), including six tailored to
widely adopted proteomic software: MaxQuant, PatternLabV, DIA-NN,
Proteome Discoverer, FragPipe, and Progenesis QI for Proteomics.
These methods import outputs from respective software considering
their unique characteristics. For software not yet integrated into
OmicScope, the “General” method allows users to create custom
spreadsheets for input into the OmicScope pipeline. This method
accepts generic expression files, making OmicScope compatible with
data from various omics platforms, such as genomics and tran-
scriptomics. “General” method is able to perform differential pro-
teomics analysis or import existing statistical analyses based on
imported spreadsheets.

Aiming to provide an import method that joins succinctness,
simplicity, and speed, we implemented “Snapshot” method, in which
the users can import proteomics results containing assessed proteins,
along with their associated fold changes and statistical outcomes.
While Snapshot presents certain limitations concerning the number of
plots that can be generated (refer to Supplementary Data 2), this
method substantially improves interoperability across studies, espe-
cially given that many studies typically provide restricted information
from their analyses, as demonstrated in the cases ofNie 2021 andWang
2021. By integrating all of these inputmethods, OmicScope stands out
as the platform capable of handling the widest variety of files (see
Supplementary Data 1).

OmicScope: the core module
The central module of OmicScope shares the same name as the algo-
rithm described herein. This module plays a pivotal role in organizing
data, performing normalization and data imputation, filtering pro-
teins, and carrying out differential proteomics analysis. It identifies
differentially regulated entities and generates ready-to-publish fig-
ures (Fig. 2A).

To provide maximum versatility, pre-processing and statistical
steps are optional within the OmicScope pipeline. When no statis-
tical results are provided, OmicScope autonomously conducts sta-
tistical analysis, filtering data based on pre-specified parameters
and selecting the most suitable statistical tests based on the data
architecture (see Appendix section for details). This flexible archi-
tecture accommodates various experimental designs, including
static and longitudinal approaches. In static cases, comparisons
between independent groups are typically made using t-tests for
binary comparisons or One-way ANOVA for more than two inde-
pendent conditions. In longitudinal analyses, OmicScope employs
the Storey approach19, considering that differentially regulated
genes vary over time based on natural cubic splines. In this long-
itudinal approach, statistical evaluations consider both within-
group and between-group comparisons. Once nominal p value is
calculated, OmicScope performs Benjamini-Hochberg multiple
hypothesis correction24. By default, OmicScope designates proteins
as differentially regulated if their adjusted p value is below 0.05,
although users can define other parameters, such as fold-change
and nominal p value cutoffs (Fig. 2A).

OmicScope module offers a visualization toolkit for data over-
viewing, clustering, and protein-specific features (Supplementary
Fig. 1). In the overview category, users can generate bar plots, volcano
plots, MA-plots, and dynamic range plots, facilitating the visualization
of data distribution and normalization, providing initial insights into
the dataset. The clustering category includes functions for hierarchical
clustering, principal component analysis, and K-means clustering,
allowing users to compare samples based on protein abundances and
assess sample clustering. In this category, users can select various
metrics and calculation methods to perform clustering analysis for
static and longitudinal experimental designs. Lastly, protein-specific
category aims to extract deeper insights about selectedproteins, using
bar plots and box plots. In this category, OmicScope also includes an
integration with STRING API, providing a PPI network of DRPs, being
one of unique environments to couple quantitative proteomics to PPI
survey (Supplementary Data 1).

To demonstrate the capabilities of OmicScope, we employed
previously published COVID-19 studies as illustrative examples (refer
to the Methods section for details). These studies employed quanti-
tative proteomics and transcriptomics to investigate SARS-CoV-2’s
effects on various tissues. Specifically, we conducted a single analysis
example, showcasing both differential proteomics and enrichment
analysis, using proteins quantified by Crunfli25 in the brain tissue of
patients who succumbed to SARS-CoV-2 complications. In this study,
the authors meticulously detailed the processing parameters and
furnished quantitative outputs from the analysis, ensuring reproduci-
bility, and enabling result comparisons.

Crunfli’s dataset was imported into OmicScope with default
parameters, filtering out contaminants26, and resulting in the identifi-
cation of 721 DRPs (Fig. 2B). After OmicScope defines the DRPs, pro-
teomics figures can be generated using a dedicated function for each
plot type. For scatter plots and heatmaps, users can specify gene
names as arguments to highlight specific target proteins (as demon-
strated in Fig. 2C). Additionally, for clustering analyses, users option-
ally can set a p value cutoff to filter proteins and conduct analyses
based on statistical significance (Fig. 2D).

In Crunfli’s dataset, for instance, we selected the MAPK family,
including MAPK1, MAPK14, and MAPK9, all of which showed upregu-
lation in SARS-CoV-2 infection compared to the control group (Fig. 2E).
Moreover, the protein-specific category includes a function for
exploring PPIs by querying the STRING database27. In this network
analysis, users can identify communities based on the Louvain
algorithm28 and filter data based on protein p values and/or specific
proteins. In our analysis, we filtered proteins based on a p value
threshold (pAdjusted <0.005), applied the Louvain algorithm to
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Fig. 2 | OmicScope performs differential proteomics analysis and data visua-
lization. A OmicScope offers various data import methods, including established
software and generic approaches. Once data is successfully imported, OmicScope
defines data architecture, performs or import differential proteomics analysis, fil-
ters data, identifies differentially regulated proteins (DRPs), and generates tables,
figures, and exports. In Crunfli study (provided as a Source Data file), the two-tail t-
test was performed followed bymultiple hypothesis correction using BH approach
(B–E) Illustrative figures generated byOmicScope: (B) Bar plot displaying the count
of identified proteins and DRPs. C Volcano plot with accompanying density plot
highlighting the top 10 DRPs based on Adjusted p value. D Heatmap of DRPs with

Adjusted p value less than 0.002, with colors representing z-score. COVID-19
patients and controls are denoted as dark cyan and purple, respectively. E Boxplot
depicting the abundance of proteins identified from the MAPK. For this import
method, boxplot considers 38 MS-runs coming from 19 subjects. Data are pre-
sented as median (center), quartiles (bound box), whiskers with 1.5*Interquartile
Range, and outliers according to inter-quartile range. F Protein-protein interaction
network generated by OmicScope with DRPs having an Adjusted p value less than
0.005. In the left graph, proteins are colored based on log2(fold change), while the
right graph represents proteins colored according to their communities identified
using Louvain algorithm.
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conduct modularity analysis, and exported the data to facilitate data
visualization (Fig. 2F).

While the Crunfli dataset offers advantages for our pivotal analy-
sis, it does pose a technical limitation due to the relatively small
number of evaluated proteins in the study. To address this, we chal-
lenged OmicScope against a benchmark dataset provided by Meier29

and Demichev30. Meier spiked-in two distinct concentrations of Yeast
digest into HeLa digest, while Demichev employed Frag-Pipe and DIA-
NN workflows, resulting in the evaluation of over 12,000 proteins,
specifically identifying DRPs from the yeast digest. Using OmicScope,
we identified two distinct expression profiles highlighting differential
abundance among yeast protein concentrations, as demonstrated by
Meier and Demichev (Supplementary Fig. 2). These outcomes high-
light OmicScope’s capacity to handle varying data formats and sizes,
performing a reproducible analysis of differential expressions.

To illustrate OmicScope’s capabilities in conducting longitudinal
analysis, we analyzed data provided by Grossegesse31, wherein they
investigated proteome changes induced by SARS-CoV-2 in CaLu cell
lines across four time points: 2, 6, 10, and 24h post-infection (Supple-
mentary Fig. 3A). In this analysis, OmicScope identified 614 proteins that
were differentially regulated (p<0.05) between the SARS-CoV-2 and
Mock groups. Examination of the K-means plots revealed three protein
clusters, wherein SARS-CoV-2 induced a distinct protein pattern com-
pared to the Mock group (Supplementary Fig. 3B). Further analysis of
the PPI network derived from proteins assigned to cluster 0, which
exhibited the highest fold-change variation, demonstrated up-
regulation of proteins associated with interferon signaling during
SARS-CoV-2 infection, consistent with previous findings31,32. These
results underscore OmicScope’s integrative feature, wherein proteins
identified through K-means clustering can be leveraged to explore PPIs
and elucidatemolecularmechanisms underlying biological phenomena.

EnrichmentScope: enhancing biological insights
One of the critical and challenging aspects of omics studies is
extracting meaningful biological insights from hundreds or even
thousands of differentially regulated entities. A commonly applied
method for this purpose is enrichment analysis, wherein experimental
gene or protein sets are compared against pre-established datasets,
which may encompass biological pathways, molecular functions,
kinase-associated genes, and other relevant categories. Enrichment-
Scope addresses this challenge by furnishing specialized enrichment
analysis capabilities.

After executing the OmicScope module, users can proceed to
perform enrichment analysis on EnrichmentScope module, specifying
between two approaches: Over-Representation Analysis (ORA, con-
ventional enrichment) or GSEA. Then, users must select specific
databases, choosing between the 224 libraries offered by Enrichr18.
Optionally, EnrichmentScope also can consider all proteins evaluated
in the study as background for enrichment analysis. Once the analysis
is performed, the module provides a result table and a toolkit of
visualization functions, including the ability to export quantitative and
enrichment data (Fig. 3A, Supplementary Fig. 4).

EnrichmentScope offers visualization tools like dot plots, facil-
itating the assessment of enrichment statistics and the number of
proteins considered for enrichment (Fig. 3B, C). Users can select top
enriched terms based on adjusted p values to identify relevant biolo-
gical processes (Fig. 3B). Another dot plot option allows users to
explore protein regulation in depth, illustrating the number of DRPs in
each enriched term (Fig. 3C). In Crunfli’s study, for instance, the top 10
enriched terms using KEGG Database were filtered, and pathways
related toneurodegenerative diseaseswere selected, showing the ratio
of up- and down-regulated proteins (Fig. 3B, C).

EnrichmentScope also generates heatmaps and network graphs
linking enriched terms to respective proteins (Fig. 3D, E). These
visualizations reveal protein fold changes and proteins overlap among

groups, shedding light on key factors in biological events. In the pre-
viously chosen pathways, proteins related to processes such as the
proteasome, electron transport chain, and cytoskeleton were shared
across all neurodegenerative processes, offering insights into the
effects of SARS-CoV-2 on COVID-19 patients. Following this analysis,
users can further investigate proteins of interestwithin theOmicScope
module using functions like box plots, PPI networks, and more.

A challenge encountered in enrichment analysis is dealingwithdata
redundancy, particularly prevalent in hierarchical databases such as
Reactome33 and Gene Ontology34, which can lead to an overwhelming
amount of information, as many pathways indicate a similar biological
function (Supplementary Fig. 5). To address this limitation, Enrich-
mentScope apply systems biology approach similar to what is proposed
byEnrichmentMap,wherein enrichment termsare represented as nodes
within a network35 (Fig. 3F). Besides providing a simplified network
representation, this strategy also simplifies information extraction,
reduces data redundancy without omitting data and aids in selecting
targets for further experimental validation. To connect each enriched
term in the network, the algorithm calculates the pairwise Jaccard
similarity indices, considering genes/proteins overlapped between tar-
get terms (See Appendix). By default, EnrichmentScope establishes links
when the Jaccard Similarity Index exceeds 0.25, enabling graph con-
struction. Additionally, EnrichmentScope automatically searches for
communities within the enrichment map, labeling nodes (terms) that
present highest intra-module degree (Fig. 3F). In addition to integrating
quantitative and enrichment data, our implementation offers a wide
selection of libraries, two enrichment approaches, and network visuali-
zation capabilities, distinguishing it as a notable feature compared to
other platforms (see Supplementary Data 1).

Nebula: from singular studies to meta-analysis
The advent of omics platforms has exponentially increased the accu-
mulation of data over the years, driving scientists to develop tools
capable of comparing independent studies or even integrating
experiments in a multi-omics fashion. Therefore, OmicScope intro-
duces the Nebula module, designed to enhance data integration,
interpretability, and comparisonbetween studies. Although evaluating
multiple independent proteomes simultaneously is a common
approach, our software survey revealed that meta-analysis is a rare
feature among computational proteomics tools (see Supplementary
Data 1)9,36,37.

The Nebula workflow utilizes the outputs of OmicScope/Enrich-
mentScope for data integration and visualization. These outputs have
the extension “.omics” and can be generated by running the Omic-
Scope module, which returns quantitative data, or the Enrichment-
Scope module, which provides both quantitative and enrichment
results. For each independent analysis, one of these previously
described modules must be executed, and Nebula will read each out-
put file to compile them into a unified object. Once the files are
imported into Nebula, a set of visualization functions becomes avail-
able for conducting studies comparisons at the protein and/or
enrichment levels (Fig. 4A, Supplementary Fig. 6).

To demonstrate Nebula’s capabilities, we used data from Crunfli
2022, Nie 2021, and Wang 2021. These selected studies assessed the
effects of SARS-CoV-2 on patients’ tissues, with Crunfli examining
proteomic signatures in the brain, Wang evaluating proteomics and
transcriptomics effects in the lungs, and Nie reporting the liver as the
most affected organ in proteomics terms. In Nie’s and Wang’s studies,
the authors just provided DRPs and genes, enabling the application of
the Snapshot method for ORA (Fig. 4B).

Nebula’s pipeline supports various plots that facilitate the simul-
taneous comparison of all target groups. Bar plots and dot plots offer
an initial overview of the groups by comparing the number of proteins
and pathways evaluated in each condition, serving as initial steps in
establishing associations between studies (Fig. 4B–D). In the selected
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datasets, the lungs exhibited the highest number of DRPs and genes,
followed by the liver and brain (Fig. 4B). Utilizing the Nebula inte-
grative analysis approach, we noteworthy all examined tissues pre-
sents a consistent elevated number of up-regulated entities when
compared to down-regulated counterparts (Fig. 4C). When filtering
enrichment terms to highlight the top 10 pathways identified in each

condition, Nebula can pinpoint several potential pathways worthy of
further investigation (Fig. 4D).

To delve deeper into comparisons, Nebula offers tools for
examining overlaps at both protein and enrichment levels. While Venn
diagrams are commonly used for visualizing overlaps, they have lim-
itations when comparing more than four conditions, producing
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illegible plots (Supplementary Fig. 7). To overcome this limitation,
Nebula includes circus plots and upset plots in its pipeline (Fig. 4E, F).
In the Upset plot38, each condition is depicted in a row, while columns
illustrate non-zero intersections exclusively among the labeled groups
specified in the frame (Fig. 4E, F). The advantage of the Upset plot lies
in its readability and the absence of limitations regarding the number
of groups analyzed. In the example datasets, only 19 proteins and
genes exhibited dysregulation in all tissues, whereas the largest over-
lap encompassed 467 DRPs between the lung and liver proteomes
(Fig. 4E). On the other hand, when examining overlaps in enrichment
terms, the highest overlap was found between brain and lung pro-
teomes, with 34 terms exclusively shared between these two tissues.

In addition to the Upset plot, Nebula can also perform compar-
isons across groups using circular plots. In this plot, Nebula links each
group with lines, with each link representing a protein that overlaps
between those conditions. Each protein also displays its respective
fold change in the respective study, generating a circular heatmap.
This circular plot complements the Upset plot by providing a view of
the proportion of up- and down-regulated proteins shared among
groups. As expected, in the studies under evaluation, themajor shared
proteins were up-regulated (Fig. 4G).

Nebula also offers a three-dimensional interpretation of data,
considering groups, proteins, and enrichment terms simultaneously.
Our circular diagram allows user to specify an enrichment term to be
searched in all datasets, followedby the filtering of proteins associated
with those terms in each study. Nebula then generates a circular plot
that connects study and proteins, color-coding them based on their
respective fold changes per group. In the example datasets, “oxidative
phosphorylation”, enriched in all studies, was chosen to demonstrate

that major proteins in this pathway were indeed up-regulated in all
organs (Fig. 4H).

To provide systems-level information about multiple studies,
Nebula’s array of visual representations also comprises network and
statistical analyses. Similar to the methodology employed in Enrich-
mentScope, Nebula generates a graphical representation that estab-
lishes connections between studies and their corresponding DRPs,
which also can be exported to third-party software tools (Fig. 5A).

Two other systems biology strategies employed by Nebula to
assess the similarity between studies are similarity analysis and statis-
tical tests. In pairwise similarity analysis, Nebula computes similarity
indices using the Jaccard algorithm by default across the target
studies35. Nebula is also capable of using alternative metrics, like
Pearson, Euclidean, and others, to calculate the similarity index using
protein fold change. On the other hand, while performing statistical
tests, Nebula applies Fisher’s Exact test to compare the overlap
between studies by considering the entire set of imported proteins as
the background, which results in pairwise p values. Similar to con-
ventional enrichment analysis, users can optionally specify alternative
background sizes, such as thenumber of reviewedproteins in a specific
organism according to theUniprot database. Alternatively, Nebula also
encompasses other statistical analysis, such as t-test, Wilcoxon, or
Kolmogorov-Smirnov test, using the fold-change distribution to com-
pare studies. The results from the similarity and statistical analysis can
be visualized using heatmaps and graphs. In the network representa-
tion, each node represents a group, while links are depicted according
to pre-defined thresholds for similarity indices or p values(Fig. 5 B, C).

In the example discussed here, DRPs from the four groups were
compared using the Fisher’s Exact Test approach, utilizing the reviewed

Fig. 4 | Nebula, the meta-analysis module, compares independent studies uti-
lizing data outputs fromOmicScope and EnrichmentScope. ANebula facilitates
comparative analysis of independent studies based on OmicScope and Enrich-
mentScope outputs (provided as a Source Data file). B–H Figures generated using
Nebula. B Bar plot depicting the count of whole (gray) and differentially regulated
proteins/genes (colored) across various studies, as well as the combined count.
C Dot plot showing the count of up-regulated and down-regulated entities. D Top
10 enriched pathways according to the KEGG database for all organs. Upset plots

for (E) proteins and (F) enrichment terms, illustrating overlapping sizes among
conditions. G Circular plot displaying all differentially regulated proteins and their
shared relationships among evaluated groups (cyan links), along with shared
enrichment terms among groups (black links). Each protein is annotated with its
respective foldchange.HCircular plot depicting proteins differentially regulated in
Oxidative phosphorylation among studies, with accompanying foldchange values.
Source data are provided as a Source Data file.
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human proteome database as the background (proteome size: 20,423
proteins). Theheatmap showcases all pairwisep values generated in this
analysis (Fig. 5B), whereas the network representation filters p values
below0.05 and connects each group accordingly (Fig. 5C). This analysis
illustrates that the effect triggered by SARS-CoV-2 exhibits a stronger
relationship at the protein level, particularly between the liver and lung
proteomes, as previously suggested by other Nebula plots.

Discussion
Alongside the maturation of the MS-based Proteomics, the field has
witnessed the evolution of mass spectrometers, leading to
enhanced resolution, sensitivity, and consequently, the capability
to identify thousands of proteins. In response to these advance-
ments, computational analysis has progressed in parallel with
technological advancements, offering several methods for protein
identification and quantification. This study evaluated 15 pipelines
commonly used for downstream proteomics analysis, comparing
their acceptance of input formats, methods for conducting differ-
ential proteomics analysis, capacity for enrichment analysis, gen-
eration of figures, capabilities for meta-analysis, and available
export formats. In this context, OmicScope was not designed to
replace existing tools but to function as a versatile pipeline capable
of exploiting the powerful features of various methodologies. Its
primary objective is to facilitate effective, integrative, and snapshot
downstream analysis of proteomics datasets, including differential
analysis, enrichment analysis, and meta-analysis.

In our software survey, we observed a high variability in the
number of input formats accepted by proteomics tools, with 10 tools
capable of handling only one or two input formats. Noteworthy,
PatternLabV13 and Progenesis QI for Proteomics were included in our
comparison due to their capacity for differential expression analysis
and related visualizations, however, their primary function revolves
around protein identification and quantitation from raw MS files. Our
results also highlightedMSstats16 for its inclusion of nine distinct input
formats based on proteomics tools. Nevertheless, we did not find a
generic file format that facilitates the easy integration of data from
alternative sources into theMSstats pipeline. Despite offering a limited
number of input file formats compared to MSStats, OmicScope pro-
vides two generic methods to handle a variety of data formats, in
addition to six import methods based on well-established proteomics
tools. This flexibility also allows integration and analysis of data from
alternative omics platforms, including genomics and transcriptomics,
and facilitates the straightforward incorporation of previously pub-
lished data often presented in a more concise format.

While analyzing statistical pipelines utilized for differential pro-
teomics, our findings revealed significant variations among tools con-
cerning the supported experimental designs, applied statistical
approaches, and user interface features. In terms of experimental
designs, most software platforms include longitudinal analysis in their
workflow; however, this strategy often requires programming skills or
substantial computational resources, particularly with desktop appli-
cations. Additionally, we observed several applications offering either
frequentist (e.g., Perseus, PatternLabV, Progenesis) or probabilistic
(e.g., MSPypeline, DEP, Protti) approaches. In the OmicScope statistical
pipeline, we provide methods for normalization and data imputation;
however, our tool currently lacks methods for outlier rejection, inclu-
sion of additional filtering steps, and assessment of quantitative accu-
racy, which will be the focus of future implementations. While
evaluating to experimental designs, OmicScope integrates both fre-
quentist and probabilistic approaches to accommodate static and
longitudinal experimental designs, this functionality being accessed
either through Python scripting or via web interface.

In static analyses, OmicScope employs t-tests or one-way ANOVA
to effectively identify DRPs among two or more conditions, ensuring
consistent outcomes in various scenarios. In longitudinal analysis, our

tool employs the Storey methodology, incorporating a generalized
linear model and considering gene variability over time through nat-
ural cubic splines. This approach allows OmicScope to investigate
within- and between-group variations, encompassing more biological
inquiries. Additionally, OmicScope employs the Benjamini-Hochberg
method to correct p values, effectively controlling false
discovery rates.

While other software may support both static and longitudinal
experimental designs, OmicScope offers the advantage of automating
all statistical analyses, thereby reducing the number of clicks and
interactions needed to obtain initial results. Despite our tool facilitat-
ing data analysis and adhering to stringent parameters, this approach
may not fully meet user demands or introduce some bias, requiring
optimization of certain parameters (e.g., K-values in k-means plots,
degrees of freedom for longitudinal analysis). To address this limita-
tion, OmicScope provides users with the capability to adjust statistical
parameters straightforwardly. Additionally, to allow proper reporting
of the statistical pipeline, our tool also records all steps performed,
which can be obtained via command line or downloading respective
information in web app.

Regarding enrichment analysis, we observed that nine applica-
tions incorporate enrichment analysis within their workflows. Perseus,
MsPypeline, ProStar39, ProteoSign40, Tidyproteomics41, protti42, and
AlphaPeptStat support ORA, though Perseus requests the downloadof
target databases and other tools present a restricted number of
databases.On the other hand, DEP andTidyProteomics primarily focus
on GSEA, with DEP offering the most extensive array of libraries by
coupling enrichment functions to Enrichr. In linewith DEP, OmicScope
harnesses the vast resource of 224 databases available in Enrichr to
perform ORA and Gene Set Enrichment Analysis (GSEA) algorithms.
Beyond the analysis itself, OmicScope offers a set of innovative
visualization features, including network analysis, heatmaps, and dot
plots. These visualization tools serve a dual purpose: they enhance the
presentation of enrichment analysis statistics and incorporate protein
fold-change data, hereby integrating proteomics with enrichment
results and providing system-level information.

In addition to the conventional proteomics workflow, the inte-
gration of results with independent and orthogonal datasets has
emerged as a valuable strategy to mitigate false discovery rates22.
While the Perseus workflow stands out for its capacity to facilitate
multi-study andmulti-omics comparisons, other evaluated tools often
require the use of third-party software and packages to perform
additional analyses. OmicScope introduces the Nebula module, spe-
cifically designed for multi-study comparisons. Nebula presents inno-
vative visualization strategies, facilitating an overall view and pairwise
comparisons of target studies. By introducing UpSet plots and circular
plots, Nebula addresses limitations of traditional methods, such as
Venn diagrams, providing insights into overlapping proteins between
datasets and the corresponding fold changes observed in each study.
Additionally, Nebula workflow extends to network analysis for group
comparisons, featuring statistical analysis and similarity indices that
highlight relationships between target studies. Despite being designed
to handle proteomics datasets, we showed that Nebula also takes
advantage of using other omics strategies, such as transcriptomics.

To cater to the diverse community of proteomics researchers,
several software tools incorporate a Graphical User Interface (GUI)
alongside their primary packages, ensuring accessibility for users
across a range of technical backgrounds. Similarly, OmicScope pro-
vides both a Python package and a web application for running
OmicScope, EnrichmentScope, and Nebula modules. While working
with Python package, OmicScope provides flexibility by facilitating
integration with other pipelines and allowing developers to contribute
updates to input formats and algorithms. On the other hand, the
OmicScopeweb application assists newcomers inproteomics andnon-
programmers by providing the interactivity necessary for data analysis
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and interpretation, utilizing a clean graphical interface to execute
proteomics workflows. Furthermore, both the web application and
Python package support data export in various formats, including
tables containing all information required for generating figures and
graphMLfiles that enable network visualization in third-party software,
such as Cytoscape43.

In conclusion, OmicScope has been carefully designed to assist
experimentalists in analyzing and interpreting proteomics datasets.
Future updates may focus on addressing specific quantitative inqui-
ries, such as co-expression networks analysis and dose-response
experiments. Our tool aims to support proteomics researchers in
tackling complex biological questions and understanding molecular
pathways associated with various disorders. OmicScope is accessible
as an open-access resource at https://OmicScope.ib.unicamp.br/ and
can be downloaded from the PyPI repository for convenience.

Methods
OmicScope architecture and user interface
OmicScope is developed in Python (v. 3.11) and distributed in Pypi
repository (https://pypi.org/project/omicscope/) under MIT license.
The OmicScope pipeline comprises three modules: OmicScope,
EnrichmentScope, and Nebula (Fig. 1), designed to handle differential
expression analysis, enrichment analysis, and multi-study compar-
isons, respectively. Documentation and step-by-step usage can be
found in https://omicscope.readthedocs.io/en/latest/.

Thewebapplicationwasdevelopedusing theStreamlit framework,
leveraging the OmicScope package in the background. Interactive fig-
ures were developed separately using Altair v.444 and the Vega visuali-
zation grammar. Step-by-step instructions for using theweb application
are provided in the Supplementary material and https://omicscope.ib.
unicamp.br/, covering both OmicScope and Nebula workflows.

Study design and data collection
For our study, we utilized previously published COVID-19 datasets
to run the OmicScope pipeline. Crunfli et al.25 (PXD023781) per-
formed label-free quantitative proteomics on Progenesis QI for
Proteomics, evaluating 2,278 proteins in post-mortem brain tissue
from COVID-19 patients. They identified 735 proteins as differen-
tially regulated (pAdjusted <0.05, Source Data). This biological
relevant dataset served as a demonstration for a single analysis in
OmicScope, showcasing its ability to handle quantitative pro-
teomics data, generate publication-ready figures, and perform
enrichment analysis. To evaluate OmicScope’s performance on
larger datasets, we applied our workflow to a benchmark dataset
supplied by Demichev, and the corresponding results can be found
in Supplementary Fig. 2. Demichev applied Frag-Pipe and DIA-NN
methodologies to analyze data initially published by Meier. Meier’s
study involved spiking 15 ng and 45 ng of Yeast digest into Hela
background, aiming to find DRPs coming from Yeast proteome
(PXD017703). Finally, we evaluated our longitudinal analysis work-
flow using a dataset provided by Grossegesse, which examines the
impact of SARS-CoV-2 at four distinct time points31 (PXD024883).

To showcase the capabilities of the Nebula module, we combined
Crunfli’s dataset with results from refs. 45,46. Nie and colleagues eval-
uated autopsied tissues from seven organs of COVID-19 patients, of
which we focused on the liver, the most affected organ according to
their findings. Additionally, Wang and colleagues assessed protein and
RNA levels in lungs from COVID-19 patients, providing differentially
regulated genes and proteins. Files related to single-study analyses or
Nebula workflows are available as supplementary files.

Input and data structure
OmicScope offers eight distinct modules for integrating external data
into its pipeline, six of which rely on widely-used proteomic software
for protein identification and quantitation: Progenesis Qi for

Proteomic® PatternLab V13, MaxQuant12, Proteome Discoverer®, Frag-
Pipe, and DIA-NN14. For alternative sources, the General and Snapshot
methods support data importing, with Snapshot offering a more
concise file format with limited information. Additionally, our import
methods categorize raw data into three primary matrices: assay (pro-
tein abundances), phenotype data (metadata or pdata), and raw data
(protein information). Users also have the option to independently
import pdata into the workflow, replacing raw pdata when necessary,
to tailor statistical analysis to specific needs. Detailed information on
input data, method specifications, and data structure can be found in
the appendix and Supplementary Data 2.

Data pre-processing and differential proteomics analysis—
OmicScope module
As part of the pre-processing steps, OmicScope can perform both data
normalization and data imputation. During normalization, our work-
flowsupports quantile,median, or average-based approaches. Fordata
imputation, we handle missing values using the median, average, or
KNNmethods. Additionally, differential proteomics analysis within the
OmicScope workflow is optional, contingent on input data. In cases
where p value information is absent, OmicScope prior calculates
average protein abundances among biological replicates and filters
proteins detected in all conditions. By default, OmicScope applies
log2-transformation for statistical tests.

OmicScope conducts two data analysis pipelines based on
experimental design: static and longitudinal. In the static approach, it
performs t-tests or Analysis of Variance (ANOVA) for two or more
conditions, respectively. For longitudinal analysis, OmicScope adapted
the workflow proposed by Storey in 2005, employing a natural cubic
spline in a generalized linear model to model gene expression over
time19. After obtaining nominal protein p values, OmicScope corrects
for multiple hypotheses using the Benjamini-Hochberg method24. Fur-
ther details on the statistical workflow are provided in the Appendix.

Enrichment analysis—EnrichmentScope module
Enrichment analysis is an integral part of the OmicScope workflow,
handled within the EnrichmentScope module. This module employs
the GSEApy package47 to conduct two distinctmethods of enrichment
analysis: ORA and GSEA. EnrichmentScope leverages data from the
OmicScope object to query databases provided by the Enrichr API.
OmicScope currently supports Human, Mouse, Yeast, Fly, Fish, and
Worm as target organisms due to its dependency on Enrichr18.

For ORA, EnrichmentScope uses the proteins differentially regu-
lated in the OmicScope object as input, employing a hypergeometric
test against target databases. In contrast, GSEA utilizes assay data and
phenotype data to determine whether a database term is significantly
enriched at the top or bottom of a ranked list of genes based on their
differential regulation. In both cases, EnrichmentScope generates a
table containing evaluated terms, Benjamini-Hochberg-adjusted p
values, Combined Score (ORA) or Normalized Enrichment Score
(GSEA), log10-transformed p values, proteins related to each term, and
the respective regulation of each protein.

Multi-studies integration—Nebula module
The Nebula module within OmicScope facilitates the integration of
data from independent studies, allowing a meta-analysis approach to
directly comparemultiple proteomics studies. Input data for Nebula is
provided by the OmicScope and EnrichmentScope modules. While
OmicScope exports quantitative analysis, EnrichmentScope exports
both quantitative and enrichment results. The output is a text file with
omics extension, including conditions and statistical parameters
applied in the respective study. For each analysis conducted in
OmicScope, one file can be exported and later imported into Nebula.

To import data into the Nebula workflow, users must place all
exports in the same directory and import them collectively. Once
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imported, Nebula divides each file into quantitative and, where
applicable, enrichment data. DRPs are defined based on a user-defined
p value cutoff, consistently applied to all imported data. To ensure
reproducibility and consistency between OmicScope and Enrich-
mentScope outputs, Nebula remaps genes reported in Enrichment-
Scope to match the naming and format used in OmicScope data. To
compare the independent studies, Nebula uses “gene name” column to
match the information among datasets. Despite this feature being
focused primarily on proteomics data, Nebula also works with other
omics disciplines, such as genomics and transcriptomics.

Outputs
Eachmodule described above offers a unique set of visualization tools
tailored to specific analyses (see Appendix for details). In the Omic-
Scope package, figures are primarily generated using matplotlib, sea-
born, networkx, and pycirclize48 packages. In the web application,
plots are generated based on Altair and Vega libraries. This setup
allows for the export of figures in vectorized formats (e.g., SVG) and
high-resolution images. Additionally, data used to construct networks
can be exported as graphML files, compatible with network-specific
tools like Cytoscape43 and Gephi49.

Statistics and reproducibility
Our study aims to introduce a new computational tool for statistical
analyses in proteomics studies, using benchmarking datasets for eva-
luation. As such, traditional experimental design elements such as
sample size determination, exclusion criteria, randomization, and
blinding are not applicable to our study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Crunfli and benchmark datasets are deposited in the Proteo-
meXchange Consortium via the PRIDE50 partner repository (accession
no. PXD023781, PXD017703, and PXD024883). Nie and Wang datasets
can be found in supplemental material in respective publications. The
raw files used to test OmicScope, EnrichmentScope, and Nebula have
been deposited in the FigShare repository under accession code
https://doi.org/10.6084/m9.figshare.2605342951. All other data inclu-
ded in the article are provided in the Supplementary Information and
Source Data file. Source data are provided with this paper.

Code availability
The OmicScope package can be accessed on the GitHub repository at
https://github.com/guireiso/omicscope/52.
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