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Archaean multi-stage magmatic
underplating drove formation of continental
nuclei in the North China Craton

Jin Liu1,2, Richard M. Palin 2 , Ross N. Mitchell 3,4, Zhenghong Liu1,5,
Jian Zhang6, Zhongshui Li7, Changquan Cheng8 & Hongxiang Zhang1

The geodynamic processes that formed Earth’s earliest continents are inten-
sely debated. Particularly, the transformation from ancient crustal nuclei into
mature Archaean cratons is unclear, primarily owing to the paucity of well-
preserved Eoarchaean–Palaeoarchaean ‘protocrust’. Here, we report a newly
identified Palaeoarchaean continental fragment—the Baishanhu nucleus—in
northeastern North China Craton. U–Pb geochronology shows that this
nucleus preserves five major magmatic events during 3.6–2.5 Ga. Geochem-
istry and zircon Lu–Hf isotopes reveal ancient 4.2–3.8 Ga mantle extraction
ages, as well as later intraplate crustal reworking. Crustal architecture and
zircon Hf–O isotopes indicate that proto-North China first formed in a stag-
nant/squishy lid geodynamic regime characterised by plume-related mag-
matic underplating. Such cratonic growth and maturation were prerequisites
for the emergence of plate tectonics. Finally, these data suggest that North
China was part of the Sclavia supercraton and that the Archaean onset of
subduction occurred asynchronously worldwide.

Earth is the only known planet to have evolved a felsic continental
crust. While the majority of continental crustal growth occurs today
at convergent plate margins, the dominant crust-forming mechan-
isms that operated during the Archaean (and even Hadean) are
strongly disputed1. Some authors argue that subduction and plate
tectonics has operated on Earth since at least the Eoarchaean2,3. By
contrast, numerical modelling and field investigation of some
Palaeoarchaean cratons suggests that a ‘stagnant lid’ regime oper-
ated, where lithospheric plates moved very slowly across Earth’s
surface—if at all. In such an environment, the formation of felsic/
TTG-like crust was driven by mantle plume activity4 and/or melting
within lithospheric drips5,6. This latter geodynamic scenario finds
support from the study of Mars and Venus, which can be considered

analogues for the early Earth7. Determining when, where, and why
certain geodynamic regimes dominated at different points in time
has key implications for other critical events in Earth history, such as
continental emergence, atmospheric oxygenation, changes in ocean
composition, and the appearance and evolution of life8. The pri-
marily obstacle in resolving this dispute is the scarcity of preserved
Hadean to early Archaean continental crust on the modern Earth.
Even in cratons that contain such Eoarchaean rocks, they often only
comprise a volumetrically minor component of the terrane itself9.
Therefore, any newly discovered ancient nuclei can provide invalu-
able insights into the crustal evolution of early Earth, and how cra-
tons grew and eventually matured. The North China Craton
preserves a continuous record of successive magmatic events that
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span almost all (3.8–2.5 Ga) of the Archaean Eon10. Two major con-
tinental nuclei have been previously established: the Anshan con-
tinental nucleus (in the Anshan–Benxi areas) and the Eastern Hebei
continental nucleus (Fig. 1a), both of which have ancient geologic
histories dating back to as old as 3.8 Ga (ref. 10). The region
stretching from Anshan to Jiapigou (Fig. 1b) preserves the most
comprehensive record of Archaean magmatism within North China
and represents an ideal natural laboratory for investigating the
formation and evolution of an Archaean craton.

Here, we report a Palaeoarchaean continental nucleus, named
the Baishanhu nucleus (occurring in the Jiapigou–Baishanhu areas),
which has been identified in northeastern North China Craton. This
study presents zircon U–Pb geochronology from a suite of grani-
toids, alongside zircon Lu–Hf and O isotopic analyses and whole-
rock geochemistry. These results establish a spatiotemporal fra-
mework for the formation of the Baishanhu nucleus, which provides
constraints on cratonic growth and maturation, and shed light on
the geodynamic regime that likely operated on Earth during the
early Archaean.

Results and discussion
Geochronological framework
To establish craton growth andmaturation processes of the Baishanhu
nucleus, we conducted a total of 870 zircon U–Pb geochronological
analyses from 21 samples. Detailed description of zircon U–Pb dating,
as well as newly acquired and compiled zirconHf–Odata, canbe found
in the Supplementary Notes and Supplementary Data 1–6. The results
reveal at least five discrete magmatic episodes at 3.6–3.5, 3.3–3.2,
2.8–2.7, 2.63, and 2.55–2.50 Ga (Fig. 2a). An early Palaeoarchaean
magmatic event is recorded by abundant 3.6–3.5 Ga xenocrystic zir-
cons found within younger (3.3–3.2 and 2.55–2.50Ga) granitoids.
These xenocrysts exhibit concentric oscillatory internal zonation,
suggestive of crystallisation from a felsic melt (Fig. 2b). Evidence for a
subsequent late Palaeoarchaean/early Mesoarchaean magmatic event
comes from 3.3–3.2 Ga monzogranites and 3.3–3.2 Ga xenocrystic zir-
conswithinyounger 2.55–2.50Gapotassic granitoids. These3.3–3.2 Ga
monzogranites are the oldest potassic granites documentedwithin the
North China Craton, and primarily consists of plagioclase (35%),
microcline (25%), quartz (30%), biotite (5%), andminor hornblende. An
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early Neoarchaean magmatic event (2.8–2.7 Ga) is evidenced by c.
2.78Ga trondhjemitic gneiss from the Jiapigou area11, c. 2.72 Ga mon-
zogranite, and 2.8–2.7Ga xenocrystic zircons within 2.55–2.50Ga
potassic granitoids. The c. 2.72 Ga monzogranite exhibits a massive
structure and has a mineral assemblage of quartz (30%), plagioclase
(30%), microcline (35%), and minor biotite (5%). Finally, two episodes
of late Neoarchaean magmatism within the Baishanhu nucleus are
documented by minor c. 2.63 Ga magmatism (monzogranite), and
intensive and widespreadmagmatism at 2.55–2.50Ga, similar to other
terranes within North China. The dominant lithologies of this young c.
2.5 Ga episode include TTG, meta-mafic volcanic rocks, and potassic
granitoids.

Crustal evolution of Baishanhu nucleus revealed by zircon Hf
isotopes
The zircon Lu–Hf isotopic system is a useful and robust tool for deci-
phering the evolutionary history of the continental crust12. Here, we
acquired 321 new zirconHf isotope analyses for the Baishanhu nucleus
(Fig. 2b). Generally, the two-stage depletedmantlemodel (TDM

2) age of
granitoids represents the timingof extraction of theirmaficprecursors
from a depleted mantle source, which in turn signifies the timing of
crustal growth6; however, we note that the Hf TDM

2 age is affected by
the assumed mantle depletion history and the 176Lu/177Hf ratio of the
crust. Currently, the community’s understanding of the evolution of
the Earth’s depleted mantle through time is uncertain. Several studies
of Eoarchaean TTGs (e.g., the Itsaq gneiss, North Atlantic Craton13, and
the Aktash gneiss, Tarim Craton14) have indicated that their mafic
precursors were derived from a near-chondritic mantle. Further,
Hf–Nd isotopes of Palaeoarchaean (c. 3.6Ga)mafic to ultramafic rocks
from the Pilbara Craton also indicate the existence of a chondritic to
near-chondritic mantle at that time15,16. Thus, these authors interpret
that any global depletion of the mantle had not begun during the
Eoarchaean or Hadean, such that a depletedmantle signature began to
progressively develop since c. 3.9Ga (ref. 16), although see ref. 17 for
the potential caveats involved when zircon is used to estimate mantle
depletion.

To directly address this issue, we compiled a global dataset of
igneous zircon Hf isotopes of early Archaean TTGs from all major
cratons on Earth. The compilation reveals that most zircons display
very low sub-chondritic εHf(t) values (Fig. 2c), indicating that the mafic
precursors of these early Archaean TTGs likely had a long crustal
residence time. These unradiogenic Hf isotopes indicate that some
crust-mantle differentiationmust have occurred in theHadean to early
Archaean, and the inferred source ages for these unradiogenic zircons
vary depending on the assumed degree of mantle depletion. Several
Palaeoarchaean mafic–komatiitic (e.g., Barberton Greenstone Belt18

and Western Pilbara Craton19) and TTG rocks (e.g., Dharwar Craton20

and Singhbum Craton21) that display depleted mantle signatures also
argue for the existence of a depleted mantle in the early Archaean.
After excluding analyses that show clear Pb loss and samples with
heterogeneous Hf isotopic compositions, many Eoarchaean zircons
from North China still record highly depleted Hf isotope signatures
(Fig. 2d). Measured 142Nd–143Nd isotopes of c. 3.8–3.0Ga rocks from
the Anshan Complex suggest multiple mantle-crust differentiation
events between 4.3 Ga and 3.8 Ga, and indicate the existence of a
depleted uppermantle during this period22. Thus,we interpret that the
early Archaean mantle was heterogeneous with some domains (e.g.,
North China and Dharwar Cratons) that exhibited depleted Hf iso-
topes, whereas other domains (e.g., North Atlantic and Tarim Cratons)
exhibited chondritic compositions. Therefore, the TDM

2 age calcula-
tion performed in this study assumes that early Archaean mafic pro-
tocrust within North China formed from a depleted mantle.
Additionally, a plot of zircon ages against their initial 176Hf/177Hf ratios
demonstrates that the 3.6–2.7Ga zircon from the Baishanhu nucleus,
the 3.8–2.9Ga zircon from the Anshan nucleus, and the

Eoarchaean–Palaeoarchaean detrital zircon of the Caozhuang
sequence from the Eastern Hebei nucleus all fall along a crustal evo-
lution line with a 176Lu/177Hf ratio of 0.022 (Fig. 2e). This trend is con-
sistent with the 176Lu/177Hf ratio observed in Archaean mafic crust23.
Thus, we consider it reasonable to use a 176Lu/177Hf ratio of 0.022 for
calculating the TDM

2 ages of the Archaean zircon from North China.
The 3.6–3.5Ga zircon grains from the Baishanhu nucleus have

sub-chondritic εHf(t) values ranging from −3.6 to −0.1, with TDM
2 ages

of 4.2–3.9Ga. In contrast, the 3.3–3.2 Ga and c. 2.72 Ga groups display
more unradiogenic Hf isotopic features with sub-chondritic εHf(t)
values ranging from −6.0 to −1.5 and −10.2 to −4.2, and both groups
have similar TDM

2 ages of 4.2–3.8Ga. Zircons from the c. 2.63 Ga
monzogranite exhibit sub-chondritic εHf(t) values ranging from −4.5 to
−0.5 with TDM

2 ages of 3.7–3.3Ga. Some of the 2.55–2.50Ga potassic
granites also exhibit unradiogenic Hf isotopes, yielding sub-chondritic
εHf(t) values ranging from −7.7 to −1.1, with TDM

2 ages of 3.7–3.3 Ga. In
contrast, several 2.55–2.50Ga potassic granites have more radiogenic
Hf isotopes with positive εHf(t) values ranging from0 to +5.7 with TDM

2

ages of 3.2–2.8 Ga. Together, these data show that the 3.6–3.5, 3.3–3.2,
and c. 2.72 Ga zircons have a similar TDM

2 age range (4.2–3.8 Ga), and
they alsodisplay a commonevolution asdemonstratedbywell-defined
4.2 and 3.8 Ga crustal evolution lines (Fig. 2d). The 4.2–3.8 Ga TDM

2

ages thus represent the mantle extraction age of the mafic protocrust,
which subsequently experienced multiple stages of recycling at
3.6–3.5, 3.3–3.2, and c. 2.72Ga. In addition, the Hf isotopes of the c.
2.78Ga trondhjemitic gneiss11, the c. 2.63 Ga monzogranite, and the
2.55–2.50Ga potassic granites with sub-chondritic εHf(t) values reflect
another mantle extraction event that occurred from 3.7–3.3 Ga
(Fig. 2d). Moreover, the 2.55–2.50Ga potassic granites with radiogenic
Hf compositions, as well as the previously reported 2.55–2.50Gamafic
volcanic rocks and TTGs from the Baishanhu nucleus (refs in Supple-
mentary Data 4), suggest significant juvenile crustal growth between
the Mesoarchaean and Neoarchaean. Together, these data demon-
strate that the Baishanhu nucleus experienced multiple phases of
crustal growth and reworking/recycling processes throughout the
Archaean, leading to its geochemical maturation and facilitation of
cratonization. Similar Archaeancrustswith secular evolvedHf isotopes
are also developed in other cratons, such as the Yilgarn and Slave24.

Geochemical constraints on petrogenesis of the 3.3–2.5Ga
potassic granites
In this study, a total of 20 samples were analyzed for major and trace
elements. Detailed results of geochemistry can be found in Supple-
mentary Data 7. The 3.3–2.5Ga potassic granites exhibit similar geo-
chemical features, such as high SiO2 (70.38–77.94 wt. %), low MgO
(0.18–1.21 wt. %), TFe2O3 (1.24–4.00 wt. %), Cr (3.16–26.4 ppm), and Ni
(1.22–17.20 ppm) contents. They are enriched in light rare earth ele-
ments (e.g., La and Ce), Sr, Zr, and Hf, but depleted in heavy rare earth
elements (e.g., Lu, Yb, and Y), Nb, and Ta (Fig. 3a), withmainly positive
Eu anomalies. On a Al2O3/(FeO

T+MgO)–(3CaO)–(5K2O/Na2O) ternary
diagram25 (Fig. 3b), the 3.3–3.2 Ga and c. 2.72 Ga monzogranites plot
mainly within the field ofmelts derived from tonalite. As the 3.3–3.2 Ga
and c. 2.72Ga zircons exhibit a similar Hf crustal evolutionary pattern
to the 3.6–3.5 Ga xenocrystic zircons, it is reasonable to propose that
the 3.6–3.5Ga TTG was the source for the 3.3–3.2 Ga and c. 2.72 Ga
monzogranites. The source rock for the c. 2.63 Gamonzogranite could
have been a high-K mafic rock (Fig. 3b), which had a mantle extraction
age of 3.7–3.3;Ga. The c. 2.5 Ga potassic granites exhibiting negative
εHf(t) values might have been sourced from TTG rocks (Fig. 3b),
whereas the other c. 2.5 Ga potassic granites displaying positive εHf(t)
values, higher Al2O3 values and K2O/Na2O ratios, likely formed from
juvenile metasediments. All of the 3.3–2.5Ga potassic granites display
high Sr/Y ratios (32–132, except for one analysis of 18) and LaN/YbN
(35–201, except for one analysis of 17), and can thus be classified as
adakitic granites26 (Fig. 3c). Generally, such adakitic geochemical
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characteristics suggest substantial garnet but minor plagioclase in the
source region during partial melting, classically interpreted to occur at
a pressure greater than 1.0GPa (ref. 26). Based on the computational
method of ref. 27, the average Zr saturation temperatures (TZr) of the
3.3–3.2, c. 2.72, c. 2.63, and c. 2.5Ga adakitic granites are 794 °C,
847 °C, 818 °C, and 808 °C, respectively. Moreover, the characteristics
of high SiO2 contents but low MgO, Cr, and Ni contents suggest a
thickened crust origin for these adakitic granites28 (Fig. 3d). This
interpretation is also supported by abundant xenocrystic zircons
within the 3.3–2.5 Ga potassic granites and their unradiogenic zircon
Hf isotopes (e.g., negative zircon εHf(t) values and Hadean to
Palaeoarchaean TDM

2 ages). As such, these adakitic granites indicate
that the Baishanhu nucleus maintained a notably thick continental
crust (>30 km) from at least 3.3 Ga to 2.5Ga.

Crustal architecture of northeastern North China and its affinity
with other nuclei of the North China Craton
To contextualise our new data, we present contour maps of zircon
U–Pb ages and Lu–Hf data derived from Archaean igneous rocks
spanning the region from Anshan to Jiapigou, which illustrate the
architectureof the early Archaeanbasement of theNorth ChinaCraton
(Fig. 4). Although the oldestmagmatic record in the Baishanhunucleus
is slightly younger than that in the Anshan nucleus (Fig. 4a), both
continental nuclei appear to have initially originated from Hadean to

early Eoarchaean protocrust (4.2–3.8 Ga) (Fig. 4b). An εHf(t) contour
map (Fig. 4c) also supports the interpretation that the Anshan and
Baishanhu nuclei are dominated by reworked ancient crust, as they
show strongly negative εHf(t) values. Additionally, two small regions in
theQingyuan andHelong areas display ancient TDM

2 ages of 3.8–3.3 Ga
and unradiogenic Hf isotopes, probably indicating the existence of
ancient crustal fragments (Fig. 4). This interpretation is further sup-
ported by the identification of the c. 3.1 Ga TTG and amphibolite
assemblage29 and abundant 2.9–2.7Ga xenocrystic zircons within
the c. 2.7 Ga meta-mafic volcanic rocks30. The Baishanhu nucleus and
the other two ancient crustal fragments occur as isolated fragments
on the northern margin of the North China Craton, and are separated
from the Anshan nucleus and each other by the late Neoarchaean
North Liaoning to South Jilin granite–greenstone belt (Fig. 4). This
crustal architecture suggests that these ancient nuclei are surrounded
by a younger and juvenile granite–greenstone belt. Then, the tectono-
thermal event that transpired during the late Neoarchaean (2.7–2.5 Ga)
facilitated a significant expansion and growth of the North China
Craton, extending it from its original Eoarchaean-to-Mesoarchaean
cratonic nuclei.

The three nuclei within the North China Craton (i.e., Anshan,
Baishanhu, and Eastern Hebei) are connected by Neoarchaean
granite–greenstone belts; however, it remains unclear whether these
nuclei belonged to a single coherent continental terrane or
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represented three individual terranes. In favour of the former argu-
ment, we note that these nuclei experiencedmany similar Eoarchaean-
to-Mesoarchaean magmatic events, such as the c. 3.8Ga magmatic
event recorded in the Anshan and Eastern Hebei nuclei10. The oldest c.
3.6 Ga magmatic event in the Baishanhu nucleus also correlates with
that identified from the Hujiamiao Complex of the Anshan nucleus10.
Also, intensive crustal reworking events occurred in all three nuclei
during 3.3–2.9 Ga (refs. 31–33), leading to the formation of large-scale
potassic granitoids and reflecting the existence of voluminous con-
tinental crust in each region during the Mesoarchaean. Finally, zircon
Hf isotopes suggest similar TDM

2 ages (4.2–3.8 Ga), 176Lu/177Hf ratios
(0.022), and crustal evolution histories (Fig. 2d) for these three nuclei.
Therefore, the three North China nuclei may have once constituted a
coherent Eoarchaean-to-Mesoarchaeanproto-craton. Considering that
c. 2.7–2.6Ga potassic granites have only been identified from the

Baishanhu nucleus, and the existence of a 2.7–2.6Ga granite-
greenstone belt between the Baishanhu and Anshan nuclei, we sug-
gest that Baishanhu might have rifted away from Anshan during the
early Neoarchaean, and then later reunited during late Neoarchaean
cratonization of North China. Such a scenario involving rifting and
breakup of an ancient continental nucleus resembles the processes
that have been proposed for the Yilgarn Craton6.

Hadean to early Eoarchaean mafic protocrust in early Earth
As shownbyour newdata, zirconHf isotopes indicate that the Anshan,
Baishanhu, and EasternHebei nuclei originated from aHadean to early
Eoarchaean mafic protocrust (Fig. 2d). 142Nd and 143Nd isotopes for the
3.8–3.0Ga Anshan Complex suggest 4.5–4.4 Ga model ages for the
precursor of the oldest components and multiple mantle-crust dif-
ferentiation events from 4.3 to 3.8 Ga (ref. 22). Several Hadean detrital
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zircons10 and xenocrystic zircons34 identified from the Eastern Hebei
and Anshan nuclei and the southern margin of North China provide
direct evidence of a Hadean to early Eoarchaean heritage for the cra-
ton. This interpretation is further corroborated by the Xinyang
Eoarchaean xenoliths from southern North China35 that display more
evolved Hf isotopes than the other three northern continental nuclei
(Fig. 2d). Our new compilation of zircon Hf isotopes of Eoarchaean-to-
Mesoarchaean TTGs worldwide show that the vast majority of
Eoarchaean–Palaeoarchaean TTGs from most cratons (e.g., Slave, Yil-
garn, East Antarctica, Superior, and Kaapvaal) generally display TDM

2

ages >4Ga (Fig. 2c). Studies of the Eoarchaean Acasta Gneiss Complex
of the Slave Craton suggest that these oldest rocks on Earth were
generated from a Hadeanmafic protocrust9,36. In light of these earliest
records and our new findings from North China Craton, we propose
the existence of a Hadean to early Eoarchaean mafic protocrust that
was crucial for the formation of the earliest continental crust nuclei
preserved in individual cratons37.

Repeated Archaean underplating in a plume-dominant regime
Our new data show that the cores of the Baishanhu and Anshan nuclei
experienced multiple stages of crustal reworking since the Eoarch-
aean. The 3.8–3.6Ga TTG and the c. 3.3 and 3.1–2.9Ga potassic gran-
ites in the Anshan nucleus, as well as the 3.3–2.7 Ga granitoids within
the Baishanhu nucleus all exhibit consistent linear crustal evolutionary
trends (melting trend #1 in Fig. 2d), and were therefore derived from
repeated melting of a 4.2–3.8 Ga mafic precursor(s), without sig-
nificant addition of juvenile materials in any magmatic episode. In
addition, the c. 3.45Ga migmatite, the c. 3.3 Ga trondhjemite, and the
c. 3.1 Ga trondhjemite from the Anshan nucleus, the c. 2.9Ga TTG and
diorite from the Eastern Hebei nucleus, as well as the c. 2.78Ga
trodhjemite, c. 2.63 monzogranite, and some 2.5Ga potassic granites
from the Baishanhu nucleus define another reworking episode with a
distinct crustal evolution array (melting trend #2 in Fig. 2d). They
represent repeated melting products of former (3.8–3.3 Ga) under-
plated mafic crusts. This tectono-magmatic history of repeated inter-
vals of the reworking of ancient continental crust best fits a scenario
involving multiple underplating episodes within a plume-dominated
environment, most parsimoniously characteristic of a stagnant lid
geodynamic regime. The alternative scenario involving crustal growth
and reworking driven by arc magmatism above a subduction zone
would typically involve the incorporation of more juvenile compo-
nentswith radiogenicHf isotopes,which is not observeduntil c. 2.6 Ga.
Furthermore, the lithospheric architecture, characterised by younger
and juvenile granite–greenstone belts surrounding ancient, long-lived,
and reworked continental nuclei (Fig. 4), notably differs from linear
arcs and collisional orogens typically associated with Phanerozoic
convergent plate margins6.

Our data, expanding on previous interpretations, allow us to
propose a tectonic model for the North China Craton (Fig. 5). (i) The
Anshan and Baishanhu nuclei initially formed in a stagnant lid envir-
onment in an oceanic plateau setting due to partial melting of a
4.2–3.8Gamafic protocrust at 3.8 Ga and 3.6Ga, respectively (Fig. 5a).
(ii) Underplating of mafic magmas during the late Palaeoarchaean to
Mesoarchaean drove reworking of the existing Anshan and Baishanhu
Eoarchaean–Palaeoarchaean continental crusts, causing crustal ana-
texis and the production of voluminous 3.3–2.9 Ga potassic granites
(Fig. 5b). (iii) A final stage ofmagmatic underplatingwould have driven
further recycling of Eoarchaean–Palaeoarchaean continental crust in
the Baishanhu nucleus and the generation of c. 2.72 and 2.63Ga
monzogranites, and caused the Baishanhu and Anshan nuclei to
separate (Fig. 5c). Similar processes also dominated the growth and
maturation of other ancient cratons. For instance, the 3.5–2.8Ga
granitoids from the East Pilbara Craton display a secular trend towards
more evolved Hf isotopes, transitioning from TTG to K-rich granite
with limited addition of juvenile materials under a plateau-type

setting38; in the Yilgarn Craton, several episodes of crustal reworking
events occurred during 3.7–2.8 Ga, driven by mantle plume
activities6,39; multiple episodes of underplating from 3.6 to 3.2 Ga
were also recognised from the Kaapvaal Craton40. Therefore, we
propose that the growth andmaturation of Archaean cratons required
multiple cycles of underplating under a vertically-dominated, plume-
related regime. Suchmantle processes also resulted in the stabilisation
of thick subcontinental lithosphericmantle roots. Stabilisation of such
cratonic nuclei and the appearance of more rigid, plate-like crustal
fragmentswas likely the tipping point for allowing the global transition
to plate tectonics and the onset of the supercontinent cycle41.

Archaean supercratons and the asynchronous onset of
subduction
It has been proposed that the presently separated Archaean cratons
might have once constituted a larger ancestral landmass(es), either a
single supercontinent (“Kenorland”)42 or else several individual
supercratons43, during the late Archaean. A recent paleomagnetic study
performed on the c. 2.62Ga Yandinilling dike swarm of the Yilgarn
Craton in western Australia supports the hypothesis of multiple, long-
lived supercratons having existed through the Archaean–Proterozoic
transition44. Three or so supercratons, such as Superia, Sclavia, and
Vaalbara, have been proposed based on their distinct histories of
amalgamation and breakup43. Some plate reconfiguration schemes
suggest the Superia supercraton, including the Superior, Hearne, and
Kola/Karelia cratons, and theVaalbara supercraton,mainly consistingof
the Kaapvaal and Pilbara cratons, were joined together as a larger
Supervaalbara supercraton45. Separately, the Sclavia supercraton is
thought to have included the Slave (Canada), Yilgarn (Australia), Zim-
babwe, Dharwar (India), and São Francisco (Brazil) cratons43,44,46,47.
Within these supercraton reconstructions, North China has been con-
spicuously absent; however, several keygeological similarities leadus to
argue that North China appears to have a close affinity with the Sclavia
supercraton, consistent with recent speculation48. For example, (i)
similar Hadean–Eoarchaean tectono-thermal events, as evidenced by
U–Pb ages and Hf isotopes of igneous zircons (Fig. 2c, d) from the
Acasta complex in the Slave Craton9,12, theNarryer terrane in the Yilgarn
Craton39, the Anshan and Eastern Hebei nuclei in North China, as well as
the Mairi gneiss complex in the São Francisco Craton49; (ii) similar c.
2.7Ga basaltic volcanism, including komatiite, is preserved within the
North China Craton50 and elsewhere in Sclavia supercraton51,52; (iii)
North China and other cratons of the Sclavia supercraton share similar
cratonization ages during the late Neoarchaean (2.6–2.5Ga; refs. 51,53);
and (iv) both North China and the Sclavia supercraton lack early
Paleoproterozoic glaciogenic sequences, which are characteristic of the
Superior-like cratons45 (whereas deposits of the Hutuo Group of North
China are of ambiguous glacial origin and likely a distinctly younger age
than theHuronianGroupof Superior54). Together, ournewdata suggest
that North China belonged to the Sclavia supercraton, and affirm pre-
vious hypotheses that the supercontinent-like cycle of continental
assembly has operated on Earth since at least the late Archaean.

Our new data from the North China Craton can further shed
light on a key question within the geosciences: when did the tran-
sition between a stagnant lid and mobile lid (plate tectonic) geo-
dynamic regime occur on Earth? Zircon oxygen isotope analysis has
been proposed to track subduction zone processes55. In this study,
we compiled a dataset that includes new zircon oxygen isotopes and
data from various terranes within North China, as well as other
cratons worldwide. Globally, >2.7 Ga zircons primarily display
mantle-like or slightly elevated δ18O values, whereas those with ages
<2.7 Ga show an increasing trend in δ18O values (Fig. 2f), as similarly
demonstrated in previous analyses41. In North China specifically,
zircon δ18O values only begin to show significant elevation by the
end of the Neoarchaean (c. 2.5 Ga), while 3.6–2.6 Ga zircon exhibit
mantle-like or only slightly elevated δ18O values (Fig. 2f). Significant
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elevation of δ18O values during the Neoarchaean is consistent with
the observation from triple-oxygen-isotopes recorded in Archaean
shales56 that reflect substantial emergence of subaerial landmass,
allowing for subaerial weathering. The appearance of more exposed
continent during the Neoarchaean is contemporaneous with the
assembly of the Kenorland supercontinent42 or multiple
supercratons43 (i.e., Superia, Sclavia, and Vaalbara). Thus, the dia-
chronous increase of δ18O values in different cratons at different

times in the Neoarchaean suggests the asynchronous emergence of
large-scale subaerial land.

There is broad consensus that plate tectonics had become
established on Earth by around 3 Ga (refs. 1,57,58), even if localised
subduction began in some cratons at an earlier time59–61. The δ18O
values of the c. 2.5 Ga igneous rocks from North China show notably
higher values than those in older zircon (Fig. 2f), which suggest that
considerable volumes of supracrustal materials have been
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Fig. 5 | Tectono-magmatic model of the Eoarchaean to early Neoarchaean
evolution of the North China Craton. a Mafic magma underplating during
3.8–3.6 Ga resulted in partial melting of a pre-existing 4.2–3.8 Ga mafic protocrust
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incorporated into magma source regions. This process can be
achieved through several geodynamic processes (e.g., subduction,
sagduction, or thrust stacking), of which, subduction is considered the
most effective way. Several independent lines of evidence confirm that
subduction initiated locally within the North China Craton by the end
of the Neoarchaean, including evidence of paired metamorphism in
Dengfeng62, Alpine-style subhorizontal arc-affinity nappe structures in
central North China63,64, and the widespread presence of subduction-
related potassic granites and sanukitoids53—all occurring at c. 2.5 Ga.
Therefore, the initiation of subduction in North China might have
occurred notably later than in many other cratons. Our new data thus
add to a growing set of observations supporting the onset of sub-
duction being asynchronous from a global perspective59,65. This later
tectono-magmatic age is interestingly also when the global δ18O
database on the whole exhibits a positive step-change increase
towards more supracrustal reworking taken to indicate a geodynamic
shift into the “supercontinent state”, whereafter the three large
supercontinents are known to have formed41. This relationship
underscores how North China Craton represents one of the last places
in a globally highly asynchronous process to have experienced the
onset of subduction.

Methods
Zircon U–Pb dating
Zircon U–Pb analysis of samples 21LJ38-1, 21LJ39-1, 21LJ35-1, 21LJ06-3,
21LJ18-1, and 21LJ19-1 was conducted using a PlasmaQuant MS series
ICP–MS with a NWR193 laser-ablation microprobe at Yanduzhongshi
Geological Analysis Laboratories Ltd, Beijing, China. The diameter of
laser beamwas set at 30μm.The analysis of samples 22BS20-3, 22BS15-
1, 22BS19-1, 22BS23-1, 22BS27-1, 22BS28-1, 22BS29-1, 22BS32-1, 22BS18-
4, 23HX22-1, 23HX23-1, 23HX28-1, and 23HX29-1 was carried out using
an Agilent 7500c quadrupole ICP–MS and a 193-nm ArF Excimer laser
at the Key Laboratory of Mineral Resources Evaluation in Northeast
Asia at Jilin University, Changchun, China. The analytical spot size was
set at 32μm, with a laser energy density of 10 J/cm2 and a repetition
frequency of 8Hz. Zircon U–Pb dating of Sample Z2010-3 was per-
formed using an Agilent 7900 ICP–MS with an ATL (ATLEX 300)
excimer laser at Nanjing Hongchuang Exploration Technology Service
Co., Ltd., Nanjing, China. Zircon standards 91500 and Plešovice were
utilised as primaryand secondary referencematerials in all three above
laboratories, respectively. In addition, Samples 21LJ39-1, 22BS20-3, and
22BS15-1 were also analyzed using the Sensitive High Resolution Ion
MicroProbes (SHRIMP) II instrument at the Beijing SHRIMP Center of
the Chinese Academy of Geological Sciences (GAGS), Beijing, China.
During the analysis, the intensity of theprimaryO2− ionbeamwas set to
3–5 nA, with beam spot sizes of 20μm. Standard zircon TEMORA was
utilised to correct the U, Th, and Pb contents as well as the ages of
zircon. Thedetailed analytical procedures for the zirconU–Pb isotopes
are presented in Supplementary Methods.

Zircon Lu–Hf isotope analysis
In situ Lu–Hf isotope ratio analysis was conducted using a Neptune
Plus MC–ICP–MS in conjunction with a Geolas HD excimer ArF laser
ablation system at the Wuhan Sample Solution Analytical Technology
Co., Ltd, Wuhan, China. All data were collected on zircon in single spot
ablation mode at a spot size of 44μm. The energy density of laser
ablation used in this study was approximately 10 J cm−2. Each mea-
surement consisted of a 20-s acquisition of the background signal
followed by a 50-s acquisition of the ablation signal. Plešovice was
utilised for external standard calibration to optimise the analytic
results. 91500 and GJ-1 served as secondary standards to monitor the
quality of data correction. The εHf(t) values are calculated using 176Lu
decay constant (λ176Lu) of 1.865 × 10−11 (ref. 66) and the chondrite
parameters used are 176Hf/177Hf = 0.282772 and 176Lu/177Hf = 0.0332
(ref. 67). The zircon Hf two-stage depleted mantle model ages (TDM

2)

were calculated using ratios of 176Hf/177Hf = 0.283251 and
176Lu/177Hf = 0.0384 for present depleted mantle suggested by ref. 68,
and 176Lu/177Hf value of 0.022. The detailed analytical procedures for
the zircon Lu–Hf isotopes are described in Supplementary Methods.

Major and trace element analyses
Whole-rock major and trace element analyses were conducted at
WuhanSample SolutionAnalytical TechnologyCo., Ltd, China. TheZsx
Primus II wavelength dispersive X-ray fluorescence spectrometer was
used to analyze themajor elements. The standard curves were derived
using the national standard materials GBW07103, GBW07105,
GBW07111, and GBW071112. The relative standard deviation was less
than 2%. An Agilent 7700e ICP-MS equipment was used to analyze the
trace elements. The standardmaterials GSR-3, RGM-2, BHVO-2, and JA-
2 were used for quality control. The detailed analytical procedures for
the whole-rock geochemistry are described in Supplementary
Methods.

Zircon O isotope analysis
The analysis of zircon oxygen isotope was conducted using the
SHRIMP II equipment at the Beijing SHRIMP Center, CAGS, China. The
Cs+ primary ion beam’s intensity was approximately 3 nA, which
resulted in secondary 16O1− count rates exceeding 109 cps. The dia-
meter of the spot analyzed was 20μm. The standard zircon TEMORA
was used as reference material for calibrating instrumental mass
fractionation. The standard was analyzed either two or three times at
the beginning of each analytical session, and then after every third
analysis of the unknown samples. The detailed analytical procedures
for the zircon O isotopes are presented in Supplementary Methods.

Compilation of zircon Hf–O data
Zircon Hf isotopic data have been compiled from various sources for
the continental nuclei of the NCC and the Neoarchaean northern
Liaoning to southern Jilin granite-greenstone belt. Additionally,
Eoarchaean-Mesoarchaean TTG samples from other cratons have also
been included in this compilation. These cratons include: (1) India:
Bastar Craton, Bundelkhand Craton, Coorg Block, Dharwar Craton,
and Singhbum Craton; (2) South Africa: Kaapvaal Craton; (3) North
America: North Atlantic Craton, Slave Craton, Superior Craton, and
Wyoming Craton; (4) Australia: Pilbara Craton and Yilgarn Craton; (5)
China: Yangtze Craton and Tarim Craton; (6) Other locations: East
Antarctica and Sao Francisco Craton (South America). The compiled
zirconHf isotopic data and references are presented in Supplementary
Data 4. This compilation includes only the data of magmatic zircons
with U–Pb age discordances <10%. Generally, crustal contamination or
magma mixing could induce heterogeneous Hf isotope signatures.
Thus, this study applies probability of fit (p) values of each sample to
filter out those zircons with heterogeneous Hf compositions. The p
values of each samplewere calculated usingOrigin 2023. Only samples
with p ≥0.05 are considered statistically homogeneous, while those
with p <0.05 are deemed heterogeneous and thus excluded from
interpretation. The in situ zircon O isotopic data have been compiled
from various terranes of the NCC and other ancient cratons/terranes
worldwide. These cratons/terranes include the Slave craton, Barber-
ton, Clearwater Block, Congo Craton, Coorg Block, Dharwar craton,
East Antarctica, North Atlantic craton, Pilbara craton, Scandinavia,
Superior craton, Tarim craton, Yangtz craton, and Yilgarn craton. The
compiled zirconδ18O values and references for thesedata areprovided
in Supplementary Data 5. Only analyses for magmatic zircons or cores
with U–Pb age discordances <10% were included.

Data availability
The authors declare that all data supporting the findings of this study
are available online (https://doi.org/10.6084/m9.figshare.26139169)
and included in Supplementary Information/Data files.
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