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Flexible neural population dynamics govern
the speed and stability of sensory encoding
in mouse visual cortex

Edward A. B. Horrocks 1 , Fabio R. Rodrigues 1 & Aman B. Saleem 1

Time courses of neural responses underlie real-time sensory processing and
perception.How these temporal dynamics changemaybe fundamental to how
sensory systems adapt to different perceptual demands. By simultaneously
recording from hundreds of neurons in mouse primary visual cortex, we
examined neural population responses to visual stimuli at sub-second time-
scales, during different behavioural states. We discovered that during active
behavioural states characterised by locomotion, single-neurons shift from
transient to sustained response modes, facilitating rapid emergence of visual
stimulus tuning. Differences in single-neuron response dynamics were asso-
ciated with changes in temporal dynamics of neural correlations, including
faster stabilisation of stimulus-evoked changes in the structure of correlations
during locomotion. Using Factor Analysis, we examined temporal dynamics of
latent population responses and discovered that trajectories of population
activity makemore direct transitions between baseline and stimulus-encoding
neural states during locomotion. This could be partly explained by dampening
of oscillatory dynamics present during stationary behavioural states. Func-
tionally, changes in temporal response dynamics collectively enabled faster,
more stable and more efficient encoding of new visual information during
locomotion. These findings reveal a principle of how sensory systems adapt to
perceptual demands, where flexible neural population dynamics govern the
speed and stability of sensory encoding.

Neural responses to sensory inputs fluctuate at sub-second time-
scales and these temporal dynamics underlie sensory processing and
perception1–4. How temporal response dynamics change may there-
fore be fundamental to how sensory systems adapt to different
perceptual demands. For example, when moving through an envir-
onment, visual inputs can change rapidly5, necessitating faster neural
processing for more immediate behavioural responses6,7. Indeed,
during locomotion mice can discriminate the direction of moving
stimuli within 300ms8, highlighting the importance of sub-second
timescale temporal response dynamics in visual perception. Whilst
previous research has identified various mechanisms within the
mouse visual system that generally enhance the encoding of sensory

inputs during locomotion6,7,9–18, heightened arousal11,19–23 and spatial
attention18,24,25, these studies have tended to focus on second(s)-long
trial spike counts, leaving fundamental gaps in our understanding of
real-time sensory processing7,9,10,16,22,26,27.

Sensory neurons can respond to external stimuli with varied
temporal dynamics, often exhibiting transient onset responses which
later settle into a sustained response2,3,28,29. These temporal dynamics
can be crucial for sensory processing4, but how temporal response
dynamics and resultant stimulus encoding can change during different
behavioural states remains understudied. One hypothesis is that dif-
ferences in responses and stimulus encoding between behavioural
states are constant over time, a time-invariant response modulation.
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Alternatively, differences in responses between states may vary over
time and exhibit altered temporal dynamics. Here, we hypothesised
that during locomotion the temporal dynamics of responses should
change to facilitate faster neural processing of behaviourally-relevant
sensory inputs.

Sensory information is also encoded through the coordinated
activity of populations of neurons, which can be characterised using
pairwise correlations30. As neural correlations can vary at fast
timescales31,32, changes in their temporal dynamicsmay be critical to the
real-time encoding of sensory inputs31. Notably, noise correlations of
spike counts in second(s)-long trials are reduced during locomotion and
states of heightened arousal in mouse primary visual cortex (V1)7,10,11,18,
and this decorrelation of population responses is thought to improve
the encoding of visual stimuli7,11. Yet how stimulus-evoked neural cor-
relations can vary across time and influence sensory encoding during
different behavioural states is not well established. Given that neural
correlations can be indicative of functional connectivity30,32–35, changes
in their dynamics could also provide insight into how stimulus-evoked
functional connectivity evolves over time to shape population respon-
ses during different behavioural states27,36–39. As both stimulus encoding
by correlated population activity and functional connectivity between
neurons are believed to be strongly dependent on behavioural
state7,11,27,39,40, we hypothesised that the temporal dynamics of pairwise
correlations should be distinct in stationary and locomotion states to
reflect this. Functionally, we predicted that changes in pairwise corre-
lation dynamics during locomotion should support rapid neural
population-level encoding of visual stimuli.

Latent variable models of large-scale neural recordings enable
investigation into population-level computations41–48. In particular,
these methods have afforded a dynamical systems approach where
population activity is treated as a time-evolving multidimensional
variable41,44,49,50, and provide insight into the intrinsic neural popula-
tion dynamics that shape sensory responses49. Understanding how
intrinsic neural population dynamics can change during different
behavioural states, and in turn how these dynamics shape population
responses to sensory inputs, should provide key insight into how
sensory systems implement flexible sub-second timescale sensory
processing.

Here, using large-scale electrophysiology (4-shank Neuropixel 2.0
probes51), we analysed the neural responses of 100 s of simultaneously
recorded neurons in mouse primary visual cortex (V1) at fast,
behaviourally-relevant timescales (10 s of ms). Our findings reveal
changes in the temporal dynamics of single-neuron firing rate
responses, correlations between neurons and latent trajectories of
population activity between stationary and locomotion behavioural
states. Functionally, changes in temporal response dynamics during
locomotion enable faster, more stable and more efficient integration
of new visual information into ongoing neural population activity.
More generally, our findings establish a principle of how neural
population dynamics flexibly adapt during different behavioural states
to govern the speed and stability of sensory encoding.

Results
We investigated the temporal dynamics of neural responses recorded
from mouse V1 during different behavioural states using large-scale
electrophysiology recordings (4-shank Neuropixel 2.0 probes51;
Fig. 1a, b; n = 5 mice; n = 1583 ‘good’ units). Individual recording ses-
sions consisted of hundreds of neurons (mean± SEM= 317 ± 40 ‘good’
units per session) spanning ~820um mediolaterally and ~700um
dorsoventrally inmouseV1 (with the exception of one recordingwhich
was performed with a single-shank probe). Mice were head-fixed and
free to run on a polystyrene wheel while we presented dot field stimuli
that moved in the naso-temporal direction with one of six visual
speeds (0, 16, 32, 64, 128, 256°/s; Fig. 1a). Stimuli were presented on a
truncated dome52 and covered a large portion of the visual field (−120°

to 0° azimuth and −30° to 80° elevation). Each stimulus lasted for 1 s,
with a 1-s grey screen inter-stimulus interval. We analysed neural
responses to visual stimuli while mice were in stationary and loco-
moting states. Trials, which we defined as 200ms pre-stimulus onset
to 800ms post-stimulus offset, were classified as locomotion if mean
locomotion speedwas >3 cm/s and remained >0.5 cm/s for >75% of the
trial. Trials were classified as stationary if mean locomotion speed was
<0.5 cm/s and remained <3 cm/s for >75% of the trial.

Single-neuron temporal dynamics are less transient during
locomotion
Single-neuron responses had more reliable temporal dynamics during
locomotion.We characterised the temporal dynamicsof single-neuron
responses based on the shapes of their smoothed peri-stimulus time
histograms (PSTHs) of spiking activity. We first found that during
locomotion, responses weremore likely to have reliable shapes across
repeated trials of the same stimuli (Stationary: 22% of responses reli-
able; Locomotion 30%;p < 0.001McNemar test for difference in paired
proportions; n = 9498 paired responses from 1563 units and 6 stimuli;
19% of responses were reliable in both stationary and locomotion
trials). This increased reliability is consistent with less variable sub-
threshold visually-evoked responses observed during locomotion12,53.
Having established that responses tend to be more reliable during
locomotion, we asked whether behavioural state simply scales the
firing rates of PSTHs or if it also alters their shape? To answer this, we
compared the temporal dynamics of reliable responses recorded in
stationary and locomotion trials.

Single-neuron responses had less transient stimulus onset
dynamics during locomotion. During stationary trials, single neurons
typically responded to visual stimulus onset with a large transient
increase in firing rate which quickly decreased, before eventually set-
tling to a lower steady-state rate (Fig. 1c–e and Supplementary Fig. 1).
By contrast, during locomotion trials firing rates tended to either
increase directly to the steady-state rate or exhibit a more gradual
decline from their initial peak. This was true even when responses had
similar steady-state firing rates in stationary and locomotion trials
(Fig. 1c—2nd example). We also found comparable differences in visual
response dynamics following stimulus offset. In stationary trials,
responses often exhibited a transient decrease in firing rate below the
baseline rate following stimulus offset, whilst in locomotion trials this
decrease was either reduced or absent (Fig. 1c–e and Supplementary
Fig. 1). We quantified these observations by fitting descriptive func-
tions (Decay, Rise, Peak, Trough or Flat; Fig. 1f) separately to the sti-
mulus onset (t = 0–0.3 s) and offset (t = 1–1.5 s) periods of each reliable
response, using the best-fitting function to classify their stimulus onset
and offset features. Responses from locomotion trials were sig-
nificantly less likely to have Peak-onset features and insteadweremore
likely to have Rise-onset features (Fig. 1g; both p <0.001, Generalised
Linear Mixed-Effects (GLME) model, effect of behavioural state; sta-
tionary: n = 2077 reliable responses; locomotion: n = 2802), reflecting
their less transient stimulus onset dynamics. During stimulus offset,
responses from locomotion trials were significantly less likely to have
Trough- or Flat-offset features (both p <0.001) but more likely to have
Decay-offset features (Fig. 1g;p <0.001), reflecting a steadier decline in
firing rate following stimulus offset.

Single-neuron responsesweremore sustainedduring locomotion.
Given the less transient features we observed in responses recorded in
locomotion trials, we quantified how sustained responses were overall
by calculating a sustainedness index that measures the ratio of the
baseline-correctedmean and peak firing rates. The index converges to
1 as themean firing rate approaches the peak firing rate and converges
to 0 for large differences between mean and peak firing rates (Fig. 1h).
Responses were significantly more sustained in locomotion trials
(Fig. 1h andSupplementaryFig. 1;Median (IQR) in stationary trials: 0.32
(0.18–0.48); locomotion trials: 0.48 (0.32–0.62); p < 0.001 Linear
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Mixed-Effects (LME)model, effect of behavioural state; n = 1807 paired
responses that were reliable in stationary and locomotion trials). This
was because while both baseline-corrected mean and peak firing rates
increased in locomotion trials,meanfiring rates increased significantly
more (Median (IQR) fractional change in mean firing rate: 2.03
(1.10–4.07); peak firing rate: 1.17 (0.73–1.72); p <0.001 Sign-rank test;
n = 1807 paired responses that were reliable in stationary and loco-
motion trials).

The changes in response dynamics we observed were also
comparable across cell types and visual brain areas. We found that
these state-dependent changes in response dynamics are similar
across different cell-types defined based on electrophysiological
characteristics54 (Supplementary Fig. 2). We also found comparable
changes in single-neuron temporal dynamics between stationary and
locomotion states across visual cortical (V1, LM, AL, RL, PM, AM) and
thalamic (LGN, LP) areas, based on our analysis of the Allen Institute’s
‘Visual Coding’ dataset55 (Supplementary Fig. 3).

Collectively, these results show that the temporal dynamics of
single-neuron responses can vary between behavioural states. During
locomotion, single-neuron responses are more reliable, have less

transient stimulus onset and offset dynamics, and havemore sustained
changes infiring rate. The effects of behavioural state on single-neuron
responses are therefore time-varying and cannot be explained solely
by a scaling of firing rates.

Changes in the temporal dynamics we observed with behavioural
state could not be explained by other behavioural factors. Differences
in response dynamics were robust to different criteria for defining
behavioural states (Supplementary Fig. 4) or removing trials with eye
movements (Supplementary Fig. 5). Response dynamics did not vary
substantially between slow and fast locomotion speeds (Supplemen-
tary Fig. 6). However, stationary trials with higher levels of pupil-
indexed arousal did produce weak effects on response dynamics
compared to locomotion trials (Supplementary Fig. 5), potentially
reflecting the intermediate nature of this state between high arousal
(locomotion state) and low arousal (stationary and constricted pupil).

Tuning for visual speed begins earlier and persists for longer
during locomotion
After establishing how single-neuron temporal dynamics can adapt to
different behavioural states, we next investigated how these changes
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affect visual stimulus encoding. We analysed how ‘tuned’ responses
were, that is, how well they distinguished stimuli moving at different
visual speeds. We hypothesised that tuning for visual speed should
emerge earlier during locomotion to meet the more immediate per-
ceptual demands during this state.We quantified the strength of visual
speed tuning across different time windows (200ms sliding window;
10ms step size) using the cross-validated coefficient of determination
(R2), which determines how reliable a tuning curve is across trial
repeats. This tuning strength metric takes values between −1 and 1,
with values greater than 0 indicating some degree of tuning for visual
speed. We classified bouts of visual speed tuning as periods where
tuning strength was both significant (using a shuffle control) and
exceeded a threshold of R2 ≥0.1 for at least five consecutive times
points (≥50ms step size). We considered a neuron to be tuned if it had
at least one bout of visual speed tuning. Using this metric, we found
that more neurons were tuned during locomotion trials (Stationary
26%; Locomotion: 38%; p <0.001 McNemar test; n = 1583 units). Next,
to investigate how tuning varied over the time course of responses
between behavioural states we considered only neurons that were
tuned in both stationary and locomotion trials (n = 344 units, 22%).

Tuning for visual speed started earlier and persisted for longer
during locomotion. Whilst tuning for visual speed tended to emerge
slowly and strengthen gradually over time in stationary trials, it often
emerged rapidly following stimulus onset in locomotion trials
(Fig. 2a–c). Overall, tuning started almost twice as early in locomotion

trials, a difference thatwas largely caused by an increase in the number
of neurons becoming tuned during the initial 200ms following sti-
mulus onset (Fig. 2d; median tuning start times in stationary trials:
180ms; locomotion trials: 100ms. p <0.001 LME model, effect of
behavioural state; n = 344units). Tuning also finished significantly later
in locomotion trials, reflecting a tendency for neurons to remain tuned
for more prolonged periods following stimulus offset (Fig. 2e; median
tuning finish times in stationary trials: 1070ms; locomotion trials:
1150ms; p < 0.001). Strikingly, neurons were on average tuned for
twice as long in locomotion trials (Fig. 2f; median tuning durations in
stationary trials: 465ms; locomotion trials: 955ms; p < 0.001). This
improved tuning for visual speed during locomotion was associated
with a large increase in the dynamic range of mean responses to dif-
ferent visual speeds (Fig. 2g; Mean ± SEM over the stimulus period:
stationary = 2.17 ± 0.11 Hz; locomotion = 4.41 ± 0.19Hz; p < 0.001; LME
model, effect of behavioural state; n = 1583 units).

Improvements in visual speed decoding during locomotion were
greatest immediately following stimulus onset. Improved visual
speed tuning enhanced our ability to decode visual speed using a
linear decoder that assumed independent neurons (Fig. 2h; p < 0.001
mixed-model ANOVA effect of behavioural state; p < 0.001 significant
interaction between behavioural state and time; n = 5 subjects).
Decodingperformance in stationary trials initially increased following
stimulus onset before dipping at ~200ms, corresponding to the
transient decrease in firing rates we observed during this period
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(Figs. 1c–g and 2a). Subsequently, performance gradually increased
over the stimulus period. By contrast, decoding performance in
locomotion trials increased rapidly to a higher sustained level fol-
lowing stimulus onset. As a result, improvements in visual speed
decoding during locomotion were not uniform over time but were
greatest ~200ms following stimulus onset, gradually declining over
the remainder of the response period (Fig. 2h, bottom panel). The
speed of visual stimulus encoding by single-neurons in mouse V1 is
therefore dependent on behavioural state.

Changes in thedynamics of pairwise neural correlations support
more efficient stimulus encoding during locomotion
Having established how single-neuron temporal dynamics and sti-
mulus tuning can be affected by behavioural state, we next focused
on the temporal dynamics of co-ordinated neural population
responses. We focused initially on the dynamics of pairwise neural
correlations which characterise functional interactions within a
population of neurons. From a stimulus encoding perspective, neural
correlations can be partitioned into signal correlations, which are
associated with correlated average responses to a varying feature of

interest (in this case visual speed), and noise correlations, which
reflect all other trial-by-trial sources of correlation30. We observed a
range of signal and noise correlations between individual pairs of
neurons whose dynamics could vary substantially between stationary
and locomotion trials (Fig. 3a). We assessed how average signal and
noise correlations varied across the response period during sta-
tionary and locomotion states.

Signal correlations strengthened andnoise correlationsweakened
during locomotion. The magnitude of signal correlations increased
almost twofold during locomotion trials, while maintaining a similar
time course to stationary trials (Fig. 3b, Mean± SEM absolute value
over the stimulus period: stationary = 0.044 ±0.000; locomotion =
0.0767 ±0.001; p < 0.001; LME model, effect of behavioural state).
This is consistent with the increased separation of mean single-neuron
responses to different visual speeds during locomotion, which was
evident in our estimates of dynamic range (Fig. 2g). Conversely, the
magnitude of noise correlations was significantly reduced overall
during locomotion (Fig. 3b; stationary = 0.096 ± 0.001; locomotion =
0.0607 ±0.001; p <0.001), in agreement with previous reports of
reduced second(s)-long spike-count noise correlations7,10,11. This was
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plots of the relationship between signal and noise correlations for an example
subject at a single time point, for stationary (top) and locomotion (bottom) trials.
We quantified the relationship using the slope of a linear regression fit. The four
quadrants in each plot correspond to the examples in (c). Colorbar scale is arbi-
trary. e Subject-mean linear regression slopebetween signal and noise correlations,
for stationary (black) and locomotion (red) trials. The triangle on the x-axis indi-
cates the time point shown in (d). Shaded regions indicate mean± SEM across
subjects (n = 5). Source data are provided as a Source Data file.
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despite locomotion being associated with increased firing rates, which
would be expected to increase noise correlations, all other factors held
constant56,57. As a result, signal correlations contributed more to
shared population activity during locomotion (Supplementary Fig. 7).

Noise correlations peaked when firing rates decreased in sta-
tionary trials. The temporal dynamics of mean absolute noise corre-
lations exhibited striking differences between stationary and
locomotion trials. Average stationary trial noise correlations initially
decreased for ~100ms following stimulus onset, similar to locomotion
trials (Fig. 3b). However, whilst noise correlations continued to
decrease to a low stable level in locomotion trials, we observed tran-
sient increases in stationary trial noise correlations ~240ms following
stimulus onset and offset. These peaks in noise correlations coincided
with the decreases in single-neuron firing rates we observed following
stimulus onset and offset in stationary trials (Fig. 3b, dashed lines),
indicating that such reductions reflect coordinated changes in neural
population activity.

How do we interpret these changes in signal and noise correla-
tions with respect to stimulus encoding? The influence of noise cor-
relations on stimulus encoding can depend on their relationship with
signal correlations30,34,58 (but see also refs. 59, 60). Assuming homo-
geneous tuning curves, if pairs of neuronswith high signal correlations
also have high noise correlations (i.e. signal and noise correlations are
themselves correlated), then these noise correlations reduce the
encoding capacity of the population of neurons (Fig. 3c). If instead
signal and noise correlations are anti-correlated, then noise correla-
tions can actually increase stimulus encoding capacity (Fig. 3c). The
relationship canbe summarisedby the slopeof a linear regressionfit to
signal andnoise correlations (Fig. 3d),wherebypositive slopes indicate
that noise correlations reduce stimulus encoding capacity. Reductions
in the slope of signal-noise correlations have been associated with
attention- and learning-based improvements in visual task
performance30,61 and have been observed with locomotion during
periods of spontaneous activity10. We examined how the relationship
between signal and noise correlations evolved over the time course of
responses to understand how neural correlations affect stimulus
encoding during different behavioural states.

Changes in the relationship between signal and noise correlations
increased stimulus encoding capacity during locomotion. During sta-
tionary trials the slope of signal to noise correlations was positive and
peaked 200–400ms following stimulus onset (Fig. 3e), corresponding
to the peak in noise correlations we observed during this period
(Fig. 3b). By contrast, in locomotion trials the slope of signal to noise
correlations was significantly lower (p = 0.027 Mixed-effects ANOVA,
effect of behavioural state; p < 0.001 significant interaction between
behavioural state and time) and close to 0 throughout. Accordingly,
when we disrupted noise correlations by shuffling trials within condi-
tions, linear decoding performance increased principally between
200–350ms in stationary trials (Supplementary Fig. 8), the same time
period that the slope of signal to noise correlations peaked (Fig. 3e).
Changes in decoding performance when disrupting noise correlations
during locomotion trials were in contrast small and largely time-
invariant.

These results demonstrate that stimulus-evoked neural correla-
tions dynamically evolve over the response period, and that beha-
vioural state can strongly influence these dynamics. As a result,
behavioural state can have time-varying effects on the efficiency of
stimulus encoding by neural populations. In stationary trials, noise
correlations dominate shared population activity (Supplementary
Fig. 7) and limit information encoding capacity for visual speed, par-
ticularly in the early period following stimulus onset (Fig. 3e and
Supplementary Fig. 8a, b). By contrast, during locomotion noise cor-
relations are both reduced inmagnitude and less correlatedwith signal
correlations, resulting in increased stimulus encoding capacity and
therefore more efficient sensory processing.

Stimulus-evoked changes in correlation structure stabilise fas-
ter during locomotion
Having established how the dynamics of correlations change over time
during different behavioural states, we next examined how correla-
tions are organised. Specifically, we focused on how stable the struc-
ture of pairwise correlationswasover the responseperiod in stationary
and locomotion trials. We characterised the structure of correlations
using pairwise correlation matrices which provide a description of
functional connectivity within a population of neurons30,33,56. Changes
in this structure therefore indicate changes in functional connectivity.
To determine how stable the structure of correlations was over time
we computed Pearson’s correlation between pairwise correlation
matrices obtained at different timepoints (temporal correlation),
separately for signal and noise correlations (Fig. 4a, b). This allowed us
to quantify how stable the structure of correlations was over the
response period independent of changes in their magnitude, with
higher temporal correlations indicatinghigher stability in the structure
of correlations.

The structure of signal correlations stabilised faster following
stimulus onset in locomotion trials. In stationary trials the structure of
signal correlations stabilised gradually over the stimulus period fol-
lowing stimulus onset (Fig. 4b, c). This reflected the slow emergence
and strengthening of visual speed tuning during stationary trials
(Fig. 2). By contrast, in locomotion trials the structure of signal cor-
relations stabilised rapidly following stimulus onset to a higher overall
level (Fig. 4b, c; p <0.01 Mixed-effects ANOVA, effect of behavioural
state; p <0.001 significant interaction between behavioural state and
time;n = 5 subjects). This is seen in the larger plateaus of high temporal
correlation values between timepoints (Fig. 4b) and reflects the earlier
and stronger visual speed tuning we observed in locomotion trials
(Fig. 2). Interestingly, in locomotion trials we also observed some
stability of signal correlation structure during the post-stimulus period
that was distinct to signal correlation structure during the stimulus
period (Fig. 4b, c), implying the presence of persistent post-stimulus
tuning for visual speed that differs from stimulus-period tuning.

Stimulus-evoked changes in the structure of noise correlations
also stabilised faster during locomotion. Noise correlation structure
was more stable within than between stimulus and post-stimulus
periods (Fig. 4b), implying that the structure of noise correlations
changes between baseline and stimulus trial epochs. Since noise cor-
relations reflect at least in part functional connectivity between
neurons30,33,56, this change in noise correlation structure indicates that
changes in visual input trigger a reorganisation of functional con-
nectivity betweenneurons. Indeed, stimulus onset and offset triggered
a transient reduction in the stability of noise correlation structure
between neighbouring time windows (Fig. 4b, c). Comparing beha-
vioural states, we found that this stimulus-evoked reorganisation of
noise correlation structure stabilised more quickly in locomotion
trials, reaching maximum stability by ~200ms, compared to ~400ms
in stationary trials (Fig. 4b, c; p =0.04 Mixed-effects ANOVA, sig-
nificant effect of behavioural state; p <0.001 significant interaction
between behavioural state and time; n = 5 subjects).

These findings demonstrate that changes in visual input trigger a
reorganisation of functional connectivity within mouse V1, and this
reorganisation stabilises faster during locomotion.

Stimulus decoding readout stabilises faster during locomotion
How stable is stimulus information over time? Given the faster stabi-
lisation of signal and noise correlation structure during locomotion,
we hypothesised that stimulus decoding may also stabilise faster. To
determine the stability of stimulus decoding between time points we
tested how well decoders trained in individual time windows gen-
eralised to other time windows. We used Linear Discriminant Analysis
(LDA) decoders that take into account correlations between neurons.
We trained individual decoders on 100ms time windows and tested
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their ability to decode visual speed fromneural activity occurring in all
other non-overlapping time windows (Fig. 4d). If decoding readout is
stable, then a decoder trained on neural activity in one time window
should be able to predict visual speed from neural activity in another
time window (e.g. solid lines in Fig. 4e) as well as a decoder that was
trained in thatwindow (dashed lines in Fig. 4e), i.e. the decoder should
demonstrate cross-time generalisation.

Visual speed decoding stabilised faster during locomotion. We
focused our attention on time periods soon after stimulus onset,
where differences in stationary and locomotion trials were most pro-
minent. In stationary trials, decoders trained on neural activity

occurring soon after stimulus onset (t = 0.1–0.2 s) generalised poorly
to neural activity in later stimulus periods and couldonly decode visual
speed slightly above chance (Fig. 4e). By contrast, decoders trained
during the sameearly timewindow in locomotion trials performedwell
predicting visual speed in later timewindows.Wequantified this cross-
time generalisation by calculating the relative performance of deco-
ders trained in the early time window with the performance of deco-
ders trained and tested in each time window independently. We found
a more than 2-fold increase in relative decoding performance in
locomotion trials (Fig. 4e inset; Mean± SEM stationary trials:
0.25 ± 0.04; locomotion trials: 0.58 ± 0.07; p = 0014 paired t-test;
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Fig. 4 | The structure of pairwise correlations and stimulus decoding stabilise
faster during locomotion. a Overview of how we assessed the stability of the
structure of signal and noise correlations over time. We calculated the linear cor-
relation coefficient between pairwise correlation matrices obtained from different
timepoints (‘temporal correlations’). Higher correlation values indicate greater
stability between two time points. Shown are pairwise signal correlation matrices
from two different time points (top panels) and the linear correlation between
them (bottom panel), for an example subject. b Matrices of the session-mean
temporal correlation values (see (a) for calculation) for all combinations of time-
points. Shown are signal (top panels) and noise (bottom panels) temporal corre-
lationmatrices for stationary (left panels) and locomotion (middle panels) trials, as
well as the difference (right panels) between them. Grey shaded regions on axes
indicate the stimulus period. The dashed line in the bottom-left panel indicates
neighbouring non-overlapping time windows. c Signal and noise temporal corre-
lation values for neighbouring, non-overlapping 200ms time windows. Plots are
equivalent todiagonal slices as indicatedby thedashed line in thebottom-leftpanel

of (b). d We trained and tested decoders (regularised LDA) in all combinations of
non-overlapping 100ms windows to see how well they generalised across time.
Shown arematrices of session-meandecoding performance for all combinations of
timepoints, for stationary and locomotion trials. e Comparison of session-mean
decoding performance for decoders trained in a single early timewindow (t =0.1 to
0.2; solid lines) compared to decoders that were trained and tested in each time
window separately (dashed lines). The solid lines represent a horizontal slice of
matrices in (b), indicated by the black arrows on the y-axis, and the dashed lines
represent the main diagonal of matrices in (b). Decoders trained in this early time
window generalised well to later stimulus periods when trained in locomotion, but
not stationary trials. Inset: session-mean relative decoding performance over the
stimulus period for decoders trained in this early time window (t =0.1 to 0.2; S
Stationary, L Locomotion). Paired two-sided t-test analysis (p =0.0137). Shaded
regions indicate mean± SEM across subjects (n = 5). Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-024-50563-y

Nature Communications |         (2024) 15:6415 7



n = 5 subjects; see also Supplementary Fig. 8c). Thus, the optimal linear
decoding readout of stimulus information from neural activity has
already begun to stabilise 100–200ms following stimulus onset in
locomotion trials, but is still continuously evolving during this period
in stationary trials.

Neural population trajectory responses have oscillatory
dynamics that are dampened during locomotion
We next examined the dynamics of neural population trajectories,
which capture shared fluctuations of activity within a population of
neurons and therefore provide insight into the underlying latent
dynamics of a neural system41,49. We performed Factor Analysis (FA) on
simultaneously recorded neurons to obtain latent factors that capture
the dominant patterns of shared population activity (Fig. 5a and Sup-
plementary Fig. 9). We analysed the temporal dynamics of multi-
dimensional latent factor responses, which we term population
trajectories. Population trajectories evolved with typical overall tem-
poral profiles during the response period: following stimulus onset
trajectories moved from a baseline steady-state to a stimulus steady-
state and then returned to the baseline steady-state following stimulus
offset (Supplementary Movie 1). We focused our analysis on the
dynamics of population trajectories between these steady-states.

Population trajectories exhibited a range of dynamical features.
Population trajectories took varied routes between baseline and sti-
mulus steady-states (Fig. 5b). These routes could be relatively direct,
with straight paths and few changes of direction, or more convoluted,
with multiple changes of direction. Notably, oscillatory and spiral
dynamics dominated many population trajectories. These dynamics
were present across subjects and inmultiple dimensions of population
activity (Fig. 5b shows example pairs of latent factors from different
subjects, see also Supplementary Movie 2). Given these dynamical
features, we developed an analysis framework that combines estab-
lished and new analysis methods to parameterise population trajec-
tories in stationary and locomotion states.

Population trajectories make more direct transitions between
steady-states during locomotion. We initially focused our analysis on
the overall path taken by population trajectories during stimulus onset
(t =0–0.5 s) and offset (t = 1–1.5 s) trial epochs. Specifically, we asses-
sed how direct the paths taken by population trajectories were
between baseline and stimulus steady-states by calculating a ratio of
the total distance travelled by a population trajectory divided by the
length of the direct path between the two steady-states. We term this
quantity the distance ratio (Fig. 5c). A distance ratio of 1 therefore
represents the most direct trajectory possible, and larger values
represent less direct trajectories. During locomotion, population tra-
jectories took significantly more direct paths between baseline and
stimulus steady states (Fig. 5d, Supplementary Fig. 10a and Supple-
mentary Movie 2; Mean± SEM distance ratios: stationary = 7.8 ± 0.8;
locomotion = 3.2 ± 0.1; p < 0.001 LME model effect of behavioural
state; 5 subjects × 6 stimuli, n = 30 trial-averaged responses per beha-
vioural state). This was due to population trajectories travelling a
similar distance in both behavioural states despite the stimulus steady-
state being ~twice as far from the baseline state in locomotion trials
(Fig. 5e; Mean ± SEM distance travelled: stationary = 22.2 ± 1.0; loco-
motion = 25.1 ± 1.0; p =0.22. Direct distance: stationary = 4.0 ±0.3;
locomotion = 8.1 ± 0.4; p <0.001). Population trajectories also made
more direct returns to the baseline state following stimulus offset in
locomotion trials (Fig. 5f, g and Supplementary Fig. 10a; Mean± SEM
distance ratios: stationary = 2.0 ±0.1; locomotion = 1.4 ± 0.0;
p <0.001). Notably, population trajectories were in general more
direct following stimulus offset, indicating that features of visual
inputs influence how population trajectories transition between dis-
tinct steady-states.

Population trajectories have reduced oscillatory dynamics during
locomotion. We next examined the temporal dynamics of population

trajectories in more detail, focusing initially on their speed and accel-
eration profiles. In both stationary and locomotion trials population
trajectories transiently accelerated following stimulus onset and off-
set, before settling to a slow trajectory speed during subsequent
steady-states (Fig. 5h and Supplementary Fig. 10b). In stationary trials,
stimulus-evoked changes in population trajectory speed were driven
by oscillatory accelerations that lasted ~500ms into the stimulus
period. By contrast, in locomotion trials, oscillatory accelerations were
dampened and population trajectories instead had a sharper speed
profile with a faster maximum speed (Fig. 5h and Supplementary
Fig. 10b; Mean ± SEM maximum speed: stationary = 8.5 ± 0.4; locomo-
tion = 10.3 ± 0.4; p <0.001; LME model effect of behavioural state;
5 subjects × 6 stimuli, n = 30 trial-averaged population trajectories per
behavioural state). More pronounced oscillatory acceleration dynam-
ics in stationary trials weremanifested as relative spectral power being
concentrated in higher frequencies (Fig. 5h inset; p <0.001 paired
t-test).

The dampened oscillatory acceleration dynamics we observed
during locomotion were associated with less oscillatory approaches
to the eventual stimulus steady-state, which we assessed by para-
meterising population trajectories using an ‘angle of approach’.
Specifically, we calculated the time-varying angle between a vector
that joined the position of a population trajectory with its eventual
stimulus steady-state and a reference vector that joined the baseline
and stimulus steady-states directly (Fig. 5i, left panel). In both sta-
tionary and locomotion trials the average angle of approach
increased sharply following stimulus onset, demonstrating that
population trajectories tend to deviate from the direct path between
baseline and stimulus steady-states early on following stimulus onset
(Fig. 5i, right panel and Supplementary Fig. 10c). Following this initial
deviation, there were clear differences between behavioural states:
whilst the average angle of approach gradually declined in locomo-
tion trials, reflecting smooth, arcing population trajectories towards
the stimulus steady-state, it fluctuated rapidly in stationary trials,
reflecting the oscillations, spirals and frequent changes in direction
taken by population trajectories in the stationary state. The more
oscillatory approaches of population trajectories in stationary trials
manifested as larger cumulative changes in the angle of approach
towards the stimulus steady-state (Mean ± SEM cumulative change in
angle: stationary = 517.0 ± 18.2; locomotion = 318.9 ± 9.5; p < 0.001;
LME model effect of behavioural state). We also observed a similar
difference between behavioural states during the stimulus offset
period (Fig. 5i, right panel and Supplementary Fig. 10d; stationary =
363.2 ± 16.0; locomotion = 220.1 ± 11.8; p < 0.001).

We also found evidence of oscillatory dynamics during stationary
trials directly in population mean spike counts, which manifest as
increased relative spectral power between 3 ~ 5 Hz (Supplementary
Fig. 11), indicating that the oscillatory dynamics are an intrinsic prop-
erty of the network during this state and not an artefact of Factor
Analysis.

Collectively, these results reveal flexible neural population
responses to changes in visual input, whose temporal dynamics depend
on behavioural state. In stationary trials, visual stimuli evoke circuitous
dynamics dominatedbyoscillationswhich eventually settle at a stimulus
steady-state. By contrast, in locomotion trials neural population oscil-
lations are strongly dampened or even absent, and population trajec-
tories make more direct transitions between steady-states.

Neural population dynamics are less tangled during locomotion
How robust are neural population dynamics to noise during different
behavioural states? Being more robust to noise may be useful to the
visual system during locomotion given that sensory inputs are
likely more dynamic. We evaluated the robustness of population
dynamics using neural population trajectory tangling49, which provides
insight into the underlying dynamics of neural population activity.
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Low trajectory tangling is indicative of a dynamical system with a
smooth underlying flow field and increased robustness to noise49. Tra-
jectory tangling is defined as the squared difference in velocity of a
population trajectory at two timepoints, divided by the squared dis-
tance between those points. Periods of high tangling thus occur when a
population trajectory exhibits large changes in velocity at nearby loca-
tions such as during sharp changes in direction (Fig. 5j, left panel). Given
the circuitous population trajectory dynamics we observed following

stimulus onset in stationary trials, compared to themore direct and less
oscillatory dynamics in locomotion trials, we hypothesised that popu-
lation trajectories would be less tangled during locomotion.

Population trajectories were less tangled during locomotion. In
stationary trials,mean trajectory tangling increased following stimulus
onset, peaking at ~400ms post-stimulus onset before gradually
declining to pre-stimulus baseline levels at ~800ms (Fig. 5j, right panel
and Supplementary Fig. 10e), showing that visual stimuli evoked a
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Fig. 5 | Population trajectories are more direct, less tangled and have reduced
oscillatory dynamics during locomotion. a We performed factor analysis on
smoothed, binned spike counts to obtain latent factors that represent shared
population variance. b Example trial-averaged population trajectory responses for
stationary and locomotion trials (t =0 to 0.5 s). Two factors are plotted at a time for
visualisation. Arrows indicate direction of travel—trajectories start at triangles and
end at circles. Dots represent 10ms time intervals. c Overview of calculation of
distance ratios as a measure of how direct population trajectory paths were.
d Scatter plot of distance ratios for trial-averaged population trajectory responses
during the stimulus onset period, for stationary and locomotion trials. Different
colours indicate different stimulus speeds. LME analysis, two-sided effect of
behavioural state. ***p = 3.75 × 10−19. eBoxplots of directdistance (left) anddistance
travelled (right) between baseline and stimulus steady-states for trial-averaged
population trajectory responses during stationary (black, ‘S’) and locomotion (red,
‘L’) trials, for the stimulus onset period. Centre white lines indicate medians, box
limits indicate upper and lower quartiles and whiskers indicate full range of data.
Grey lines represent individual stimulus speeds for each subject. LME analysis

(n = 30 paired trial-averaged responses), two-sided effect of behavioural state.
***p = 9.30 × 10−19; ns not significant, p =0.22. f Same as (d) for the stimulus offset
period. ***p = 2.77 × 10−7. g Same as (e) for the stimulus offset period. p = 1.63 × 10−17

for direct distance and p = 2.95 × 10−10 for distance travelled. hMean trial-averaged
trajectory speed (top panel) and acceleration (bottom panel) over the response
period for stationary and locomotion trials. Inset: relative power spectrum of tra-
jectory acceleration. Paired two-sided t-test on low frequency band (0–6Hz).
***p = 7.46× 10−7. i Population trajectories had less oscillatory approaches to steady-
states during locomotion trials. Left panel: illustration of trajectory angle of
approach analysis. Right panel: mean trajectory angle of approach over the
response period for stationary and locomotion trials. j Population trajectories
exhibited reduced neural tangling during locomotion trials. Left panel: examples of
trajectories with high and low neural tangling. Mean tangling values are indicated
beneath trajectories. Right panel: mean trajectory tangling over the response per-
iod for stationary (black) and locomotion (red) trials. Shaded regions
indicate mean± SEM across subjects (n = 5). Source data are provided as a
Source Data file.
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prolonged period of increased population trajectory tangling. Con-
versely, in locomotion trials, a small increase in trajectory tangling in
response to stimulus onset was followed by a rapid decline to baseline
levels within ~200ms, demonstrating that locomotion is associated
with a much faster cessation of stimulus-evoked increases in popula-
tion trajectory tangling (p = 0.003 Mixed-effects ANOVA, effect of
behavioural state; p <0.001 significant interaction between beha-
vioural state and time). We also observed similar differences in tra-
jectory tangling between behavioural states following stimulus offset
(Fig. 5j, right panel), indicating that locomotion untangles population
trajectory responses to changes in visual input.

Changes in population trajectory dynamics support improved
visual speed decoding during locomotion
How do changes in population trajectory dynamics affect stimulus
encoding during different behavioural states? Since high trajectory
tangling is associated with a reduced robustness to noise49, we rea-
soned that the tangled oscillatory dynamics in stationary trials might
limit the fidelity of visual stimulus encoding. We first examined how
population trajectory responses varied for different visual speeds in
stationary and locomotion states. Within a behavioural state, respon-
ses to different visual speeds often had similar shapes—tight spiralling
trajectories in stationary trials and smooth arcing trajectories in
locomotion trials—but evolved towards different eventual stimulus
steady states (Fig. 6a, b and Supplementary Movie 3). Indeed, simple
linear transformations could explain differences in the shapes of
population trajectory responses to different stimulus speeds, but not
between different behavioural states (Fig. 6c and Supplemen-
tary Fig. 12).

More divergent population trajectory dynamics supported
improved visual speed decodingduring locomotion. By howmuch and
when population trajectory responses to different visual stimuli
diverge is crucial to their ability to encode visual features. Population
trajectories for different visual speeds quickly began to diverge fol-
lowing stimulus onset in both stationary and locomotion trials (Fig. 6a,
b, d). In stationary trials, population trajectories for different speeds
reached their maximum divergence at ~100ms, the same time point
that they began to exhibit oscillatory dynamics. In locomotion trials,
population trajectories continued to diverge after this time point as
they carried on more arcing paths (Fig. 6d and Supplementary
Movie 3). Overall, population trajectory responses to different visual
speeds divergedmore than twice as far from each other in locomotion
trials (Mean ± SEM distance between trajectories over the stimulus
period: stationary = 2.87 ± 0.49; locomotion = 5.95 ± 0.54; p <0.001
paired t-test; n = 5 subjects). When we decoded visual speed from
population trajectories we confirmed that decoding performance
increased slowly following stimulus onset in stationary trials (Fig. 6e),
and continued to increase even after trajectories for different visual
speeds hadmaximally diverged (Fig. 6d), but while trajectory tangling
continued to decrease (Fig. 5j). By contrast, decoding performance in
locomotion trials increased rapidly to a high stable level (Fig. 6e),
reflecting the increased trajectory divergence (Fig. 6d) and rapid
reduction in trajectory tangling (Fig. 5j). Notably, the largest
improvement in decoding performancewas during the initial periodof
responses following stimulus onset (Fig. 6e; p <0.01 Mixed-effects
ANOVA, effect of behavioural state; p <0.001 significant interaction
between behavioural state and time), when population trajectories
movedwithoscillatory, tangleddynamics in stationary trials compared
to the smooth, stable, arcing population trajectories present in loco-
motion trials (Fig. 6a, b).

These findings reveal how behavioural state and stimulus features
differentially modify population trajectory response dynamics. Whilst
changes in visual speed are associated with simple linear transforma-
tions, behavioural state has a more profound effect, not easily cap-
tured by simple linear transformations. During locomotion, visual

speed-dependent transformations of population trajectory dynamics
result in stimulus-evoked steady states that aremore spreadout, which
alongside less tangled neural population dynamics, improves popula-
tion encoding of visual speed. Additionally, when we decoded visual
speed from latent factors, improvements in performance during
locomotion were most pronounced in the early time period following
stimulus onset, potentially facilitating the rapid encoding of
behaviourally-relevant visual inputs during this state.

Discussion
Using large-scale electrophysiology51 to simultaneously record from
hundreds of neurons in the primary visual cortex of awake, behaving
mice, we have shown that sensory systems can adapt during different
behavioural states by modifying the temporal dynamics of neural
responses. We observed changes in the temporal dynamics of single-
neuron firing rate responses (Figs. 1 and 2), the magnitude and struc-
ture of pairwise neural correlations (Figs. 3 and 4) and trajectories of
population activity (Figs. 5 and 6) between inactive, stationary beha-
vioural states and active states characterised by locomotion. Func-
tionally, visual speed decoding from neural population activity in
stationary states was initially weak and unstable following stimulus
onset, improving only slowly over time. Rapid motion perception of
new visual inputs may therefore be poor in this behavioural state. In
contrast, changes in temporal population dynamics during locomo-
tion mediated rapidly stabilising and accurate visual speed decoding,
reflecting the increased importance of quickly perceiving and
responding to new visual motion inputs during active movement
through an environment.

Stability of sensory coding at sub-second timescales is influenced
by behavioural state. During inactive, stationary states, stimulus onset
triggered a period of reduced stability in neural population dynamics:
single-neuron firing rates transiently increased2,4, changes in the
structure of pairwise correlations stabilised slowly and population
trajectories exhibited tangled49, oscillatory dynamics which took cir-
cuitous routes between baseline and stimulus encoding neural states.
By contrast, during locomotion, single-neurons had less transient
response dynamics, stimulus-evoked population activity rapidly
reached a stable, decorrelated state and population trajectories tran-
sitioned more directly, with less oscillations, between baseline and
stimulus-encoding neural states. These findings suggest that new
visual information, as occurs following stimulus onset, is more stably
integrated into ongoing neural population activity during locomotion.
Indeed, thedecoding readout of visual information fromV1population
activity stabilised rapidly following stimulus-onset during locomotion,
but continuously evolved during stationary states (Fig. 4d, e). This
stabilised sensory representation in V1 may facilitate the transmission
of visual information to downstream areas during active behavioural
states.

Oscillatory dynamics dominate neural population trajectory
responses to visual stimuli during stationary states, but are dampened
during locomotion. Previous research has identified the presence of
oscillations in motor cortex neural population dynamics, even in the
absence of rhythmic movements62. The moving dot field stimuli we
used in these experiments similarly lack overt oscillatory properties,
suggesting that the oscillatory neural population dynamics we
observed are a result of intrinsic network properties. Moreover, neural
population oscillations were independent of visual stimulus speed and
contingent on behavioural state, further ruling them out as a trivial
result of visual stimulation. Similarly to primate motor cortex62,63,
single-neuron responses in mouse V1 were heterogeneous and often
had multiphasic dynamics in stationary trials (Fig. 1c–e). Yet the co-
ordinated neural population oscillations we observed are not readily
inferred from these single-neuron responses. Indeed, oscillatory
dynamics were present in many latent factors, including those that
represented the strongest modes of shared population activity
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(Fig. 5b), demonstrating that they are a dominant feature of neural
population responses in mouse V1 during stationary states.

Increased oscillatory dynamics were also apparent in population
mean spike counts during stationary trials in the form of increased
relative spectral power between 3 ~ 5 Hz (Supplementary Fig. 11). Pre-
vious analyses of local field potentials (LFP) and membrane potentials
in mouse V1 have shown that 3 ~ 5Hz power increases are associated
with reduced visual task performance or task disengagement18,64,65, as
well as potentially immobility and low arousal more generally66 (but
see ref. 64). This is in agreement with our findings that latent popu-
lation trajectory oscillations are associated with poorer neural
encoding of visual speed and occur during stationary states. The
dampingof thesepopulationoscillationsduring locomotion reflects to
some extent the less transient and more sustained stimulus-evoked

firing rates we observed in this state. These findings establish that
behavioural state has a profound influence on the latent dynamics of
neural population responses in mouse V1.

Changes in functional connectivity may mediate state-dependent
neural population dynamics. Responses from stationary and locomo-
tion trials differed most strikingly between 100 ~ 500ms following
stimulus onset, a period of time where top-down interactions may
dominate43. Top-down and recurrent functional connectivity has been
hypothesised to be strongly dependent on behavioural state27,39,40 and
to play a prominent role in the temporal dynamics of neural activity
following the initial stimulus onset response2,3,67. An array of visual and
non-visual areas convey diverse top-down neural signals17,40,68–73, which
can alter functional connectivity within V127,36–39,74, consistent with the
changes in neural correlations between stationary and locomotion

a

0

8

Di
st

an
ce

 b
et

w
ee

n
s�

m
ul

us
-m

ea
n 

tr
aj

ec
to

rie
s

1.8-0.2
Time (s)

d

0.1

0.8

De
co

di
ng

 p
er

fo
rm

an
ce

1.8-0.2
Time (s)

e

Fa
ct

or
 3

Fa
ct

or
 1

Factor 2

t = -0.2 to 0.3s t = 0.3 to 1s t = 1 to 1.8s

Locomo�on

Sta�onary

Example Subject b

Fa
ct

or
 3

t = 0 to 0.3s

Factor 1

256o/s128o/s64o/s32o/s16o/s0o/s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
sp

on
se

 S
im

ila
rit

y
(1

  -
 P

ro
cr

us
te

s d
ist

an
ce

)

S�
mulus

(st
at)

S�
mulus

(lo
co

m) Sta
te

S�
mlus a

nd

Sta
te

Differences in response

1
c t = 0 to 0.3s

Fig. 6 | More divergent population trajectories support improved visual speed
decodingduring locomotion. a Trial-averaged population trajectory responses to
all stimulus speeds presented, for an example subject. Population trajectories for
stationary (top panels) and locomotion (bottom panels) trials are shown, split by
trial epoch. The first three latent factors (representing the most shared variance)
are plotted for visualisation. Triangles and circles mark the start and end of a
trajectory. b Example single-trial trajectories from stationary (top panel) and
locomotion (bottom panel) trials (10 randomly selected trials for 16°/s and 64°/s)
for the same example subject as in (a). Two latent factors are plotted for visuali-
sation. c Procrustes similarity (rigid shape analysis) of population trajectory

responses (t =0 to 0.3 s) to different stimulus speeds (‘Stimulus’) and during dif-
ferent behavioural states (‘State’). Each data point represents a pair of trial-
averaged responses from a subject. d Mean distance between trial-averaged tra-
jectory responses to the six stimulus speeds presented, for stationary (black) and
locomotion (red) trials. e Subject-mean decoding performance (regularised LDA)
over the response period (50ms sliding window; 10ms step size) using population
trajectory responses from stationary (black) and locomotion (red) trials. Shaded
regions indicate mean± SEM across subjects (n = 5). Source data are provided as a
Source Data file.
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states that we observed. Faster stabilisation of neural correlations and
reduced trajectory tangling during locomotion suggests that these
changes in functional connectivity strengthen intrinsic neural popu-
lation dynamics to enable more stable and noise-robust neural
responses tonewvisual input during this state. Towhat extent reduced
trajectory tangling during locomotion in mouse V1 is related to
untangled population activity inmousemotor cortex remains an open
question49. Future research should be able to disentangle how
between-area interactions shape neural population dynamics during
different behavioural states using experiments combining multi-area
recordings and population-level analyses42,43,75,76, alongside spatially
and temporally targeted perturbations of neural activity40,77.

What is the function of transient onset responses in stationary
states? The peak in noise correlations following stimulus onset in
stationary trials was aligned with signal correlations, increasing the
redundancy of population coding for visual speed30. Our analysis of
single-neuron responses from the Allen Institute’s ‘Visual Coding’
dataset55 (Supplementary Fig. 3), as well as previous findings31, suggest
that this early redundant population response may be widespread in
the mouse visual system, and is associated with a peak in inter-area
fluctuations31. It may function to signal only limited features of visual
input4,31 (for example detecting a change in visual input rather than
real-time stimulus feature coding), perhaps to economise sustained
stimulus-evoked firing rates, whilst locomotion accelerates the real-
time encoding of visual motion at the expense of elevated firing rates.

The decorrelation of population responses has been proposed to
contribute to improved sensory encoding during locomotion and
active behavioural states7,10,11,18. Our results suggest that the disruptive
effects of noise correlations on stimulus encoding during stationary
states are time-dependent and occur primarily 200 ~ 400ms following
stimulus onset in mouse V1 (Fig. 3e and see also Supplementary
Fig. 8a, b). Notably, the benefits of removing noise correlations (by
shuffling trials) on linear decoding of visual speed performance scaled
with population size in both stationary and locomotion trials, indi-
cating that information-limiting correlations are present in both
behavioural states (Supplementary Fig. 8a, b)59,60,78. Precisely how
behavioural state influences the magnitude and temporal dynamics of
information-limiting correlations with respect to sensory encoding
remains an important open area of research.

Changes in noise correlations between behavioural states cannot
be explained by non-specific secondary factors. While noise correlations
are known to be modulated by many factors56,57, our results cannot be
explained by them. Firstly, whilst noise correlations generally increase
with firing rates, we observed a decrease in noise correlations during
locomotion, when firing rates were higher. Moreover, noise correlations
exhibited a pronounced peak at ~240ms following stimulus onset in
stationary trials, concurrent with decreases in firing rates from their
initial transient peaks. Secondly, neurons in mouse V1 are tuned to
locomotion speed79 and covarying responses to changes in locomotion
speed should also increase the magnitude of noise correlations during
locomotion. The reduction in noise correlations during locomotion can
therefore be interpreted as being despite these two secondary factors.
Finally, spike-sorting errors are known to affect estimates of noise cor-
relations, but we compared the same neuronal pairs in stationary and
locomotion states, precluding this from biasing our results.

Our findings are consistent with a range of inputs to mouse V1
contributing to changes in temporal dynamics. Neurons in mouse V1
have depolarised and less variable restingmembranepotentials during
locomotion, which depends on neuromodulatory and thalamic
inputs12,53,66. Altered intrinsic membrane properties could conceivably
contribute to the state-dependent firing rate and emergent population
dynamics we observed here. Thalamic neurons transition from bursty
to tonic firing modes during locomotion10,15,66, akin to the transition
from transient to sustained response dynamics we observed in mouse
V1. Moreover, thalamic inputs are necessary for subthreshold

membrane potential oscillations in V1 neurons66, indicating that tha-
lamic inputs may play a key role in modifying temporal response
dynamics in mouse V180. In stationary trials, noise correlations exhib-
ited a pronouncedpeakat ~240ms following stimulus onset, alongside
the suppression of firing rates from their initial transient peaks. Since
noise correlations reflect shared functional connectivity30,33–35,56, this
peak in noise correlations may be a manifestation of a suppressive
feedback input into mouse V1 that regulates V1 firing rates. Multiple
neuromodulatory systems innervate mouse visual cortex and display
co-ordinated changes in activity during arousal and locomotion81,82,
contributing to a number of state-dependent changes in visual cortical
activity17,37,72,73,83. In particular, cholinergic stimulation reduces noise
correlations and increases encoding efficiency in mouse V1 by redu-
cing the alignment of noise correlations with signal correlations84, as
we observed during locomotion (see also ref. 72). A complex interplay
of factors are therefore likely to contribute to state-dependent tem-
poral dynamics in mouse V1.

To what extent canwe disentangle the effects of different aspects
of behavioural state? The multitude of mechanisms underlying state-
dependentmodulation of neural activity reflect that behavioural states
consist of a complex mixture of self-motion and cognitive state vari-
ables. Dissociating their effects is a key challenge in behavioural
neuroscience6,11,21,85,86. Here we leveraged spontaneous locomotion
behaviour of mice to compare neural responses during inactive, sta-
tionary states and active states characterised by locomotion. Loco-
motion is also associated with a number of cognitive state changes
including increased arousal as indexed by pupil dilation10,21, which can
have distinct effects on mouse V1 activity11,21. The potentially inter-
mediate effects of heightened pupil-indexed arousal when compared
to locomotion (Supplementary Fig. 5) suggest that the changes in
temporal responsedynamicsmay link to arousal or activity levelsmore
generally, and are not necessarily specific to locomotion. Future
experiments combining detailed self-motion and physiological
measurements46,86–90 alongside neural recordings and active percep-
tual tasks will help elucidate how the various factors associated with
behavioural states influence the temporal dynamics of neural
responses and sensory perception6.

Howmight responsedynamicsflexibly change in other brain areas
with behavioural states?Our analysis of Allen Institute’s ‘Visual Coding’
dataset55 revealed comparable state-dependent changes in the
response dynamics of single-neurons in mouse higher visual cortical
areas to those we observed in primary visual cortex. This suggests
coordinated behavioural-state related changes in population response
dynamics across all visual areas. In somatosensory cortex locomotion
is associated with depolarised and less variable membrane potentials,
increased amplitude of touch stimulus-evoked single-neuron respon-
ses and reduces pairwise noise correlations19,91,92, similar to primary
visual cortex. Touch stimuli appear to evoke both transient and sus-
tained response dynamics in mouse somatosensory cortex92, and it
would be interesting to investigate their state-dependent temporal
dynamics at high temporal resolution. Whether flexible state-
dependent response dynamics such as those we have observed in
mouse visual cortex are also present in brain areas that encode dif-
ferent sensory modalities remains an important open question.

In summary, our findings establish a principle of how sensory
systems adapt to changing perceptual demands, such as during dif-
ferent behavioural states, where flexible neural population dynamics
govern the speed and stability of sensory encoding. Our results pro-
vide important constraints on modelling real-time processing of sen-
sory inputs. Moreover, whilst we have developed an analysis
framework to study temporal dynamics of visual processing in mouse
V1, our methods are readily applicable to other brain areas, sensory
modalities and species93,94. The broader application of this framework
should help to uncover further principles of sensory processing at
subsecond timescales.
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Methods
Data collection
All experiments were performed in accordance with the Animals
(Scientific Procedures) Act 1986 (United Kingdom) and Home Office
(United Kingdom) approved project and personal licences. We addi-
tionally analysed in vivo extracellular electrophysiology recordings of
eight mouse visual areas using the ‘Visual Coding’ dataset from the
Allen Institute for Brain Science55.

Experimental subjects. In recordings that we conducted, we used
C57BL/6J wild-type mice (n = 5; all female, age 9–18 weeks during
recordings) obtained at approximately 7 weeks of age from Charles
River UK Ltd. Mice were individually housed under a reversed 12-h
light/dark cycle and experiments were performed during the dark
phase of the cycle. The temperature ranged from 19–23 °C and the
humidity was 55%± 10%. Mice had free access to food and water. Sex
was not considered in our study design or analysis as it was unlikely to
be relevant to our scientific findings. Additionally we confirmed a
subset of our results in the Allen Institute for Brain Science dataset
which contains both sexes.

The Allen Institute for Brain Science dataset included recordings
from 24mice (n = 8 female, n = 16male; n = 12 wild-type C57BL/6J, n = 3
Pvalb-IRES-Cre × Ai32, n = 6 Sst-IRES-Cre × Ai32, n = 3 Vip-IRES-Cre ×
Ai32; age 15–20 weeks during recordings). These mice were kept in a
reversed 12 h light cycle between 20–22 °C at 30–70% humidity.
Experiments were performed during the dark phase of the light cycle.

Surgeries. We implanted mice with a custom stainless-steel headplate
attached to the skull to enable head-fixation. Surgeries were per-
formed under isoflurane anaesthesia (induced at 3% andmaintained at
~1.5%) and mice were allowed to recover for 7 days with analgesia for
3 days before habituation sessions began. Mice were then progres-
sively habituated to the experimental apparatus for longer time peri-
ods (5–30min) until they were perceived as comfortable locomoting
on the polystyrene wheel (6–8 sessions). Following habituation, a
craniotomy over V1 (AP = −3.5; ML = +2.5) was performed under
anaesthesia. We covered the exposed dura mater with Dura-Gel
(Cambridge NeuroTech) and then placed a protective plastic cap over
the craniotomy which we sealed with a silicone elastomer (Kwik-Cast,
WPI). Mice were allowed to recover for at least 20 h before
recordings began.

Visual stimulation. Visual stimuli were projected onto the interior
surface of a truncated dome52 (60Hz frame rate). We performed a
custom mesh-mapping procedure using Bonsai software95 to map
projector-based pixel coordinates to a visual angle-based coordinate
system. We gamma-corrected the display using standard methods.
During experiments, mice were head-fixed in the geometric centre of
the dome on top of a polystyrene wheel which they were free to
locomote on. The full display surface spanned −120° to 120° azimuth
and −30° to 90° elevation (where 0° is the horizon) of visual angle.
Stimuli were presented in the contralateral visual field to the recorded
brain hemisphere and spanned −120° to 0° azimuth and −30° to 80°
elevation.

Visual stimulation was designed and controlled with custom-
scripts using BonVision96, an open-source package for visual environ-
ment generation within Bonsai95 software. Visual stimulation consisted
of a series of trials (1 s duration) separated by a mid-grey inter-
stimulus-interval (1 s duration). Each trial consisted of a field of ran-
domly positioned full contrast and full opacity black and white circles
(2° diameter, 12.5% max density—effective density was lower due to
occlusion) over a mean luminance background. These parameters
were chosen based on previous studies8,55 and our own experiments
showing that they evoke strong responses in mouse V1. We layered
black and white circles such that they occluded each other

approximately equally. On each trial all circles moved in the naso-
temporal direction at the same visual speed, which varied randomly
between trials. We chose to vary visual speed as we believe it to be a
highly behaviourally relevant variable during locomotion. The six
visual speeds presented were 0, 16, 32, 64, 128 and 256°/s. These
speeds were chosen based on a preliminary analysis of the ‘Visual
Coding’ dataset from the Allen Institute for Brain Science55 which
showed that they evoke strong responses in mouse V1. Each visual
speed was presented between 100–200 times within a session
(mean= 155 trial repeats). A small quad which flipped between black
and white was also presented in the inferior/peripheral part of the
ipsilateral visual field to generate a photodiode signal that enabled us
to precisely measure the frame presentation times at which stimulus
presentation started and finished.

Electrophysiology recordings. We performed acute, in vivo electro-
physiology recordings using 4-shank neuropixel 2.0 probes51 (Imec) to
record from mouse primary visual cortex. In one mouse we used a
single-shank 1.0 neuropixel probe97. Data were acquired via a PXI sys-
tem (National Instruments) using SpikeGLX software. At the start of
each session a protective plastic cap sealed with a silicone elastomer
(Kwik-Cast, WPI) was removed to reveal the craniotomy site. We then
slowly lowered theprobe using amicromanipulator (uMp-4, Sensapex)
until it was positioned such that all active recording banks (2 banks
closest to the tips on each shank) were within V1. We left the probe to
settle within the brain for ~10min before recording. Only one record-
ing session was performed per subject for this stimulus set.

Alongside electrophysiology data we also recorded wheel move-
ment using a rotary encoder (05.2400.1122.1024, Kübler) to calculate
locomotion speed. We also captured video recordings of the face of
themouse using a camera (DMK27BUR0135, The Imaging Source)with
a zoom lens (MLH10X, Computar) to measure pupil dilation. Electro-
physiology, photodiode and behavioural signals were all recorded
alongside an asynchronous digital pulse generated by an Arduino
Leonardo (Arduino) microcontroller to allow for post hoc synchroni-
sation of data streams.

Allen Institute dataset. We analysed sessions where moving dot field
stimuli were presented (Functional Connectivity stimulus-set). These
recordings simultaneously targeted eight mouse visual areas (Cortical
areas: primary visual cortex (V1), lateromedial cortex (LM), ante-
rolateral cortex (AL), anteromedial cortex (AM), posteromedial cortex
(PM). Thalamic areas: dorsal lateral geniculate nucleus (dLGN), lateral
posterior nucleus (LP)) using six Neuropixel probes97. Dot fields con-
sistedof ~2003°diameterwhite dotsmoving across amean-luminance
grey background. In a given trial all the dots moved at one of seven
visual speeds (0, 16, 32, 64, 128, 256, 512°/s) and in one of four direc-
tions (−45°, 0°, 45°, 90°; where 0° is nasal to temporal motion and
positive changes indicate clockwise rotation) at 90% coherence. Sti-
muli were repeated 15 times in a random order.

For each session and stimulus condition we assessed whether at
least 10/15 trials were viewed whilst mice were in a single behavioural
state (stationary or locomotion). We used the same criteria to classify
trials as stationary and locomotion as we did for our own recordings.
Where sufficient trials were available for a given behavioural state, we
analysed those trials and discarded the remaining trials. Using this
criteria, we analysed 56,646 responses recorded in stationary trials
(3447 cells, 15 sessions) and 43,767 responses recorded in locomotion
trials (3031 cells, 12 sessions).

Data analysis
Behavioural analysis
Locomotion speed. Locomotion speed was calculated by first con-
verting rotary encoder ticks to linear distance based on the radius of
the wheel and then taking the temporal derivative of this distance
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between time bins (60Hz sampling rate). We then resampled wheel
speed into 10ms time bins and smoothed this vector using a gaussian
kernel with a 35ms standard deviation.

Pupil dilation. Pupil dilation was estimated from video frames using
DeepLabCut98. We trained a network (ResNet-50) to predict 8 equally
spaced points around the perimeter of the pupil using manually
labelled frames. For each video frame, we then used these points to fit
an ellipse (Matlab function ellipticalFit) to the pupil and calculated the
area of the ellipse as an estimate of pupil dilation. We then resampled
pupil dilation to 10ms time bins and smoothed this vector using a
gaussian kernel with a 35ms standard deviation.

Trial classification according to behavioural state. We classified
trials as ‘stationary’ and ‘locomotion’ based on locomotion speed. For
each trial we considered the time window from 200ms before sti-
mulus onset to 800ms after stimulus offset (2000ms total). Trials
were classified as stationary ifmean locomotion speed during this time
window was <0.5 cm/s and locomotion speed was <3 cm/s for >75% of
the duration of the window. Trials were classified as locomotion if
mean locomotion speed was >3 cm/s and locomotion speed >0.5 cm/s
for >75% of the window. Trials that did notmeet either of these criteria
were excluded from analysis. In each session we downsampled trial
counts such that each condition (6 stimuli × 2 behavioural states = 12
conditions) had an equal number of trials.

We classified stationary trials as low arousal or high arousal based
on pupil dilation to determine the effects of arousal on temporal
dynamics in the absence of locomotion. In each session we first cal-
culated the mean pupil dilation during the stimulus period for each
trial and then found the tertiles of this distribution. Trials with pupil
dilation lower than the first tertile were classified as low arousal and
trials with pupil dilation higher than the second tertile were classified
as high arousal. Trials with pupil dilation between these two tertiles
were not included in this analysis.

We classified locomotion trials as having ‘slow’ and ‘fast’ loco-
motion speeds todetermine the effects of locomotion speedon single-
neuron temporal response dynamics. To partition trials, we found the
quartiles of mean stimulus period locomotion speed independently
for each subject and classified ‘slow’ trials as trials with the slowest 25%
of locomotion speeds and ‘fast’ trials as trials with the fastest 25% of
locomotion speeds, in order to maximise the difference between the
two conditions.

We also tested whether our results were robust to two alternative
behavioural state criteria for classifying stationary and locomotion
trials. One criteria, ‘stricter’, was a stricter version of our main criteria
where trials were classified as stationary if wheel speed was <0.5 cm/s
throughout the 2 s trial period and as locomotion if mean wheel speed
was >3 cm/s andwheel speed was >0.5 cm/s for ≥90% of 2 s trial period.
The other criteria, ‘changepoints’, used a changepoints analysis to
classify epochs of continuous locomotion99. First, unprocessed wheel
speedwas z-scored and then smoothed using a 400ms gaussian kernel.
Initial locomotion epoch onset and offset times were then defined as
the point at which this processed wheel speed exceeded and fell under
a threshold of 0.05. We then excluded epochs with a mean locomotion
speed <3 cm/s or duration <5 s. We next added 0.5 s to each locomo-
tion epoch onset time and subtracted 0.5 s from each locomotion
offset time, adding an additional buffer to ensure we did not include
trials in which locomotion had recently begun or was about to finish,
respectively. We then classified trials as locomotion trials if they started
and finished within each epoch (i.e. the full 2 s trial period from 200ms
pre-stimulus onset to 800mspost-stimulus offset was containedwithin
a valid locomotion epoch). Reducing the ‘window length’of the analysis
from 2 s to shorter lengths and altering the z-score threshold did not
have a notable effect on classification of locomotion epochs, so we
opted to follow the parameters set out in ref. 99.

Electrophysiology post-processing and spike-sorting. We used
CatGT (SpikeGLX) toperformamodified commonaverage referencing
(global demux filter option) and align electrophysiology with asyn-
chronous pulse times for synchronisation with other data streams.

We used Kilosort 3100 to spike-sort electrophysiology data. We
then ran a series of post-processing modules55 to remove putative
double-counted spikes, label noise clusters, calculate mean spike
waveforms for each cluster and generate a series of quality metrics for
each cluster. We only analysed clusters which we classified as ‘good’
based on 3 criteria101: (1) Refractory period violations ≤10%; (2)
Amplitude distribution cut-off ≤10%; and (3) Mean amplitude ≥50uV.

Cell-type classification. We classified good clusters as three different
cell-types (pyramidal, narrow interneuron, wide interneuron) based on
their electrophysiological properties54. Specifically, clusters were clas-
sified based on the burstiness of spiking activity (measured using the
rise time of a triple exponential fit to autocorrelograms (τ), and wave-
formduration (trough-to-peak time). Clusters were classified as narrow
interneurons if their waveform duration was ≤450 µs; as pyramidal
neurons if their waveform duration was >450 µs and τ ≤6ms; and as
wide interneurons if their waveform duration was >450 µs and τ > 6ms.

PSTH responses
To obtain trial-averaged response profiles of single-neurons as a
function of time we constructed peri-stimulus time histograms
(PSTHs). We constructed PSTHs for each cell, stimulus speed, and
behavioural state separately. We first calculated spike counts in 10ms
time bins from 200ms pre-stimulus onset to 800ms post-stimulus
offset (2000ms total). We then took the mean responses across trials
and smoothed the resultant binned average response using a Gaussian
kernel with 35ms standard deviation.

PSTH reliability. We determined if PSTHs were reliable using three
criteria: (1) the firing rate range was ≥3Hz. (2) the maximum absolute
value of the z-scored PSTH was ≥3.29 (i.e. 99.9% confidence interval).
Z-scored PSTHs were calculated based on the mean and standard
deviation of firing rates during blank trials where no stimulus was
shown. (3) The PSTHpassed a cross-validation reliability threshold. For
each cross-validation iteration, we randomly split trials into two equal
sets and constructed two PSTHs (from stimulus onset to 800ms post
stimulus offset (1800ms total)). We then calculated the linear corre-
lation between the time-binnedfiring rates (spikes/s) of the twoPSTHs.
Additionally, for each cross-validation iteration we also randomly
shuffled the spike times in one set of trials and constructed a PSTH as
usual from these shuffled spike times. We then calculated the linear
correlation between the normally constructed PSTH (from one half
split of trials) and the shuffled PSTH (from the other half split of trials).
For each cross-validation iteration, we repeated this shuffling proce-
dure 40 times.We performed 25 cross-validation iterations to obtain a
distribution of 25 normal correlation estimates and 1000 shuffled
correlation estimates. We then calculated the mean and standard
deviation of the shuffled correlation distribution and used this to cal-
culate a z-score for the mean of the normal correlation distribution.
Finally, we determined a PSTH response to have a reliable shape if this
z-score value was ≤−1.645 (equivalent to p ≤0.05).

To test if there was a significant difference in the proportion of
responses that were classified as reliable in stationary and locomotion
trials we performed a McNemar test.

PSTH sorting. We sorted PSTH responses that were reliable in both
stationary and locomotion trials using a hierarchical clustering
procedure102. We performed the sorting algorithm on responses from
stationary trials and applied the resultant ordering on responses from
locomotion trials. First, we normalised the firing rates of PSTHs to
between 0 and 1. We then computed a dissimilarity matrix X(N ×N)
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(N = number of reliable responses) where X(i,j) is the distance between
PSTHi and PSTHj. As a distance measure we used Dynamic Time
Warping (DTW)with amaximum stretch value of 10 timebins (100ms)
and the time bin-summed Euclidean distance. DTW enables the align-
ment of time series with similar shapes which are otherwise not pre-
cisely aligned in time. Having obtained the dissimilarity matrix, we
performed hierarchical clustering using the unweighted average dis-
tance (Matlab function linkage). We then obtained the optimal order-
ing of PSTHs using an algorithm that minimises the sum of pairwise
distances between neighbouring leaves of a dendrogram103 (Matlab
function optimalleaforder).

PSTH onset and offset feature classification. In order to classify the
onset and offset features of PSTHs we first normalised the firing rates of
PSTHs to between 0 and 1 and extracted the onset period (0–0.3 s,
where 0 s was stimulus onset) and offset period (1–1.5 s, where 1 s was
stimulus offset) of each normalised PSTH.We then separately fit a series
of descriptive functions (Decay, Rise, Peak, Trough and Flat) to the onset
and offset periods of each PSTH using the Matlab function lsqcurvefit.

Descriptive function were Gaussian of the form:

f xð Þ= b +ae
x�uð Þ2
2σ2 ð1Þ

where b is a baseline firing rate parameter, a is an amplitude para-
meter, u is themean of the distribution and σ the standard deviation. x
represents the zero-based time bins the functions were fit over.

Different parameter bounds were used to differentiate the
descriptive functions. Decay and Rise features were described by two
functions each (with positive and negative amplitudes). Decay, Rise,
Peak and Trough features had appropriately bounded means (u). The
upper bound for the standard deviation (σ) was lower for Peak and
Trough features to ensure well definedmaxima orminima. Troughwas
differentiated from Peak by enforcing a negative amplitude (a). Flat
was primarily defined by enforcing a small amplitude parameter (a).

Additionally, Peak and Trough features required the signed peak
of the fitted function to have a prominence ≥0.2 (calculated using the
Matlab function findpeaks). Moreover if the range of the normalised
response over the onset or offset period was <0.2 (i.e. only a small
amount of firing rate modulation) the feature was classified as Flat by
default.

To test if there was a significant difference in the proportion of
reliable responses with a given onset or offset feature between beha-
vioural state we used binomial generalised linearmixed effects (GLME)
models. We fit a model for each onset and offset feature indepen-
dently. The models had the formula:

f eature∼ 1 + state+ 1jsubjectð Þ ð2Þ

where feature is a binomial response variable coding for whether a
response had (1) or didn’t have (0) a specific onset/offset feature, 1 is a
fixed intercept term, state is afixedeffects termcoding forwhether the
responsewas obtained from stationaryor locomotion trials, 1jsubjectð Þ
is a random intercept grouped by subject.

For our analysis of responses to different visual speeds, responses
of different cell-types and for responses from cells in different visual
areas we fit separate models for each speed, cell-type and visual area.

Sustainedness index. To determine how sustained PSTH responses
were, we calculated a sustainedness index based on a previously used
metric104:

sustainedness index =meanΔFR � peakΔFR ð3Þ

where meanΔFR and peakΔFR are baseline corrected mean and peak
firing rates, respectively. To calculate meanΔFR and peakΔFR we first

determined whether themean firing rate of the PSTHwas greater than
or less than the baseline rate obtained from blank trials where no
stimulus was presented. If the mean firing rate was greater than
baseline rate we calculated meanΔFR and peakΔFR by subtracting the
baseline firing rate from the mean and peak firing rate. If the mean
firing rate was less than the baseline rate (i.e. the response was sup-
pressed overall), we calculated meanΔFR and peakΔFR by subtracting
the mean and peak firing rate from the baseline rate. Using this
approach allowed us to determine how sustained a response was
regardless of whether it was excitatory or suppressed.

To determine if the sustainedness of responses was significantly
different between behavioural states we used a linear mixed-effects
(LME) model with the following formula:

values∼ 1 + state+ 1jcellð Þ+ 1jsubjectð Þ ð4Þ

where values is the response variable containing sustainedness index
values, 1 is a fixed intercept term, state is the fixed effect term coding
for whether a response was obtained from stationary (0) or locomo-
tion (1) trials, 1jcellð Þ and 1jsubjectð Þ terms are random intercepts
grouped by cell and subject.

Visual speed tuning
We assessed the tuning strength of individual neurons over time using
the cross-validated Coefficient of Determination (R2). For each 200ms
sliding window (10ms step size) we performed 3-fold cross-validation
where 2/3 of trials were randomly sampled as a training set and the
remaining 1/3 as a test set. For each iteration of cross-validation we
constructed two models using the training set: a tuning curve model
(trainedmodel) based on themean spike count response to each visual
speed and a null model calculated as the mean spike count to all visual
speeds combined. Using the test set we constructed a mean spike-
count tuning curve model (test model) in the same way as the trained
model. We then determined howwell the trainedmodel and null model
could predict the test model by calculating the sum-of-squared resi-
duals between them. The coefficient of determination was then cal-
culated with the following equation:

R2 = 1� SSmodel
SSnull

o
if SSmodel ≤ SSnull

R2 = �1 + SSnull
SSmodel

o
if SSmodel > SSnull

ð5Þ

where SSmodel is the sum of squared residuals between the trained
model and the test model and SSnull is the sum of squared residuals
between the null model and the test model.

We then computed themeanR2 value over the 3 cross-validations,
using a unique set of test trials on each iteration. We repeated this
process 10 times with different random splits of train and test trials to
obtain 10 estimates ofR2. Ourfinal estimateofR2 was taken as themean
of these 10 values. We obtained a shuffled distribution of R2 values for
eachneuronbyperforming the same3-fold cross-validationprocedure
on randomly shuffled spike counts 100 times.

We considered a neuron to be tuned during a given time interval if
R2 ≥0.1 and R2 ≥ 95th percentile of the shuffled distribution for that cell
(i.e. p ≤0.05) for at least 5 consecutive sliding windows (50ms total
step size). Tuning start times were taken as the midpoint of the first
sliding window of the first valid tuning interval. Tuning finish times
were taken as themidpoint of the final sliding window of the final valid
tuning interval. Tuning durationwas calculated as the number of 10ms
time bins that comprised all valid tuning intervals.

To test if there was a significant difference in the proportion of
cells with at least one valid tuning interval in stationary and locomo-
tion trials we performed a McNemar test.

To compare the timing of visual speed tuning we only considered
cells that were tuned in both stationary and locomotion trials.
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We testedwhether therewas a significant effect of behavioural state on
tuning start times, tuningfinish times and tuningdurations using linear
mixed-effects (LME) models with Eq. (4), where the response variable
values was valid tuning start times, finish times or durations.

Dynamic range. The dynamic range of a set of responses was calcu-
lated over a sliding window (200ms window size, 10ms step size) as
the minimum firing rate subtracted from the maximum firing rate
across mean responses to all visual speeds.

To test if there was a significant effect of behavioural state on the
dynamic range of responses we used an LMEmodel as above (Eq. (4)),
where the response variable values was the mean value of dynamic
range over the stimulus period for each cell.

Neural correlations
Partitioning correlations into signal and noise. To estimate pairwise
neural correlations we only considered neurons with mean firing rates
≥1 Hz in both stationary and locomotion trials so thatwe compared the
same pairs of neurons between the two states. This resulted in popu-
lation sizes of 87 ± 15 (mean± SEM). We calculated pairwise correla-
tions using a sliding window (200ms step size, 10ms step size),
separately for stationary and locomotion trials. For each neuron pair
wefirst calculated the total Pearson’s correlation between spike counts
across all trials. We then partitioned these correlations into signal and
noise. To estimate signal correlations we shuffled trial spike-counts
within stimulus conditions and then performed Pearson’s correlations
on these shuffled spike-counts for each neuron pair. We repeated this
process 10 times and took themeanvalue as thefinal estimate of signal
correlation. We estimated noise correlations by subtracting the signal
correlation value from the total correlation value for each neuron pair.

To assess if there was a significant effect of behavioural state on
the average amplitude of signal and noise correlations we used a linear
mixed effects (LME) model with the formula:

values∼ 1 + state+ 1jspeedð Þ+ 1jsubjectð Þ ð6Þ

where the response variable values is the mean absolute value of
pairwise signal or noise correlations during the stimulus period for
each neuron pair, 1 is a fixed intercept, state is the fixed effect term
coding for whether a response was obtained from stationary (0) or
locomotion (1) trials, 1jspeedð Þ and 1jsubjectð Þ terms are random
intercepts grouped by stimulus speed and subject.

Relationship between signal and noise correlations. We assessed
the relationship between signal and noise correlations using linear
regression, separately for stationary and locomotion trials. For each
session and time window we fit a polynomial of the form y =mx + c,
where x are signal correlations, y are noise correlations,m is the slope
coefficient and c is an offset. We used m, the slope coefficient, to
quantify the relationship between signal and noise correlations. To
assess if there was a significant effect of behavioural state and sig-
nificant interaction between behavioural state and time on the slope of
the signal to noise regression we used amixed-effects ANOVAwith the
formula:

values∼ time � state � subject ð7Þ

where the response variable values are regression slope coefficients,
time and state are fixed effects terms and subject is a random
effects term.

Stability of the structure of pairwise correlations. To assess the
stability of the structure of pairwise correlations we generated pair-
wise correlationmatrices CN ×N (whereN is the number of neurons) for
each time window, separately for signal and noise correlations. Each

element of C, Cij, is the pairwise correlation between neurons i and j.
We then computed Pearson’s correlation between all combinations of
correlationmatrices obtained fromdifferent timewindows, producing
T × T temporal correlation matrices, where T is the total number of
time windows. Each element of these matrices was Pearson’s correla-
tion value between two pairwise correlation matrices.

Because we used a sliding window (200ms window size; 10ms
step size) to calculate correlations we performed statistical analysis on
temporal correlation values for non-overlapping, neighbouring time
windows by taking the appropriate diagonal of the temporal correla-
tion matrices. To assess if there was a significant effect of behavioural
state and significant interaction betweenbehavioural state and timeon
the stability of the structure of pairwise correlations we used a mixed-
effects ANOVA with Eq. (7) where the response variable values were
temporal correlation values. We confined our analysis to the stimulus
period (midpoints between neighbouring time windows ranged from
t =0ms to t = 800ms).

For visualisation of the pairwise correlationmatrices in Fig. 4a, we
usedhierarchical clustering to order neuronpairs.Wefirst computed a
dissimilarity matrix as 1 minus the correlation values. We then sorted
the neuron pairs using the Matlab functions linkage (using the
unweighted average distance) and dendrogram. The ordering was
generated for the correlation matrix obtained at t = 800ms and
applied to the correlation matrices shown.

Factor analysis
We obtained smooth, single-trial latent trajectories of population
activity using Factor Analysis (FA), a linear dimensionality reduction
method. We opted to use FA over Gaussian-Process Factor Analysis105,
for example, so thatwe could retain control over temporal smoothing.
We used a linear dimensionality reduction method to aid interpreta-
tion of the temporal dynamics of resultant population trajectories. We
performed FA on responses to all 12 conditions together (6 speeds × 2
behavioural states), for each subject, so that we could compare
population trajectories between behavioural states and across stimuli
(e.g. Supplementary Fig. 7).

FA is defined as:

x ∼N μ, LLT +Ψ
� �

ð8Þ

where x (n × 1) is vector of spike counts from nneurons;μ (n × 1) is a set
ofmean spike counts from the same n neurons; L (m × n) is the loading
matrix which maps the m-dimensional latent variable to the spike
counts of n neurons andΨ (n × n) is a diagonal matrix of independent
neuron variance. We estimated μ, L and Ψ using expectation-
maximisation106, with code modified from the DataHigh Matlab
toolbox107. FA partitions the shared covariance of the spike counts of
a population of simultaneously recorded neurons from the indepen-
dent spike count variance of individual neurons105,108. The reduced-
dimensional latent factor space obtained using FA therefore repre-
sents the sharedpopulation variance of a populationof simultaneously
recorded neurons.

To obtain latent factors of shared population activity, we first
binned the spike times of each neuron into 10ms bins (from 200ms
pre-stimulus onset to 800ms post-stimulus offset; 2000ms total). We
excluded neurons with a mean smoothed firing rate <1Hz, resulting in
population sizes of 109 ± 16 (mean± SEM). We square root-
transformed105 and smoothed the resultant vectors using a Gaussian
kernel with a 35ms standard deviation, the same kernel we used for
PSTH responses. We then z-scored these smoothed firing rates to
prevent latent factors frombeingdominatedby a small number of high
firing rate cells. We obtained similar results irrespective of whether we
performed z-scoring or not. Todetermine the dimensionality,m, of the
latent variable for each subject we used 3-fold cross-validation to find
the value ofm which maximised the likelihood of the data108. We then

Article https://doi.org/10.1038/s41467-024-50563-y

Nature Communications |         (2024) 15:6415 16



obtained a final FA model for each subject by fitting anm-dimensional
latent factor model.

Distance measures. We analysed the paths taken by trial-averaged
population trajectories using an m-dimensional Euclidean space,
where each dimension of the space corresponded to a latent factor.

We determined how direct trial-averaged population trajectories
were between steady states by calculating a distance ratio of the
cumulative distance travelled by a trajectory between two steady-states,
divided by the direct Euclidean distance between the same two points:

Cumulative distance=
XTend

t =Tstart + 1

jxt � xt�1j
�� ��

Direct distance= jjxTend
� xTstart

jj

Distance Ratio=
Cumulative Distance

Direct Distance

ð9Þ

where xt is position of them-dimensional population trajectory at time
t, Tstart is the time at which the population trajectory left the initial
steady-state and Tend is the time at which the population trajectory
reached the final steady-state.

For the stimulus onset period Tstart was defined as t =0ms (sti-
mulus onset) and for the stimulus offset period t = 1000ms (stimulus
offset). To determine the time at which population trajectories
reached the final steady-state, Tend , we first defined the size of the
steady state as:

SSsize = max
Xt = ssend

t = ssstart

jxt � �xj
�� ��( )

ð10Þ

where xt is the position of the population trajectory at time t, ssstart and
ssend are the start and end timepoints of the steady (ssstart = 500ms and
ssend = 1000ms for stimulus onset; ssstart = 1500ms and ssend = 1800ms
for stimulus offset), �x is the mean position of the trajectory during the
steady state.

We then defined Tend in Eq. (9) as the time point at which the
population trajectory was closer to the centre of the steady state, �x,
than SSsize for ≥ 10 consecutive timewindows (200ms slidingwindow,
10ms step size). By definition Tend ≤ ssstart .

To test if behavioural state had a significant effect on these 3
distance measures we used linear mixed effects models with Eq. (6),
where the response variable values were Cumulative distance,
Distance travelled or log2 Distance Ratioð Þ.

Speed and acceleration of population trajectories. To calculate the
speed of population trajectories we took the derivative with respect to
timeof distance travelled.We then divided this value by the number of
latent factors. To calculate the acceleration of population trajectories
we took the derivative with respect to time of trajectory speed.

To test if behavioural state had a significant effect on max speed
during the stimulus onset and offset periodwe used linearmixed effects
models with Eq. (6), where the response variable values is the max tra-
jectory speed in either the stimulus onset or stimulus offset period.

We calculated the relative spectral power of trajectory accelera-
tions by generating power spectrum of acceleration vectors in the
range 0–20Hz and dividing these spectrums by theirmean value. This
produced a bimodal distribution of relative power with peaks greater
than and less than 6Hz. To determine if relative power differed in
these two frequency bands between behavioural states we performed
a paired t-test on the relative power in the low frequency range after
testing that thedifferences in pairswerenormallydistributedusing the
Anderson-Darling test.

Angle of approach of population trajectories. To calculate the angle
of approach of population trajectories we first defined a reference
vector.Wedefined the reference vector as thedirect path that joined the
mean population trajectory position in an initial and final steady-state:

ref erence vector = �x ssf inal½ � � �x ssinitial½ � ð11Þ

where �x t½ � is the mean position of the population trajectory in the time
interval t. For stimulus onset, ssinitial was defined as the pre-stimulus
period t = � 200 to0ms and ssf inal was defined as the stimulus period
t = 500 to 1000ms. For stimulus offset ssinitial was defined as the
stimulus period t = 500 to 1000ms and ssf inal as the post-stimulus
period t = 1500 to 1800ms.

We then calculated a vector that defined the instantaneous posi-
tion of the population trajectory relative to the final steady state:

population trajectory position tð Þ= �x SSf inal½ � � x tð Þ ð12Þ

We then calculated the instantaneous angle of approach of the
population trajectory relative to the reference vector:

θ tð Þ= cos�1 a � b tð Þ
aj j b tð Þ
�� �� ð13Þ

where a and b are the ref erence vector and population trajectory
position tð Þ defined above.

Changes in the angle of approach therefore capture angular
deviations away from the direct path between steady-states, as long as
they are not orthogonal to it.

We calculated the cumulative angular deviation of a population
trajectory by summing the absolute difference in the angle of
approach between neighbouring time bins:

Cumulative angular deviation=
XT
t =0

θt + 1 � θt ð14Þ

To test if the cumulative angular deviation differed significantly
between behavioural states we used a linear mixed effects model with
the Eq. (6), where the response variable values was the cumulative
angular deviation of a given population trajectory.

Population trajectory tangling. We calculated within-trajectory
neural tangling based on previously described methods49. We
defined neural tangling as:

Qwithin tð Þ= P t 0ð Þ
90

k _xt � _xt0 k2
kxt � xt 0 k2 + ε

( )
ð15Þ

where xt is the position of the population trajectory at time t, _xt is the
velocity of the population trajectory, || || is the Euclidean norm, t’
indexes the timewindows overwhich neural tangling is calculated, and
ε is a small constant which prevents division by 0. For each timepoint
we computed the neural tangling between the population trajectory at
that time point, t, at all other timepoints, t’, taking the 90th percentile
of these values, P t0ð Þ

90 f g, as the final value of neural tangling, Q(t). We
restricted t’ to a 200ms window around t (t0ϵ t � 100,t + 100½ �) to
obtain a temporally ‘local’ neural tangling value. This was to prevent
high neural tangling values being obtained from distant time periods,
e.g., between stimulus onset and stimulus offset.

To assess if there was a significant effect of behavioural state and
significant interaction between behavioural state and time on popu-
lation trajectory tangling we used a mixed-effects ANOVA with Eq. (7)
where the response variable values were neural tangling values Q(t).
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Distance between trajectories. To determine how spread out popu-
lation trajectory responses to different visual speeds were we calcu-
lated the Euclidean distance between trial-meaned trajectories for all
combinations of visual speeds and took the mean of these values. We
repeated this process for all timepoints to obtain an average inter-
trajectory distance over the duration of the response period.

To assess if there was a statistically significant effect of beha-
vioural state on inter-trajectory distance we took the average inter-
trajectory distance over the stimulus period and performed a paired t-
test on these values after testing that the distribution of differences
between stationary and locomotion trials was normally dis-
tributed using the Anderson-Darling test.

Shared population activity measures. We calculated three measures
of shared population activity109: the percent of total variance that was
shared between neurons, the dimensionality of shared variance, and
loading similarity of the first latent factor. We calculated these metrics
over time using a sliding window (200ms size, 10ms step size) by
fitting FA models to each time window independently, separately for
stationary and locomotion trials. Otherwise, FA models were fit as
described above with the exception that we did not smooth spike
counts beforehand.

Percent shared variance is the average amount of each neuron’s
variance that can be explained by other simultaneously recorded
neurons. It can be calculated by leveraging the fact that FA explicitly
partitions neural variance into a shared covariance matrix and an
independent diagonal covariance matrix.

% shared variance f or neuron i =
si

si +ψi
� 100% ð16Þ

where si is the ith valueof the shared covariancematrix diagonal andψi

is the ith value of the independent covariance matrix diagonal.
The dimensionality of shared variance is the optimal number of

dimensions needed to describe shared population activity. We esti-
mated the dimensionality of shared population activity based on
previously describedmethods108. We first used cross-validation to find
the dimensionality, m, that maximised the likelihood of data as
described above. We then estimated the final dimensionality as the
smallest number of dimensions, mopt, required to explain 95% of the
shared population variance in the m-dimensional model.

The loading similarity of the first latent factor describes how similar
neural weights are for that factor. It is bound between 0 and 1 such that
if all weights are the same, loading similarity = 1, and converges to 0 for
weights that are as different as possible. We calculated it as in ref. 109:

loading similarity uk

� �
= 1� var uk

� �
1
n

ð17Þ

whereuk is the unit vectorof neuronweights for latent factor k, var(uk)
denotes taking the variance and n is the number of neurons con-
tributing to the latent factor (i.e., the number of elements in uk).

To determine the relative contributions of noise and signal cor-
relations to shared population activity measures we computed them
separately for (1) intact correlations and (2) disrupted noise correla-
tions by shuffling trials within stimulus conditions.

To assess if behavioural state had a significant effect on any of
these metrics (with correlations intact or disrupted) we used a mixed-
effects ANOVA with Eq. (7) where values were shared variance, shared
dimensionality or loading similarity. To test whether there was a sig-
nificant interaction between behavioural state and correlation status
(intact or disrupted) we performed a separate ANOVA with correlation
status as an additional fixed effects term.

To estimate % values for the contribution of signal correlations to
each population measure we calculated what fraction of values

obtained from intactpopulation activity (signal andnoise correlations)
was obtained from disrupted population activity (just signal correla-
tions). For loading similarity, this value could occasionally be greater
than 1 (<5% of values from stationary trials and <15% of values from
locomotion trials) due to the loading similarity being higher for dis-
rupted population activity. We therefore bound all values in the
interval [0 1].

Population trajectory response similarity. To determine how similar
the shapes of population trajectory responses were to different sti-
mulus speeds and in different behavioural states we used Procrustes
analysis110 (Matlab function procrustes). Procrustes analysis finds a
linear transformation (translation, reflection, orthogonal rotation and
isomorphic scaling) that aligns a source shape Y to a target shape X by
minimising the squared distance between them. Importantly, the lin-
ear transformation preserves the internal configuration of shapes.

The transformed response of Y can be described by:

Z =bRY + c ð18Þ

whereZ is the transformed response of Y that is optimally alignedwith
X , b is an isomorphic scaling factor, R is an orthonormal matrix spe-
cifying a rotation/reflection and c is a translation vector.

After finding the optimal alignment between two population
trajectory responses, we calculated the Procrustes distance, d,
between them. dmeasures the dissimilarity between the two aligned
responses and is bounded in [0,1]. It is calculated as the sum of
squared differences between corresponding points in the target
response X and aligned response Z , normalised by the scale of X . The
scale of X is calculated as the sum of squared elements of a zero-
centred X . Because Procrustes distance is a measure of dissimilarity,
to obtain a measure of response similarity we simply subtracted d
from 1. This final measure of response similarity tended to 1 for
maximally similar aligned responses and to 0 for maximally dissim-
ilar aligned responses.

We performed Procrustes analysis on population trajectories
during the stimulus onset period (t = 0 to 300ms). We included mopt

dimensions of population trajectories after estimating the dimen-
sionality of shared population variance as described above.

Stimulus decoding
Independent-neuron decoding of binned spike counts. We decoded
visual speed from binned spike counts using regularised Linear Dis-
criminant Analysis (LDA; Fig. 2h). LDAwas performed using theMatlab
function fitdiscr to fit a ClassificationDiscriminant object. Matlab uses
LDL decomposition to compute the inverse of a positive semi-definite
matrix. To prevent 0 variance predictors, we only included neurons
with a mean firing rate ≥1 Hz. This resulted in population sizes of
110 ± 16 (mean± SEM). We performed LDA independently over time
using a sliding window (100ms window size, 10ms step size) to mea-
sure decoding performance over time. We used a diagonal covariance
matrix to force the decoder to ignore correlations between neurons.

To train and test decoders we used 3-fold cross-validation
whereby decoders were trained on mean binned spike counts from a
random 2/3 of trials (split equally between stimulus conditions) and
tested on the remaining 1/3. For each cross-validation iteration we
repeated this process 3 times with a unique set of test trials each time.
We repeated this entire process 5 times for each time window using
different random subsets of training and testing trials.

To limit overfitting, within each of these cross-validationswe used
a further 5-fold cross-validation on training trials to optimise δ,
a hyperparameter that acts as a coefficient threshold such that if a
neuron (predictor) had an LDA coefficient <δ it would be ignored as a
predictor.We used the ‘expected-improvement-per-second’ algorithm
within Matlab to perform this hyperparameter optimisation.

Article https://doi.org/10.1038/s41467-024-50563-y

Nature Communications |         (2024) 15:6415 18



We evaluated decoder performance as the fraction of held-out
test trials correctly predicted.

To assess if there was a significant effect of behavioural state and
significant interaction between behavioural state and time on stimulus
decoding using binned spike counts we used a mixed-effects ANOVA
with Eq. (7) where the response variable values was decoding perfor-
mance values.

Decoding with intact and trial-shuffled population activity. To
examine how noise correlations influenced stimulus decoding (Sup-
plementary Fig. 8) we performed regularised LDA separately using
intact binned spike counts or binned spike counts from trials that had
been randomly shuffled independently for each cell within stimulus
conditions to disrupt noise correlations.

Decoding was similar to the independent-neuron decoding of
binned spike counts described above except the decoder was allowed
to estimate the full covariance matrix, allowing it to take into account
correlations between neurons.We performed LDA independently over
time using a sliding window (100mswindow size, 20ms step size) and
restricted our analysis to the stimulus period.

To train and test decoders we used 3-fold cross-validation
whereby decoders were trained on mean binned spike counts from a
random 2/3 of trials (split equally between stimulus conditions) and
tested on the remaining 1/3. For each cross-validation iteration we
repeated this process 3 times with a unique set of test trials each time.
We repeated this entire process 3 times for each time window using
different random subsets of training and testing trials.

To limit overfitting when training decoders we used 5-fold cross-
validation to optimise two hyperparameters: δ, a hyperparameter that
acts as a coefficient threshold such that if a neuron (predictor) had an
LDA coefficient <δ it would be ignored as a predictor; and γ, a hyper-
parameter that controls the weighting of the full versus diagonal
covariance matrix:

Σγ = 1� γð ÞΣ+ γdiag Σð Þ ð19Þ

To calculate the fractional change in performance between trial-
shuffled and intact population activity we used the following equation:

ΔDecoding Perf ormance =
Perf ormanceshuf f led � chance
Perf ormanceintact � chance

ð20Þ

where chance is the chance performance of a decoder randomly
guessing which of the six visual speeds was presented (i.e., 1/6).

Cross-time decoding of binned spike counts. To perform cross-
time decoding (Fig. 5d, e) we trained and tested LDA decoders in
non-overlapping 100ms windows. To prevent 0 variance pre-
dictors, we only included neurons with a mean firing rate ≥1 Hz.
For each 100ms time window we trained a decoder on binned
spike counts using half the available trials (split evenly between
stimulus conditions, i.e. 2-fold cross-validation). We then used
that trained decoder model to predict visual speed from the
remaining trials (test trials) in all 100ms time windows. We
repeated this entire process 5 times, taking the mean of these
repeats as the decoding performance. As a result, for each 100ms
time window we obtained the performance of a decoder trained
in that time window for all time windows.

To limit overfitting when training decoders we used 5-fold cross-
validation to optimise two hyperparameters: δ, a hyperparameter that
acts as a coefficient threshold such that if a neuron (predictor) had an
LDA coefficient <δ it would be ignored as a predictor; and γ, a hyper-
parameter that controls the weighting of the full versus diagonal
covariance matrix.

To determine the relative performance of decoders trained in a
specific time window we compared its performance to decoders
trained and tested in the same time windows (i.e. training window=
testing window):

Relative Perf ormance tð Þ=

PT

i = 1
Perf train= t,test = ið Þ

� �
T � chancePT

i= 1
Perf train= i,test = ið Þ

� �
T � chance

ð21Þ

where t, is the 100ms window that a given decoder was trained in, T is
the number of non-overlapping 100ms time windows in the stimulus
period and is indexed by i, Perf is the performance of a decoder with a
given train training and testing window and chance is the chance
performance of a decoder randomly guessing which of the six visual
speeds was presented (i.e., 1/6).

To assess if there was a significant effect of behavioural state on
relative decoding performance for decoders trained in the time win-
dow (t = 100–200ms) we performed a paired t-test after testing the
differences in values between stationary and locomotion trials were
normally distributed using the Anderson-Darling test.

Random subsampling of neurons for decoding with multiple
pop sizes. When we decoded using different population sizes we
randomly sampled neurons from all neurons with a mean firing rate
≥1 Hz, independently for each repetition. The number of repetitions
was equal to the number of available neurons divided by 2. For com-
putational efficiencywe then rounded this up to the number of parallel
workers available (18). We used this high number of repetitions to
ensure that we sufficiently sampled the full distribution of decoding
performances for each population size.

Decoding of single-trial population trajectories. We decoded visual
speed from single-trial population trajectories using a sliding
window (50ms window size, 10ms step size). Decoding was per-
formed independently in each time window using LDA. In each
time window we performed 3-fold cross-validation, where a ran-
dom 2/3 of trials were assigned as training trials and the
remaining 1/3 as testing trials. To train and test decoders we used
the mean m-dimensional position (where m is the dimensionality
of the latent factor model) of the population trajectories in each
time window for all trials.

We repeated this entire process 10 times, with different random
sets of training and testing trials, and took the mean decoding per-
formance value for each time window as the final decoding perfor-
mance. We did not optimise hyperparameters since this made little
difference to results.

To assess if there was a significant effect of behavioural state and
significant interaction between behavioural state and time on stimulus
decoding using population trajectories we used a mixed-effects
ANOVA with Eq. (7), where the response variable values was decod-
ing performance.

Frequency spectrum of multi-unit activity
We calculated the frequency spectrum of multi-unit activity (MUA)
using binned spike counts.

For each trial, we binned spike times of individual cells into 10ms
non-overlapping bins from 200mspre-stimulus onset to 800mspost-
stimulus offset (2000ms total) and then calculated the mean spike
count across all cells for each bin. We then calculated the power
spectrum between 1–10Hz of the resultant binned MUA vector using
the Chronux111 Matlab function mtspectrumpb.

We then calculated the mean spectrum across trials for each
condition independently (6 stimulus speeds × 2 behavioural states = 12
conditions) and subsequently calculated the normalised power
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spectrum for each condition by dividing by the average power for each
given condition.

Probability density estimates
For visualisation purposes where a large number of data points are
plotted (e.g., Fig. 1h) we use scatter plots with individual data points
coloured by the estimated probability density of datapoints. The prob-
ability density estimates are obtained using the Matlab function ksden-
sity. The range of the colorbar is arbitrary for the purpose of
visualisation. Where one colorbar is used for multiple plots, the scale is
consistent across plots to enable comparison.

Statistics and reproducibility
A full description of statistical analyses is provided in the supplementary
materials. No statistical method was used to predetermine sample size.
No data were excluded from the analyses. The experiments were not
randomised. The Investigators were not blinded to allocation during
experiments and outcome assessment. All statistical tests are two-sided.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Minimally processed data generated in this study have been deposited
on Figshare and are available at https://doi.org/10.6084/m9.figshare.
26031226.v1. These files enable reproduction of all figures in this
publication using the code linked in the ‘Code Availability’ sec-
tion. Source data are provided with this paper.

Code availability
All original code required to reproduce the figures and analysis in this
publication are publicly available at https://github.com/eabhorrocks/
Horrocksetal24_TemporalDynamics and https://doi.org/10.5281/
zenodo.12801956.
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