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A stochastic vs deterministic perspective on
the timing of cellular events

Lucy Ham1,2,6, Megan A. Coomer1,2,6, Kaan Öcal3,5, Ramon Grima 4 &
Michael P. H. Stumpf 1,2

Cells are the fundamental units of life, and like all life forms, they change over
time. Changes in cell state are driven by molecular processes; of these many
are initiated when molecule numbers reach and exceed specific thresholds, a
characteristic that can be described as “digital cellular logic”. Here we show
how molecular and cellular noise profoundly influence the time to cross a
critical threshold—the first-passage time—and map out scenarios in which
stochastic dynamics result in shorter or longer average first-passage times
compared to noise-less dynamics. We illustrate the dependence of the mean
first-passage time on noise for a set of exemplar models of gene expression,
auto-regulatory feedback control, and enzyme-mediated catalysis. Our theory
provides intuitive insight into the origin of these effects and underscores two
important insights: (i) deterministic predictions for cellular event timing can
be highly inaccurate when molecule numbers are within the range known for
many cells; (ii) molecular noise can significantly shift mean first-passage times,
particularly within auto-regulatory genetic feedback circuits.

Cellular dynamics are not deterministic1. Observations of RNA or
protein numbers in single cells show that their variation with time is
stochastic2–4. This noise originates from biomolecular processes that
are unaccounted for5,6, as well as from the inherent random timing of
individual molecular events which manifests most clearly in low copy
number conditions (intrinsic noise)7,8. In spite of this randomness, cells
orchestrate their processes with remarkable precision and robustness,
likely because of mechanisms that either exploit or suppress intrinsic
noise9,10.

Mathematical modelling based on the Chemical Master Equation
(CME), a probabilistic description of chemical reaction kinetics, has led
to significant progress in understanding how the stationary and non-
stationary distributions of molecule numbers in a single cell vary as a
function of the rate parameter values11–15. Nevertheless, these studies
do not directly address a central question: when will the level of some
molecule first cross a critical threshold? It is known that regulatory
proteins often need to reach critical threshold levels to trigger

downstream processes16–23. For example, in cellular development and
differentiation, progression through different phases of the cell cycle
only occurs once certain cyclin proteins surpass a prescribed
threshold24,25. Similarly, many physiological processes are triggered by
calcium signalling and rely on the concentration of calcium ions to
exceed a certain threshold26–29. Another example is p53-mediated cell
apoptosis which is triggered when p53 proteins reach a critical value;
below this value, cells enter the G1 arrest phase30,31 (Fig. 1A). In the
context of RNA it hasbeen shown thatmicroRNAs (miRNAs) can create
mRNA threshold levels, below which protein production is
suppressed32,33. From an experimental perspective threshold crossing
can, however, be understood more generally. For example, many
events in cells can be timed by the turning on or off of a molecular
fluorescent marker; since the observed molecular levels are of a con-
tinuous nature, a threshold is necessary to define a discrete event from
thesemarkers. Examples of processes that have been timed in this way
include entry into competence in bacteria, different phases of lysis by
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phage, cell cycle phases, and loss or gain of pluripotency in stem cells
(for a review see ref. 34).

The time for amolecule number to reach a certain target value is a
stochastic variable whose properties can be understood using first-
passage time (FPT) theory35. Of particular importance is themean first-
passage time, the average time to reach a target value. Analytical
expressions for the mean FPT have been derived for one variable
models36,37, and systems with many states connected in a simple
way38–40. For more complex models, as common in biology, the exact
analytical approach is often unfeasible and thus numerical computa-
tion, using the Finite State Projection (FSP)method41,42, orMonte Carlo
simulation using the Stochastic Simulation Algorithm (SSA)43, is typi-
cally far more practical. Approximations, such as moment closure
approaches, might be feasible too44,45. Using one or more of these
approaches, several studies have investigated the mean FPT (and
higher-order moments and distributions of the FPT) as a function of
the rate parameter values13,46–53. Despite these advances, biochemical
systems have been, and are still, studied by means of deterministic
ordinary differential equations due to their simplicity and ease of use54.
For systems where the counts of molecules are large and reactions are
taking place nearly continuously, the dynamics is approximately
deterministic55,56. However, for systemswith small volume anddiscrete
molecule counts, such as the interiors of biological cells, dynamics are
stochastic and the validity of deterministic modelling becomes less
obvious. Within the deterministic framework, it is also possible to
estimate the time to reach a certain molecule threshold by numerical
integration of the differential equations. The differences between
estimates of FPTs using deterministic and stochastic modelling fra-
meworks have not previously been studied systematically, except in
special cases (which we discuss below). This is an important question
given the ubiquity of deterministic models of cellular biology and the
fact that comparison of the two estimates would provide a direct
means to study the role played by intrinsic noise in the timing of
cellular events.

There are specific limits where the relationship of the determi-
nistic and stochastic predictions for the mean time to reach a target
molecular threshold are well understood. If for a given initial condi-
tion, the target molecule number is outside of the range predicted by
the deterministic model in finite time then clearly the latter’s predic-
tion for the mean time is undefined whereas a stochastic model will
typically predict a finite value. An extreme example is given by
extinction processes, where initially the number of molecules is larger
than zero and the target value is zero, a value that the deterministic
model only approaches asymptotically57,58. If the target molecule
number is within the range predicted by the deterministic model in
finite time then, if intrinsic noise is very small (molecule numbers are

sufficiently large), the trajectories obtained from the SSA are close to
the temporal variation of the mean molecule numbers predicted by
thedeterministicmodel36,56 andhence the stochastic anddeterministic
approaches will necessarily predict the same mean time to reach a
threshold molecule number.

The relationship between deterministic and stochastic predic-
tions of the mean time to reach a threshold value is, however, unclear
when the molecule numbers are small—the typical case inside cells.
Even if themeanmolecule numbers of the deterministic and stochastic
models are the same for all times (as for example is the case for sys-
tems with linear propensities37), when intrinsic noise is large, the tra-
jectories of the SSAwill not closely follow the deterministic prediction.
For systems with nonlinear propensities (such as those with bimole-
cular reactions) the differences are likely even more pronounced
because the mean molecule number predictions of the two models
disagree, which will be reflected in the trajectories of the SSA59. Hence,
generally, it is difficult to say if themean time for trajectories of the SSA
to reach a designated target level (asmeasured by themean FPT) is the
same, larger or smaller than the time predicted by the deterministic
model. An illustration comparing the two model predictions is shown
in Fig. 1B.

We shed light on this problem by computing the difference in
trigger time predictions of deterministic and stochastic models of a
variety of biochemical processes with the constraint that the target
molecular value is larger than zero and smaller than the steady-state
mean molecular number predicted by deterministic models. The
analysis enhances our understanding of the role played by intrinsic
noise in cellular event timing.

Results
Mathematical framework
We can formulate the question of interest as a FPT problem: for a
continuous-time Markov process (CTMP) x(t), we are interested in the
time it takes x(t) to first arrive at some subset Y of the discrete state-
space, given the system started from n∉Y. In other words, we are
interested in first-passage times,

τn = infft ≥0 : xðtÞ 2 Yjxð0Þ=ng: ð1Þ

Moments of the FPT distribution. We derive moments of the FPT
distribution for any CTMP x(t), providing a fresh intuitive proof of a
result that has been presented in the literature36,49. Fix an initial state
n∉Y and let τnz be the waiting time to reach the absorbing state Y
from n given that z is the next state visited and z∉Y. The random
variable τnz can be decomposed into the sum of two independent

Fig. 1 | First-passage time processes in cellular biology. A Many processes rely
upon regulatory proteins or molecules attaining critical threshold levels. Once this
threshold is surpassed, a biological event is triggered. The time at which this occurs
is known as the first-passage time (vertical grey dashed line). For example, upon
DNA damage, the activation of p53 can elicit two potential cellular responses: cell-
cycle arrest or apoptosis. Below a defined threshold of p53 expression, the cell
undergoes cell-cycle arrest, whereas apoptosis is induced when the p53 expression
surpasses a threshold. (B) The underlying process governing the regulatory

molecule is stochastic and hence variability in the event timing is expected. This
results in a distribution of first-passage times (shown in turquoise), which is con-
ditional on the initial number of protein molecules in the system; here the initial
protein number is 0. The mean first-passage time (MFPT; solid purple line and
cross) can be compared with the deterministic FPT (red cross) which is the time to
reach the target molecular number as estimated by integration of deterministic
reaction rate equations (red solid line). (A) and (B) were created with
BioRender.com.
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random variables,

τnz =dn + τz, ð2Þ

where dn is the time until the first jump (the exponentially distributed
dwelling time) and τz is the waiting time to reach the absorbing set Y
from the state z. Let A denote the state transition matrix for x(t)
(Supplementary Information, Section 1.1). The expected time until the
next jump is −1/Ann, and the probability of transitioning to state z
equals −Azn/Ann, where hereAij is the ijth element ofA. For any k ≥ 1, we
can compute the kth raw moment of the waiting time τn to reach Y
from n as follows. By the Law of Total Expectation, we have that

E½τkn�= �
X

z≠n
E½τknz�

Azn

Ann
: ð3Þ

Using Eq. (2), the Binomial Theorem, and the independence of dn
from τz, it follows that,

E½τkn�= �
Xk�1

i=0

k
i

� � ðk � iÞ!
ð�AnnÞk�i

X
z≠n

E½τiz�
Azn

Ann
�
X

z≠n
E½τkz �

Azn

Ann
,

ð4Þ

forn∉Y, whereherewehave alsoused the fact thatdn is exponentially
distributed with rate −Ann. Now moving the rightmost sum to the left
and multiplying both sides of Eq. (4) through by Ann, it follows that

X
z
E½τkz �Azn = � kE½τk�1

n �, ð5Þ

where here we have used Eq. (3) from right to left with k − 1 in place of
k. Recalling that τz ≡0 for z∈Y and that n∉Y, we can write Eq. (5) for

all initial states z∉Y concisely as

AT
YE½τk �= � kE½τk�1� with E½τ0�= 1, ð6Þ

whereAT
Y denotes thematrixATwith rows and columns corresponding

to Y removed. Solving this (matrix) recurrence relation gives,

ðAT
YÞ

k
E½τk �= k!ð�1Þk1, ð7Þ

which agrees with the result that can be obtained from the Backward
Chemical Master Equation (see Supplementary Note 1). We use a
modification of the FSP algorithm to compute mean FPTs (MFPTs) via
Eq. (7) (see the “Methods” section below). The approach also extends
to the full FPT distribution over a set of initial states (see Supple-
mentary Note 1). Our approach allows us to simultaneously compute
FPT statistics, for all initial molecule numbers n∉Y, significantly
reducing computation time in comparison toMonteCarlo simulations;
refer to SupplementaryNote 5, wherewe compare CPU times for three
models of biological relevance, including enzyme kinetic examples
and a compartmental model of disease spread. We remark that the
Forward CME can be used to compute FPT distributions by way of a
modified FSP, however, requires recomputation for each initial state42.
Note that Eq. (7) can also be solved analytically in some cases (Sup-
plementary Notes 2 and 3).

Stochastic vs deterministic calculations
Understanding the average behaviour of a stochastic system is crucial
for predictive modelling and system characterisation. We focus here
on the relationship between deterministic and stochastic predictions
of the average time to reach a given threshold. Higher moments such
as the variance, however, provide complementary information about

Fig. 2 | Stochastic vs. deterministic waiting times to reach a target protein
number for the bursty birth–death process. A An illustration of the bursty
birth–death process (as given by the reaction scheme in Eq. (8) with burst size r ≥ 1).
The schematic was created with BioRender.com. B Example trajectories of the
simple birth–death process (multi-coloured) as simulated by the SSA. The FPTs of
the trajectories are shown as the dark grey crosses, while the deterministic FPT is
shown as the blue vertical line. Here r = 1,ρ =0.8, K = 50 and δ = 1, so that the target
N = 40 (grey dashed line).C The ratio η = 〈τ0〉/τd of the stochasticMFPT, 〈τ0〉, to the
deterministic FPT, τd, as a function of increasing K. The stochastic mean waiting
time is computed according to Eq. (9), and the deterministic waiting time is com-
puted according to Eq. (11).Model parameters areρ =0.8,K varies from2 to 103, and
δ = 1. D (top) Waiting times when target N is equal to a large proportion (here

ρ =0.9) of the steady-state mean. A representative time series of the bursty
birth–death process is shown in orange, and the solution of the reaction rate
equation in purple. Here r = 10,K = 20 and δ = 1, so that the targetN = 180 (shown as
the grey dashed line). The stochastic MFPT (red vertical line) is smaller the deter-
ministic FPT (blue). (bottom) Parameters are the same as above except now ρ =0.2
and the target is N = 40. E The ratio η = 〈τ0〉/τd of the stochastic MFPT, 〈τ0〉, to the
deterministic FPT, τd, as a function of increasing K, for a high threshold value. The
number of initial proteins is0, ρ =0.9, r = 10,K varies from2 to 103, and δ = 1.FSame
as (E), except now ρ =0.2. Stochastic waiting times are computed according to our
FSP approach (refer to theMethods sectionbelow), anddeterministicwaiting times
are computed analytically.
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the precision and timing errors in cellular events. Our analysis of
average behaviour is accompanied by a supplementary examination of
variability in first-passage times (see Supplementary Note 4).

In the following sections, we will refer to the time that the
deterministic process first reaches a given threshold as the determi-
nistic FPT, and we will denote this by τd. The expected time for the
stochastic process to reach a given threshold given the system is
started from n initial molecules will be written as〈τn〉. We will write the
ratio of the MFPT to the deterministic FPT as η = 〈τn〉/τd.

The bursty birth–death process. We consider the bursty birth–death
process with fixed burst size r,

+!KrP, P!δ+: ð8Þ

See Fig. 2A for an illustration of this model. It is assumed there is the
continuousproductionof amolecular species P in bursts offixed size r,
according to a Poisson process at constant rate K. The degradation
process captures both active degradation as well as dilution due to cell
division, and is modelled as a first-order Poisson process with rate δ.
Throughout the remainder of the paper, we rescale time as τ = δ ⋅ t, and
assume that allmodel parameters have been scaled by the degradation
rate δ, so that δ = 1. Hence both time and the rate parameters are non-
dimensional. The bursty birth–death process serves as a crude model
for bursty expression of either mRNA or protein due to transcription
or translation; we do not here account for the fact that the burst size in
these cases is not fixed, but is distributed according to a geometric
distribution11. For specificity, in what follows we shall refer to P as
protein.

Case 1: the simple birth–death process. When r = 1, the model given
in reaction scheme (8) coincideswith a simple birth–deathprocess.We
are interested in the mean waiting time for the birth–death process to
reach a fixed protein numberN, given that the system is started from n
initial proteins. Simulations of the simple birth–death process suggest
the MFPT is smaller than the deterministic FPT (see Fig. 2B, but note
that only a small sample of trajectories are shownhere for visualisation
purposes). We now prove this analytically. To begin, we find an ana-
lytical solution for the MFPT of the stochastic description of the sys-
tem, as given by the CME (see Equation (3) of the Supplementary
Information).

Starting fromEq. (7), it canbe shown(SupplementaryNote 2), that
the expected waiting time to reach N proteins given the system is
started from n ≤N, is given by,

hτni=E½τn�=
1
K

XN�1

i =0

Ni + 1

i+ 1
1
K

� �i

�
Xn�1

i=0

ni+ 1

i+ 1
1
K

� �i
 !

, ð9Þ

where for real number x and positive integer m, the notation xm

abbreviates x(x − 1)…(x − (m − 1)), the falling factorial of x. In what fol-
lows for simplicity we shall set n =0. The deterministic description of
the system is given by the reaction rate equation dτX =K − X, with
X(0) = 0, and solving for X(τ) yields X(τ) =K(1 − e−τ). Solving for τ then
gives,

τd = � ln 1� X
K

� �
: ð10Þ

Consider someproportion 0 < ρ < 1, and consider the expectedwaiting
time to reach ρK, that is, some proportion ρ of the steady-state mean.
Then Eq. (10) simplifies to

τd = � lnð1� ρÞ, ð11Þ

whichwe note is independent of K, and where the requirement of ρ < 1
enables this to bewell defined. Now let us consider Eq. (9) forN = ⌊ρK⌋.
For notational simplicity only, we assume that ρK is an integer, and
again observe that the numerator Ni + 1 is bounded above by (ρK)i+1.
Replacing this in Eq. (9) gives

XN�1

i=0

ρi + 1

i+ 1
: ð12Þ

Recognising theTaylor expansionof� lnð1� ρÞ around0 (forρ < 1), we
find that Eq. (12) is the truncated Taylor expansion of Eq. (11). Thus, as
each term of the series is strictly positive, it follows that for any pro-
portion ρ of the steady-state mean, the deterministic waiting time is a
strict upper bound for the mean waiting times. An example is given in
Fig. 2C for ρ =0.8. Here we show how the ratio of the stochastic mean
waiting time to the deterministic waiting time, η, of the simple
birth–death process scales with increasingK. Note that since δ = r = 1,K
is equal to the steady-state mean number of molecules.

Case 2: burst size r > 1. We now consider the case where protein is
translated in bursts of size r > 1. Again, we are interested in the waiting
time for the bursty system to reach some fixed target N, given that the
systemstartswithn =0 initial proteins. In Fig. 2D (top),we consider the
case of a high threshold value; here the target N is equal to a large
proportion (90%) of the steady-state mean, Kr. Noting that the deter-
ministic model will not reach the steady-state mean in finite time
(unlike the stochastic model), we expect a faster MFPT as predicted by
the stochastic model than that predicted by the deterministic model.
Indeed, we see that the stochastic MFPT to reachN (red vertical line) is
again smaller than the deterministic FPT (blue vertical line). In Fig. 2E
(left), we showhow η scales with increasingK, for a high threshold. The
differences are most pronounced for systems with a smaller steady-
state mean number of molecules, with waiting times eventually con-
verging in the limit of large mean molecule numbers.

To build intuition for the opposite case, that is, targets that are a
small proportion of the steady-state mean, we again look to the
extremes. If the targetN is chosen such thatN < r, that is, strictly below
the burst size, then the expected waiting time to surpass this in the
stochastic case is simply the expected waiting time to the first event,
which is 1/K; this is independent of N. But as N tends to 0, the deter-
ministic solution also tends to0, so that a small enough choice ofNwill
place it faster than 1/K; the precise boundary for this can be derived as
N <Kr(1− e−1/K) ≈ r. Note that this condition cannot hold for the simple
birth–death process as r = 1 and N is discrete. In Fig. 2D (bottom), we
see that this difference extends to targets that are much higher than
the burst size; here N = 40 and r = 10. The waiting time as predicted by
the deterministic solution (blue vertical line) is indeed smaller than the
MFPT to reach N (red vertical line). Comparing the trajectories in
Fig. 2D top and bottom, we see that the deterministic solution is faster
than the stochastic solution when the target threshold is low, in
agreement with our theoretical argument above. In Fig. 2F we show
how η scales with increasing K, for a low threshold value. The differ-
ences are most pronounced when the steady-state mean molecule
numbers are small.

Herewe considered a fixed burst size r, however, experimentally a
geometric burst size distribution has been observed60. We show that
these results extend to the case where the burst size is geometrically
distributed with mean b (Supplementary Information, Section 5).

The telegraph model. Next we investigate whether or not the same
transition in the ratio of the deterministic to stochastic waiting times
from below to above 1 is possible using a more realistic model of gene
expression. We consider the two-state telegraph model of gene
expression61, which has been widely employed in the literature to
model bursty gene expression in eukaryotic cells62,63; a schematic is

Article https://doi.org/10.1038/s41467-024-49624-z

Nature Communications |         (2024) 15:5286 4



given in Fig. 3A. The effective reactions for the telegraph model are
given by,

G*"λ
μG, G�!KG+M, M�!1+: ð13Þ

In this model, the gene switches probabilistically between an inactive
state G* and active state G from which mRNA molecules (M) are syn-
thesised; degradation of mRNA occurs independently of the pro-
moter state.

Again, we are interested in examining waiting times of the tele-
graph system to reach some targetN = ρð Kλ

λ+μÞ, that is, some proportion
0 < ρ < 1 of the steady-state mean number of molecules. In contrast to
the model considered in the previous section, the gene can now
experience periods of inactivity in whichno transcription occurs. If the
telegraph system is initialised in the inactive state G*, then the waiting
time to reach N starting from 0 molecules is at least the expected
waiting time for the system to transition to the active state (the first
event), which is equal to 1/λ. Thus, 1/λ is a strict lower bound for the
mean first-passage time of the system to reach the target N.

If we assume that mRNA is abundant enough so that conditional
on the gene state the dynamics are deterministic, then the mRNA
dynamics, from τ =0 to τ = τoff, are approximated by,

f ðτÞ= 0 if 0 ≤ τ ≤ 1=λ,

Kð1� expð�ðτ � λ�1ÞÞÞ if 1=λ< τ ≤ τoff ,

(
ð14Þ

where τoff = (1/λ) + (1/μ) (mean total time for the gene to turn on and
thenoff).Note that thefirst linedescribes no expressionwhile the gene
is off while the second describes the switching on of gene expression.
In particular, for times close to the switching on time, we have that
f(τ) ≈K(τ − λ−1), implying there is a sudden linear increase in expression
with a slope that is dependent on the mRNA synthesis rate K. In con-
trast, the deterministic model solution is non-zero for all times t > 0
because in this case both the gene and mRNA are both treated in a
continuous manner. Thus, due to the immediate initiation of mRNA

production in the deterministic model, it consistently maintains a
competitive edge over the stochastic model in terms of reaching the
target first. However, the stochastic model possesses a notable
advantage: upon gene activation, the initiation of mRNA production
progresses considerably faster compared to the deterministic model.
Because of these two opposing properties, we expect the MFPT to be
less than the deterministic FPT if the activation rate is sufficiently large
(Fig. 3B left) and the opposite if the activation rate is quite small
(Fig. 3B right).

These two scenarios are corroborated by computing the sto-
chastic MFPTs via our FSP approach (Fig. 3C left and right, respec-
tively). Note that in these plots we are varying the switching off rate μ
and synthesis rate K such that the steady-state mean mRNA is
unchanged. While the variation of K changes the sharpness of the
mRNA response when a gene switches on, its effect on the difference
between theMFPT and its deterministic equivalent is secondary to the
influence of the switching on rate λ, provided this is very large or very
small. However, when λ is moderately large then the value of K
becomes thedetermining factor (Fig. 3Cmiddle).We remark thatwhile
the piecewise function Eq. (14) well approximates the mRNA for large
and small λ values, for intermediate values the theory is unable to
account for the fact that a proportion of trajectories will not reach the
target on the time interval 0 ≤ τ ≤ τoff—hence this approximation can-
not be used to accurately predict the value of μ at which there is a
transition in the waiting time ratio from above to below 1 in Fig. 3C
middle, and we therefore omit the approximation from the figure.

Furthermore, note that transition in the waiting time ratio η seen
in the telegraph model is broadly speaking similar in character to that
in the simpler bursty birth–death model. Large λ means the gene is
mostly on and hence this is similar to constitutive expression (the
birth–death model with r = 1) for which we proved the deterministic
FPT to be an upperbound for the MFPT of the stochastic model
(Fig. 2C). Small λmeans the gene is mostly off and if the synthesis rate
is large enough this implies bursty (r > 1) expression for which the
MFPT can be larger than its deterministic counterpart (Fig. 2F). Given

Fig. 3 | Stochastic vs. deterministic waiting times to reach a targetmRNA value
for the telegraph model. A A schematic of the telegraph model as given by the
reaction scheme in Eq. (13). The schematic was created with BioRender.com.
B Piecewise-deterministic approximation of the stochastic model (Eq. (14)) versus
the deterministic model. (left) For large λ values, the approximate MFPT, 〈τ0〉,
(orange cross) of the telegraph process to reach target N (grey dashed line) is
smaller than the deterministic FPT, 〈τd〉, (green cross). The deterministic reaction
rate equation is shown in purple. Model parameters are λ = 2, μ =0.5, K = 625, so
that the steady-statemeanmRNA copy number is 500.We also have thatρ = 0.6, so

that the target N = 300. (right) For small values of λ, the approximate MPFT of the
stochastic model (orange cross) is larger than that of the deterministic model
(green cross). Model parameters used are λ =0.3, μ =0.5, K = 1333, and ρ =0.6.
C Deterministic FPTs, τd (green), and stochastic MFPTs, 〈τ0〉 (orange; computed
using FSP), as a function of the switching off rate μ, for three different λ values:
λ = 10 (left), λ = 1 (middle), λ =0.1 (right). In each plot, we vary μ from0 to 100,while
keeping the steady-state mean mRNA number fixed at 100; this involves varying K
accordingly. The target N is set to 80% of the steady-state mean.
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the qualitative similarities in the predictions of the two models, it is
likely the form of the burst size distribution (a delta function for the
bursty birth–death model and a geometric distribution for the tele-
graphmodel in certain limits12) is not important to the existence of the
observed transition in η.

An autoregulatory feedback loop. Next we examine an auto-
regulatory feedback loop in which a protein produced by a gene either
enhances or suppresses its own expression. This motif is commonly
encountered in biology. For example, in E. coli negative autoregulation
appears in over 40% of known transcription factors. A number of
studies have used stochastic models to investigate optimal feedback
mechanisms to minimise the variability in FPTs48,50,64–68. The reaction
scheme for the feedback loop thatwe employ is given by Grima et al.69,

P +G"σb
σu
G*, G�!ρuG+P,

P�!1+, G*�!ρbG* +P,
ð15Þ

whereG* andG represent the bound and unbound states, respectively,
and P represents protein. The parameters σu and σb are the unbinding
and binding rates, respectively, and δ is the protein degradation rate.
The rate of protein production depends on the gene state and is given
by ρb and ρu in the bound and unbound states, respectively. When
ρb > ρu the feedback is positive since an increase in the protein number
will cause the gene to switch more often to the G* state in which the
production rate is high. Similarlywhen ρb < ρu the feedback is negative.
We illustrate the positive and negative feedback loops in Fig. 4A left
and right panels, respectively. More realistic models have been
devised, for example70 describes a bursty version of reaction scheme

(15) to account for translational bursting; however, these details are
unlikely to change the qualitative properties of thewaiting time results
that we will describe next.

In Fig. 4B, C (vertical panels), we consider the case of positive
feedback (i.e., when ρu < ρb). For two different σb values, we show the
MFPT of the stochastic system (orange) to reach 90% of the steady-
state mean, given the system is started from 0 protein molecules, for
increasing ρb; this can be thought of as increasing the strength of the
positive feedback. The corresponding deterministic waiting times are
displayed in green. For low values of the binding rate σb (Fig. 4B), we
see a rapid rise and fall in the FPTs (for both the stochastic and
deterministic models), as we increase the strength of positive feed-
back. This initial rise in the waiting time may seem somewhat coun-
terintuitive, but can be understood in terms of the corresponding
increase in the steady-state mean. As the transcription rate ρb rises, so
too does the steady-state mean, and hence the target N. Because σb is
very low, binding is a rare event and short lived, as σu is large. This
means that in a typical trajectory, most of the time towards reaching
the target is spent in the unbound state with constant transcription
rate ρu, attempting to reach a rising target. For high values of ρb, the
level of transcription is sufficiently high that even the short window of
relatively rare bound behaviour provides significant progress towards
achieving the targetmolecule number. For high σb values (Fig. 4C), the
effective binding rate, that is σb〈P〉, quickly becomes enormously
higher than the unbinding rate σu, so that the system is very close to
constitutive, and the deterministic FPTs bound from above the sto-
chastic MFPTs. The corresponding waiting-time ratio plots also reveal
that this ratio can be quite large when it is above 1 (an order of mag-
nitude)—this is a considerably larger effect than seen for the bursty

Fig. 4 | Stochastic vs. deterministic waiting times to achieve a target protein
value for autoregulatory feedbackmodels. A (left) An illustration of the feedback
loop (given in reaction scheme (15)) for positive feedback (PFB) (i.e., ρu < ρb), and
(right) negative feedback (NFB) (i.e., ρu > ρb). The schematic was created with
BioRender.com. B–E Top panel: MFPT, 〈τ0〉, of the stochastic system (orange) to
reach 90% of the steady-state mean, given the system is started from 0 protein
molecules, for increasing ρb. The corresponding deterministic waiting times, τd, are

shown in green.Middle panel: the corresponding ratio, η = 〈τ0〉/τd, of the stochastic
waiting time to the deterministic waiting time, as a function of ρb. Bottom panel:
ratio, η = 〈τ0〉/τd, of the MFPT of the stochastic system to the deterministic FPT, to
reach 90% of the steady-state mean, given the system is started from 0 protein
molecules, as a function of ρb and σu. All parameters along with themeanmolecule
numbers are given in Supplementary Table 1.
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birth–death and telegraph models, likely because feedback models
have a bimolecular reaction which enhances the differences between
the SSA trajectories and the deterministic models59. Note that the lar-
gest differences in the deterministic and stochastic waiting times
occur within the range of tens to hundreds of molecules (here the
mean number of molecules is approximately between 11.68 and
370.91). This is within the range known formany cells. For example, in
E. coli, copy numbers of transcription factors are quite low, occurring
between 1 and 1000 per cell71,72. The heatmaps in Fig. 4B, C (bottom
plots) show that the behaviour in the top and middle plots are quali-
tatively representative across a broad range of σu values.

In the case of negative feedback (i.e., when ρb < ρu), increasing ρb
now leads to a decrease in the strength of negative feedback, and
hence again a rise in the overall mean steady-state protein number.
Thus, the overall trends are broadly similar to the positive feedback
case. For a low σb value (see Fig. 4D with σb =0.04), we initially see a
very slight increase in theMFPT in the region of low ρb. This is followed
by a rapid decline in the MFPT, with high values of ρb (that is,
approaching equalitywith ρu), becoming close to a constitutivemodel.
We note that again the largest differences in the stochastic and
deterministic waiting times occur within the range of tens to hundreds
of molecules (between approximately 44.36 and 317.1). For high σb
(Fig. 4E with σb = 10), the effective binding rate is significantly higher
than σu, so that the system is close to being constitutive with protein
production rate at ρb. Hence the stochasticMFPTs are bounded above
by the deterministic FPTs; refer to Fig. 4E (top and middle). The
heatmaps in Fig. 4D, E (bottom) again show that the parameter sets in
D, E (top and middle) are qualitatively representative across a broad
range of σu values.

Discussion
In this article, we have investigated the differences between determi-
nistic and stochastic model predictions for the timing of cellular
events, when the target molecular value can be reached by the deter-
ministic model in finite time. While differences between the mean
molecule number predictions of these models have previously been
extensively investigated59,73, differences in their predictions of the
mean time to trigger a cellular event have not.

Unlike previous studies13,46–52 that have focused on the parametric
dependence of MFPTs, here the focus has been on the interplay
between noise and dynamics on themean trigger time. The qualitative
differences in MFPTs of deterministic and stochastic models, as
observed here, were indeed surprising. Although the importance of
stochasticity in gene expression is nowadays well recognised, there is
often still an expectation or assumption that analysis of mean quan-
tities can be done using deterministic frameworks. Our findings show
that the MFPT is one of the features of stochastic dynamical systems
for which this assumption may not be valid.

For the systems that we have investigated in detail here—
birth–death processes, the telegraph model, and an autoregulatory
feedback loop—we find quantitative as well as qualitative differences
between deterministic and stochastic dynamics. For the simple
birth–death process, the deterministic model prediction provides a
strict upper bound for theMFPT predicted by the stochastic model. In
other words, intrinsic noise leads to a reduction of the trigger time—
this effect becomes more appreciable as the mean steady-state mole-
cule number decreases. For the bursty birth–death process, there is a
switch from a regime where intrinsic noise reduces the mean trigger
time to one where it lengthens it, as the target molecular value is
decreased. Since the expression of many genes is bursty (of tran-
scriptional or translational origin), this simplemodel suggests that the
transition may exist in more realistic models of gene expression.
Indeed, we showed that the same transition occurs in the telegraph
model, which is capable of explaining both constitutive, bursty, and

intermediate behaviour, and in a model of autoregulatory feedback, a
common regulatory motif in nature.

For feedback loops, we observed significantly higher ratios of
deterministic to stochastic FPTs compared to previous models. This
has implications in the timing of developmental processes governed
by molecular clocks, where dynamics are often modelled determinis-
tically, e.g. circadian clocks in Drosophila74,75 and Neurospora76,77, and
segmentation clocks in vertebrates78–82. Additionally, our results pro-
vide insights into the non-monotonic dependence observed in both
the deterministic FPT andMFPTon the feedback strength. Similar non-
monotonic behaviour of the MFPT has been shown in stochastic
threshold models83.

The effect of feedbackon the differences between the predictions
of the deterministic and stochastic frameworks for themeanmolecule
numbers are well known to increase with decreasing system size
(volume of the system), and with increasing proximity to the point in
parameter space where a system switches from stable to unstable
dynamical behaviour59. In fact, our analysis of the waiting times for the
substrate to reach a certain target level in an enzyme-substrate reac-
tion (Fig. S11) showed that the ratio of deterministic and stochastic
mean waiting times also increased with these two system properties.

Concluding, our study shows that intrinsic noise has non-trivial
effects on the timing of cellular events and that simple models can
provide intuitive insights into the microscopic origins of these effects.
The hope, whether implicit or explicit, that deterministic models
predict accurate mean quantities appears misplaced for MFPTs which
has important implications formodelling-based studies of biochemical
timing.

Methods
Stochastic reaction networks
Consider a well-stirred mixture consisting of N chemical species
S1,…, SN that interact through M chemical reactions R1,…, RM,

Rj �
XN

i= 1
sijxi�!cj

XN

i = 1
rijxi, j 2 f1, . . . ,Mg, ð16Þ

where xi denotes the number of Simolecules in the system at time t, sij
and rij are integers, and cj is the rate constant of reactionRjwithunits of
inverse time. Throughout, we will let x(t) = (x1(t),…, xN(t)) represent
the state of the system at time t. Each reaction Rj has an associated
propensity function aj given by,

ajðxÞ= cjhjðxÞ, ð17Þ

where hj(x) is defined to be the number of distinct combinations of Rj-
reactant molecules available in the state x. The state-change, or stoi-
chiometry vector vj is defined to be the vector (v1j,…, vNj) whose ith
component is given by vij = rij − sij, for i∈ {1,…,N} and j∈ {1,…,M}. The
process x(t) is a continuous-time Markov process, and the time
evolution of the joint probability distributionof themolecule numbers
is described by the Chemical Master Equation (CME),

dtP=AP, ð18Þ

where P : = ½Pðx1Þ,Pðx2Þ, . . .�T and A is the state transition matrix with
the following structure84,

Aik : =
�PM

j = 1 ajðxÞ, for i= k

ajðxiÞ, for all k such that xk = xi + vj
0, Otherwise :

8><
>: ð19Þ

Finite State Projection for the modified CME
Numerical computationoffirst-passage time (FPT)distributions canbe
performed using an adaptation of the Finite State Projection (FSP)41.
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Here the state space of the stochastic reaction network, which is
usually infinite, is reduced to a finite subset consisting of the most
relevant states. This converts the CME into a finite linear system of
equations that can be solved efficiently on a computer.

In the standard formulation of the FSP, we select a finite set Z of
states, which we assume to include the initial set, as well as the target
setY. The terms in theCMEcorresponding to any state outside ofZ are
further assumed to vanish.Mathematically, this corresponds to solving
the exact CME for a modified reaction network, wherein we combine
all states outside of Z into a single state Zc and remove all transitions
from Zc to Z. Comparing this with the matrix AT

Y, which contains all
states excluding those in Y, we see that applying the FSP to the con-
struction of thematrixAY eliminates all states that are either outside of
the truncation, or in the absorbing set Y. That is, we compute exactly
the FPT distribution until the system either enters Y or leaves the
truncated state space.

As a result, numerically estimating FPTs using the FSP will always
underestimate the truefirst passage times, since the system leaving the
truncated space is treated the same as the system entering the
absorbing set Y. To minimise the approximation error, therefore, one
should choose the truncationZ such that the system isunlikely to leave
Z before entering the target set Y.

To compute FPTs numerically, we use the FiniteStatePro-
jection.jl package85 to construct the matrix AY, and solve the sys-
tem of equations (Eq. (7)) using the standard sparse solvers provided
in Julia.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research paper does not contain any empirical data. The results
presented here are based on simulated data generated through com-
putational models, implemented in Julia.

Code availability
Detailed descriptions of the code used for the analysis in this paper are
available in a GitHub repository which can found here https://zenodo.
org/doi/10.5281/zenodo.11201704, along with instructions for repli-
cating the analysis.
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