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De novo atomic protein structure modeling
for cryoEM density maps using 3D
transformer and HMM

Nabin Giri 1,2 & Jianlin Cheng 1,2

Accurately building 3D atomic structures from cryo-EM density maps is a cru-
cial step in cryo-EM-based protein structure determination. Converting density
maps into 3D atomic structures for proteins lacking accurate homologous or
predicted structures as templates remains a significant challenge. Here, we
introduce Cryo2Struct, a fully automated de novo cryo-EM structure modeling
method.Cryo2Struct utilizes a 3D transformer to identify atomsand aminoacid
types in cryo-EM density maps, followed by an innovative Hidden Markov
Model (HMM) to connect predicted atoms and build protein backbone struc-
tures. Cryo2Struct produces substantially more accurate and complete protein
structural models than the widely used ab initio method Phenix. Additionally,
its performance in building atomic structural models is robust against changes
in the resolution of density maps and the size of protein structures.

Determining the three-dimensional (3D) atomic structures of macro-
molecules, such as protein complexes and assemblies1–3, is funda-
mental in structural biology. The 3D arrangement of atoms provides
essential insights into the mechanistic understanding of molecular
function of proteins4. In recent years, cryo-electron microscopy (cryo-
EM)5 has emerged as a key technology for experimentally determining
the structures of large protein complexes and assemblies6–8. However,
modeling atomic protein structures from high-resolution cryo-EM
density maps, which constitute a significant portion of the maps
deposited in the EMDB9, is both time-consuming and challenging,
especially in the de novo setting when accurate homologous or pre-
dicted structures for target proteins or their units (chains) are
unavailable10,11. Modeling atomic protein structures from cryo-EM
maps faces the challenges of identifying atoms of proteins in density
maps as well as tracing the atoms into chains to form the backbone
structures and registering amino acid sequences with them12.

Despite the importance of the problem, only a small number of
methods have beendeveloped for determining atomic structures from
cryo-EM maps, such as Phenix13, DeepMainmast12, DeepTracer14, and
ModelAngelo15. Phenix is the most widely used standard tool of
building atomic protein structures from cryo-EM density maps using
classic molecular optimization. DeepTracer provides a web-based
deep learning tool for users to predict atomic structures from density

maps. ModelAngelo combines information from cryo-EM map data,
amino acid sequences, and prior knowledge about protein geometries
to refine the geometry of the protein chain and assign amino acid
types. DeepMainmast, a recently developed method, integrates
AlphaFold216 with a density tracing protocol to determine atomic
models from cryo-EM maps. Incorporating accurate AlphaFold-
predicted structures into the modeling has significantly improved
the quality of the structures determined from cryo-EM density maps12.

However, modeling multi-chain protein structures from cryo-EM
density maps remains a challenging task for the existing methods,
particularlywhen there are inaccuratelypredicted structures for target
protein complexes or their chains to beused as templates. Thedenovo
modeling of protein structures from only density maps without using
templates is not only practically relevant in this situation, but also can
help answer an important question: how much structural information
can be extracted from cryo-EM density maps alone? In the de novo
modeling context, we introduce Cryo2Struct (i.e., cryo-EM to struc-
ture), a fully automated, ab initio modeling method that does not
require predicted or homologous structures as input to generate 3D
atomic structures from cryo-EM density maps alone. Cryo2Struct first
uses a Transformer-based deep learning model with an attention
mechanism17 to identify atoms and their amino acid types in cryo-EM
density maps. Then it uses an innovative generative Hidden Markov
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Model (HMM)18 and a tailored Viterbi Algorithm19 to align protein
sequences with the predicted atoms and amino acid types to generate
atomic backbone structures. Cryo2Struct is rigorously tested on 628
density maps in the stringent ab initio modeling setting in which no
homologous/predicted structure is used as a template and yields
substantially improved modeling accuracy.

Results
Atomic structure modeling workflow
Cryo2Struct takes a 3D cryo-EM density map and the corresponding
amino acid sequence of a protein as input to generate a 3D atomic
protein structure as output automatically (Fig. 1a–e). As in ref. 20, we
divide the problem of atomic structure determination from cryo-EM
density map into an atom classification (recognition) task and a
sequence-atomalignment task. The two tasks are performedby aDeep
Learning (DL) block based on a transformer (Fig. 1b) and an alignment
block based on a HMM (Fig. 1d), respectively. The DL block classifies
each voxel (3D pixel) within the cryo-EM density map into different

types of backbone atoms (e.g., Cα) or non-backbone voxel and pre-
dicts their amino acid types, while the alignment block constructs a
HMM18 from predicted Cα atoms (corresponding to the hidden states
in the HMM) and aligns the amino acid sequences with them using a
customized Viterbi Algorithm, resulting in a sequence of Cα atoms
connected as protein chains to form the atomic backbone structure of
the protein. Additional details are available in the “Methods” section.

Predicting backbone atom and amino acid types using 3D
transformer
The first step of the atomic structure modeling is to detect the voxels
in cryo-EMdensitymap that contain backbone atoms and predict their
amino-acid types. We designed and trained a 3D transformer-based
model to classify each voxel of the cryo-EM density map into one of
four different classes representing three backbone atoms (Cα, C, and
N), and the absence of any backbone atom. Another 3D transformer-
based model was designed and trained to classify each voxel of the
cryo-EM density map into one of twenty-one different amino acid

Fig. 1 | An overview of the automated prediction workflow of Cryo2Struct.
Given a 3D cryo-EM density map of a protein as input (a), the Deep Learning block
based on a transformer (b) generates a voxel-wise prediction of Cα atoms and their
amino acid type. A clustering step (c) is used to merge nearby predicted Cα atoms
intoone atomto remove redundancy. ThepredictedCα atoms and their amino acid
type probabilities are used by the Alignment block (d) to build a Hidden Markov
Model (HMM), which is used by a customized Viterbi Algorithm to align the
sequence of the protein with it to generate a 3D backbone atomic structure for the

protein (e). f shows the skeleton of the Cryo2Struct modeled structure for a test
cryo-EM density map having less than 25% sequence identity with the training data
released on 13 September 2023 (EMD ID: 41624; resolution 2.8Å), where each chain
is colored differently. g depicts the connected Cα atoms, and h shows the amino
acid types assigned to the Cα atoms; the modeled structure has 1585 amino acid
residues; and the F1 score of Cα atom prediction is 89.1%. Source data are provided
as a Source Data file.
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classes representing twenty standard amino acids and the absence of
an amino acid or unknown amino acid. The models were trained as a
sequence-to-sequence predictor, utilizing a Transformer-Encoder17 to
capture long-range voxel-voxel dependencies and a skip-connected
decoder to combine the extracted features at different encoder layers
to classify each voxel. The models were trained using the large
Cryo2StructData dataset21. Cryo2StructData is a comprehensive
labeled dataset of cryo-EM density maps curated specifically for deep
learning-based atomic structure modeling in cryo-EM density maps.
The models were trained and validated on the entire dataset com-
prising 6652 cryo-EM maps for training and 740 cryo-EM maps for
validation first and then were blindly tested on two test datasets.
Because some predicted Cα voxels are spatially very close and likely
correspond to the same Cα atom, Cryo2Struct employs a clustering
strategy to group predicted Cα voxels within a 2Å radius into clusters
and select the centrally located Cα voxel in each cluster as the final
predicted Cα atom (see the Method Section for details).

Aligning protein sequence with predicted Cα atoms
The goal of this step is to connect the predicted, disjoint Cα atoms into
peptide chains and assigns amino acid types to them (sequence
registering). To achieve the goal, the alignment block constructs a
HMM from the predicted Cα atoms and their predicted amino acid
type probabilities, in which each predicted Cα atom is represented by
onehidden state. The transition probability between twohidden states
is assigned according to the spatial distance between their corre-
sponding Cα atoms, and the emission probability of each hidden state
for generating 20 different amino acids is assigned according to the
predicted probability of 20 different amino acid types for its Cα atom
(see more details in Methods Section). The sequence of each chain of
the protein is aligned to theHMMby a customized Viterbi algorithm to
generate themost probable path of hidden states (Cα atoms). Thepath
for a chain represents the connected Cα atoms of its backbone struc-
ture. The paths for multiple chains of a protein, together with the
sequences aligned with them, form the final atomic backbone struc-
ture of the protein. Figure 1f illustrates a high-quality structure mod-
eled by Cryo2Struct, while Fig. 1g, h provides a detailed view of the
structure. In Fig. 1g, the predicted Cα atoms are depicted and con-
nected by the alignment block. Fig. 1h reveals the amino acid-type
assignment for each Cα atom.

Comparing Cryo2Struct with Phenix on a standard dataset
After Cryo2Struct was trained and validated, we first compared the
modeling performance of Cryo2Struct and Phenix13 on a standard test
dataset that was used to benchmark Phenix’s map_to_model tool22.
Most density maps in the dataset are for multi-chain protein com-
plexes, while some of them are associated with single-chain proteins.
Their resolution ranges from 2.08 Å to 5.6 Å. The average resolution of
the density maps is 3.68 Å. The number of amino acid residues inclu-
ded in the maps varies from 448 to 8,416. These test maps were not
present in the training and validation dataset used to train the
Cryo2Struct DLmodel. We chose Phenix as a reference here because it
built the structures from the density maps in the same ab initio mode
as Cryo2Struct is designed to do without using homologus or pre-
dicted protein structures as input. The structures built by Phenix were
downloaded from its website22. The structural models built for the 128
test cryo-EM maps in the test data by Cryo2Struct and Phenix were
compared with the true structures in the Protein Data Bank (PDB) to
evaluate their quality. The evaluation results in terms of sixmetrics are
presented in Fig. 2.

Figure 2a plots the recall of Cα atoms of each model built by
Cryo2Struct for each of the 128 density maps against that by Phenix.
The recall (sensitivity) represents the fraction of actual Cα atoms in the
true structure that are correctly identified by a model. Cryo2Struct
achieves an average recall score of 65%, much higher than 40% of

Phenix, indicating that Cryo2Struct recovers a much higher percen-
tage of Cα atoms correctly than Phenix. On 126 out of 128 density
maps, Cryo2Struct has a higher recall than Phenix.

Figure 2b plots the F1 score of Cα atoms of Cryo2Struct against
Phenix. The F1 score is the harmonicmean of precision and recall of Cα
atoms. The precision (specificity) is the percentage of predicted Cα
atoms that are correct ones. The F1 score is a balanced measure
because it considersboth the specificity and sensitivity of predictedCα
atoms. The average F1 score of Cryo2Struct and Phenix is 66% and 52%,
respectively. On 105 out of 128 maps, Cryo2Struct has a higher
F1 score.

Figure 2c plots the global normalized TM-scores of the models
built by the twomethods. A standardTM-scoremeasures the similarity
between a model and the corresponding known structure, which was
calculated by a protein complex structure comparison tool - US-align23

by enabling its options for aligning two multi-chain oligomeric struc-
tures and all the chains, as recommended for aligning biological
assemblies. In this analysis, to fairly compare the models built by
Cryo2Struct and Phenix that usually have different lengths (numbers
of residues), the global TM-score is normalized by the same length of
the experimental structure. The TM-score ranges from 0 to 1, with 1
being the best possible score. The average global normalizedTM-score
of Cryo2Struct is 0.2, more than double 0.084 of Phenix. On 114 out of
128 density maps, Cryo2Struct has a higher normalized TM-score than
Phenix.

However, the average global normalized TM-score of both meth-
ods is still low.One reason is that theTM-score is a sequence-dependent
global measure and obtaining a high normalized TM-score requires a
high portion of Cα atoms of a large protein complex being not only
correctly identified (high recall) but also all correctly linked at the same
time, which is still very challenging for the de novo atomic model
building from only the density maps that may have missing density
values in some regions causing disconnection of Cα atoms. Another
reason is that the TM-score computed by US-align is normalized by the
total length of the known structure, which is usually very large (average
lengthof the true structure = 3794.95 residues) rather than the lengthof
a structurally aligned region between a model and the true complex
structure. So, if the aligned region has a high TM-score but is only a
fraction of the entire known structure, the normalized TM-score would
still be low. We expect that complementing density maps with the
features extracted from protein sequences or AlphaFold-predicted
structures as input for deep learning to predict Cα atoms and amino
acid types can further improve the normalized TM-score10,12.

Figure 2d compares the alignedCα length of the structuralmodels
built byCryo2Struct and Phenix, whichwas computed byUS-align. The
aligned length is the number of Cα atoms denoting residues that have
been successfully matched or aligned between the predicted model
and its true structure. The average length of the true structures for all
128 test maps is 3794.95. The average aligned length of Cryo2Struct’s
models is 945.55 (about 24.9% of the length of the known structure on
average), 2.6 times the average length 358.51 of Phenix (about 9.4% of
the length of the known structure on average). On 120 out of 128
density maps, CryoStruct has a larger aligned length than Phenix.
Another interesting phenomena is that the models constructed by
Cryo2Struct always have the same or very similar number of residues
as the corresponding true structures (supplementary Fig. S1a) and
therefore capture the overall shape of the true protein structure well
despite of some errors in the local regions and atom connections,
while themodels constructed by Phenix usually aremuch smaller than
the true structures (supplementary Fig. S1b) and therefore only ren-
ders a portion of the true structures.

In addition to using US-align to compare the models with the
known structures, we also used the phenix.chain_comparison tool to
compare amodel and the true structure to compute the percentage of
matching Cα atoms, as shown in Fig. 2e. It calculates the Cα match
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score, the percentage of Cα atoms (residues) in the model that have
corresponding residues within a 3 Å distance in the true structure. It
also reports the sequence match score, i.e., the percentage of the
matched residues that have the same amino acid type (identity) as
their counterparts in the true structure. The models built by Cryo2S-
truct have an average Cα match score of 43%, higher than Phenix’s
41.2%. The average sequencematch score is 13.4% for bothCryo2Struct
and Phenix. It is worth noting that the Cα match score measures the
match precision of Cα atoms in a model without considering the Cα
atom coverage of the model. For instance, a partial model may have a
high Cα match score but can only cover a small portion of its

corresponding true structure. Because Cryo2Struct tends to build
muchmore complete models than Phenix, their difference in terms of
the Cα match score is less pronounced than in terms of the other
metrics.

To remedy the shortcoming of the Cα match score calculated by
the phenix.chain_comparison tool, we introduce a new Cα quality
score considering both the Cα match precision and Cα coverage,
which is the product of the Cα match score and the total number of
predicted residues of a model obtained from the Phe-
nix.chain_comparison tool divided by the number of the residues in
the true structure. It is in the range [0, 1]. A higher score signifies a

Fig. 2 | The comparative analysis of atomic models built for 128 test cryo-EM
maps by CryoStruct and Phenix in terms of six metrics. In each panel of an
evaluation metric, the score of the model built by CryoStruct for each map is
plotted against that by Phenix for the same map. A dot above the 45 degree line
indicates that CryoStruct has higher score than Phenix for the map. The number in
the top-left corner represents the total number of maps on which CryoStruct has
higher scores, while the number in the bottom-right corner denotes the total
number of maps on which Phenix has higher scores. a The Cα recall of the atomic
models of CryoStruct against Phenix; the recall is defined as the number of Cα
atoms in the predicted model that are placed within 3Å of the correct position in
the corresponding known structure, divided by the total numberofCα atoms in the
known structure.bThe F1 scoreof Cα, which is the harmonicmeanof precision and
recall of Cα; it is a balanced measure quantifying a method’s ability to make
accurate Cα predictions while also capturing as many Cα atoms as possible. c The

TM-score of the atomic models normalized by the length of the known structure;
the normalized TM-score is calculated by using US-align to align the atomicmodels
with their corresponding known structures. d The length of aligned Cα atoms; it is
calculated by using US-align to align the predictedmodel and the known structure.
e The Cα match score of the atomic models; it is calculated by using Phe-
nix.chain_comparison tool to compare them with the known structures. f The Cα
quality score; it is the product of the Cα match score and the total number of
predicted residues divided by the total number of residues in the experimental
structure; the total number of predicted residues is calculated by Phe-
nix.chain_comparison tool. g The true structure of EMD ID: 8767 (PDB ID: 5W5F);
the map was released on 2017-08-16 with resolution of 3.4Å. h The Cryo2Struct
modeled structure and its scores. i The Phenix modeled structure and its scores.
Source data are provided as a Source Data file.
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more accurate and complete structuralmodel. Fig. 2f compares the Cα
quality scores of the structures modeled by Cryo2Struct and Phenix.
The average Cα quality score for Cryo2Struct is 0.43, substantially
>0.23 of Phenix. On 125 out of 128 maps, Cryo2Struct has a higher Cα
quality score than Phenix. The result shows that Cryo2Struct is capable
of building structural models with higher average coverage and Cα
matching score than Phenix. Figure 2g–i illustrates such an example
(EMD ID: 8767). The true structure for the map (Fig. 2g) has 2934
residues. The model built by Cryo2Struct (Fig. 2h) has 2932 residues,
about 7.5 times 392 residues of themodel built by Phenix (Fig. 2.i) that
is very fragmented, while the Cα match score and sequence match
score of the former (i.e., 53.4% and 15%) are only 26–29% higher than
42.3% and 11.6% of the latter. In contrast, the Cα quality score of the
Cryo2Struct constructed model is 0.54, 9 times 0.06 of the Phenix
model, more accurately reflecting the difference in the quality of the
two models.

Finally, we analyzed how the performance of the two methods
changed with respect to the resolution of the cryo-EM density maps.
Figure 3a–c plots the F1 scores, global normalized TM-scores, and Cα
quality scores of the models built by the two methods against the
resolution of the cryo-EM density maps measured in Angstrom (Å),
respectively. In terms of each of the three scoringmetric, as expected,
the accuracy of models built by the two methods decreases as the
value of the resolution of the cryo-EM density maps increases (i.e., the
resolution gets worse). The linear regression line for CryoStruct
models is above that for Phenix, indicating that for the maps of the
same resolution, the average score of themodels built by CryoStruct is
higher than that of Phenix. Moreover, the gap between the two
increases as the value of resolution gets larger. This indicates that the
quality of the models built by Phenix decreases faster than CryoStruct
as the resolution of the cryo-EM density maps gets worse, i.e., CryoS-
truct is more robust against (or less sensitive to) the change of the
resolution of density maps than Phenix. This is reflected by the less
steep negative slope of the regression line for Cryo2Struct than that of
Phenix and the less negative correlation between the score of
Cryo2Struct and the resolution of the cryo-EM density maps than
Phenix’s. For instance, the Pearson correlation coefficient between the
F1 score of Cryo2Struct and the resolution is −0.28, weaker than−0.40

of Phenix. This observation is consistent in terms of all three metrics,
indicating that Cryo2Struct generally builds better models from cryo-
EMdensitymaps thanPhenix and therefore canbeused to improve the
quality of the models built from both the existing cryo-EM density
maps in the Electron Microscopy Data Bank (EMDB) and the new ones
to be generated.

Evaluating Cryo2Struct on a large new dataset
We further evaluated the performance of Cryo2Struct on a large
independent test dataset of 500 new maps with resolutions ranging
from 1.9 Å to 4.0 Å. The average resolution of the density maps is
2.88Å. These maps, released after April 2023, do not exist in the
training and validation data in Cryo2StructData24 that contains the
cryo-EM density maps released before April 2023. The number of
residues in the 500 maps ranges from 234 to 8828.

On the new dataset, the average recall, F1 score, global nor-
malized TM-score, Cα quality score, Cα sequence match score, and
Cαmatch score of Cryo2Struct are 70%, 70%, 0.22, 0.50, 20.1%, and
49.5%, respectively, higher than 65%, 66%, 0.2, 0.43, 13.4%, and 43%
on the standard test dataset, suggesting that the average quality of
the cryo-EM density maps in the new dataset is higher than the
standard dataset, which is consistent with the fact that the new cryo-
EM density maps have the average resolution of 2.88 Å better than
the average resolution of 3.68 Å of the old density maps in the
standard test dataset. The relatively high recall, F1 score, Cα quality
score, and Cα match score show that Cryo2Struct performs very
well in identifying individual Cα atoms, while the relatively lower
global normalized TM-score and Cα sequencematch score indicates
it is still very challenging to build correct connected models that
cover and match most regions of a large protein structure and its
sequence.

Figure 4a–f illustrates the relationship between each of the six
scores (the recall, F1 score, global normalized TM-score, Cα quality
score, Cα sequencematch score, and Cαmatch score) of themodels
and the resolution of the density maps. In terms of each metric,
there is a negative relationship between the metric and the resolu-
tion, i.e., the quality of model decreases as the resolution value of
cryo-EM density map increases (i.e., the resolution gets worse) as

Fig. 3 | The plots of the scores (F1 score, global normalized TM-score, and Cα
quality score) of the models built by Cryo2Struct and Phenix against the
resolution of the 128 cryo-EM density maps. Blue dots denote Cryo2Struct
constructed models and red dots the Phenix models. The solid lines depict linear
regression lines, and the colored area represents a 95% confidence interval. The
confidence interval is narrower (i.e., the linear estimation is more certain) in the
resolution range [3–4.5Å] where there are more data points. a F1 score against
resolution. The equation of the regression line for Cryo2Struct (blue) is
y = −0.1209x + 1.0966, while for Phenix (red), it is y = −0.1998x + 1.2618. The

correlation between F1 score of Cryo2Struct and the resolution is −0.28, while for
Phenix, it is −0.40. b The normalized global TM-score against resolution. The
equation of the regression line for Cryo2Struct is y = −0.0339x +0.3057, while for
Phenix, it is −0.0706x +0.3447. The correlation for Cryo2Struct is−0.24, while for
Phenix, it is −0.43. c Cα quality score against resolution. The equation of the
regression line for Cryo2Struct is −14.1318x + 94.8512, while for Phenix, it
is −17.9190x + 88.6207. The correlation for Cryo2Struct is −0.43, while for Phenix it
is −0.49. Source data are provided as a Source Data file.
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observed on the standard test dataset. The Pearson correlation
coefficient (PCC) for the recall, F1 score, global normalized TM-
score, Cα quality score, Cα sequence match, and Cα match scores
with respect to the resolution are −0.201, −0.202, −0.11, −0.298,
−0.234, and −0.299, respectively, indicating that the negative rela-
tionship is rather weak and Cryo2Struct is robust against the

deterioration of the resolution of cryo-EM density maps. Fig 4g
illustrates a high-quality model for a very large protein complex
(EMD ID: 16963). The model has 6316 residues and high-quality
scores (Cα quality score = 0.73, TM-score = 0.43, Cα match score =
72.8%, sequence match score = 50.6%, and F1 score = 90.5%). Fur-
thermore, Fig. 5 shows several additional good modeling examples,

Fig. 4 | The quality of atomicmodels built for 500 test cryo-EMmaps. The solid
lines depict linear regression lines, and the colored area represents a 95% con-
fidence interval. a The Cα recall versus resolution; the regression equa-
tion: −0.0466x +0.8350; Pearson’s correlation: −0.201. b The F1 score versus
resolution; the regression equation: −0.0468x +0.8357; the correlation: −0.202.
c The normalized TM-score versus resolution; the regression equation: −0.0222
x +0.2762; the correlation:−0.11. d The Cα quality score versus resolution; the
regression equation: −0.0741x +0.7080; the correlation: −0.298. e The Cα

sequence match score versus resolution; the regression equation: −7.9226x +
42.8422; the correlation: −0.234. f The Cα match score versus resolution; the
regression equation: −7.4408x + 70.8924; the correlation: −0.299. g A modeling
example. One on the left is the cryo-EM densitymap (EMD ID: 16963), in themiddle
is the true structure (PDB ID: 8OLU), and on the right is the model built by
Cryo2Struct. The structure is a hetero 28-mer with a stoichiometry of
A2B2C2D2E2F2G2H2I2J2K2L2M2N2 and a weight of 848.37 kDa. The total number
of modeled Cα atoms is 6316. Source data are provided as a Source Data file.
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demonstrating that Cryo2Struct is capable of modeling some large
structures with good overall accuracy.

Moreover, because only some regions of the models built by
Cryo2Struct can be aligned with the true structures, we specifically
analyzed the quality of the local regions of the models that can be
aligned with the true structures by US-align in terms of aligned Cα
length and RMSD (rootmean squared distance) of the aligned regions.

Supplementary Figure S2 plots the RMSD of the aligned regions
against their lengths for all themodels built for the densitymaps in the
new test dataset. The average length of the aligned regions of the
models is 532.51 residues, accounting for 29% of the average length of
true structures (i.e., 1837.43 residues). And the average RMSD of the
aligned regions is 1.6Å. The results show that Cryo2Struct can build a
significant portion of the protein structures with very high accuracy

Fig. 5 | The high-quality models built for four test cryo-EMmaps. In each panel
from left to right are the cryo-EM density map, the true structure, and the model
built by Cryo2Struct. The chains in both the true structure and the model are
colored with distinct colors. The total Cα number shown in each panel is the total
number of residues in a model. a The result for EMD ID: 17961 (PDB ID: 8PVC,

released on2023-11-29, and resolutionof 2.6Å).bThe result for EMD ID: 17287 (PDB
ID: 8OYI, released on 2023-11-08, and resolution of 2.2Å). c The result for EMD ID:
37070 (PDB ID: 8KB5, released on 2023-10-18, and resolutionof 2.26Å).dThe result
for EMD ID: 35299 (PDB ID: 8IAB, released on 2023-08-02, resolution of 2.96Å).
Source data are provided as a Source Data file.
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(low RMSD). And the RMSD decreases (i.e., the accuracy increases)
with respect to the lengthof the aligned regions, according to theweak
Pearson’s correlation of −0.134 between the RMSD and the length of
aligned regions. It is interesting to observe that Cryo2Struct can build
high-accuracy models of large aligned regions up to thousands of
residues.

Finally, we investigated how the global quality of the models
changes with respect to the length (number of the residues) of the
known structures (i.e., the size of the proteins) (supplementary
Fig. S3). Unlike their similar relationship with the resolution of the
cryo-EM density maps, the six metrics (recall, F1 score, global nor-
malized TM-score, Cα quality score, Cα sequencematch score, and Cα
match score) exhibit different relationship with the size of the pro-
teins. The Cα recall and F1 score have a weak positive correlation (i.e.,
0.259 and0.258 respectively) with the size of proteins indicating that it
is slightly easier to recognize individual Cα atoms for larger protein
structures, while there is a weak negative correlation (i.e.,−0.214)
between the global TM-score and the size of proteins indicating it is
slightly more difficult to build accurate full-length models for larger
proteins. And the correlation for Cα quality score, Cα sequencematch
score, andCαmatch scorewith respect to the size of proteins is almost
0, indicating that these scores are largely independent of the size of
proteins.

Evaluating Cryo2Struct on highly sequence-dissimilar proteins
To investigate howwell Cryo2Struct can generalize to proteins that are
highly dissimilar to the proteins in the training and validation dataset,
we used MMseqs225 to compare the proteins in the standard test
dataset and the new test dataset with those in the training and vali-
dation dataset and removed any protein in each of them that contains
one or more chains having more than 25% sequence identity with any
chain of any protein in the training and validation dataset. The strin-
gent 25% sequence identity is a threshold also utilized by
DeepMainmast12 in preparing a non-redundant test dataset. After the
filtering, 22 out of 128 cryo-EM density maps in the standard test
dataset are left to form a redundancy-reduced standard test dataset.
The resolution of the density maps in the redundancy-reduced stan-
dard test dataset ranges 2.08–5.6Å and has an average resolution of
3.72Å and the number of residues in the maps ranges from 448 to
7440. Likewise, 169 out of 500 cryo-EM density maps in the new test
dataset are left to form a redundancy-reduced new test dataset. The
resolution of the density maps in the redundancy-reduced new test
dataset ranges 1.93–3.9Å and has an average resolution of 2.89Å and
the number of residues in the maps ranges from 234 to 7248.

Supplementary Figure S5 compares Cryo2Struct with Phenix on
the redundancy-reduced standard test dataset in terms of three
metrics: recall, F1, and quality score. Cryo2Struct performs better
across the board, with 21 out of 22 structures having higher recall and
quality scores and 16 out of 22 structures having higher F1 scores. The
average recall score of Cryo2Struct is 67.8%, much higher than 40.7%
of Phenix. Similarly, the F1 score for Cryo2Struct is 68%, higher than
51% of Phenix. The average quality score for Cryo2Struct is 0.51, much
higher than 0.27 for Phenix.

Moreover, Cryo2Struct has an average sequence match of 18.2%,
higher than 14.2% of Phenix. The Cα match for Cryo2Struct is 50.9%,
higher than 48.5% of Phenix. The average length of Cryo2Struct pre-
dicted structures is 3224.5, close to the average length of the true
structures (i.e. 3237.31) and more than double the average length of
Phenix predicted structures (i.e., 1580.8). The aligned length for
Cryo2Struct predicted structures is 955.8, much higher than 514.0 of
Phenix. The global normalized TM-score for Cryo2Struct is 0.22,much
higher than 0.13 of Phenix. The results demonstrate that Cryo2Struct
substantially out perform Phenix on the test proteins that are highly
dissimilar to the training and validation proteins.

Furthermore, Cryo2Struct’s average recall, F1, global normalized
TM-score, Cα quality score, Cα sequence match score, and Cα match
score on the redundancy-reduced standard test dataset are 67.8%,
68%, 0.22, 0.51, 18.2%, and 51%, respectively, very similar to its scores of
65%, 66%, 0.2, 0.43, 13.4%, and 43% on the standard test dataset
without the redundancy reduction, indicating that Cryo2Struct’s per-
formance is independent of sequence similarity and it generalizes well
to test proteins that have little or no sequence similarity with the
proteins in the training and validation dataset.

Supplementary Figure S6 plots the recall, F1, and quality scores of
Cryo2Struct predicted structures against the resolution of the density
maps in the redundancy-reduced new test dataset. Similarly, as on the
new test dataset, the scores slightly trends down as the resolution gets
worse. Cryo2Struct’s average recall, F1, global normalized TM-score,
Cαquality score, Cα sequencematch score, andCαmatch score on the
redundancy-reduced new test dataset are 70.4%, 70.5%, 0.22, 0.51,
21.2%, and 50.5%, respectively, very similar to its scores of 70%, 70%,
0.22, 0.50, 20.1%, and 49.5% on the new test dataset without the
redundancy reduction. This is same as observed on the redundancy-
reduced standard test dataset and the standard test dataset, further
confirming that Cryo2Struct’s performance generalizes well to new
proteins that are highly dissimilar to the proteins in the training and
validation data. The decoupling of CryoStruct’s performance and
sequence similarity is probably because its transformer model only
uses electron density values in cryo-EM density maps to predict Cα
atoms and their amino acid types without using protein sequence
information at all.

Confidence scores by Cryo2Struct
Cryo2Struct provides a per-residue estimation of confidence within
the range of [0, 1] for both Cα and amino acid type predictions, i.e., the
chance (probability) that the predicted Cα or amino acid type is cor-
rect. Like the pLDDT scores that AlphaFold16 assigns to predicted
structures, the confidence scores reflect the degree of confidence
Cryo2Struct has in predicted Cα atoms and their amino acid types,
with higher scores indicating more reliable predictions, while lower
scores suggest more uncertainty that warrants scrutiny of the
predictions.

Specifically, the confidence score for a predicted Cα atom is
estimatedbyone logistic regression classifier (Pðy = 1jxÞ= 1

1 + e�ðβ0 + β1 �xÞ;β0
and β1: weights to be optimized), which utilizes the probability of the
Cα atompredicted by the deep learningmodel as input (x) to assess its
probability of correctness (P(y = 1∣x)). Similarly, the confidence score
for a predicted amino acid type is estimated by another logistic
regression classifier using the emission probability of the amino acid
type from the HMM assigned by the Viterbi algorithm, the probability
of the Cα atompredicted by the deep learningmodel, and the one-hot
encoding of the amino acid type as input (x) to predict the correctness
of the amino acid type prediction.

To generate the binary labels (1: correct and 0: incorrect) to train
the logistic regression classifiers, we utilized Phenix.chain_comparison
to match a Cryo2Struct modeled structure with the corresponding
true structure. We assigned a label of 1 to the Cα atoms in the
Cryo2Structmodeled structure that havematching residues in the true
structure, otherwise a label of 0. For thematchedCα atoms, we further
assigned a label of 1 to the amino acid types matched with those in the
true structure, and 0 otherwise.

We trained the two logistic regression classifiers on the 325
Cryo2Struct modeled structures of 325 targets in the new test dataset
and tested them on the separate subset of 167 Cryo2Struct modeled
structures that have less than 25% sequence identity with the
Cryo2Struct training dataset, which is the same subset used in the
section titled: Evaluating Cryo2Struct on highly sequence-dissimilar
proteins.
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Toassesshowwell the confidence scores generatedby the logistic
regression can measure the quality of the 167 test structures built by
Cryo2Struct, we correlated themwith the true Cα and sequencematch
scores of the structures computed by phenix.chain_chain_comparison
with respect to the true structures. The overall Cα confidence score for
a Cryo2Struct modeled structure is the average of the confidence
scores of all its Cα atoms, and the overall amino acid type confidence
scores for a Cryo2Struct modeled structure is the average of the
confidence scores of the amino acid types of all its residues. The
Pearson’s correlation coefficient between the Cαmatch score and the
Cα confidence score for the 167 test structural models is 0.6, with a
corresponding p-value of 3.06E-17. This correlation value suggests a
strong positive linear relationship between theCαmatch score and the
Cα confidence score. The low p-value indicates that the observed
correlation is statistically significant. Similarly, the correlationbetween
the sequence match score and the overall amino acid confidence type
score for the 167 test structuralmodels is 0.7,with ap-valueof 1.72E-24,
confirming that the latter is a good indicator of the former.

Furthermore, there is a strong relationship between the per-
residue Cα atom confidence scores and amino acid type confidence
scores on the 167 test structural models built by Cryo2Struct. The
correlation coefficient between them is 0.96, with a low p-value of
1.14E-92. Supplementary Figure S7 show an example plotting the
confidence scores of Cα atoms against the confidence scores of amino
acid types for a test protein, indicating a robust positive connection
between the two kinds of confidence scores. Supplementary Figure S8
shows the two test examples of visualizing amino acid type confidence
scores on top of the Cryo2Struct modeled structures using a color
spectrum. Supplementary Figure S9 uses a detailed test example to
demonstrate how different confidence scores can help users to iden-
tify high/local quality regions in the structural model in comparison
with the true structure.

Refinement of modeled structures
In the sections above, we performed a comparison between the
Cryo2Struct modeled structures and the structures generated by the
Phenix.map_to_model tool. Phenix.map_to_model employs an inte-
grated procedure that combines various independent modeling
methods with an extensive real-space refinement technique13,26 to
generate the structures. The models computed by Phenix.map_to_-
model benefit from the refinement through the Phenix.real_space_r-
efine tool, which ensures their geometric integrity by resolving torsion
angle outliers and rotamer outliers.

To investigate if the real-space refinement technique can further
improve the Cryo2Struct modeled structures, we applied the same
Phenix.real_space_refine tool employed by Phenix.map_to_model to
refine the initial models built by Cryo2Struct. On the new test dataset,
the average Cα match score of the refined models is 56%, 6.5% higher
than that of the initial models, and the average RMSD of the refined
models is 1.4Å, 0.2 Å lower than that of the initialmodels. Similarly, on
the standard test dataset, we observed an improvement in the average
Cα match score by 8.9% along with a decrease of 0.2 Å in the RMSD,
yielding an average Cα match score of 51.8% and an average RMSD of
1.62 Å for the refined models, respectively. This provides the com-
pelling evidence that refining the initial models generated by
Cryo2Struct further improves their quality by rectifying some geo-
metrical issues.

Discussion
De novo modeling of protein structure solely from density maps,
without using structural templates, is an interesting and important
issue because it establishes a lower bound on the amount of structural
information that can be extracted from density maps. We developed
Cryo2Struct, a de novo AI modelingmethod based on the transformer
and HMM for building atomic protein structural models from

medium- and high-resolution cryo-EM maps alone. The modeling
process is fully automated, requiring no human intervention and no
input from external tools. Cryo2Struct can rather accurately identify
individual Cα atoms in densitymaps and is robust against the decrease
of the resolution of density maps. Moreover, Cryo2Struct achieved
substantially better performance than the most widely used de novo
modeling method - Phenix in terms of multiple evaluation metrics
including Cα recall, F1 score, global normalized TM-score, aligned Cα
length, Cα match score, Cα sequence match score, and Cα quality
score. In general, it can build muchmore accurate andmore complete
protein structures from cryo-EM density maps than Phenix, therefore
advancing the state of the art of ab initio modeling of protein struc-
tures on cryo-EM density maps and providing a useful means for the
community to build better protein structural models from both
existing cryo-EM density maps and new ones to be generated to sup-
port biomedical research.

However, even though Cryo2Struct can identify most Cα atoms
correctly with high F1-score and build high-accurate atomicmodels for
some regions of large protein structures with very low RMSD, building
high-accurate models covering most regions of large protein struc-
tures from density maps alone remains very challenging, reflected in
low global TM-score and Cα sequence match score of the models.
Obtaining highglobal TM-score andCα sequencematch score requires
most if not all individual Cα atoms not only being correctly identified
but also being correctly linked as peptide chains and assigned with
correct amino acid types, which is combinatorially more challenging
than predicting individual Cα atoms. A prediction error for only a few
Cα atoms caused by missing or noise values in cryo-EM density maps
that are very common may drastically lower the TM-score and Cα
sequence score of the models because only when a long continuous
stretch of chains are correctly predicted, the high TM-score and Cα
sequence match score can be obtained. However, experimentally
generating cryo-EM density maps that contain high-resolution density
values covering every residue of a protein structure is still very
challenging.

We envision that the global TM-score and Cα sequence match
score of the structural models built from cryo-EM densitymaps can be
further improved from the following aspects. The first is to develop
more sophisticated and robust AI methods to predict protein atoms
and their amino acid types with higher sensitivity and specificity from
cryo-EM density maps to help build more accurate and complete
protein chains. The second is to use additional inputs such as protein
sequence information and AlphaFold-predicted protein structures to
complement missing information in cryo-EM density maps to obtain
more accurate and complete predictions. The third is to leverage the
symmetry of multiple chain in protein complexes to more accurately
predict Cα atoms and amino acid types and align protein sequences
with the HMMs. The fourth is to generatemore accurate and complete
cryo-EM density maps in the first place for the AI methods to use,
which is being done by the community and would automatically
improve the performance of Cryo2Struct as seen on the new test
dataset in this work.

In the future, we plan to further expand Cryo2Struct to integrate
cryo-EM density maps, protein sequences, and AlphaFold-predicted
structures with deep learning together to build more accurate and
complete protein structures. As more and more high-quality cryo-EM
maps are being deposited in EMDB9, such tools for automatically
modeling atomic structure from them can enable scientists to better
leverage this valuable resource to advance biomedical research.

Methods
Structure modeling process
As illustrated in Fig. 1, Cryo2Struct tackles the problem of building 3D
atomic structural models from 3D cryo-EM density map in the fol-
lowing three main steps:
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1. Predict Cα voxels and their amino acid types in the cryo-EM
density map of a protein using a deep learning method based on
transformer.

2. Construct a HMM model (λ) with predicted Cα voxels as hidden
states andwith emission and transitionprobability parameters set
according to their predicted probabilities and their pairwise
distance.

3. Align the amino acid sequence (i.e., O =O1,O2,O3…OT, where
Ot∈V;V: the set of 20 standardamino acids)with theHMMmodel
λ to find the most likely Cα state sequence (path) (X = x1, x2, x3,…
xT where xt∈ S; S: the set of Cα hidden states) of generating the
sequence to form the backbone structure of the protein.

Predicting Cα voxels and amino acid types
We designed a transformer-based model (Fig. 6), inspired by U-Net
Transformers (UNETR)27, for voxel classification in cryo-EM density
maps. The model follows the contracting-expanding pattern of
U-Net28, utilizing a series of transformer-based encoders to extract
features atmultiple layers. The features extracted fromdifferent layers
are utilized by a CNN-based decoder using skip connections to classify
the voxels into different classes. Onemodel is trained to classify voxels
into four different classes (Cα, C, N, and the absence of an atom) (atom
type classification). Another model is trained to classify voxels into 21
classes, representing 20 amino acid types and an absent or unknown
amino acid type.

Deep learning architecture. The deep learningmodel (Fig. 6) takes in
an input sub-grid of cryo-EM density map represented as a 4D tensor
with dimensions H ×W ×D ×C, whereH is the height,W is the width, D
is the depth, and C is the number of channels (C=1 for the input),
denoted as x 2 RH ×W ×D×C . x is then divided into a series of flattened,
uniform non-overlapping patches ðxv 2 RN × ðP3 :CÞÞ, where P denotes
the patch dimensions and N = (H ×W ×D)/P 3 is the number of the
patches. The series of the patches are projected by a 3D convolution
layer into a K-dimensional embedding space. A 1D learnable positional
encoding Epos 2 RN ×K is then added to the projected patches, which
subsequently serve as the input to the transformer encoder. Here, P is
set to 16 and the embedding dimension (K) to 768.

Cryo2Struct uses an encoder of 12 blocks17 each consisting of a
normalization layer29, amulti-head attention layer, a normalization layer
and amulti-layer perceptron to generate features for the input series of
patches. The features from four different blocks: zi (i.e., i∈ {3, 6, 9, 12}),
with size H ×W ×D

P3 ×K are reshaped into H
P × W

P × D
P ×K , respectively. The

features of the four blocks and the original input are processed by
deconvolution and/or convolution layers and concatenated together in
a U-Net fashion step by step to generate the final feature tensor of the
same dimension as the original input (see Fig. 6 for details), which is
used by a 1 × 1 × 1 convolution layer to classify each voxel.

Training and validation. We used the Cryo2StructData24 dataset,
which includes maps with the resolution in the range [1.0–4.0 Å], to

Fig. 6 | TheDeepLearningarchitecture forbackbone atomandamino acid type
classification. The network takes a 32 × 32 × 32 sub-grid of cryo-EM densitymap as
an input with one channel representing the density value of voxels. The input is
divided into a seriesofpatches. Thepatches are projected into anembedding space
by a 3D convolution layer, and then is added with a positional encoding. The
patches are then processedby anencoder, comprising 12 identical blocks eachwith
a normalization layer, a multi-head self-attention layer, a normalization layer, and a
multi-layer perceptron (MLP). The encoded features of blocks 3, 6, 9 and 12
denoted as (z3, z6, z9, z12) and the original input are integrated into the decoders via

skip connections in a U-Net fashion, each of which includes convolution and
deconvolution layers with instance normalization (IN), Leaky ReLU activation, and
feature concatenation. The last hidden features are used by a 1 × 1 × 1 convolution
layer to generate the final 3D sub-grid output of the same size as the input, i.e.,
32 × 32 × 32, with (C) output channels (i.e., 4 for the backbone atom type classifi-
cation (Cα, N, C, and the absence of an atom) and 21 for the amino acid type
classification (20 standard amino acids and no/unknown amino acid). The amino
acid-type classificationmodel has 92.281893million parameters, whereas the atom
type classification model has 92.281604 million parameters.
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train and validate the two transformer models. The cryo-EM density
maps in the dataset were released till 27 March 2023. The dataset is
split according to a 90% to 10% ratio into the training and validation
datasets. The total dataset has 7392 cryo-EM density maps. The train-
ing dataset and validation dataset has 6652, and 740 cryo-EM density
maps, respectively. The atom types and amino types of the voxels in
the density maps are labeled.

The trainingwas performedon sub-grids (dimension: 32 × 32 × 32)
of the density maps, utilizing a batch size of 720, the NADAM
optimizer30 with a learning rate of 1e-4, and a dropout rate of 0.1. We
used a distributed data parallel (DDP) technique to train themodels on
24 compute nodes each equipped with 6 NVIDIA V100 32GB-memory
GPUs in the Summit supercomputer31.

The deep learning models were trained with the weighted cross
entropy loss function described in Eq. (1) to handle the class imbalance
problem.

Lðx,yÞ= � 1
N

XN

n= 1

XC

c = 1

wc � yn,c�

log
expðxn,cÞPC
i= 1 expðxn,iÞ

 ! ð1Þ

where, Lðx,yÞ represents the weighted cross-entropy loss. N is the
number of samples in the minibatch. C is the number of classes. wc is
the weight for class c computed using Formula (2). xn,c is the logit for
class c in samplen, and yn,c is a binary indicator (0 or 1) of whether class
c is the correct classification for sample n.ωc in Formula (2) represents
the weight assigned to class c, nc is the number of samples in class c,
and

Pclasses
k =0 nk is the total number of samples across all classes.

ωc = 1�
ncPclasses

k =0 nk
ð2Þ

Throughout the training process, wemonitored both training and
validation loss along with the F1 score, known for its effectiveness in
handling class-imbalanced data as it represents the harmonic mean of
precision and recall. We implemented and trained the deep learning
models using PyTorch Lightning32, version 1.7.3. The evaluation
metrics (F1, Recall, and Precision) were computed using
TorchMetrics33, version 0.9.3. We tracked themodel’s performance on
both training and validation data using the Weights and Biases tool. If
the validation loss did not improve for five consecutive epochs, we
reduced the learning rate by a factor of 0.1. We saved the top 5 trained
models with lowest validation loss during the training and selected the
model with the highest F1 score on the validation dataset as the final
trained model.

Cα voxel clustering. When applying the trained transformer to a
density map to predict Cα voxels, it is common that multiple spatially
close voxels corresponding to the same Cα atom are predicted as Cα
atoms. To remove redundancy, Cryo2Struct employs a clustering
strategy to group predicted Cα voxels within a 2Å radius into clusters.
The average Cα probability and the amino acid type probability of Cα
voxels in each cluster are computed. The centrally located Cα voxel in
each cluster and the average probabilities of the cluster are used to
represent the Cα atom of the cluster, while the other Cα voxels in the
same cluster are removed.

Connecting Cα atoms into protein chains and assigning amino
acids to Cα atoms
Connecting predicted Cα voxels into chains and accurately assigning
their amino acid types is a challenging task.We designed an innovative
Hidden Markov Model (HMM) whose hidden states represent pre-
dicted Cα voxels to accomplish it seamlessly in a single step, which is

used by a customized Viterbi algorithm to align the sequence of a
target protein with the HMM. The hidden states (Cα voxels) aligned
with the sequence are joined together to form the backbone of the
protein, inwhich the amino acid type of eachCα voxel is set to the type
of the amino acid aligned with it.

Cα voxels with a probability higher than 0.4 are selected as the
hidden states for the HMM. The HMM uses K hidden states to
represent predicted K Cα voxels. Let’s denote individual Cα hidden
states in the HMM as S = S1, S2, S3,…, SK and individual symbols
(amino acid types) as V = V1, V2, V3,…, VN, where N is equal to the
number of standard amino acids (i.e., 20) generated from the hidden
states. The hidden states in the HMM are fully connected, where
there is a direct transition from any state to any other state, as
depicted in supplementary Fig. S4a. The transition probabilities
between Cα hidden states are stored in the transition matrix, deno-
ted as γ with a size of K × K. The emission probabilities of generating
observation symbols from the hidden states are stored in the emis-
sion matrix, denoted as δ, with a size of K ×N. The initial state dis-
tribution is denoted as Π = < π1, π2, π3,…, πK > , where πi is the
probability that the HMM starts from state i. A hidden path may start
from and end at any state. We use a compact notation, λ = (γ, δ,Π), to
represent the HMM.

Hidden Markov Model construction. The transition probability
matrix (γ) is constructed based on the distance between two pre-
dicted Cα states (voxels) in the 3D space, calculated from their
coordinates using Formula (3). The distance x is converted into a
probability using the modified Gaussian probability density function
(PDF) in Equation (4) (f(x)), with a mean (μ) of 3.8047Å and a stan-
dard deviation (σ) of 0.036Å. Both μ and σ were estimated from the
distances between two adjacent Cα atoms in the true protein struc-
tures in the training dataset. Additionally, we introduce a fine-tune
able scaling factor (Λ) that multiplies with (σ) to make the model
adjustable. We set (Λ) to 10. The transition probabilities from one
state to all other states are normalized by dividing each of them by
their sum.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 + ðy2 � y1Þ2 + ðz2 � z1Þ2

q
ð3Þ

f ðxÞ= 1

Λσ
ffiffiffiffiffiffi
2π
p e�ðx�μÞ

2=2ðΛσÞ2 ð4Þ

The emission probability matrix (δ) for each Cα state (voxel) is
calculated from both its predicted amino acid type probability and the
background (prior) probability of 20 amino acids in the nature. Spe-
cifically, the geometricmean of the two is calculated as

ffiffiffiffiffiffiffiffiffiffi
a×b
p

, wherea
corresponds to the predictedprobability for each amino acid type, and
b represents the background frequency of the amino acid type, as
shown in supplementary Fig. S10, that was precomputed from the true
protein structures in the training dataset. The geometric means for 20
amino acid types are normalized by their sum as their final emission
probability. An example of emissionmatrix is shown in supplementary
Fig. S4b.

The initial probability for a Cα state (πi) is the probability that it
generates the first amino acid of the protein sequence normalized by
the sum of these probabilities of all the Cα states.

Aligning protein sequence with HMM using a customized Viterbi
Algorithm. The customized Viterbi algorithm is used to find the most
likely path in the HMM to generate a protein sequence with the max-
imumprobability. The only difference between the customized Viterbi
algorithm and the standard Viterbi algorithm is that the former allows
a hidden state to occur at most once in the aligned hidden state path,
while the latter does not have such a restriction. The restriction is
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needed because one hidden state denoting a Cα voxel can only be
aligned to (occupied by) one amino acid in a protein sequence. The
details of the algorithm is depicted in Algorithm 1, generating a path
X = x1, x2, x3,…, xT, which is a sequence of states xt∈ S aligned with a
protein sequence (the observation O). For a multi-chain protein com-
plex, the sequence of each chain is aligned with the HMM one by one.
Once a chain is aligned, the states in the hidden path alignedwith it are
removed from the HMM before another chain is aligned. In the align-
mentprocess, it is ensured that anyCα state occurs atmost once in one
hidden state path. One distinct strength of this HMM-based alignment
approach is that every amino acid of the protein is assigned to a Cα
position as long as the number of the predicted Cα voxels is greater
than or equal to the number of the amino acids of the protein, which
is usually the case when the 0.4 probability threshold is used to
select predicted Cα atoms to construct the HMM. This is the reason
that Cryo2Struct builds very complete structural models from
density maps.

Algorithm 1. The customized Viterbi algorithm
1: function ModifiedViterbi (O, S,Π, γ, δ): X
2: for each state i = 1, 2,…,K
3: T 1½i,1�  Πi � δi,O1

4: T2[i, 1]←0
5: end for
6: visited_states← {}
7: for eachobservation j = 2, 3,…, T

do
8: for each state i = 1, 2,…,K do
9: if i∉ visited_states then
10: path  T 1½i,j � 1� � γi � δi,Oj

11: T 1½i,j�  maxkðpathÞ
12: T2½i,j�  argmaxkðpathÞ
13: end if
14: end for
15: zj  argmaxkðT 1½: ,j�Þ
16: visited_states← visited_states∪ {zj}
17: end for
18: zT  argmaxkðT 1½: ,T �Þ
19: xT  SzT
20: for j = T − 1, T − 2,…, 1 do
21: zj−1← T2[zj, j]
22: xj�1  Szj�1
23: end for
24: return X
25: end function

The customized Viterbi algorithm is a dynamic programming
algorithm implemented in C++ to achieve high computational effi-
ciency. The source code is compiled with a high level of optimization
and isprovided as a shared library, which is then linkedwith the Python
program of constructing the HMM.

Inference and testing
After Cryo2Struct was trained and validated, it was blindly tested on a
standard test dataset of 128 density maps and a large new dataset of
500 density maps. For each test map, the Cryo2Struct inference pro-
cess consisting of the deep learning prediction and the HMM align-
ment was executed on compute nodes each with a 40GB GPU, 150 GB
RAM, and 64 CPU cores. The deep learning prediction was carried out
on the GPU, whereas the HMM alignment was executed on the CPU
cores. The model building for the largest map (EMD ID: 40492 with
resolution 2.9Å), involving 8828 modeled residues, was completed in
9 hours on a compute node, while it took only 2.90minutes to build a
model for the smallest map (EMD ID: 36426 with resolution 3.3Å) with
234 residues.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The dataset used to train and validate Cryo2Struct (Cryo2StructData)
is available on the HarvardDataverse24, and the description of the data
preparation and labeling process can be found in21. The detailed
information about the test datasets including the EMD IDs of the
density maps and the evaluation scores are provided in two Excel files
(Standard_test_data.xlsx for the standard test dataset and
Cryo2Struct_test_data.xlsx for the new test dataset) available at
https://doi.org/10.7910/DVN/GQCTTD, and the true structures and the
structural models built by Cryo2Struct and Phenix for the test density
maps are also available at the same website. The two Excel files
(Standard_test_data.xlsx for the standard test dataset and
Cryo2Struct_test_data.xlsx) for the new test dataset) are also
available in source data file. Additionally, two Excel files (Stan-
dard_test_data_low_sim.xlsx for the redundancy-reduced stan-
dard test dataset and Cryo2Struct_test_data_low_sim.xlsx for
the redundancy-reduced new test dataset) are available in source data
file and on Harvard Dataverse, accessible at 10.7910/DVN/
GQCTTD. Source data are provided with this paper.

Code availability
The source code for Cryo2Struct is available in the GitHub repository:
https://github.com/jianlin-cheng/Cryo2Struct. This repository also
includes instructions on running Cryo2Struct on cryo-EM maps to
generate 3Datomicprotein structures. Furthermore, to keep the codes
of Cryo2Struct permanent, we published all code and instructions
required to reproduce the results on Zenodo, an online research
sharing platform with a permanent Digital Object Identifier number34.
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