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People are more error-prone after
committing an error

Tyler J. Adkins 1, Han Zhang 1 & Taraz G. Lee 1

Humans tend to slow down after making an error. A longstanding account of
this post-error slowing is that people are simply more cautious. However,
accuracy typically does not improve following an error, leading some
researchers to suggest that an initial ‘orienting’ response may initially impair
performance immediately following error. Unfortunately, characterizing the
nature of this error-based impairment remains a challenge in standard tasks
that use free response times. By exerting control over the timing of responses,
we reveal the time course of stimulus-response processing. Participants are
less accurate after an error even when given ample time tomake a response. A
computational model of response preparation rules out the possibility that
errors lead to slower cognitive processing. Instead, we find that the efficacy of
cognitive processing in producing an intended response is impaired following
errors. Following an error, participants commit more slips of action that tend
to be a repetition of the previous mistake. Rather than a strategic shift along a
single speed-accuracy tradeoff function, post-error slowing observed in free
response time tasks may be an adaptive response to impaired cognitive pro-
cessing that reflects an altered relationship between the speed and accuracy of
responses.

A longstanding finding in the field of psychology is that people
respond more slowly immediately following errors in decision-
making1,2. This phenomenon is often referred to as “post-error
slowing”3. Post-error slowing often coincides with increased
response accuracy and has thus been widely assumed to reflect an
adaptive strategic adjustment to prevent future errors. The initial
prominent accounts of this phenomenon suggested that people are
more cautious in responding after they make an error. Neural net-
workmodels explain these post-error effects in terms of a decrease in
baseline activation of a response4, and evidence accumulation
models explain these post-error effects in terms of an increase in the
threshold of evidence required to make a response5. This would all
predict that we should be more accurate after making an error as we
shift along the same speed-accuracy tradeoff curve. However, accu-
racy is quite often stable or even reduced after an error, especially
when the interval between each response and the subsequently
presented stimulus is short2,6. This has led some researchers to
instead conclude that post-error slowing is a maladaptive response

reflecting impaired processing rather than a cognitive control
adjustment aimed at improving behavior. Some researchers have
attempted to reconcile adaptive and maladaptive accounts of post-
error slowing7–11. In several of these accounts, following an error,
there is an initial transient and reflexive ‘orienting’ response toward
the source of the error that can impair or otherwise inhibit cognitive
processing. This is followed by a subsequent error-specific strategic
response that can aid performance. In a recent prominent account,
Wessel10 proposed an adaptive orienting theory whereby an unex-
pected action outcome triggers an initial automatic global inhibition
of motor and cognitive processes that is followed by error-specific
adaptive control. Unfortunately, characterizing the nature of
impairments in cognitive processing underlying post-error respon-
ses has remained a challenge in standard paradigms that use free
response times given the known challenges with evaluating speed-
accuracy tradeoffs12. It is currently unknown exactly why and for how
long accuracy is often so poor following errors, given how much
slower people are to respond.
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Post-error effects are usually examined in tasks that measure free
response times (RT) and error rates. A critical issuewith free RTs is that
they confound the cognitive processing necessary for response pre-
paration (e.g., stimulus identification and action selection) with
response initiation (i.e., emitting the motor response). Indeed, recent
work has shown that responses are accurately prepared and ready to
deploymuchmorequickly than free RTwould indicate13. Furthermore,
RT can be habitually set by prior experience and does not solely reflect
the time required for the computations necessary for the task at
hand14. This collection of work argues that preparation and response
initiation are independent motor control parameters13–15. On this view,
people not only decidewhat response to make but alsowhen to make
it. Prior studies on post-error effects do not directly distinguish
between selection and initiation in their experimental designs or in
their theoretical models. This presents a problem in that slower RTs
after errors could be due to strategic delays in response initiation
without any change in the cognitive processes underlying response
preparation per se. Although researchers have used mathematical
models such as the drift-diffusion model to attempt to tease apart
response caution frommaladaptive cognitive processing following an
error5,8, this approach fundamentally relies on fitting RT distributions
with the assumption that RT is a reliable indicator of the total duration

of cognitive processing necessary to produce a response. (Note that
although non-decision time is an estimated parameter in the drift-
diffusion model that can influence RT, it is not thought to reflect the
cognitive processing that leads to decision). Additionally, the drift-
diffusion frameworkmakes fairly strong assumptions about the nature
of the decision-making process (a single evidence accumulation pro-
cess, a static evidence accumulation rate per condition, etc.).

To address these shortcomings, we examined post-error effects
using a forced-response paradigm which controls response time and
treats processing time as an independent variable13,15. In this paradigm
(Fig. 1A), participants are cued to respond at the same time on each
trial while the onset of the target stimulus is uniformly varied in a
4-alternative forced choice stimulus–response task (Fig. 1B). This
allows us to examine post-error effects on processing per se by con-
trolling the time of response initiation to query the state of cognitive
processing as timeunfolds.We use thesedata to fit amodel thatmakes
minimal assumptions about the cognitive processes leading to a
response: (1) each stimulus leads to the preparation of the appropriate
response with some mean latency and normally distributed trial-to-
trial variability; (2) if stimulus-based response preparation is not yet
complete, participants will guess randomly; and (3) action selection
following perceptual processing is not perfect and “slips of action”
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Fig. 1 | Forced response SR task. Participants performed a stimulus–response task
(4AFC) with forced responding. A Participants were trained and cued to respond
when an empty rectangle was completely filled (at 2000ms), and the target sti-
mulus appeared at a random time between 0 and 2000ms. B Participants were
instructed to press the ‘f’ key with their left middle finger, the ‘g’ key with their left
index finger, the ‘h’ key with their right index finger, or the ‘j’ key with the left
middle finger, depending on the symbol (Experiments 1 and 2). C Response pre-
paration model used to predict participants responses as a function of the time

available for processing (orange dashed line). The model assumes that the time at
which the participant has processed the stimulus and prepared the response is
normally distributed. The probability that a response is prepared (or not) at a given
time is determined by the cumulative distribution function (CDF) of the Normal
(μ, σ). These probabilities are multiplied by weights representing the probability of
expressing the correct response given that it is prepared (β) or not (α). Summing
these products gives the probability of expressing the correct response at a
given time.
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sometimes occur16. These assumptions lead directly to four free
parameters in this model: α, the likelihood of a correct response given
no response has been prepared (i.e., guessing); μ, the average speed of
cognitive processing underlying a correct response; σ, the standard
deviation (i.e., trial-to-trial variability) of the speed of cognitive pro-
cessing; and β, the probability a correct response will be produced
when this cognitive processing is complete (i.e., the “efficacy” of
stimulus-based action selection). 1 − β is the probability that an action
slip occurs even if it is very likely that enough time has elapsed for
stimulus-based action selection to occur. (Note that the model is
agnostic as to whether action slips are due to problems at the time of
response initiation or during response preparation itself.) When
combined, these parameters can be used to predict accuracywhen the
amount of time given for stimulus–response processing is known
(Fig. 1C; see Methods for complete modeling details). In combination
with controlling the time of response initiation, this modeling frame-
work allows us to distinguish among several distinct ways in which
cognitive processing might be affected following an error. Following
an error, stimulus–response processing might be slower (Fig. 2A),
more variable (Fig. 2B), or simply less effective at producing the cor-
rect response resulting in more frequent slips of action (Fig. 2C). Each
of these possibilities wouldmap onto a quantitative change in just one
of the parameters of our model. As seen in the bottom row of Fig. 2,
simulated data from our model shows that each parameter uniquely
controls a certain aspect of a participant’s speed-accuracy tradeoff
function (e.g., slower processing coinciding with a change in μ would
shift the psychometric function to the right without affecting its slope
or asymptote).

Across four experiments (Fig. 1B), we show that accuracy is
reduced after errors, even when there is ample time to prepare a
response (up to 2 s). Ourmodeling results reveal that this effect cannot
be explained by slowed or more variable cognitive processing after an
error (i.e., more time required to select a response or trial-to-trial
variability in this processing time). Instead, the observed behavior is
due to a decrease in efficacy, or the probability of executing prepared
responses. In other words, even when the stimulus timing suggests

that a correct response is highly likely to be prepared, participants
commit more perseverative slips of action following an error. These
results suggest that the increased response caution observed in prior
studies examining post-error slowing does not simply reflect a shift
along the speed-accuracy curve but may rather be an adaptive
response to impairments in cognitive processing following an error
that coincides with an altered relationship between speed and
accuracy.

Results
Experiment 1
Following a brief training session to familiarize participants with
stimulus–response mappings and the response timing required, par-
ticipants completed 400 trials of four alternative forced-choice
stimulus–response tasks (see Fig. 1 and Methods for complete
details). Participants were required to make their responses between
1900 and 2100ms following the start of each trial, but the stimulus
presentation varied randomly between 0 and 2000ms. This approach
allowed us to investigate participants’ accuracy while tightly control-
ling the amount of time available for the cognitive processing required
to translate the stimulus information into a response.

Overall, there was strong evidence that participants were mod-
erately less likely to perform the correct response if they made an
error on the previous trial [regression coefficient (b) = −0.28, 95%
credible interval (CI) = [−0.41, −0.15], probability of direction (pd) =
1.0]. However, a sliding window analysis revealed that the effect of
previous error on accuracy depended on the amount of time avail-
able for preparation (Fig. 3a). For earlier processing times (PT <
500ms), there was no evidence for an effect of past error on future
accuracy (b = 0.06, CI = [−0.25, 0.35], pd = 0.68). For later processing
times (PT > 1000ms), there was strong evidence that participants
weremuch less likely tomake the correct response following an error
on the previous trial (b = −0.63, CI = [−0.98, −0.25], pd = 1.0).

We next characterized the observed conditional accuracy func-
tions (Fig. 3a) using a mathematical model of the underlying response
preparation processes (Fig. 1C). Specifically, we used hierarchical
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Fig. 2 | Hypothetical effects of previous error on responsepreparation. The first
row depicts the effects in terms of the underlying response preparation distribu-
tions posited by the response preparation model used in the present study. The
second row depicts the effects in terms of behavioral accuracy as a function of
preparation time. Each column represents the effect of past errors on a unique
parameter in the model. Column A depicts slower response preparation after an
error, ColumnB depicts noisier response preparation after an error, and ColumnC
depicts reduced efficacy of prepared responses after an error. Efficacy is not a

property of the underlyingdistributions but is instead aprobabilityweight assigned
to the prepared response—i.e., how likely is the participant to overtly express a
response if it has already been prepared. A decrease in efficacy can be understood
as an increase in the propensity for an action slip. Note that these parametric
changes are associated with distinct predictions about the observable conditional
accuracy functions (Row 2). (Note that these conditional accuracy functions are
simulated data generated by allowing only one parameter to vary in our model at
a time).
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Bayesian analyses to fit our response preparation model to all parti-
cipants’ data simultaneously. This analysis returns a posterior dis-
tribution over the value of each parameter in our model. Here we
report the median of the posterior distribution (M) and the 95%
credible interval (CI). This model provided very good fits to our par-
ticipants’ data across all four experiments (see Supplementary
Figs. 1 and Methods).

Overall, the expected cognitive processing time required to pre-
pare a response (μ) in this task was 523ms (CI = [502, 544]), the
variability in preparation time (σ) was 140ms (CI = [109, 175]), and the
efficacy of the prepared response (β) was 0.97 (CI = [0.96, 0.98]).
Efficacy was slightly lower after an error (Μ =0.96, CI = [0.94, 0.97])
compared to after no error (M=0.97, CI = [0.96, 0.98]. The Δβ para-
meter was negative for nearly all posterior samples, indicating that
efficacy post-error was consistently lower than efficacy following a
correct trial (Mdiff = −0.02, CI = [−0.03, −0.01], pd = 0.999; Fig. 3c).
There was no evidence that preparation speed was affected by pre-
vious errors (Mdiff = −10ms, CI = [−40, 50], pd =0.68) or that pre-
paration variability was affected by previous errors (Mdiff = −10ms,
CI = [−60, 50], pd =0.59; Fig. 3b).

Experiment 2
We conducted an exact replication of the first experiment to test the
reproducibility of the above finding that errors reduce efficacy on
subsequent trials. There was some evidence that participants were
slightly less likely to perform the correct response if they made an
error in the previous trial (b = −0.11, 95% CI = [−0.24, 0.04], pd =0.93).
However, a sliding window analysis revealed that the effect of the
previous error on accuracy depended on the amount of time available
for preparation (Fig. 3a). For later processing times (PT > 1000ms),
there was strong evidence that participants were less likely to
perform the correct response following an error on the previous trial
(b = −0.50, CI = [−0.93, −0.05], pd = 0.99). For earlier processing times

(PT < 500ms), accuracywas closer to chance levels, and therewasonly
some evidence that accuracy was higher after an error (b =0.17, CI =
[−0.08, 0.42], pd =0.91).

Next, we accounted for the observed conditional accuracy func-
tions (Fig. 4a) using a mathematical model of the underlying response
preparation processes. Overall, the expected cognitive processing
time required to prepare a response (speed, μ) was 512ms (CI = [481,
542]), the variability in preparation time (variability, σ) was 141ms
(CI = [108, 178]), and the probability of expressing a response if it is
prepared (efficacy, β) was 0.97 (CI = [0.96, 0.98]). Efficacy was slightly
lower after an error (Μ = 0.97, CI = [0.95, 0.98]) compared to after no
error (M=0.98, CI = [0.97, 0.99]. Although the credible intervals
overlapped, the Δβ parameter was negative for nearly all posterior
(MCMC) samples, indicating that efficacy post-error was consistently
lower than efficacy post-correct (Mdiff = −0.01, CI = [−0.02, −0.002],
pd =0.99; Fig. 3c). There was little evidence that preparation speed
was affected by previous errors (Mdiff = 10ms, CI = [−20, 50], pd =0.71)
or that preparation variability was affected by previous errors
(Mdiff = 30ms, CI = [−20ms, 70ms], pd = 0.84; Fig. 3b). These results
replicate the finding from Experiment 1 that errors impair subsequent
cognitive processing by reducing the efficacy of a prepared response,
thereby leading to an increase in slips of action.

Experiment 3
One possibility for why we did not observe post-error slowing of
cognitive processing in the first two experiments is because the time
between trialswas too long. Previous research has suggested thatpost-
error slowing is reduced as the duration between a stimulus and a
previous response grows7,17. We, therefore, conducted a pair of repli-
cation studies to assess whether the post-error effects observed pre-
viously depended on the duration of time between trials. Whereas
in the first two experiments, the inter-trial-interval (ITI) was 1000ms,
in the present Experiment 3, the ITI was 0ms. Overall, there was again
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Fig. 4 | Results fromExperiment 2. a Smoothed response accuracy as a functionof
preparation time and previous error. Bold lines represent smoothed means, and
ribbons represent smoothed 95% confidence intervals (i.e., standard error times
1.96). Note in the response preparationmodel, upper bound accuracy is controlled
by the efficacy parameter β. b Model-estimated probability densities representing
the time required to prepare responses following correct and incorrect trials.
Densities were computed using group-level intercepts and slopes for μ and σ. Bold
lines represent the posterior medians, and ribbons represent the 95% quantile
intervals of the posterior. c Posterior (MCMC) distribution for group-level effects of
previous error (Δ) on efficacy β. n = 33 human participants.
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Fig. 3 | Results fromExperiment 1. a Smoothed response accuracy as a function of
preparation time and previous error. Bold lines represent smoothed means, and
ribbons represent smoothed 95% confidence intervals (i.e., standard error times
1.96). Note in the response preparationmodel, upper bound accuracy is controlled
by the efficacy parameter β. b Model-estimated probability densities representing
the time required to prepare responses following correct and incorrect trials.
Densities were computed using group-level intercepts and slopes for μ and σ. Bold
lines represent the posterior medians, and ribbons represent the 95% quantile
intervals of the posterior. c Posterior (MCMC) distribution for group-level effects of
previous error (Δ) on efficacy β. n = 46 human participants.
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strong evidence that participants were less likely to perform the cor-
rect response if theymade an error on theprevious trial (b = −0.42, 95%
CI = [−0.62, −0.22], pd = 1.0). However, a sliding window analysis
revealed that the effect of previous error on accuracy depended on the
amount of time available for preparation (Fig. 5a). For earlier proces-
sing times (PT < 500ms), there was little evidence for an effect of past
error on future accuracy (b = −0.14, CI = [−0.44, 0.15], pd =0.82). For
later processing times (PT > 1000ms), there was strong evidence that
participants were much less likely to perform the correct response
following an error in the previous trial (b = −0.87, CI = [−1.20,
−0.49], pd = 1.0).

Again, we characterize the observed conditional accuracy func-
tions (Fig. 5a) using a mathematical model of the underlying response
preparation processes (Figs. 1C and 2). Overall, the expected cognitive
processing time required to prepare a response (μ) in this task was
434ms (CI = [385, 479]), the variability in preparation time (σ) was
202ms (CI = [155, 265]), and the efficacy of the prepared response (β)
was 0.94 (CI = [0.92, 0.96]). Efficacy was slightly lower after an error
(Μ =0.91, CI = [0.87, 0.94]) compared to after no error (M=0.96,
CI = [0.95, 0.97]. The Δβ parameter was negative for all posterior
samples, indicating that efficacypost-errorwas consistently lower than
efficacy post-correct (Mdiff = −0.05, CI = [−0.08, −0.03], pd = 1.0;
Fig. 5c). Therewas no evidence that preparation speedwas affected by
previous errors (Mdiff = 0ms, CI = [−50ms, 50ms], pd =0.50; Fig. 5b)
or that preparation variability was affected by previous errors
(Mdiff = −20ms, CI = [−90ms, 60ms], pd = 0.73; Fig. 5b).

Experiment 4
In this experiment, we imposed an inter-trial interval (ITI) of 2000ms.
If the post-error effects reported above were due to an orienting
response to an unexpected event6 or transient distraction (i.e., flus-
tering), then these effectsmight disappearduring a sufficiently long ITI
—however, this was not the case. Overall, there was strong evidence

that participants were less likely to perform the correct response if
they made an error in the previous trial (b = −0.23, 95% CI = [−0.43,
−0.04], pd =0.99). A slidingwindow analysis revealed that the effect of
previous error on accuracy was relatively constant across processing
times (Fig. 6a). There was evidence that participants were less likely to
perform the correct response following an error on the previous trial
for earlier processing times (PT < 500ms; b = −0.42, CI = [−0.78,
−0.10], pd = 0.995) as well as for later processing times (PT > 1000ms;
b = −0.34, CI = [−0.67, 0.04], pd = 0.97).

Again, we characterize the observed conditional accuracy func-
tions (Fig. 6a) using a mathematical model of the underlying response
preparation processes (Figs. 1c and 2). Overall, the expected cognitive
processing time required to prepare a response (μ) in this task was
434ms (CI = [396, 471]), the variability in preparation time (σ) was
214ms (CI = [175, 257]), and the efficacy of the prepared response (β)
was 0.96 (CI = [0.94, 0.97]). Efficacy was slightly lower after an error
(Μ =0.95, CI = [0.93, 0.97]) compared to after no error (M=0.97,
CI = [0.95, 0.98]. TheΔβparameterwas negative for nearly all posterior
samples, indicating that efficacypost-errorwas consistently lower than
efficacy post-correct (Mdiff = −0.01, CI = [−0.03, −0.00], pd =0.98;
Fig. 6c). There was some evidence that preparation speed was slower
after an error (Mdiff = 30ms, CI = [−10, 80], pd = 0.93; Fig. 6b) but there
was no evidence that preparation variability was affected by previous
errors (Mdiff = 0ms, CI = [−60, 70], pd = 0.54; Fig. 6b).

Next, we explored the persistence of post-error effects over time.
In particular, we examined the effect of inter-trial-interval on the post-
error effect by comparing the results fromExperiment 3 (0ms ITI)with
that of Experiment 4 (2000ms ITI) in termsof the size of thepost-error
effect on response efficacy (β) (Fig. 7b). We observe that the post-error
effect was greater in Experiment 3 (Δβ = −0.0535, CI = [−0.0802,
−0.0314]) compared to Experiment 4 (Δβ = −0.0141, CI = [−0.0312,
−0.00097]). This result suggests that although providing more time
for stimulus processing and response preparation during a trial does
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Fig. 5 | Results fromExperiment 3. a Smoothed response accuracy as a function of
preparation time and previous error. Bold lines represent smoothed means, and
ribbons represent smoothed 95% confidence intervals (i.e., standard error times
1.96). Note in the response preparationmodel, upper bound accuracy is controlled
by the efficacy parameter β. b Model-estimated probability densities representing
the time required to prepare responses following correct and incorrect trials.
Densities were computed using group-level intercepts and slopes for μ and σ. Bold
lines represent the posterior medians, and ribbons represent the 95% quantile
intervals of the posterior. c Posterior (MCMC) distribution for group-level effects of
previous error (Δ) on efficacy β. n = 47 human participants.
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Fig. 6 | Results fromExperiment4. a Smoothed response accuracy as a functionof
preparation time and previous error. Bold lines represent smoothed means, and
ribbons represent smoothed 95% confidence intervals (i.e., standard error times
1.96). Note in the response preparationmodel, upper bound accuracy is controlled
by the efficacy parameter β. b Model-estimated probability densities representing
the time required to prepare responses following correct and incorrect trials.
Densities were computed using group-level intercepts and slopes for μ and σ. Bold
lines represent the posterior medians, and ribbons represent the 95% quantile
intervals of the posterior. c Posterior (MCMC) distribution for group-level effects of
previous error (Δ) on efficacy β. n = 46 human participants.
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not eliminate post-error deficits, these post-error effectsmaydissipate
during the time between trials.

Exploring the nature of post-error processing deficits
Experiments 1–4 established that post-error deficits in performance
are not due to the slowing (Δμ) of cognitive processing underlying
response preparation or an increase in trial-to-trial variability (Δσ) in
the speed of cognitive processing. Instead, we observed more slips of
action (Δβ) at all time points where a correct response was likely to be
prepared. What could be driving this static impairment in executing
the correct response? One possibility is that people are simply biased
away from repeating a response that just resulted in an error. We
explored whether incorrect responses after an error were driven by a
response bias—that is, a tendency to avoid/repeat the same key as in
the previous trial. This analysis focused on incorrect trials for which
the preparation time was greater than 1000ms because this was the
locus of the post-error effect. We fit hierarchical Bernoulli regression
models to these data with repetition as the outcome and previous
error as the covariate. Across all four datasets, we found that people
were more likely to repeat the previous keypress after an error com-
pared to after a correct trial (Fig. 8). We found strong evidence for-
increased perseveration after an error in Experiment 1 (b = 1.03,
CI = [0.03, 1.96]), Experiment 2 (b =0.87, CI = [0.19, 1.53], Experiment 3
(b = 1.33, CI = [0.76, 1.90]), and Experiment 4 (b = 1.72, CI = [1.03, 2.43]).
It is not the case that these perseverative errors were simply due to
initial perseverative guesses, as post-error perseverationmakes up the
larger percentage of all errors at the longer PTs relative to the shorter
PTs (see Supplementary Table 1). These results suggest that an

increase in perseverative action slips following an error could at least
partly explain post-error deficits in performance.

Experiments 3 and 4 established that performance recovers
somewhatwhen there ismore time to recover froman error before the
start of the next trial. However, our participants were still more prone
to slips of action after an error when given a full two seconds between
trials.When does performance fully recover? To address this question,
we explored the persistence of post-error effects across trials. In par-
ticular, we examined the lingering effect of errors on the subsequent
two trials. We were especially interested in whether post-error effects
persisted when there was an intervening correct trial. We re-fit the
response preparation model with N − 2 error as the covariate, sepa-
rately for N − 1 correct and N − 1 error trials. For trials preceded by
a correct response (N − 1), we found little evidence for N − 2 error
effects (Exp. 1: Δβ = −0.008, CI = [−0.021, 0.001]; Exp. 2: Δβ = −0.002,
CI = [−0.013, 0.009]; Exp. 3: Δβ = −0.017, CI = [−0.036, 0.0001]; Exp. 4:
Δβ = −0.017, CI = [−0.033, −0.004]). However, for trials preceded by an
error (N − 1), we found evidence for N − 2 error effects on current trial
response efficacy (β) in Experiment 1 (Δβ = −0.024, CI = [−0.053,
−0.005) and Experiment 4 (Δβ = −0.055, CI = [−0.095,−0.024]), but not
in Experiment 2 (Δβ = −0.015, CI = [−0.040, 0.004) or Experiment 3
(Δβ = −0.033, CI = [−0.075, 0.002]). These results suggest that post-
error effects are ‘reset’ if there is an intervening correct response, but
they may persist (or even compound) if there is an intervening incor-
rect response.

Timing errors
In addition to key-press errors, participants also made timing errors
(100ms too fast or too slow) on a substantial number of trials and
received feedback to remind them to respond at the time of the
imperative cue (Exp 1—36.9% of trials; Exp 2—30.6%; Exp 3—40.3%; Exp
4—35.8%). Although including these mistimed trials does not sub-
stantially alter the behavioral or modeling results (see Supplementary
Fig. 3), it is necessary to rule out that these timing errors could be
affecting the post-error effects we observed. Across all four experi-
ments, we did not find evidence that timing errors led to an increase in
key-press errors on the subsequent trial (see Supplementary Fig. 4).
Additionally, key-press errors did not substantially affect our partici-
pants’ propensity to respond on time on the subsequent trials (no
consistent significant results following multiple comparisons correc-
tion; see Supplementary Fig. 5). These results suggest that timing
errors and key-press errors are independent of one another and that
timing errors are not significantly contributing to thepost-error effects
reported here.

Discussion
In the present study, we examined post-error effects in a
stimulus–response task in which the time available for response
preparation was manipulated. Across four experiments, we found
that participants’ response accuracy was lower if theymade an error
in the previous trial. This deficit was observed even when partici-
pants were given ample time to prepare their responses. A model-
based analysis revealed that the post-error effect on accuracy was
driven by a decrease in the probability of expressing a response
given that it was highly likely to be prepared (β). These erroneous
slips of action were predominantly perseverative repeats of the
button pressed on the previous trial. Our analyses ruled out that
the post-error effect on accuracy is due to a slowing of the cognitive
processing required to prepare a response (μ) or variability in the
latency of cognitive processing (σ). These results suggest that pre-
vious findings of post-error slowing are unlikely to be due to a
decrease in the speed of cognitive processing underlying the pre-
paration of responses to stimuli. Furthermore, our results indicate
that delaying the initiation of a prepared response in free response
time tasks could be an adaptive response to impaired efficacy of
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cognitive processing after an error rather than a strategic shift
along a single speed–accuracy curve.

Our conclusions rely on the view that response preparation and
response initiation are independent motor control parameters13–15.
People not only decidewhat response to make, they also decidewhen
to make their response. Prior studies on post-error effects do not
directly distinguish between selection and initiation, in their experi-
mental designs or in their theoretical models. One issue is that these
studies use free RT, which is a combination of the duration of time
spent selecting a response and the duration of delay after selection
before initiation. Typical models used to explain post-error effects,
such as the drift-diffusion model, are models of how people decide
what to do—i.e., response selection. However, recent work in motor
control shows that people initiate responses (in a free RT task) long
after they have prepared those same responses as revealed in a forced
RT task13. Thus, free RTs could be used to disentangle selection and
initiation only with a more complete model that also describes the
processes underlying the decision about when to initiate a selected
response. Absent such a model, an alternative approach is to control
response initiation using a forced-RT task, as in the present study.

Many studies in the past have shown that people respond more
slowly after an error2,7,18. A prominent account of these effects is that
participants are more cautious after an error7. For example, evidence
accumulation models have been used to argue that participants alter
their decision thresholds to accumulate more evidence before decid-
ing on a response5. In this view, responsesmight take longer to prepare
after an error. In the present study, we found that participants
responded less accurately after an error, even if they were given up to
two seconds to prepare their response. Contrary to some previous
accounts,we foundnoevidence that the cognitive processing required
to prepare responses occurred more slowly after an error. That is, our
estimate of the latency at which a response is prepared (μ) was unaf-
fected by errors. Our data provide evidence against the view that post-
error effects on performance are due solely to an increase in the evi-
dence required to select a particular response. From theperspective of
evidence accumulation, our forced response approach removes the
ability for our participants to select a decision threshold as they must
respond within 100ms of the ‘go’ signal. Their responses, therefore,
reflect the balance of the evidence for each response at each PT.
Despite fixing decision thresholds, we still observe maladaptive post-
error effects in the form of an increase in the propensity for action
slips. This suggests that post-error slowing and increased decision
thresholds observed in prior work might be compensating for current
impairments in processing rather than simply just a reaction to nega-
tive feedback. However, it remains possible that post-error slowing
and the erroneous perseverative responses could be independent
effects following errors.

Other researchers have similarly suggested that there are
unavoidable negative consequences to errors and unexpected
events6,8,10,11. Notebaert and colleagues6 proposed that infrequent,
surprising events might cause an ‘orienting response’ that distracts
participants from the processing of a subsequent stimulus. A similar
account, dubbed the ‘adaptive orienting theory,’ advanced the idea
that errors trigger a transient global inhibitory response that affects
both motor and cognitive function that then gives way to adaptive
cognitive processing to address the source of the error10,11. One might
assume that this inhibition would lead to a change in the latency of
cognitive processing underlying responses. Although similar in pro-
viding evidence for a maladaptive response following errors, our
results do not fully support either of these accounts. From this prior
work, one would expect that when ample time is given to make a
response, we should observe identical levels of accuracy following
both correct and incorrect responses or perhaps even increased
accuracy following errors. An orienting response and a transient inhi-
bitory response should resolve relatively quickly, and performance

should recover. Although we did find some evidence that a longer
inter-trial interval lessened the deleterious impact of errors on sub-
sequent performance (Experiments 3 and4), participants’ accuracydid
not improve when they were given up to two seconds to respond
following stimulus presentation. Purcell and Kiani observed more
slowed responses following errors at low stimulus strength in amotion
discrimination task8. Using drift-diffusion modeling of response time
distributions, theydescribed this result as a combinationof an increase
in the response threshold and a decrease in sensory signal-to-noise
ratio (SNR) following errors. This would make the preparation of
response less accurate, but also either slower or more variable. How-
ever, here we did not observe any slowing in the estimated latency (μ)
of the cognitive processing underlying responsepreparation following
an error. We also did not find evidence of any increase in variability in
the time it takes to complete this cognitive processing (σ). Instead,
regardless of the amount of time given to prepare, participants were
less accurate and were more prone to perseverative slips of action.
Although the stimulus remained on the screen until a response was
made in our task, it is possible that errors cause an initial impairment in
subsequent stimulus–response processing that cannot be corrected
online.

It is important to note that the results presented here do not rule
out the fact that, in addition to maladaptive mechanisms following an
error, there are likely to be adaptive mechanisms as well. Indeed both
behavioral and neuroscientific investigations of post-error effects in
recent years have provided evidence that errors can lead to sub-
sequent attentional enhancement of task-relevant stimuli19–21. These
studies all provided some support for the adaptive orienting account
whereby initial impairments in performance in the moments just fol-
lowing an error give way to adaptive increases in attention and control
processes several hundred milliseconds later. However, as we state in
the paragraph above, it does not seem that these adaptive processes
eliminate the effect of all maladaptive processing following errors. It is
unclear if the post-error deficits in processing we observe here are
independent of orienting responses reported previously. We do not
have evidence from our results for a categorically different class of
errors at short intertrial intervals as all post-error effects reside in the
same parameter of our model (β), but it is possible that multiple
separate maladaptive processes all lead to a higher propensity for
action slips. We should also note that these prior studies all used
conflict tasks that require participants to respond based on a task-
relevant stimulus while resisting distraction from simultaneously pre-
sented task-irrelevant stimuli associated with a different response. It is
possible that thenature of bothmaladaptive and adaptivemechanisms
following an error might differ in tasks that don’t require selective
attention and processing in the face of distraction.

What leads to the slips of action we observe following errors? The
model we use here to fit our data is agnostic as to the source of these
errors and simply embodies the assumption that errors sometimes
occur even when ample time is given for all the relevant cognitive
processing required to make a correct response. Although we cannot
rule it out entirely, given our data, we do not believe that these action
slips are driven by issues with perceptual processing. At the long PTs,
where we observe consistent reductions in accuracy error trials, the
stimulus has been present on the screen for close to two seconds.
Unlessour participantswere actively closing their eyes or looking away
from the computer screen, this amount of time should have been
plenty for perceptual processing to occur. It could be the case that
the correct response is simply not prepared on a small subset of
trials, or perhaps there is a memory error in retrieving the correct
stimulus–responsemapping. Action slips seemmost likely to bedue to
a failure in action selection when perceptual information must be
translated into a motor response.

The experiments used in the present study differ in one critical
way from virtually all previous experiments examining post-error
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effects: the time at which participants initiate their responses was
controlled. This so-called interrogation method disables participants
from strategically delaying the initiation of their responses, including
after an error22. We found that, under this constraint, participants were
less accurate after an error. A response preparation model explained
this effect in terms of a decrease in the efficacy of the cognitive pro-
cessing underlying prepared responses. In the model, “efficacy” is the
parameter that controls the probability that a participant will express a
response after it hasbeenprepared. Although there are severalways to
interpret this parameter, a natural psychological interpretation of
efficacy is participants’ confidence in their selected response. Itmaybe
that if people are led astray by decisions in the past, they become less
confident about their decisions in the future. This reduced confidence
would make them less likely to act on their decisions and potentially
more prone to make random responses. Note that this is distinct from
requiringmoreprocessing time toprepare a response. As noted above,
we found little evidence to support post-error slowing of processing
demands (μ).

It is well-known that free RTs are not normally distributed and
instead tend to follow distributions incorporating some skewness,
such as the ex-Gaussian distribution23. Although allowing us to easily
interpret modeling outcomes, one potential limitation of our study is
that we assume that the amount of time it takes to complete the
cognitive processing necessary to select a response can be approxi-
mated well by a normal distribution. However, we do not believe this
limitation greatly affects the conclusions drawn here. The fit of our
model to the data is quite good, perhaps specifically because the time
deadlines do not allow for the long tail sometimes observed in RT
distributions. Additionally, if it were the case that errors caused an
increase in the skewness of the latency of cognitive processing, this
would not come out as a reduction in the efficacy of cognitive pro-
cessing (β), as we observed here. Instead, we would have observed a
shift in the mean (μ) and/or standard deviation (σ) of our estimates of
the response preparation distributions to try to account for a longer
tail. We found no evidence of this across our four experiments.

Our interpretation of the results relies on the assumption that
cognitive processing in free RT tasks is similar to that seen in the
forced response paradigm used here. We believe this assumption is
reasonable. In the context of conflict tasks (e.g., the Simon task),
similar effects on accuracy have been observed in a forced response
paradigmas is observed in response time in free RT tasks24. However, it
is possible that forcing participants to respond at a predetermined
time changes the nature of the task and the cognitive processes
underlying responses. For example, a forced response paradigmmight
lead to more task engagement and leave individuals less prone to
inattentiveness. Participants in our paradigm must also monitor the
response time cues in order to respond at the appropriate time. It is
possible that this makes the task somewhatmore difficult than free RT
tasks that have investigated post-error effects. On the other hand,
overall error rates on our task (~75%) are similar to other studies
investigating the effects of errors on cognitive processing (e.g., 8,20).
Nevertheless, there is no particular reason to privilege data from free
RT tasks when attempting to understand post-error effects on per-
formance. The results presented here are not readily explained by
prevailing theories of post-error effects that have been developed
from free RT tasks. The forced response paradigm provides a window
into post-error impairments in cognitive processing that have been
difficult to examine with standard techniques.

One standard control analysis used in free RT investigations of
post-error effects is to examine RT on trials preceding errors1. The
upshot of this type of analysis is to ensure that any slowing of RT that is
observed following an error is due to the commission of an error and
not simply a result of lapses in attention where clusters of trials have
both slower RTs and reduced accuracy. That is, if RT on correct trials
preceding errors is also slower than the average RT of correct trials

across the entire experiment, any post-error slowing that is observed is
less likely tobedue to the error itself.Most studies, however, show that
RT on trials preceding errors is faster than the average correct
response25. One shortcoming of the forced-response approach we
adopt here is that we cannot perform an analog of this control analysis
that independently examines trials pre- andpost-error. Asweonly have
a single dependent variable of interest (accuracy), once we uncover
that trials following an error (N + 1) are more likely to display reduced
accuracy and that errors tend to follow one another, it is necessarily
true that trials preceding an error (N − 1) are alsomore likely to display
reduced accuracy. Thus, looking at accuracy alone makes it more dif-
ficult to rule out the notion that the results presented here are due to
lapses in attentiveness that span multiple trials. However, if the
reduced accuracy ratewe observed following errorsweredue tomulti-
trial periods of inattentiveness, we would also expect to observe other
deficits in performance. For example,more errors and variability in the
timing of responses. We did not find such an effect. Key-press errors
and timing errors appear to be independent in our data andwe did not
observe a higher likelihood of timing errors on trials adjacent to key-
press errors. This gives us more confidence that the increased slips of
action we observe following errors are a result of post-error proces-
sing, though we cannot completely rule out that there may be some
other process underlying the serial dependence we report here.

In sum, we provide evidence against the view that the cognitive
processing necessary to translate a stimulus into a response is slower
after an error. Instead, our data suggest that decisions about what to
do are less likely to be translated into the appropriatemotor responses
after an error and lead to more perseverative slips of action. These
results suggest a change in the shape of the speed-accuracy tradeoff
function following errors and cast doubt on the idea that post-error
slowing reflects increased caution that moves an individual along the
same speed-accuracy curve.

Methods
Participants
Participants were recruited online using the online platform Prolific
with the following inclusion criteria: US or Canadian nationality, fluent
English speaker, and approval rate >95%. In Experiment 1 therewere 46
participants (24 female) with amean age of 33 years old. In Experiment
2, there were 37 participants (33 female) with a mean age of 27 years
old. In experiment 3 there were 47 participants (24 female, 1 declined
to answer)with amean age of 29 years old. In Experiment 4, therewere
46 participants (22 female, 3 declined to answer)with amean age of 32
years old. No statisticalmethodwas used to predetermine sample size,
though pilot work with smaller sample sizes was sufficient to obtain
reliable results. All research protocols were approved by the Health
Sciences and Behavioral Sciences Institutional Review Board at the
University ofMichigan. All participants gavewritten informed consent.
Participants were paid $10/h for their participation.

Experiments
First, participants trained for 60 trials in a stimulus–response task. For
this task, participants were instructed to press ‘f’, ‘g’, ‘h’, or ‘j’
depending on the identity of the stimulus (see below). At the start of
each trial (t =0ms), a stimulus was presented, and the identity of the
stimulus was randomly sampled from a uniform categorical distribu-
tion over four unique stimuli (colors or symbols). During each trial, the
four possible stimulus–response mappings were presented at the
bottom of the screen to help participants learn these mappings. After
each trial, participants were given feedback for 500ms about the
accuracy of their responses. Response times were unconstrained
during this phase of the experiment.

Next, participants trained for 20 trials in a fixed response timing
task. For this task, participants were instructed to press a key exactly
when two empty white rectangles were filled completely in color,
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exactly two seconds after the trial began. At the beginning of each trial,
two empty rectangles (PsychoPy height unit: .35*0.03% of the screen)
were shown above and below where the stimuli had appeared in the
previous training block. Every 500ms, the rectangle was filled in by an
additional 25%. After 2100ms, all stimuli were removed from the dis-
play. The purpose of this cuing was to guide participants to respond at
the same timeon every trial. Participantswere encouragedbeforehand
to alternate between ‘f’, ‘g’, ‘h’, and ‘j’ to practice timing with all keys.
After each trial, participants were given feedback for 500ms about
whether they responded too quickly (RT < 1900ms), too slowly (RT >
2100ms), or with perfect timing.

Finally, we turned to the main experimental task, illustrated in
Fig. 1. Participants performed 10 blocks of 40 trials in the
stimulus–response task with a fixed response timing and a stimulus
presentation time that was parametrically varied. As in the first phase
of training, participants were instructed to press one of four keys
depending on which one of the four stimuli was shown. The onset and
identity of the stimulus varied randomly, as in the first phase of
training. However, there was no prompt showing the S–R mappings
during the trial. As in the second phase of training, participants were
instructed to respond only when the rectangle timing cue was filled.
This approach allows us to measure the accuracy of responses when
the exact amount of time allowed for stimulus processing and
response preparation is known. After each trial, participants were
given feedback, but the exact specifications of this feedback varied
across experiments.

In Experiment (Exp.) 1, the target stimuli were letters in the
Armenian alphabet (Ռ, Ճ, Չ, Ջ; PsychoPy height unit: 0.2% of screen)
and participants were given feedback for 1000ms about whether they
were too slow, too fast, or had perfect timing, followed by a 1000ms
inter-trial-interval (ITI). Exp. 2 was an exact replication of Exp. 1.

In Experiments 3 and 4, the target stimuli were color-filled circles
(orange, blue, red, or purple; PsychoPy size: 0.2 × 0.2). Here the
response keys were ‘d’, ‘f’, ‘j’, and ‘k’. Participants were given 400ms
feedback if and only if they responded too quickly or too slowly; no
feedback if their timingwasperfect. Feedbackwas followedby an ITIof
0ms in Exp. 3 and an ITI of 2000ms in Exp. 4.

All experiments were built using PsychoPy/JS and run online using
Pavlovia.

Pre-processing
Our analyses focused exclusively on behavior in the test phase of the
experiment. We excluded trials in which participants responded too
quickly (RT < 1900 ms) or slowly (RT> 2100ms) because we were
interested in how people behaved when their response times were
fixed to the imperative cue and to eliminate any post-error slowing of
response emission itself (see Supplementary Fig. 2). This filtering step
removed 36.9% of trials Experiment 1, 30.6% of trials for Experiment 2,
40.3% of trials for Experiment 3, and 35.8% of trials for Experiment 4.
Including these mistimed trials in the analyses does not substantially
alter the behavioral or modeling results but does make the inter-
pretation of these results more challenging, given that we are no
longer interrogating a participant’s cognitive state at a predetermined
time. Since we were interested in the effects of immediately preceding
errors, we also excluded trials for which there was no immediately
preceding trial (i.e., the first trial of each block for each participant).
Response accuracy (y) was set to 1 if the response was correct and 0 if
the response was incorrect. Preparation time (PT) was defined as the
duration between the stimulus onset and the response time. PTwas re-
scaled range from zero to one by dividing by 2000 to facilitate Baye-
sian prior specifications. Each trial was labeledwith the outcomeof the
previous trial. Previous error (errn−1) was set to 0.5 if the previous
response was incorrect and −0.5 if the previous response was correct
so that the intercepts in models with post-error slopes can be inter-
preted as the average across levels of the condition.

Analysis
We used a sliding window technique to visualize themean of response
accuracy as a function of PT. The sliding window was performed
separately for each level of errn−1. The width of the sliding windowwas
100ms, the step size was 1ms, and the window moved from 0 to
2000ms.

We used Bernoulli regression models to assess the credibility of
apparent effects in the smoothed conditional accuracy functions. The
models had hierarchical slopes and intercepts (i.e., participant-level
variables sampled from group-level distributions) and focused on
specific contiguous intervals over PT (e.g., 0ms < PT < 500ms). We
used the R-package brms26 to specify the models and to approximate
posterior distributions over unobserved variables, given the observed
data. From these distributions, we report the median value, the 95%
credible interval (CI), and the probability of direction (pd). Given the
observed data, the effect of interest has a 95% probability of falling
within the range of values specified by the credible interval. The
probability of direction (ranging from 0.5 to 1.0) refers to the prob-
ability that an effect goes in a particular direction (i.e., negative or
positive).

We used a response preparation model to explain the observed
time courses of performance15. This model enables inferences about
the speed with which responses were prepared (μ), the variability in
this preparation (σ), the probability that a prepared response will be
expressed if it is prepared (efficacy, β), as well as effects of covariates
(Δ) on these variables. This model also includes a parameter that
governs chance level accuracy when no response has been prepared
(α). We specified themodel using Stan27. In thismodel, the unobserved
variables mentioned above were computed as linear functions of
errn−1, and the effects of errn−1 were captured by a set of delta para-
meters. All intercepts and slopes in the model (μ0, Δμ, σ0, Δσ, β0, Δβ)
were hierarchical (i.e., participant-level variables sampled from group-
level distributions), and we assigned weakly informative priors to the
group-level variables. The model specification is reported below,
where y is the observed response accuracy, p is the probability of
correct response, f is the response preparation function which com-
putes p given the observed preparation time t and the unobserved
variables θ= fμ, σ,β,αg, and θjk is the unobserved variable θ for parti-
cipant j and condition k (i.e., post-error level).

y∼Bernoulli pð Þ ð1Þ

p= f t,μjk , σjk ,βjk ,αj

� �
ð2Þ

f  φ � ψ ð3Þ

φ= 1� Normalcdf t,μjk ,σjk

� �
, Normalcdf t,μjk ,σjk

� �h i
ð4Þ

ψ=
αj

βjk

" #
ð5Þ

As mentioned above, unobserved variables (except for α) were
computed as linear functions of errn−1. Below is the specification of
these variables, where θ0

j is the intercept for the variable θ and par-
ticipant j, x is the value of errn−1, Δ

θ
j is the effect of x on θ for parti-

cipant j. Inverse-logit link functions were used to constrain the values
of the variables between 0 and 1 (seconds for μ and σ, probability for
α and β).

μjk = logit
�1 μ0

j +Δ
μ
j � x

� �
ð6Þ
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σjk = logit
�1 σ0

j +Δ
σ
j � x

� �
ð7Þ

βjk = logit
�1 β0

j +Δ
β
j � x

� �
ð8Þ

αj = logit
�1 α0

j

� �
ð9Þ

The slopes and intercepts of the variables above were defined
hierarchically. Below is the specification of these hierarchical variables,
where θ0

loc is the group-level mean of the intercepts for a parameter θ,
θ0
scale is the group-level standard deviation of the intercepts, Δθ

loc is the
group-level mean of the errn−1 effects on θ, and Δθ

scale is the group-level
standard deviation of the errn-1 effects. Note that in the stan code, we
used a non-centered parameterization, despite presenting the cen-
tered parameterization below for ease of comprehension.

μ0
j ∼Normal μ0

loc,μ
0
scale

� � ð10Þ

Δμ
j ∼Normal Δμ

loc,Δ
μ
scale

� �
ð11Þ

σ0
j ∼Normal σ0

loc,σ
0
scale

� � ð12Þ

Δσ
j ∼Normal Δσ

loc,Δ
σ
scale

� �
ð13Þ

β0
j ∼Normal β0

loc,β
0
scale

� �
ð14Þ

Δβ
j ∼Normal Δβ

loc,Δ
β
scale

� �
ð15Þ

α0
j ∼Normal α0

loc,α
0
scale

� � ð16Þ
Finally, we assigned weakly informative priors to group-level

location and scale variables. Scale variables were constrained to be
positive and assigned Normal (0, 0.5) priors. Location variables were
left unconstrained. The prior was Normal (−0.5, 0.5) for the location of
the μ intercept, Normal (−2, 0.5) for the σ intercept, Normal (2, 0.5) for
the β intercept and Normal (−1, 0.5) for the α intercept. Delta location
variables were assigned Normal (0, 0.5) priors. Note that these normal
distributions are akin to beta distributions after being transformed by
the inverse logit function. Though these variables are all assumed to be
independent, our approach here allows for the possibility that the data
are best fit when variables are correlatedwith one another (e.g., slower
μ coincides with a larger σ).

To assess model fit, we first visualized posterior predicted beha-
vior to compare to participants’ data qualitatively (see Supplementary
Fig. 1). Given that the results across all four experiments implicated
changes in the β parameter following errors, we next performed a
formalmodel comparison between the fullmodel and a simplermodel
that only allows µ and σ to vary (i.e., including Δμ and Δσ, but omitting
Δβ).Models were compared based on their out-of-sample predictive fit
via expected log pointwise predicted density (ELPD) with a relative
weight assigned to each model. This weight can be interpreted as the
probability of each model given the data. Across all four experiments,
the full model was assigned a higher weight than the simpler model
with a static β (Exp. 1—relative weight: 0.900, 10 timesmore likely than
the simplermodel; Exp. 2—0.663, 2 timesmore likely; Exp. 3—0.928, 13
times more likely; Exp. 4—0.794, 4 times more likely).

No sex or gender analysis was carried out as there is no prior
evidence that post-error effects differ by sex or gender and we had no
hypotheses as to the effect of these variables.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedatasets generated and analyzed by the studies presented here are
available in anOpen Science Framework repository: https://doi.org/10.
17605/OSF.IO/U7SZR28.

Code availability
The computer code used for the analyses and figures can be found in
an Open Science Framework repository: https://doi.org/10.17605/OSF.
IO/U7SZR28.

References
1. Rabbitt, P.M. Errors anderror correction in choice-response tasks. J.

Exp. Psychol. 71, 264–272 (1966).
2. Rabbitt, P. & Rodgers, B. What does a man do after he makes an

error? An analysis of response programming.Q. J. Exp. Psychol. 29,
727–743 (1977).

3. Fairweather, H. Choice reaction times in children: error and post-
error responses, and the repetition effect. J. Exp. Child Psychol. 26,
407–418 (1978).

4. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J.
D. Conflict monitoring and cognitive control. Psychol. Rev. 108,
624–652 (2001).

5. Dutilh, G. et al. Testing theories of post-error slowing. Atten. Per-
cept. Psychophys. 74, 454–465 (2012).

6. Notebaert, W. et al. Post-error slowing: an orienting account. Cog-
nition 111, 275–279 (2009).

7. Danielmeier, C. & Ullsperger, M. Post-error adjustments. Front.
Psychol. 2, 233 (2011).

8. Purcell, B. A. & Kiani, R. Neural mechanisms of post-error adjust-
ments of decision policy in parietal cortex. Neuron 89,
658–671 (2016).

9. Ullsperger, M., Danielmeier, C. & Jocham, G. Neurophysiology of
performance monitoring and adaptive behavior. Physiol. Rev. 94,
35–79 (2014).

10. Wessel, J. R. An adaptive orienting theory of error processing.
Psychophysiology 55, e13041 (2018).

11. Wessel, J. R. & Aron, A. R. On the globality of motor suppression:
unexpected events and their influence on behavior and cognition.
Neuron 93, 259–280 (2017).

12. Heitz, R. P. The speed-accuracy tradeoff: history, physiology,
methodology, and behavior. Front. Neurosci. 8, 150 (2014).

13. Haith, A. M., Pakpoor, J. & Krakauer, J. W. Independence of move-
ment preparation and movement initiation. J. Neurosci. 36,
3007–3015 (2016).

14. Wong, A. L., Goldsmith, J., Forrence, A. D., Haith, A.M. & Krakauer, J.
W. Reaction times can reflect habits rather thancomputations. eLife
6, e28075 (2017).

15. Hardwick, R. M., Forrence, A. D., Krakauer, J. W. & Haith, A. M. Time-
dependent competition between goal-directed and habitual
response preparation. Nat. Hum. Behav. 3, 1252–1262 (2019).

16. Norman, D. A. Categorization of action slips. Psychol. Rev. 88,
1–15 (1981).

17. Jentzsch, I. & Dudschig, C. Short article: why dowe slowdown after
an error? Mechanisms underlying the effects of posterror slowing.
Q. J. Exp. Psychol. 62, 209–218 (2009).

18. Laming, D. Choice reaction performance following an error. Acta
Psychol. (Amst.) 43, 199–224 (1979).

19. Fischer, A. G., Nigbur, R., Klein, T. A., Danielmeier, C. & Ullsperger,
M. Cortical beta power reflects decision dynamics and uncovers
multiple facets of post-error adaptation. Nat. Commun. 9,
5038 (2018).

Article https://doi.org/10.1038/s41467-024-50547-y

Nature Communications |         (2024) 15:6422 10

https://doi.org/10.17605/OSF.IO/U7SZR
https://doi.org/10.17605/OSF.IO/U7SZR
https://doi.org/10.17605/OSF.IO/U7SZR
https://doi.org/10.17605/OSF.IO/U7SZR


20. Gjorgieva, E. & Egner, T. Learning from mistakes: incidental
encoding reveals a time-dependent enhancement of posterror
target processing. J. Exp. Psychol. Gen. 151, 718–730 (2022).

21. Steinhauser, M. & Andersen, S. K. Rapid adaptive adjustments of
selective attention following errors revealed by the time course of
steady-state visual evoked potentials. NeuroImage 186,
83–92 (2019).

22. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The
physics of optimal decision making: a formal analysis of models of
performance in two-alternative forced-choice tasks. Psychol. Rev.
113, 700–765 (2006).

23. Heathcote, A., Popiel, S. J. & Mewhort, D. J. Analysis of response
time distributions: an example using the Stroop task. Psychol. Bull.
109, 340–347 (1991).

24. Adkins, T. J. & Lee, T. Reward Accelerates the Preparation of Goal-
Directed Actions. https://doi.org/10.31234/osf.io/hv9mz (2021).

25. Dudschig, C. & Jentzsch, I. Speeding before and slowing after
errors: Is it all just strategy? Brain Res. 1296, 56–62 (2009).

26. Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models
Using Stan. J. Stat. Softw. 80, 1–28 (2017).

27. Carpenter, B. et al. Stan: A Probabilistic Programming Language. J.
Stat. Softw. 76, 1–32 (2017).

28. Adkins, T. J., Zhang,H.&Lee, T.G.People aremoreerror-prone after
committing an error. Open Science Framework https://doi.org/10.
17605/OSF.IO/U7SZR (2024).

Acknowledgements
Wethank John Jonides for his advice and feedbackon this project. Salary
support for Han Zhang was provided by grants from the National Insti-
tutes of Health (R21MH129909) and the National Science Foundation
(Grant No. 2238151).

Author contributions
T.A. designed, and performed experiments, analyzed data, and wrote/
revised the paper. H.Z. designed and performed experiments, analyzed
data and revised the paper. T.L. designed experiments, evaluated data,
wrote/revised the paper, and supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-50547-y.

Correspondence and requests for materials should be addressed to
Taraz G. Lee.

Peer review information Nature Communications thanks Markus Ull-
sperger and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-50547-y

Nature Communications |         (2024) 15:6422 11

https://doi.org/10.31234/osf.io/hv9mz
https://doi.org/10.17605/OSF.IO/U7SZR
https://doi.org/10.17605/OSF.IO/U7SZR
https://doi.org/10.1038/s41467-024-50547-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	People are more error-prone after committing an error
	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Exploring the nature of post-error processing deficits
	Timing errors

	Discussion
	Methods
	Participants
	Experiments
	Pre-processing
	Analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




