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Global patterns in the growth potential of
soil bacterial communities

Ernest D. Osburn 1,2 , Steven G. McBride3, Mohammad Bahram4,5,6 &
Michael S. Strickland 2

Despite the growing catalogue of studies detailing the taxonomic and func-
tional composition of soil bacterial communities, the life history traits of those
communities remain largely unknown. This study analyzes a global dataset of
soil metagenomes to explore environmental drivers of growth potential, a
fundamental aspect of bacterial life history. We find that growth potential,
estimated from codon usage statistics, was highest in forested biomes and
lowest in arid latitudes. This indicates that bacterial productivity generally
reflects ecosystem productivity globally. Accordingly, the strongest environ-
mental predictors of growth potential were productivity indicators, such as
distance to the equator, and soil properties that vary along productivity gra-
dients, such as pH and carbon to nitrogen ratios. We also observe that growth
potential was negatively correlated with the relative abundances of genes
involved in carbohydrate metabolism, demonstrating tradeoffs between
growth and resource acquisition in soil bacteria. Overall, we identify macro-
ecological patterns in bacterial growth potential and link growth rates to soil
carbon cycling.

Growth is a fundamental property of microbial communities that
underpins myriad ecosystem functions1,2. For example, increased
microbial growth comes at the cost of microbial resource acquisition
(e.g., exoenzyme production)3, thereby influencing decomposition
rates of soil carbon (C) sources. Similarly, microbial partitioning of
assimilated C resources into growth vs. other processes (e.g., respira-
tion) is a key driver of soil organic matter formation4,5. These tradeoffs
highlight key feedbacks among microbial communities, soil C stocks,
and global climate, as the decomposition and eventual fate of soil C
sources (i.e., storage vs. respiration as CO2) is ultimately dependent
upon microbial growth dynamics6. Therefore, to better understand
and predict variation in ecosystemC cycling and storage, an improved
understanding of the patterns and drivers of microbial growth
potential is needed.

Microbial growth is frequently measured in ecological studies
using isotope tracing methods, often to quantify microbial C use

efficiency4 or to elucidate growth rates of specific microbial groups7,8.
Studies employing these methods in soil have demonstrated that
microbial growth rates vary among bacterial taxa9, with soil depth10,
among ecosystem types11, and in response to many anthropogenic
environmental changes, including land use change12, drought13,
warming13,14, and fertilization15. Isotopic methods have the advantage
of providing direct measurements of actual in situ microbial growth
yield, though the addition of water or exogenous substrates biases
isotopic growth estimates4. In addition, no study (likely due to low
throughput) has applied thesemethods at the spatial scale required to
elucidate macroecological patterns in microbial growth.

Another approach to estimating microbial growth rates involves
the use of genomic or metagenomic sequence data16–18. Metagenomic
approaches to estimatingmicrobial growth potential, alongwith other
community-aggregated traits19,20, are promising given the increasing
prevalence of publicly available sequence data collected fromdifferent
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ecosystem types across the globe21. An additional advantage of geno-
mic/metagenomic growth estimates is that they do not suffer from
biases introduced by substrate or water addition. Estimates of max-
imum bacterial growth rates from genomes and metagenomes are
basedon theobservation thatbacterial growth rates arebest predicted
by the degree of codonusage bias presentwithin a particular organism
or community16. This is because rapidly-growing bacterial taxa have
undergone selection for highly biased codon usage in their highly-
expressed genes (e.g., ribosomal protein genes) such that the codons
match their cellular tRNA pool, thus enabling rapid production of
cellular components required for growth (e.g., ribosomes)16. Estimates
of maximum bacterial growth rates from codon usage statistics have
been shown to be highly accurate for both environmental and host-
associated bacterial communities17,18,22. Surprisingly, however, these
metagenomic growth potential estimates have only very rarely been
used for soil bacteria, though one prior study did show that maximum
growth rates were higher for soil bacteria in vegetated soils compared
with bare soils in an arid ecosystem23. At the same time, another found
no differences in growth rates among Chinese forest soils with dif-
ferent pH24.

Though estimating microbial growth rates is possible using
metagenomic methods, we know of no studies that rigorously assess
globalmacroecological patterns in soil bacterial growth potential. This
contrasts with other aspects of soil bacterial communities, e.g., taxo-
nomic diversity and functional gene composition, for which some
macroecological studies have emerged in recent years21,25,26. These
studies have demonstrated that soil bacteria do not exhibit the tradi-
tional latitudinal diversity gradients that are typical of macro-
organisms (e.g., plants)21,25 and that global patterns in the functional
attributes of bacterial communities (e.g., antibiotic resistance gene
relative abundances and C acquisition gene relative abundances) are
strongly associated with ecosystem aridity21,26,27. Similarly, this study
aimed to exploremacroecological patterns and environmental drivers
of soil bacterial growth potential. We also sought to identify global-
scale relationships between growth potential and key bacterial C cycle
functions. Assessing these relationships is critical because they
represent potential mechanistic links between microbial life history
and soil C cycling and because the current prevailing theoretical fra-
meworks in microbial ecology predict them. For example, the Y-A-S
(i.e., growth yield vs. resource acquisition vs. stress tolerance) frame-
work predicts that the dominant life strategies of microorganisms are
subject to tradeoffs. Thus, optimization of growth potential should
come at the cost of C resource acquisition potential28. Empirical evi-
dence of these tradeoffs exists for some ecosystems3, though whether
or not these tradeoffs manifest at macroecological scales is unknown.

In this study, we use a global dataset of soil metagenomes21 to
estimate maximum growth rates for each community using a recently
developed growth model based on codon usage statistics18. As an
additional metric of growth potential, we estimate the community-
averaged 16S rRNA operon number for each metagenome, which has
also been shown to be a strong indicator of growth potential in
bacteria29. We hypothesize that the global patterns in bacterial growth
potential will reflect ecosystem productivity, as highly productive
ecosystems should exhibit soil conditions that promote bacterial
growth, e.g., high soil moisture and organic matter content. In addi-
tion, in accordancewith the Y-A-S framework, we predict that bacterial
growth potential is negatively correlated with the relative abundances
of C cycle resource acquisition genes on a global scale. In this work, we
show thatmaximumgrowth rates of soil bacterial communities exhibit
clear relationships with several environmental variables, including
positive associations with forest cover and ecosystem net primary
productivity.We also show thatbacterial growthpotential is negatively
associatedwith C acquisition gene relative abundances, which is in line
with the prevailing conceptual frameworks in microbial ecology.

Overall, our work demonstrates that bacterial growth is a key physio-
logical mechanism that drives ecosystem C cycling at a global scale.

Results and discussion
Growth potential of soil bacteria across biomes
We used codon usage statistics to estimate bacterial growth potential
in 176 soil metagenomes sampled from 11 terrestrial biomes across six
continents (Supplementary Fig. 1). Estimated maximum growth rates
exhibited significant variation across biomes, with latitude explaining
~ 15% of the variation in maximum growth rates (Fig. 1A). The best-
supported regression model for maximum growth rates as a function
of latitude was quadratic, with higher maximum rates observed at
tropical and temperate/boreal latitudes and lower maximum rates in
more arid subtropical latitudes (Fig. 1A). Interestingly, a prior analysis
of these same metagenomes showed that bacterial taxonomic and
functional diversity exhibited opposite latitudinal patterns compared
to the patterns for maximum growth rates, i.e., taxonomic and func-
tional diversity were higher in mid-latitudes21. This suggests that
environmental selection for rapid microbial growth results in a less
diverse set of highly competitive taxa that have amore streamlined set
of functions. These global patterns are distinct from those observed in
plant communities; unlike plants, high growth potential in bacteria is
not associated with higher taxonomic diversity. This complements
prior studies demonstrating that macroecological patterns in micro-
bial community characteristics are different from the traditional lati-
tudinal gradients seen in macro-organisms21,25.

Based on the latitudinal patterns, it appeared that maximum
growth rates were generally higher in forested biomes. To test this, we
categorized the biomes as forested vs. non-forested and indeed
observed ~ 12% higher maximum growth rates in forests (Fig. 1B). We
observed the same latitudinal patterns and the same effects of forest
cover in every iteration of the growth models we ran: in predictions
from assembled contigs (Fig. 1), from gene fragments (Supplementary
Fig. 2), and in a GC-corrected version of the model (Supplementary
Fig. 3) (see “Methods” section). However, this dataset has a limited
number of samples from non-forested environments from which to
draw firm conclusions. Therefore, we repeated the same growth rate
analysis in metagenomes from 42 National Ecological Observatory
Network (NEON) sites located across the United States. In the NEON
dataset, the effect of forest cover was even more pronounced, with
~ 31% higher predicted maximum growth rates in forested sites (Sup-
plementary Fig. 4). These results allow us to place global soil bacterial
communities within the copiotroph vs. oligotroph life history
framework17, where rapidly-growing communities from forested
environments can be considered more copiotrophic while slower
growing communities from non-forests are more oligotrophic.

For additional validation, we also assessed community-averaged
16S rRNA gene copy numbers, as organisms adapted to rapid growth
are known to have elevated rRNAgene copy numbers in order to boost
cellular ribosome numbers needed for replication29. As expected,
average 16S rRNA gene copy numbers were significantly positively
correlated with maximum growth rates (Fig. 1C). Maximum growth
rates were alsoweakly positively correlatedwith average genome sizes
(Fig. 1D). This contrasts with multiple prior studies that showed no
relationship between growth and genome size16,30. This suggests that
while higher maximum growth rates and larger genomes tend to co-
occur in some soils (i.e., in forested biomes), they may be indepen-
dently selected for in those environments30. To rigorously assess the
relationship between maximum growth rates and metagenome GC
content, we used a GC-corrected version of the growth model, as this
ensures that the growth model itself has no dependency on GC con-
tent. We found a significant negative correlation between maximum
growth rates and GC content (Supplementary Fig. 5), which has also
been previously shown in soils from arid environments23. Elevated GC
content is a known adaptation to increased thermotolerance in
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bacteria31. Therefore, our results suggest that there is a fundamental
trade-off between stress tolerance and growth potential in soil bac-
teria. This tradeoff is a central component of the growth yield vs.
resource acquisition vs. stress tolerance (Y-A-S) microbial life history
concept (i.e., ‘yield’ vs. ‘stress tolerance’)28, as well as the older
competitor-stress tolerator-ruderal (C-S-R) concept upon which Y-A-S
is based32. Our results confirm the existence of this tradeoff and
identify the global environmental factors (e.g., forest cover) that
influence the balance between stress tolerance and growth potential
traits in soil bacteria.

While the ecological patterns in bacterial growth potential we
observed appear to be robust, more deeply sequenced metagenomes
would provide improved estimates. Whereas the assemblies in this
study were not ideal (see “Methods” section), greater sequencing
depth would facilitate the assembly of full genomes from the
metagenomes33, which, in turn, would yield more accurate growth

estimates17. In addition to improved growth prediction accuracy, the
estimation of growth rates of individual members of communities
would also allow for studies of within-community variation of growth
potential across environmental gradients. Given the continually
increasing size and availability of sequence datasets, future studies
should be able to address these questions. We also note that this
study’s sampling scheme was unsuitable for assessing within-biome
patterns in bacterial growth potential. Thus, future studies should also
assess the scales at whichmetagenomic life history tradeoffs manifest,
i.e., whether these tradeoffs exist within all biomes, only particular
biomes, or only manifest at macroecological scales.

Environmental drivers of bacterial growth potential
Predicted maximum growth rates and associated genomic traits were
significantly correlated with several climatic and soil variables (Sup-
plementary Fig. 6). Growth metrics were positively correlated with

Fig. 1 | Global patterns in the growth potential of soil bacterial communities.
Panel (A) shows the best-supported polynomial regression function (quadratic) for
growth rates as a function of latitude (F = 16.1, p <0.001). Differences in maximum
growth rates between forested and non-forested biomes are shown in (B), with
asterisks indicating significantly higher maximum growth rates (F = 11.2, p <0.001).
The box plots in (B) show group medians and interquartile ranges with diamond
symbols indicating group means and whiskers representing the upper and lower
quartiles plus or minus 1.5 times the interquartile range. The analyses shown in (A)

and (B) were one-tailed (F-tests). Also shown are Pearson correlations between
maximum growth rates and average 16 S rRNA gene copy number (C) and average
genome size (D). The correlation analyses in (C) and (D) were two-tailed. The
shaded areas in (A), (B), and (C) represent the 95% confidence interval around the
regression line. For all the statistical analyses shown, n = 176. Source data are
available as a Source Data file and on figshare: https://doi.org/10.6084/m9.figshare.
24498484.v3.
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indicators of productivity – for example, maximum growth rates and
16S rRNA gene copy number were both positively correlated with
ecosystem net primary productivity (NPP) (Supplementary Fig. 6).
Growth rates were also positively correlated with soil moisture, soil
organic C content, and C:N ratios, and negatively correlated with soil
pH (Supplementary Fig. 6), all of which are soil properties that vary
across productivity gradients. Similar correlations were also present in
the metagenomes from the 42 NEON sites, where maximum growth
rates were strongly negatively correlated with soil pH (Supplementary
Fig. 4). To identify the strongest statistical predictors of bacterial
growth potential, we used random forest regression. The random
forest regression model explained 43% of the variation in maximum
growth rates, and the model results corroborated the correlation
analyses, identifying soil pH, soil C:N, and distance to the equator as
the strongest predictors of maximum growth rates (Fig. 2). For 16S
rRNA gene copy numbers, ecosystem NPP and soil moisture were the
strongest predictors (Supplementary Fig. 7).

Given that acidic soils are generally understood to be stressful
environments for soil microorganisms, it seems unlikely that increas-
ingly acidic soil pH in itself would promote rapid bacterial growth, as is
suggested by our random forest model (Fig. 2). Indeed, prior work has
shown that within specific biomes, lower soil pH tends to inhibit
microbial growth (grasslands)3 or does not influence growth rates
(forests)24. Therefore,we suggest that the strong association of low soil
pH with high growth potential we observed on a global scale is prob-
ably due to low soil pH simply being a highly consistent indicator of
highproductivity rather than anydirect positive influenceof lowpHon
growth. Soil pH was indeed significantly correlated with nearly all
indicators of ecosystem productivity (e.g., NPP, MAP, distance to
equator) (Supplementary Fig. 8). Highly productive ecosystems then
have other soil characteristics that are more likely to directly promote
bacterial growth potential, e.g., high moisture and organic carbon
content, both of which were positively correlated with growth poten-
tial (Supplementary Fig. 6). To support this conclusion, we ran an
alternative random forest model for maximum growth rates that
excluded soil pH as a candidate environmental predictor. The alter-
native model still explained 38% of the variation in maximum growth

rates (compared with 43% for the model that includes soil pH) and
identified soil C:N, distance to equator, and soil moisture as the most
important predictors (Supplementary Fig. 9). Thus, while we cannot
rule out the possibility that soil pH plays a direct role in driving bac-
terial growth potential, our results do show that indicators of pro-
ductivity other than soil pH perform similarly in accounting for
variation in maximum bacterial growth rates. Overall, these results
support our first hypothesis, demonstrating that the productivity of
soil bacterial communities mirrors the productivity of the ecosystems
that they inhabit. This finding demonstrates that through a chain of
energy and nutrient transfer, the productivity of an ecosystem drives
the productivity of all organisms within that ecosystem, including
microorganisms. While there are surprisingly few studies investigating
patterns and environmental drivers of bacterial growth across
biomes8,11, this conclusion is in agreement with experimental work that
has demonstrated positive links between plant productivity and
microbial growth34,35. Our results are also in agreement with a previous
study from an arid ecosystem that showed higher bacterial growth
rates inmore productive vegetated soils than in bare soils23 as well as a
studyonmarinebacteria that showedhighermaximumgrowth rates at
the ocean surface than in the less productive subsurface18. Prior work
has also demonstrated positive links between ecosystem productivity
and key soil health indicators36, which suggests that bacterial growth
potential may also be positively associated with overall soil health.

Overall, our results suggest that ecosystem productivity is a key
global driver of bacterial growth potential, which, in turn, was highest
in both tropical forests and temperate/boreal forests. This result seems
inconsistent with the prevailing paradigm in ecology that ecosystem
productivity is much higher in tropical latitudes than in temperate/
boreal latitudes37. However, in contrast to the historical paradigm,
some recent studies have shown that temperate/boreal forests may
actually have productivity similar to that of tropical forests37,38, at least
during the growing season39. Therefore, ecosystem productivity and
associated soil properties are plausible global drivers of bacterial
growth potential. It is also possible that other characteristics of forest
ecosystems, potentially related to ecosystem productivity but not
productivity per se (e.g., high plant biomass accumulation), play a role
in driving high bacterial growth potential, which should be investi-
gated in future studies.

Relationships between growth potential and functional genes
Our second hypothesis was that bacterial growth metrics would be
associated with the potential C cycle functions of the bacterial com-
munities, with the expectation that higher growth potential would
come at the cost of reduced potential for C resource acquisition. Here,
we focus on the relative abundances of genes encoding enzymes
involved in carbohydratemetabolismand transport (eggNOGCOG ‘G’)
and energy production and conversion (eggNOG COG ‘C’), as these
genes are key drivers of microbial C cycling in soil. We found that
maximum growth rates were positively correlated with the relative
abundances of energy production and conversion genes (Fig. 3A) and
negatively correlated with relative abundances of carbohydrate
metabolism and transport genes (Fig. 3B). We observed the same
correlations between 16S rRNA gene copy numbers and the two gene
categories (Supplementary Fig. 10). In addition, similar to the results
for eggNOG carbohydrate metabolism/transport genes, relative
abundances of genes encoding carbohydrate-active enzymes
(CAZymes) were negatively correlated with both maximum growth
rates and 16S rRNA gene copy numbers (Supplementary Fig. 11). These
results support our second hypothesis and are similar to prior studies
that also found enrichment of carbohydratemetabolismgenes inmore
oligotrophic (i.e., slower growing) bacterial communities23 as well as
prior work that has shown rapidly growing communities to have
reduced investment into resource acquisition (i.e., extracellular
enzymes)3. This tradeoff between bacterial growth potential and

Fig. 2 | Random forest regressionmodel showing the strongest environmental
predictors of bacterial community-averaged maximum growth rates. The
‘importance’ of each variable was quantified as the increase in model error (mean
squared error, ‘MSE’) when each respective variable was randomly shuffled across
thedataset. For the randomforestmodel,n = 176 samples. Sourcedata are available
as a Source Data file and on figshare: https://doi.org/10.6084/m9.figshare.
24498484.v3.
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resource acquisition potential is another fundamental aspect of the
Y-A-S microbial life history framework (i.e., ‘yield’ vs. ‘acquisition’)28.
Again, our results confirm the existence of the tradeoff and identify
ecosystemproductivity as the key environmental gradient alongwhich
the tradeoff operates.

In addition, the positive association between bacterial growth
potential and energy production/conversion genes we observed sug-
gests that high growth potential is associated with the conversion of
assimilated C resources to energy as opposed to biomass accrual.
Another recent study in soils also associated copiotrophic bacterial
communities with greater energy metabolism24, and prior culture-
based studies have similarly demonstrated a negative relationship
between maximum growth rates and bacterial C use efficiency29. It is
possible that rapid bacterial growth and turnoverwill, in turn, promote
soil organic matter formation via increased production of microbial
residues5. Alternatively, the reduction in C use efficiency that likely
accompanies increased growth rates could reduce rates of soil organic
matter formation due to increased respiratory loss of C40. Future
research should attempt to disentangle these potential C cycle path-
ways in relation to bacterial growth potential. It should also be noted
that some of the relationships between metagenomic traits we
observed are at odds with prior work on marine bacteria, which
showed faster-growing organisms to be enriched in carbohydrate
metabolism genes and slower-growing communities to be enriched in
energy metabolism genes17, the opposite of what we observed. The
reason for the discrepancy is not clear, though it is possible that
marine vs. soil environments impose different selective pressures on
bacteria that lead to different associations between metagenomic
traits. Given this discrepancy, it is not clearwhether Y-A-S tradeoffswill
be universally observed across all microbial habitats. Identifying the
similarities and differences in microbial tradeoffs among different
microbial habitats represents another important area of future
research.

The results described above are corroborated and summarized
by our structural equation model (SEM), which illustrates the links

among climate, soil properties, bacterial growth potential, and C
cycle functions (Fig. 4). The SEM reflects our hypothesis that high
bacterial growth potential is unlikely to be mechanistically linked to
low soil pH, i.e., pH was not included in the a priori SEM. The SEM
also reflects our hypothesis that productivity is an important global
control over bacterial growth potential and thus includes NPP as a
candidate variable. Though NPP was not among the strongest pre-
dictors ofmaximumgrowth rates in the random forestmodel (Fig. 2),
it is reasonable to include NPP in the SEM given our hypotheses and
given that NPP was significantly correlated with maximum growth
rates (Supplementary Fig. 6) and was also the strongest predictor of
16S rRNA gene copy number (Supplementary Fig. 7). The SEM sup-
ports our hypothesis that bacterial growth potential is driven pri-
marily by soil properties such asmoisture and C availability, which, in
turn, are controlled by productivity (i.e., NPP, distance to equator)
(Fig. 4). Growth potential is then significantly associated with C cycle
functions, with a negative effect of maximum growth rates on car-
bohydrate metabolism genes and a positive effect of maximum
growth rates on energy production/conversion genes (Fig. 4).
Because we cannot rule out the possibility that soil pH plays a direct
role in driving growth potential, we ran an alternative SEM that
includes pH, which produced very similar results (Supplementary
Fig. 12). Overall, our results identify the environmental conditions
that select for high bacterial growth potential and suggest that var-
iation in bacterial growth potential among biomes will drive varying
rates of decomposition and C storage in soils from different envir-
onments. These results complement a prior study using the same
metagenomes, which described life history trait dimensions on the
basis of functional gene relative abundances and genomic traits26.
That study found that arid biomes were associated with bacterial
communities with small genomes and increased relative abundance
of C acquisition genes26. Other studies have similarly found that
global patterns in the taxonomic composition of bacterial commu-
nities are strongly associated with ecosystem aridity vs.
productivity27. Our results demonstrate that those macroecological

Fig. 3 | Pearson correlations between maximum growth rates of bacterial
communities andbacterial C cycle functional gene relative abundances.Shown
are correlations between growth rates and the relative abundances of energy
production and conversion genes (eggNOG COG category ‘C’) (A) and between
growth rates and the relative abundances of carbohydrate transport and metabo-
lism genes (eggNOG category ‘G’) (B). The correlation analyses on both (A) and (B)

were two-tailed and n = 176. The shaded areas in (A) and (B) represent the 95%
confidence interval around the regression lines. Functional gene relative abun-
dances are expressed as the percentage of annotated reads assigned to the
respective categories. Correlations between the two categories and 16 S rRNA gene
copy numbers are shown in Supplementary Fig. S10. Source data are available as a
SourceDatafile andonfigshare: https://doi.org/10.6084/m9.figshare.24498484.v3.
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patterns in the functional and taxonomic characteristics of bacterial
communities are fundamentally linked to the growth potential of
those communities.

Concluding remarks
Growth potential is a fundamental property of microbial communities
that control rates of C cycling and storage in terrestrial ecosystems.We
demonstrate that the growth potential of soil bacterial communities
varies among terrestrial biomes, with high bacterial growth potential
associated with highly productive forest ecosystems. Further, varia-
tions in growth metrics were associated with variations in microbial C
cycle gene relative abundances, with an apparent tradeoff between
growth potential and resource acquisition potential. Importantly, the
metagenomic approach we used only estimates maximum growth
rates and not actual in situ growth, which can be substantially slower
than maximum rates11. Thus, future studies should use empirical
methods (e.g., isotope tracing) to validate the patterns we observed.
Future studies should also validate the results observed here using
more deeply sequenced metagenomes, which would allow for a more
accurate estimation of growth potential in bacterial genomes assem-
bled from the metagenomes17. Regardless, the macroecological pat-
terns in bacterial growth potential we identify are a substantial
contribution to bacterial life history theory, confirming the existence
of hypothesized bacterial life history tradeoffs (i.e., growth vs. stress
tolerance and growth vs. resource acquisition) as well as identifying
the environmental gradients along which those tradeoffs manifest.
These tradeoffs and their associated environmental drivers, in turn,
determine the relative dominance of different soil C cycle pathways.
Thus, our work establishes a microbial physiological framework with
which to better understand the decomposition and storage of soil C at
a global scale.

Methods
Sample collection
For this study, we analyzed a dataset of 176 metagenomes generated
from soils from 11 terrestrial biomes across six continents (Supple-
mentary Fig. 1). All soil samples were collected and shipped in accor-
dance with local and international laws, as described previously41. The
soil sampleswere analyzed for chemical properties, including pH, total
N, organic C, total phosphorus (P), calcium (Ca), potassium (K), and
magnesium (Mg) contents21. Temperature and precipitation data for
each soil sampling location were obtained from the WorldClim

database, while estimates of potential evapotranspiration (PET) and
net primary productivity (NPP) were obtained from the Atlas of the
Biosphere21.

Metagenomic analyses
DNA was extracted from 2 g of each soil sample using the PowerMax
soil DNA isolation kit (MoBio). DNA was prepped for shotgun meta-
genomic sequencing using the Illumina TruSeq Nano HT kit and
sequenced on the Illumina HiSeq 2500 platform (2 × 250bp)21. We
downloaded the raw metagenomic sequence reads from NCBI acces-
sion number PRJEB18701. We quality-filtered the raw reads using
trimmomatic (version 0.39)42 and assigned taxonomy to the quality-
filtered reads using kraken2 (version 2.1.3)43 with the Refseq genomes
for bacteria, archaea, viruses, fungi, and protists as reference data-
bases. To avoid biases from varying relative abundances of eukaryotic
sequences among ecosystems (Supplementary Fig. 13), we conducted
all downstream analyses using only the metagenomic reads identified
as bacterial in origin.

We estimated the average minimum doubling times of the bac-
terial communities using gRodon217, which works by quantifying
codon usage bias in highly expressed ribosomal protein genes while
also accounting for the relative coverages of genes in the community.
The method has previously been shown to be most accurate when
genes are predicted from assembled contigs18. Therefore, we assem-
bled contigs using megahit (version 1.1.3)44 and predicted coding
regions in the contigs using prodigal (version 2.6.3)45. We then iden-
tified ribosomal protein genes from the coding regions by using blastn
(version 2.9.0)46 with a previously constructed database of ribosomal
protein gene sequences as the reference database16. Relative coverages
of the genes were determined by aligning the sequence reads to the
predicted coding regions using bwa mem (version 0.7.17)47 and
quantifying gene coverages using samtools (version 1.9)48.

For the gRodon models, we used the ‘metagenome_V2’
(or ‘MMv2’) version of the software.MMv2 is an updated version of the
original gRodon model (MMv1), which toggles between MMv1 and a
GC bias-corrected version of the model (MMBC) depending on the
consistency of codon usage in the ribosomal protein genes in a
metagenome. Further information on the mechanics of the model can
be found in the original gRodon studies17,18. For our samples, con-
sistency values were always below the toggle threshold, so the original
MMv1 was applied. We also analyzed our samples with MMBC to
ensure that the patterns we observed were not simply reflecting any

Fig. 4 | Structural equation model demonstrating links among climate vari-
ables, soil variables, bacterial community growth potential, and relative
abundances of bacterial C cycle functional genes. The path diagram shows
standardized path coefficients, and only statistically significant paths are shown.
The SEM explains 43% of the variation in energy production/conversion genes, 21%

of the variation in carbohydrate transport/metabolism genes, and 21% of the var-
iation in maximum growth rates. All fit indices indicated adequate fit of the model
(CFI > 0.99, SRMR and RMSEA both < 0.05). For the structural equation model,
n = 176 samples. Source data are available as a Source Data file and on figshare:
https://doi.org/10.6084/m9.figshare.24498484.v3.
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GC dependency in themodel (mode = ‘meta_testing’, bg = ‘individual’).
MMBC also allowed us to rigorously assess relationships between
growth rates and metagenome GC content. However, we focus on the
results from the recommended MMv2 (really MMv1) results, as the
tradeoff betweenGCbias inMMv1 vs. the higher variance in theMMBC
model favors the MMv1 predictions for our samples18. Because the
assemblies of these metagenomes were poor (mean contig
N50 = 508 bp), we also repeated the above growth rate analysis using
gene fragments predicted directly from the sequence reads using
FragGeneScanRs49. The predicted growth rates from all the gRodon
model variations we ran were well correlated and exhibited the same
global patterns (Supplementary Fig. 2, 3), though in the main text, we
present the MMv2 model results using genes predicted from contigs,
as recommended by the gRodon developers18. The model outputs
community-averaged minimum doubling times (in hours), which we
converted to maximum growth rates (i.e., cell doublings h−1) by taking
the reciprocal of the doubling times. For all growth rate analyses, we
used the default minimum gene length of 240bp and did not include
the optional correction for optimal growth temperature. For addi-
tional validation of the ecological patterns in growth rates we
observed, we repeated the growth rate analysis using metagenomes
from 42 National Ecological Observatory (NEON) sites across the
United States. Sample information for the NEON metagenomes is
provided in our figshare repository: https://doi.org/10.6084/m9.
figshare.24498484.v3.

To estimate the average genome size and the effective number
of genomes within each metagenome, we used MicrobeCensus
(version 1.1.1)50. To estimate the average 16S rRNA gene copy number
in each community, we first curated a custom bacterial 16S database
using RESCRIPt (version 2023.5.0)51. Our customdatabase is based on
the SILVA SSU database (version 138.1)52 but with all sequences
belonging to eukaryotes, archaea, chloroplasts, mitochondria, or
unclassified organisms removed. We also removed any sequences
with ‘n’ bases and sequences that were shorter than 1200 bp. We then
dereplicated the sequences at a 99% identity threshold, resulting in a
16S database containing 323,218 high-quality sequences. We then
identified bacterial 16S genes within the metagenomes by aligning
the sequence reads to the curated 16S database using bwa mem47.
This approach is similar to that of riboPicker53 but with an updated
16S database and an updated alignment algorithm. We then quanti-
fied the number of aligned base pairs in each metagenome using
samtools48 and quantified the effective number of 16S regions in each
metagenome by dividing the number of aligned base pairs by 1542
(the length of 16 S in E. coli). The average 16S gene copy number for
each metagenome was then calculated as the number of 16S regions
divided by the effective number of genomes present54. We assigned
functional gene categories to the sequence reads using eggNOG-
mapper (version 2.1.3, ‘DIAMOND’ mode) with a reference database
of bacterial eggNOG COGs55. Functional gene relative abundances
were calculated as the percentage of annotated reads (as opposed to
the percentage of total reads) to account for biases resulting from
systematic variation in annotation success among samples and
environments26. Full details on all metagenomic analyses, including
bioinformatics scripts, are provided in the figshare repository:
https://doi.org/10.6084/m9.figshare.24498484.v3.

Statistical analyses
All statistical analyses were conducted in ref. 56. We analyzed lati-
tudinal patterns in growth rates using polynomial regression, with
the best-supported regression model selected using AICc. We
assessed the effects of forest cover on growth rates using linear
models or generalized linear models (Gamma distribution, log-link
function) when linear models did not meet assumptions of normality
of residuals. Polynomial regression and linear models were analyzed
using F statistics (or χ2 statistics in the case of generalized linear

models). We determined relationships among variables using Pear-
son correlation. To identify environmental drivers of growth rates,
we used random forest regression in the randomForest R package57.
We quantified the ‘importance’ of the environmental variables in
accounting for variation in the growth rates by determining the
increase in model error (mean squared error, ‘MSE’) when each
respective variable was randomly shuffled across the dataset. We
identified putative mechanistic links between environmental vari-
ables, bacterial growthmetrics, and functional genes using structural
equationmodeling (SEM) in the lavaan R package58. We assessed SEM
fit by bootstrapping estimates of the comparative fit index (CFI),
standardized root mean square residual (SRMR), and root mean
square error of approximation (RMSEA). All of these metrics indi-
cated adequate fit for our model: CFI was > 0.99 while SRMR and
RMSEA were both < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequence data are available at NCBI accession number
PRJEB18701. The data used for this study are derived from previously
collected soil samples41, and the soil and environmental data were
generated as previously described21. All soil and environmental data
are available on figshare: https://doi.org/10.6084/m9.figshare.
24498484.v3. Source data are also available with this paper. Source
data are provided with this paper.

Code availability
Statistical analysis scripts and bioinformatics scripts are available on
figshare: https://doi.org/10.6084/m9.figshare.24498484.v3.
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