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Nucleation phenomena and extreme
vulnerability of spatial k-core systems

Leyang Xue 1,2,3, Shengling Gao3,4, Lazaros K. Gallos 5 , Orr Levy 6,7,
Bnaya Gross 3, Zengru Di 1,2 & Shlomo Havlin 3

K-core percolation is a fundamental dynamical process in complex networks
with applications that span numerous real-world systems. Earlier studies focus
primarily on random networks without spatial constraints and reveal intri-
guing mixed-order transitions. However, real-world systems, ranging from
transportation and communication networks to complex brain networks, are
not random but are spatially embedded. Here, we study k-core percolation on
two-dimensional spatially embedded networks and show that, in contrast to
regular percolation, the length of connections can control the transition type,
leading to four different types of phase transitions associated with interesting
phenomena and a rich phase diagram. A key finding is the existence of a
metastable phase where microscopic localized damage, independent of sys-
tem size, can cause a macroscopic phase transition, a result which cannot be
achieved in traditional percolation. In this case, local failures spontaneously
propagate the damage radially until the system collapses, a phenomenon
analogous to the nucleation process.

A phase transition is characterized by changes in the macroscopic
properties of a systemwhen crossing the critical point1,2. Percolation is
a mathematical model that has been widely explored to exhibit and
understand geometric phase transitions and explain the conditions
under which these transitions are discontinuous (first-order) or con-
tinuous (second-order)3,4. Of particular recent interest are systems that
exhibit mixed-order transitions showing features from both first- and
second-order transitions. Recent advances indicate that this behavior
may be related to long-range interactions5–8. In recent years, mixed-
order transitions have been reported for k-core pruning in random
networks8–12. The k-core approach, which involves the iterative
removal of nodes with a degree smaller than k from a network, pro-
vides a unique perspective on the underlying structure of the network
and its robustness. Notably, k-core pruning has been seen as a perco-
lation process in whichnodes are removed from the outer layers of the
network, leading to the term “k-core percolation”9,10,13,14. K-core per-
colation has foundwidespread applications in real systemswith spatial

characteristics. Examples include the brain15–17, cellular structures18,19,
the Internet20, communication infrastructures21,22, and ecological
networks23–25. Furthermore, as in any percolation process, k-core per-
colation has expanded its reach to dynamic processes9,10, emphasizing
its versatility and relevance. At the heart of k-core percolation research
lies the investigation of phase transitions and critical behaviors11,12,26,27.
Intriguingly, k-core percolation on random networks has been shown
to result in amixed-order phase transition for k ≥ 311,28, where the order
parameter (the size of the giant component of the k-core) exhibits an
abrupt jump akin to first-order phase transitions but near criticality it
features a scaling behavior typical to second-order phase transitions.

While k-core percolation has received extensive attention and
demonstrated mixed-order transitions, it mainly focuses on non-
spatial random networks. In reality, numerous real-world systems,
from transportation networks and power grids to communication
systems and brain networks, are commonly embedded in two- or
three-dimensional space16,29–31. Despite their widespread existence, our
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understanding of the robustness and vulnerability of these spatially
embedded networks undergoing the k-core process remains very
limited. As a result, a comprehensive framework for understanding the
effects of spatial embedding is notably absent. Although the role of
long-range interactions in mixed-order transitions was found to be
pivotal6,8, the exact mechanism through which the k-core induces this
transition remains an open problem. In particular, when dealing with
random networks featuring small-world characteristics, the lack of
spatial, finite length scale connections within the k-core structure
poses a significant challenge in examining how the characteristic
length of the links influences the vulnerability of the system. By
investigating k-core percolation in spatially embedded random net-
works, we can gain insight into how spatial constraints impact network
functionality30. Currently, a limited number of studies have explored
the spatial effect of k-core percolation, with a predominant focus on
phase transitions and critical behavior32,33. However, these studies did
not consider the effect of controlling the length scale of links which, as
we show here, is critical for understanding the network vulnerability.
Consequently, there is a discernible gap in the development of a uni-
fied framework to understand the underlying mechanisms that drive
catastrophic breakdowns near critical points.

Here, we develop a comprehensive numerical framework for
investigating the attributes of k-core percolation within spatially
embedded two dimensional networks. We provide evidence, based on
extensive simulations, that the distribution of link lengths in a spatial
system undergoing k-core pruning will determine the nature of the
phase transition and we elucidate the mechanisms driving the transi-
tions in k-core systems showing four different types of phase transi-
tions. Importantly, we show that there exists a new regime in the phase
diagram, an extreme risky phase, i.e., a metastable phase, where a
microscopic intervention above a certain size anywhere in the system
yields a macroscopic phase transition represented by the collapse of
the network. This microscopic intervention corresponds to removing
just a few nearby nodes, where the damage size is independent of the
system size. Due to a nucleation spread process, the result of this
minimumremoval is thedestructionof the entire system, i.e. a collapse
at the macroscopic level. This finding demonstrates a fundamental
vulnerability in these systems, a result which cannot be observed in
traditional percolation studies. Therefore, spatially embedded net-
works may collapse significantly more easily than previously thought,
and special attention must be paid to increase their robustness and
avoid catastrophic damage.

More precisely, our primary focus lies on examining the impact of
link lengthwithin a 2D spatially embedded network. Our objective is to
discern the influence of the characteristic link length (denoted as ζ) on
theproperties of the criticalphase transitionof the k-core. Small values
of ζ favor links to nearby nodes, whereas larger values of ζ introduce
increasingly longer-range links, and eventually, when ζ is of the order
of the linear size of the system, L, one obtains a fully random network.
We find that the percolation critical point pc for k-core percolation
reaches a maximum value at a critical characteristic length ζc, which
depends on k. Below this value of ζc the phase transition is continuous,
but becomes abrupt for ζ > ζc. Interestingly, the mechanisms behind
the abrupt first-order transitions observed for ζ ≥ ζc are found to
depend on the value of ζ. For values of ζ that are slightly higher than ζc,
the transition is abrupt and results from the propagation of a spon-
taneous local failure, causing the radius of the damage to increase until
the system fully collapses. This is similar to a nucleation process in the
gas-liquidmodel or in the spin model. However, when ζ is much larger
than ζc and of the order of system size, a critical branching process
emerges as the nodes fail homogeneously anywhere in the system, at a
constant low (microscopic) rate, eventually leading to an infinite-size
avalanche. The analysis of the critical conditions and the underlying
mechanisms reveals a rich phase diagram. Of particular interest is that
in addition to the above phases, we observe an extremely vulnerable

phase, i.e., a metastable phase where a microscopic localized attack
anywhere in the systemabove a critical radius rch (which is independent
of the systemsize) spontaneously spreads and leads to the full collapse
of the system. These observations point to inherent extreme vulner-
abilities of the system and can provide a comprehensive under-
standing of the mechanisms that lead to continuous second-order,
mixed-order, and first-order transitions.

The extremevulnerabilities of spatially embedded k-core network
systems highlight the necessity to take into account the characteristic
length of links when designing robust spatial networks. Furthermore,
our insight about the microscopic processes and their origin during
the mixed-order and first-order abrupt transitions in k-core networks
could shed light on the mechanisms of many systems where such
transitions occur.

Results
The model
The structure of a spatially embedded network is largely determined
by the dimension of the embedding space, the location of the nodes,
and the length of the links in this space. For example, a two-
dimensional network where each node only connects to short-
distance neighbors can be mapped to a square lattice, and all critical
exponents of the percolation transition in the embedded network will
be the same as in a pure square lattice, since they share the same
spatial dimension and thus belong to the same universality class34.
Here, to investigate the relations between the link length and the
k-core percolation properties, we place all network nodes at the sites
of a 2Dsquare lattice. The number and lengthof links for each node are
determined by (a) the chosen degree distribution and (b) the length
distribution of the links. Given an average degree 〈k〉, we construct
spatially embedded networks using the ζ-model29,31,35, which leads to a
Poisson degree distribution. In the ζ-model, the Euclidean length l of
the links between pairs of nodes follows an exponential distribution,

PðlÞ∼ e�l=ζ : ð1Þ

The parameter ζ defines the characteristic length of the links in the
network. This model allows us to control the embedding strength of
the spatial networkby adjusting the value of ζ. For ζ→∞, the link length
probability is independent of the distance, and the model becomes
equivalent to a non-spatial random network. Thus, this model can also
describe a randomnetwork in the limiting casewhen the ζ values areof
the order of the lattice size. On the other hand, for values of ζ much
smaller than the lattice linear length L, the probability of long-range
links tends to zero, and this limiting case is now a 2D lattice structure.
An exampleof a spatially embeddednetwork generatedby the ζ-model
is shown in Fig. 1a. The specific implementation of this model is
described in the Methods section.

k-core percolation
In the k-core percolation process, the initial step involves a random
removal of nodes with a probability of 1 − p. This initial removal is the
only external intervention in the system, which then evolves sponta-
neously via cascading until reaching a steady state. Subsequently, we
initiate the k-core pruning procedure, in which all nodes possessing
degrees lower than k are eliminated, and the degrees of the remaining
nodes are updated accordingly. This step is repeated with the recal-
culated degrees until all remaining nodes have degrees equal to or
greater than k. Figure 1a demonstrates a simple 3-core percolation
process in a small spatially embedded network. In the results, we show
the analysis using the 5-core percolation. For more percolation results
at different k values, see the Supplementary Information.

The fraction of nodes, P∞, in the giant connected component
(GCC)plays the role of theorder parameter in thephase transition. The
GCC corresponds to the remaining k-core structure in the network,
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and characterizes the robustness of the system,whichwe assume to be
functional only if the remaining fraction of the GCC has a measure
larger than zero. The critical probability pc is defined from the plot of
P∞ vs p as the value of p where P∞ vanishes for the first time as we
lower p.

Damage propagation through a k-core percolating process can be
demonstrated in a simplemodel of a two-dimensional square lattice. In
terms of the ζ-model described above, this lattice corresponds to the
limiting case of ζ = 1 and k = 4, with the absence of randomness in both

ζ and k. All nodes in this lattice have initially a degree k = 4. If we
consider a 4-core percolation process, then the removal of a single
node anywhere in the lattice will lead to the subsequent removal of its
four neighbors, that will now have degree k = 3. The neighbors of these
nodes will also be removed, since their degrees become also 3 or 2,
creating a damage propagation front with nodes of degree less than 4,
whichwill keep expanding andwill eventually destroy the entire lattice
system. We discuss further this simple model in the Supplementary
Information.

Fig. 1 | K-core percolation on spatially embedded networks. a Illustration of a
3-core percolation process on a 2D spatial network. The network is generated by
the ζ-model withN = 25, 〈k〉 = 3.6 and ζ = 1 (see Eq. (1)). At t =0,we randomly remove
5 nodes (marked in orange), and all links connected to them also fail. In each
subsequent step, t of the pruning process, we remove all nodes whose degree
becomes smaller than 3, until all remaining nodes have a degree equal to or larger
than3 at t = 3.b, cSize of the giant componentP∞ in a 5-corepercolationprocess for
different ζ values as a function of the occupation probability p (the fraction of
unremoved nodes). The network size is N = L × L = 1000 × 1000 and 〈k〉 = 10. The

results for continuous phase transitions are averaged over 10 realizations, while a
single typical realization is used for the discontinuous phase transitions. For
ζ = 500, the network is practically completely random,while for ζ = 3 it is similar to a
2D lattice network. Inset: Plotof the change in the size of the giant component aswe
approach the critical point pc in the 5-core percolation. The slope of the line, 1/2,
corresponds to the β exponent: P1ðpÞ � P1ðpcÞ / ðp� pcÞβ. Such a transition
represents the critical regime and is called a mixed-order transition. Similar results
for other k values are shown in the Supplementary Information.
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The effect of the characteristic link length
In this section, we show that the system undergoes a phase transition
as we increase the initial fraction of removed nodes, 1 − p, for a fixed
value of the characteristic link length, ζ. The phase transition is
determined by the vanishing value of P∞ at equilibrium, i.e., at the end
of the k-core percolation process, see Fig. 1. The nature of this transi-
tion changes as we increase the ζ value: (a) for small ζ of order of a few
unit lengths, we observe a continuous transition, (b) for intermediate
values of ζ the transition becomes discontinuous, while (c) for large
values of ζ the transition becomes mixed-order. As we show below,
each type of transition is associated with a different mechanism of
damage propagation, which corresponds to (a) fractal disintegration,
(b) nucleation and propagation of a single hole, and (c) random loca-
tions of cascading failures. We detect these mechanisms by following
the evolution of the k-core percolation cascading process after the
initial node removal.

We study the behavior of the phase transition for the 5-core per-
colation, as we vary the characteristic length ζ. For ζ = 3, the network
exhibits strong spatial effects, with connections largely restricted
between neighboring nodes. This system undergoes a continuous
phase transition at pc, as shown in Fig. 1b. This is in contrast to the
discontinuous transition for the case ζ = 500 in the same plot, which
behaves, as expected, similarly to the percolation of k-core in random
networks9. Due to the absence of long-range links for small ζ values, the
damage remains localized and is confined to the vicinity of the ran-
domly removed nodes, leading to the absence of global or catastrophic
failures. As we increase the value of ζ, we introduce longer links that
result in both a change in the critical valuepc and a change in the nature
of the transition that becomes abrupt (Fig. 1c). It is important to note
the differences between the abrupt behavior for ζ > 6 but close to 6
(Fig. 1c) and the abrupt transition for ζ = 500 (Fig. 1b). While for ζ = 500
one can see in a P∞(p) a curvature just above pc, representing a singular
behavior with a critical exponent β = 1/2 (see the inset of Fig. 1b), for ζ
just above 6 there is no such a singular regime and the drop in P∞when
decreasing p is abrupt. This feature already indicates, as we show later,
that these two transitions have different mechanisms.

In Fig. 2a we plot the value of pc as a function of ζ. The value of the
critical point increaseswith ζ until it reaches amaximumvalue at ζc = 6.
For ζ below ζc = 6, larger ζ values enable the propagation of failures
over a large area of the network. As a result, a smaller number of initial
removed nodes is needed to cause system collapse, yielding for larger
ζ a larger value of pc. In this range, below ζc the phase transition
remains continuous (Fig. 1b), indicating that failures do not propagate
far enough to trigger an abrupt collapse. As a result, at pc some areasof
the network sustain limited damage while others are impacted more
significantly. For example, the top left panel in Fig. 2a shows the
resulting GCC at the end of the k-core percolation process for ζ = 4,
which exhibits clear fractal features at pc, similar to percolation in a
single lattice network34. This is in marked contrast to the resulting
structure of the GCC of a randomnetwork at ζ = 100where, just before
collapsing, the damage is spread uniformly throughout the network
(top right panel in Fig. 2a).

For ζ values above ζc = 6 and smaller than the system length, the
phase transition becomes discontinuous, as seen in Fig. 1c, but the
transition behavior is different for values close to ζc compared tomuch
larger values of ζof theorder of systemsize, L.When ζ is above ζcbutof
the order of ζc, the k-pruning now results in a drastically different
mechanism, as shown in the bottom row of Fig. 2a. After the random
removal of the initial nodes, a large enough hole emerges sponta-
neously somewhere in the network, due to the randomspatial disorder
of nodes and links in the system.Once this hole emerges somewhere in
the system the ζ links enable its propagation. This yields that the front
of the hole spontaneously expands outwards until it consumes the
entire network. Note also the simplified demonstration in the Supple-
mentary Information.

This process is analogous to the well-known nucleation process
observed during the freezing of water. This is one of the key aspects of
this transition which we discuss extensively later in this paper. Hence,
there is no scaling behavior for P∞ near criticality, similar to a first-
order phase transition, see Fig. 1c. The visualization of the cascading
process for ζ = 10 at the bottom rowof Fig. 2a clearly demonstrates this
interpretation. Initially, random fluctuations in network density create
a region where the fraction of remaining nodes is significantly lower
than the overall average, thus creating a hole in the system. The sur-
viving nodes remain largely connected and the value of P∞ remains
high, since only small clusters are isolated from the GCC. However, as
the hole evolves and propagates, it eventually leads to the sudden
collapse of the entire system. Further supporting explanations can be
found in Supplementary Figs. S6 and S8.

As ζ increases above ζc, the value of pc gradually decreases and
approaches the asymptotic value observed in random networks,
pc ≈0.6798, as seen in Fig. 2a. When ζ becomes very large, of the order
of the system length, the transition becomes mixed-order (Fig. 1b), in
contrast to pure first-order transitions at intermediate values of ζ
(Fig. 1c). In thismixed-order transition, for large ζ, the order parameter
P∞ still exhibits an abrupt jump, but P∞ shows a scaling behavior close
topcwith a critical exponentβ =0.5, similar towhathas been found in a
random network9, see inset in Fig. 1b. In this case, the characteristic
lengths are of the order of the system linear size and a hole cannot
propagate radially. Hence, there is no nucleation process and the
system is driven by a bifurcation process, which has been found in ref.
10. As shown at the top right panel of Fig. 2a, the network is highly
homogeneous near criticality, without allowing the formation of any
hole of significant size.

The speed of the damage spread depends on the characteristic
link length, as shown in the slopes of Fig. 2b. Once the hole size reaches
a critical finite size, the hole radius exhibits a linear growth, associated
with the nucleationprocess, which continues until the hole reaches the
systemboundary. Longer link lengths, ζ, yield faster propagationof the
damage since the k-core process will affect neighborhoods at longer
distances. As the link length increases, fewer steps are needed to form
holes with a critical finite size, and the duration of the nucleation
process is shorter, so that the hole grows faster than in smaller ζ.

The above results are based on 5-core percolation, but similar
behavior is found for other k ≥ 3 core percolation, see Supplementary
Figs. S4 and S5. Higher values of k exhibit stronger cascading effects
that lead to a decrease in ζc, as shown in the inset of Fig. 2a. For k < 3,
the phase transition remains continuous at pc independently of the
value ζ, because there is limited propagation of failure in 2-core and
1-core percolation8, which is an effect of percolation rather than spatial
embedding. However, for k ≥ 3, the characteristic length of the links
leads to the rich dynamical phenomena as described above.

In summary, the type of phase transition atdifferent characteristic
lengths is determined by the nature of spontaneous fluctuations fol-
lowing the node removals in the system. For links of short lengths,
these fluctuations only act locally, creating progressively all sizes of
gaps in a typical fractal fashion.When the characteristic lengths of ζ are
very long, the system fails uniformly, since any node removal can
impact nodes at any distance. In the intermediate range, a sponta-
neous emergence of a localized hole which eventually consumes the
entire system leads to a rapid systemdisintegration, with clear features
of a first-order transition.

The dynamic process of critical cascading failure
In the previous section, we described how the value of ζ controls the
type of transition and indicated that there exist two distinct mechan-
isms that can lead to discontinuous transitions when ζ > ζc. In this
section, we focus on studying and quantitatively demonstrating these
mechanisms that yield the cascading failure process for ζ = 7 and for
ζ = 500, near and far fromcriticality (Fig. 3). Here, we remove a fraction
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1 − p of nodes as a starting point, similar to Fig. 1b, c, and then follow
the evolving giant connected component P∞(t) in each iteration (time
step), see Fig. 3a, b. Notice that ‘time’ is only used here as a convenient
artificial metric to follow the system evolution, and in principle one
could assume that nodes fail immediately when their current degree
falls below the k-core threshold, so that the initial node removal
spontaneously leads to the final state of the system. However, it is
convenient to define each iteration of removing nodes as a single time-

step, so that we can follow the microscopic changes in the system
during the k-core pruning process andwe can identify themicroscopic
mechanism which drives the system to this final steady state.

To clearly differentiate between the two dynamical processes for
ζ ≥ ζc, besides following the giant component we also track the largest
cluster formed by failed nodes up to the time step t, Pf

1ðtÞ, in Fig. 3c, d.
We also monitor the branching factor, ηt defined as the ratio between
failure sizes at two successive time steps t and t − 1 in Fig. 3e, f.

Fig. 2 | Variationof the link length leads to threedifferent transitions for k-core
percolation on spatial networks. a The critical point pc as a function of the
characteristic link length ζ for 5-core percolation. The results are averaged over 50
realizations. The maximum value of pc ≈0.724 at ζc = 6 also indicates the point
where the transition shifts from continuous (ζ < ζc) to discontinuous transitions
(ζ > ζc). Note that similar qualitative behavior is expected to occur for any k-core
where k≥3. Inset: ζc plotted as a function of the value of k used for k-pruning. The
two panels in the top row show the stable giant component of two spatial networks
with ζ = 4 and ζ = 100 at pc, just before collapsing, which corresponds to the points

marked by red squares in the plot. The panels at the bottom row illustrate the
evolution of the giant component of a spatial network with ζ = 10 at pc. This figure
shows the spontaneous way of the abrupt collapse in Fig. 1c. The three snapshots
show the giant component at times t = 140, 200 and 280 steps of iterations where a
growing hole is evident. In the above, gold and purple dots indicate surviving and
removed nodes, respectively. The network size here is N = 1,000,000 and the
average degree 〈k〉 = 10, is the same as in Fig. 1. b Evolution of the hole size, rh, with
time t for a 5-core percolation. As ζ approaches ζc, the nucleation process lasts
longer, and the critical branching process becomes shorter.
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The analysis of these properties for ζ = 7 highlights three main
stages of distinct behavior. P∞ undergoes a rapid decline, followed by a
plateau, then decreases parabolically and slowly to zero, as seen in
Fig. 3a, in contrast to the case of ζ = 500 in Fig. 3b, where P∞ shows a
plateau followed by a sharp drop. This contrast can be understood by
following the size of the largest failure cluster in Fig. 3c, d. While for
ζ = 7 the increase in radius is linear and the area parabolic, character-
izing nucleation growth, for ζ = 500, the nearlyflat curve is followed by
a fast increase, consistent with homogeneous failures followed by a
nearly abrupt collapse. These differences in the evolution of failure
propagation distinguish the pure first-order transition at values
ζc < ζ≪ L from the mixed-order transition at large ζ of the order of L.
Note that Fig. 3e, f show that during the plateau the branching factor η
is close to 1 showing another critical feature. This cascading behavior
found at pc is similar to those observed for p values just below pc, that
is, at the area under the curve in Fig. 2a. For these values, one can see a
shorter duration of the plateau as we move further from the critical
curve, since the system is more fragile, as seen in Fig. 3a–d.

In short, Fig. 3 provides evidence that there are two distinct
behaviors in the range of ζ above ζc, where cascade failures follow a
different path to network destruction.

Localized microscopic attack: an extremely vulnerable
metastable phase
We have shown above that for intermediate values of ζ, spontaneous
fluctuations are the main cause leading to network collapse via
nucleation at the critical point pc. Note that the regime above the curve
of pc in Fig. 2a describes a state of existence of the network, that is the
resulting GCC has a non-zero measure. However, we find here that
within this area above the pc(ζ) curve, there is a new extremely vul-
nerable phase where a localized microscopic attack anywhere in the
system will trigger nucleation growth and network collapse. Impor-
tantly, the critical localized size of the attack does not depend on the
size of the network. We call this phase a metastable phase, and we
highlight this phase in Fig. 4a within the dashed line. The system in this
phase behaves in marked contrast to regular percolation, where the
network in the regime above pc always remains connected and cannot
collapse by any localized attacks36.

K-core percolation studies focus mainly on random removal of
nodes. However, in spatially embedded networks and for the inter-
mediate range ζc < ζ≪ L, there are strong correlations within the
neighborhood of a node, due to the length scale ζ. This is the main
driving force behind the metastable phase in which networks become

Fig. 3 | Evolution of cascading failures in k-core percolation: two distinct pro-
cesses andmechanisms. The left column, a, c, and e corresponds to ζ = 7, and the
right column, b, d, f, corresponds to ζ = 500. Different colors represent the values
of p, as we get closer to criticality pc where the length of the plateau increases.
a, b The size of the giant component P∞(t) for a fixed p, as a function of the
k-pruning time step t. P∞ for both cases exhibits a plateau followed by a a slow
parabolic decrease while in b a very sharp collapse. The parabolic decrease is a
result of the nucleation process seen at the bottom row of Fig. 2a, in which the

radius of damage increases close to linearlywith t. c,dThe size of the largest cluster
formed from the failed nodes up to the time step t, Pf

1ðtÞ. e, f The branching factor
ηt defined as ηt =

st
st�1

where st denotes the number of failed nodes in step t. In both
cases, we can see that the branching factor is mostly close to 1 which characterizes
criticality during the spontaneous cascades. All networks have the same sizeN and
average degree 〈k〉 as in Fig. 1. The plots shown are consistent with and support the
concept of two types of transition shown in Fig. 2a, for small ζ and for large ζ values.
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extremely vulnerable to localized attacks, when nodes are removed
froma smallmicroscopic area in the network.Next, we study the effect
of microscopic localized attacks on k-core percolation in spatially
embedded networks via the artificial creation of a hole of radius rh in
thenetwork. In themetastable phaseweshow the existenceof a critical
hole radius rch, below which the network is resilient and sustains
damage, and above which the network collapses spontaneously.

We model a localized attack by creating a hole centered on a
random node and removing all nodes located within a geometrical
radius rh from this node and their links. This initial removal is then
followed by the k-pruning process, which leads to further damage to
the network. The cascade failures triggered by a localized attack
depends on the k-core value, the characteristic length of the link ζ and
the average degree 〈k〉 of the network. In our simulations, we sys-
tematically scanned the entire range of ζ and 〈k〉 for a given k-core and

found that the phase diagram of this system includes three distinct
phases: stable, unstable, and metastable, see Fig. 4a. The stable phase
is characterized by the containment of damage within the initial
affected area, with no propagation of failure, independent of the size
of the initial hole, i.e. only rch =1 will trivially destroy the network. In
the unstable phase, the failure propagates spontaneously throughout
the system, even for a minimal attack (rh = 1), that is, rch =0. In the
metastable phase, the final state of the system depends on the initial
hole size. If the hole radius is less than a critical finite size rch, then the
failure remains local, but for r>rch the localized damage propagates
outwards spontaneously and the entire system collapses, as demon-
strated in the schematic Fig. 4b.

A key feature of the metastable phase is that the value of the
critical hole radius is independent of the system size L2 =N, in contrast
to random attacks where the collapse of system occurs when the

Fig. 4 | A novel metastable phase that yields a phase transition via a micro-
scopic damage. a Phase diagramof spatial 5-core percolation as a function of ζ and
〈k〉. Purple is the unstable phase, and brown is the stable phase where the system is
resilient to localized attacks. The colors within the dashed line represent the
metastable phase where a circular damage above a radius rch will cause the system
to collapse. The value of rch separates the unstable phase (rch =0, purple), the stable
phase (rch ∼ L=2, brown), and the newmetastable phase (0<rch<L=2, blue to orange).
The size of the network is N = L × L = 1000 × 1000. b Illustration of the propagation
of damage initiated from localized attacks with a hole of radius rh in the spatial

network. The hole on the left is smaller than the rch, and the damage does not
propagate, thus maintaining the same size as the initial state. However, damage
caused by holes larger than rch on the right evolves and spreads radially throughout
the system over time t. cDependence of rch on the size of the system L for ζ = 18 and
varying 〈k〉 values. The fact that rch does not increase with L demonstrates that the
localized damage is ofmicroscopic size. dThe dependence of rch on the system size
for 〈k〉 = 7.5 and varying ζ values. In c and d, each point represents the average of 10
realizations for L < 1000, and the average of 5 realizations for L ≥ 1000.
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number of removed nodes is proportional to N. This means that a
microscopic intervention yields a macroscopic phase transition.
Indeed, in Fig. 4c, we can see that the radius of the critical hole remains
unchanged when increasing the system size for any 〈k〉 value in the
metastable state. Similarly, in Fig. 4d we fix 〈k〉 and vary ζ in the
metastable regime. We find that rch increases linearly with L, but
eventually reaches a threshold where it remains constant despite fur-
ther increases of L, thus highlighting the impact of finite-size effects in
the system. The important conclusion is that increasing the size of the
system does not improve its resilience against localized attacks.

The process leading to the metastable phase relies on the for-
mation of the failure front around a hole of size rch. After removing the
initial hole, a fraction of the remaining nodes on the failure front may
have remaining degrees below k at typical distance ζ. This leads to the
subsequent removal of these nodes in the failure front, causing the
propagation of damage to continue further radially outwards. The
local network density and the length of long-range links are therefore
the key factors in determining the probability that the neighboring
nodes of the front will retain a degree greater than k, or if they will be
removed. As a result, the relation between 〈k〉 and ζ is enough to
determine the eventual state of the system. We verify that the exis-
tence of a metastable state is a generic property in these systems with
similar results for different k-core percolation processes and system
sizes in Supplementary Fig. S9.

In this section, we demonstrated that a localized attack which
removes all nodes within a radius rh can result to a total system col-
lapse, as long as this radius exceeds a critical value rch. More impor-
tantly, the value of this critical value is independent of the system size
implying an extreme inherent vulnerability of the system to local
attacks, even in large-scale systems.

Discussion
In this work, we have developed a comprehensive framework to
investigate the behavior of k-core percolation within spatially
embedded 2D networks. We find that for random node removal, the
critical point and the nature of the mechanism behind the phase
transition in k-core percolation are determined by the characteristic
link length, ζ, of the spatial network. Furthermore, we unveil a rich
phase diagramwith second-, first-, and mixed-order phase transitions,
each associated with a differentmechanismdepending on the value of
ζ. These mechanisms correspond to a fractal system disintegration,
nucleation, and spontaneous microscopic random cascades. In the
case of large ζ values, the system becomes more homogeneous
because the majority of the links are long-range and there is no
nucleation, yielding mixed-order transitions.

A key finding in our study is the existence of a previously unex-
plored regime in the phase diagram, which constitutes an extremely
vulnerable phase, which we call metastable, where microscopic inter-
vention results in a macroscopic phase transition. Notice that this
metastable region is defined according to the behavior of the system
under a microscopic localized attack, i.e. when we remove nodes
within a circle of radius rh in contrast to random removal. The meta-
stable state is a result of the system structure, as generated by the
values of 〈k〉 and ζ. The stability of the system is determined by the
effect of this localized attack. If the system collapses by the random
removal of 1 − p nodes, then the system is unstable. If the system
remains connected after any size of localized attack, then the system is
stable. In this study, we find that for a certain region of 〈k〉 and ζ the
system becomes metastable, so that the size of the initial hole deter-
mineswhether the system remains connected or if it collapses.We find
that the critical size of the hole, rhc , above which the failure propagates
and the system collapses, is independent of the system size and
therefore can be regarded as a microscopic intervention. The value of
rhc is found to depend only on 〈k〉 and ζ, showing that the underlying
mechanism is determined by the system topology only. After

generating the initial hole of size above rhc , the links of size ζ enable the
propagation of the hole radially via cascading failures causing the
whole system collapse.

These findings highlight the significant vulnerability of spatial
k-core systems and point to the important role of the underlying
mechanisms that can shape the organization and robustness of real-
world systems with spatial characteristics, such as the brain15.

These results are unique in thefields of network science andphase
transitions, since finite perturbations within a limited area in spatial
systems are typically contained and cannot damage the entire system.
The specific feature in k-core percolation that makes this behavior
possible, is that a node needs to maintain a minimum degree at all
times to survive, but at the same time its neighbors need to also obey
the same condition, i.e., even if a node remains unharmed it fails if the
degree of its neighbors becomes lower than the threshold. The long-
range links facilitate this interaction between a node and its neighbors
andby tuning the lengthof these shortcutswe canmodify thebehavior
of the transition. This behavior is reminiscent of results in inter-
dependent networks37 where the existence of two types of interac-
tions, i.e. connectivity and dependency links, leads to a phase diagram
where both first-order and second-order transitions are present, and
localized attacks of microscopic size can also bring down the entire
system5,29,38,39. The main mechanism in interdependent systems is a
cascade of removals alternating between the two layers, facilitated by
the dependency links. In the case of spatial k-core percolation, how-
ever, there exists only one type of connectivity links so an analogy
between the two systems is not straightforward. At a conceptual level,
however, in k-core percolation the survival of a node also depends on
the survival of its neighbors, which may suggest that a node’s depen-
dence on other nodes, either implicit or explicit, is a key feature that
can lead to novel percolation properties. For example, previous
research has shown that the two models have the same critical expo-
nents near the critical point in random non-spatial networks8,40,41.
These observations lead us to conjecture that nodes interdependence,
broadly defined, could be the underlying common characteristic of a
novel universality class, which has not been observed until now. Such a
universality class would include common critical exponents across
different systems,which candescribe percolation a) in interdependent
networks, b) in spatial k-core systems, c) in theory and experiments on
interdependent superconducting networks42, and d) possibly in other
– currently unknown – systems. Similar to classical percolationwhere a
universality class depends only on the system symmetries and
dimensionality, we pose the question of whether there is a class of
network systems whose percolation properties and critical exponents
may depend on features such as interdependence or two types of
interactions, which may be universal but not yet determined. The
existence of such a universality class remains currently unknown and
further work is needed to clarify its possible existence and its prop-
erties. On the other hand, our insight about themicroscopic processes
and their origin during the mixed-order and first-order abrupt transi-
tions in both k-core and interdependent networks could shed light on
the mechanisms of many systems where such transitions occur.

Methods
The ζ-model
In this model, we consider a network with N = L2 nodes and average
degree 〈k〉, where each node is a site in a 2D Euclidean lattice with
integer coordinates (x, y). We fix the value of ζ and generate N〈k〉/2
random numbers, l, from the distribution P(l) in Eq. (1), which corre-
spond to link lengths. We implement periodic boundary conditions
that restrict these link lengths to l≤L/2. For eachnumber, we attempt to
generate a link starting at a random vertex that approximates this
length, l, according to the following method. For each link of length l,
we randomly select a node (x0, y0) and uniformly choose a node
(x0 +Δx, y0 +Δy) from the candidate set of nodes at a distance l from
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node (x0, y0). Notice that integer solutions may not exist for all values
of l, as canbe seen from the equation l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δx2 +Δy2
p

. In such instances,
we adopt a straightforward approach: we select the node closest to the
desired distance l and establish a connection with it using the chosen
link. Importantly, weenforce a one-to-one connection rule, eliminating
any instances of multiple links between the same pair of nodes. We
repeat this process until we have generated N〈k〉/2 links. The resulting
link length distribution is practically the sameas the target distribution
in Eq. (1). Additionally, this method leads to a Poisson degree dis-
tribution with mean value 〈k〉. Since we deal with sparse networks, of
densities lower than 10−5, the value of ζ does not interfere with the
availability of connections. A comparison of empirical distributions
with the target distributions is shown in the Supplementary Informa-
tion, Supplementary Figs. S2 and S3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study have been deposited in the Mendeley
database and are available on https://data.mendeley.com/datasets/
jkvk97nfjc/143.

Code availability
The codes used for numerical simulations and figure plotting in this
study are available on GitHub https://github.com/LeyangXue/
SpatialKcorePercolation44.
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