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Hydropower capacity factors trending down
in the United States

Sean W. D. Turner 1 , Ganesh R. Ghimire 1, Carly Hansen1, Debjani Singh1 &
Shih-Chieh Kao 1

The United States hydropower fleet has faced increasing environmental and
regulatory pressures over the last half century, potentially constraining total
generation.Herewe show that annual capacity factor has declined at fourfifths
of United States hydropower plants since 1980, with two thirds of decreasing
trends significant at p <0.05. Results are based on an analysis of annual energy
generation totals and nameplate capacities for 610 plants (>5 megawatt),
representing 87% of total conventional hydropower capacity in the United
States. On aggregate, changes in capacity factor imply a fleetwide, cumulative
generation decrease of 23% since 1980 before factoring in capacity upgrades—
akin to retiring a Hoover Dam once every two to three years. Changes in water
availability explain energy decline in only 21% of plants, highlighting the
importance of non-climatic drivers of generation, including deterioration of
plant equipment as well as changes to damoperations in support of nonpower
objectives.

Conventional hydropower plants in the United States provide clean,
renewable electricity with negligible marginal production costs and a
host of flexible generation and ancillary services to the grid1–3.
Achieving a decarbonized electricity supply will depend on the ability
of the hydropower fleet to uphold historical levels of energy genera-
tion while facilitating increased penetration of variable renewable
energy (VRE) technologies through its unique load balancing
capabilities4,5. Yet this may prove challenging for a variety of reasons.
Hydropower plants depend on river flows andmust operate within the
confines of site-specific rules and regulations that govern the storage
of water behind the dam and the pattern of water release through
penstocks and spill gates6–8. Such constraints can be multifaceted,
ranging from seasonal guide curves designed to balance flood buffer
and water conservation in the reservoir, to sub-daily requirements on
the spill and turbined release to promote fish passage, downstream
amenity, safety, and water quality9. Meanwhile, new market mechan-
isms are rewarding hydropower producers to operate below capacity
to allow ramp-up when needed. Incentives for flexible operations may
enhance hydropower profitability and facilitate the integration of VRE
technologies, but tend to reduce total annual electricity generated
from participating plants10. Thus, geophysical change (climate or
hydrological change), sociopolitical trends (e.g., increasing emphasis

on flood control, or environmental preservation), and electricity
market developments all have the potential to reduce total generation
from hydropower over the long term. The relative importance of these
disparate phenomena and their long-term impacts on annual genera-
tion across the hydropower fleet remain unexplored in a US-
scale study.

The prospect of a long-term decline in annual hydropower gen-
eration matters. Today in the United States, hydropower contributes
approximately 6%of total electricity generation and32%of utility-scale
renewable generation (based on 2019–2022 data11). Although this
share is declining as wind and solar technologies continue to expand12,
hydropower remains an essential contributor of generation in the
Pacific Northwest (63% of average annual electricity generation in the
Washington-Oregon-Idaho tri-state area), California (13%), South-
eastern United States (9% in Tennessee-Alabama), and the North-
eastern United States (21% in New York–Vermont–Maine–New
Hampshire)13. Such is the importance of hydropower to these regions
that drought-caused losses in hydropower generation can compro-
mise the reliability of electricity supply14, leading to replacement
generation from fossil-fuel plants. The latter results in higher grid
costs15 and increased greenhouse gas emissions16—even causing a
detectable bump in air pollutiondownwind of ramped-up coal plants17.
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Yet despite the recognized importance of these short-lived effects, the
prospect of more enduring losses in hydropower generation has been
studied primarily in forward-looking climate impact assessments (e.g.,
refs. 18,19) rather than retrospectively. A multidecadal, plant-level,
retrospective analysis of long-term trends in generation can help
explain how hydropower generation has been affected by both cli-
matic and non-climatic drivers, including changes to catchment
hydrology, reservoir operations, environmental regulations, and
power grid needs. Understanding how these diverse drivers affect
annual hydropower generation will be important for estimating the
fleet’s future capabilities and informing capacity expansion and grid
reliability models used to study the performance of current and pro-
posed power grid configurations in the United States20–22.

To explore the evolution of annual generation from hydropower
in the US over the last four decades, we create and analyze time series
of generation (MWh), installed nameplate capacity (MW), and
annualized capacity factors (CF) for 610 out of 808 US hydropower
plants with a nameplate capacity of 5MW or greater (covering 90% of
installed capacity in the >5MW category and 87% of overall US con-
ventionalhydropower capacity) over theperiod 1980–2022. AnnualCF
is defined as total generation divided by the maximum possible gen-
eration implied by the nameplate capacity of the plant within the
calendar year, consistent with most formal definitions. Use of annual
CF to measure trend (in addition to generation directly) removes the
effects of any capacity upgrades or unit retirements over the last four
decades. Importantly, a decreasing trend in annual CF may not
necessarily mean that a hydropower plant is running less often. It may
also suggest lower conversion from flow to energy (due to impaired
generator efficiency, lower average head levels, etc.) or reduced flow
through turbines and thus lower output while running. Using a robust
statistical model that simulates annual CF from historical reservoir
inflowat eachplant, wedetermine the extent towhichobserved trends
in hydropowerCF are a function of changingwater availability. The use
of both natural and gauge-assimilated historical streamflow to drive
this model allows us to separate the influence of climate from other
drivers of hydrological change.

We report a pattern of widespread decreasing CF, with four-fifths
of plants showing a decreasing trend and a resulting cumulative net
loss of 13% generation fleetwide since 1980—despite capacity upgrades
at more than half of analyzed plants. After accounting for and
removing the effects of capacity upgrades, the cumulative loss in
generation since 1980 is 23%. Water availability seems to be the pre-
dominant driver of CF trend for only 21% of plants that show long-term
CF decline; one-third of plants show long-term CF decline despite
increasing water availability. To account for the majority of cases
where water availability is not a prominent driver of CF trend, we
suggest a range of possible drivers, separating these into categories of
external environmental phenomena, infrastructural change, and
operational change. We speculate that declining hydropower CF is
characteristic of an industry that has traded a modest portion of
generation for an improved ability to meet evolving water and power
grid needs. Whether hydropower CF will continue to decline into the
middle of the 21st century remains an open question.

Results
Widespread decreasing trend in hydropower capacity factors
Approximately four-fifths of US hydropower plants with nameplate
capacity >5MW show a long-term decline in annual CF over the last
four decades (i.e., 482 out of 610 plants studied show a negative trend
inCF for theperiod 1980–2022) (Fig. 1a). PlantswithdecliningCF trend
account for 85% of installed capacity and 84% of average annual gen-
eration across the sample. About two-thirds of plants showing CF
decline (318 out of 482) are associated with a trend that is statistically
significant at p < 0.05 (see “Methods” section for the approach to
establishing statistical significance). Fewer than one-fifth of the 128

plantswith increasingCF show trends that are statistically significant at
p <0.05. There are therefore about thirteen times as many plants that
experienced a statistically significant decrease as those that experi-
enced a statistically significant increase in CF over the period
1980–2022. Across all plants studied, the median trend in capacity
factor is -2.6 percentage points per decade (PPPD), or −0.26 percen-
tage points per year. Trends range from −11.3 PPPD at the 5th per-
centile to +1.9 PPPD at the 95th percentile of plants studied.

Declining capacity factor trends are particularly common at the
largest plants by nameplate capacity. To illustrate, 84% of plants with
nameplate of 100MW or more show a negative trend, compared to
78% of plants with nameplate less than 100MW. All ten plants with
nameplates>1000MW show a negative trend in capacity factor (seven
of these are statistically significant atp <0.05). These generation losses
at the largest plants contribute a significant net effect: the overall
change in capacity factors, across all plants studied, implies a net rate
of decline of 14.5 TWh generation per decade (before accounting for
effects of capacity upgrades). These losses translate into a fleetwide,
cumulative generation decrease of 23% since 1980 (assuming static
capacity). This net long-termhistorical trend in hydropower utilization
between 1980 and 2022 is equivalent to the retirement of a Hoover
Dam once every two to three years (Hoover Dam produced an average
of 3.6 TWh energy per year over the last decade).

Declining hydropower CF is observed throughout the nation but
is most prevalent in the West. In the three major western hydrologic
regions—Pacific Northwest (PNW, USGS Hydrologic Unit Code, or
HUC, 17; Fig. 1b), California (HUC 18; Fig. 1c), and Colorado River Basin
(CRB, HUCs 14 and 15; Fig. 1d)—most plants exhibit significant long-
term declines in CF, along with notable negative trends in regional CF
(i.e., total annual hydropower generation in the region divided by the
total nameplate capacity across all plants in the region). California is
associated with large interannual variability in water conditions (and
thus annual CF), yet also exhibits a clear pattern of long-term CF
decline. Although large declines in annual hydropower CF inCalifornia
aredriven inpartby severemulti-year droughts in years 2013–2015 and
2020–2021, the shorter, 30-year period of 1980–2009 is also asso-
ciated with similar prevalence and magnitude of decreasing trends
(see Supplementary Information, Fig. S1). For the PNW, where hydro-
power accounts for close to two-thirds of total electricity generation
(and about one third of total hydropower generation in the U.S.), the
overall implied net loss in hydropower generation is 6.2 TWh per
decade, equal to just over 5% of the region’s annual hydropower out-
put and 4% of total annual regional output across all generating
technologies. Given the large contribution of PNW hydropower to
overall U.S. hydropower generation, the CF trend in this region has a
significant bearing on the national CF trend.

In contrast towestern regions, the southeastUS shows noobvious
regional CF trend (Fig. 1e). Relatively few plants in this region have
experienced significant long-term trends in either direction. Excep-
tions include a cluster of plants in southern Alabama and a string of
plants on or near the Ohio River at the northern edge of the region (all
with negative trend significant at p <0.05). In the northeastern US,
trends vary significantly across plants, although the dominance of
Robert Moses Niagara results in an overall decreasing pattern of CF
here (Fig. 1f). The outsized effect of this hydropower plant, which
generates with relatively high CF compared to other plants in the
region, is also evident in high regional CF.

Capacity upgrades resulting from additional or replacement
generating units at a plantmean that declines in CF shown here do not
necessarily translate to declines in actual generation. For instance,
declining annual CF with increasing nameplate capacity can accom-
pany annual generating outputwith no long-term trend. To analyze the
effect of capacity upgrades on the results presented here, we perform
a complementary analysis on generation directly (see Supplementary
Information, Fig. S2). We find that despite some 342 plants out of the
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610 plants analyzed having had capacity added at some point in the
last 43 years, generation has declined at approximately 70% of plants
overall. In other words, while almost 60% of plants have added some
capacity during the last 43 years, only 30% of plants have increased
generation over this time period. Of the 298 plants with declining CF
and which have had capacity added at some point over the last 43
years, 224 plants (75%) experienced a decline in generation despite
having upgraded their capacity. Nonetheless, capacity upgrades sig-
nificantly temper the aggregate effect of losses in CF when analyzed at
CONUS and regional scales (Table 1). At a fleetwide (CONUS) level, the
actual rate of generation decline since 1980 is about 8.2 TWh per
decade (cumulative loss of 13% generation since 1980), or half of the
generation decline implied by CF change alone.

Water availability cannot fully explain the observed CF decline
While being an important driver of CF trend at many plants, water
availability cannot fully explain the observed widespread long-termCF

decline (Fig. 2a). The following analysis is based on a sample of 362
plants (herein “modeled plants”) for which gauge-assimilated reana-
lysis streamflow data are accurate enough to simulate annual CF (see
“Methods” section). Plants in this sample account for 70% of the total
US-installed hydropower capacity. Results from the CF trend analysis
reported above showa negative CF trend for 288 of these 362modeled
plants (i.e., roughly four-fifths of modeled plants with the negative
trend—in tune with the larger sample of 610 plants). For eachmodeled
plant, the proportion of the trend explained by water availability is
computed as the plant’s CF trend modeled with historical streamflow
divided by the CF trend observed. For example, a plant with a negative
CF trend of 2.0 PPPD andwith amodeled negative CF trend of 1.5 PPPD
is computed as having 75% of its trend explained by the change in
water availability.

Across the 288 modeled plants with negative observed CF trend,
removal of the portion of trend explained by water availability results
in only a modest adjustment of the median CF trend from −2.9 PPPD

Nameplate (GW) 0.05 − 0.1 0.1 − 0.5 0.5 − 1 > 1

Trend in Capacity Factor (PPPD) 
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Fig. 1 | Annual capacity factors trending down for most plants and regions.
a shows 610 analyzed CONUS plants with > 5MW nameplate in 2021 (~90% of US
hydro capacity) (198 plants with insufficient data are marked with an x). Point fill
gives a 43-year (1980–2022) linear capacity factor trend in units of percentage
points per decade (PPPD). b–f give regional capacity factors for the Pacific North-
west (HUC 17), California (HUC 18), Colorado River Basin (HUCs 14 and 15),

Southeast (TN, AL, GA, SC, NC, KY, WV, MD, VA), and Northeast (NY, VT, ME, NH,
CT,MA, RI). Gray-shaded ribbons give an interquartile range (dark gray) and the 5th
to 95th percentile range (lighter gray) of annual capacity factors across all plants
within each region. In (f), high CF at the region’s largest plant causes regional CF to
lie outside the interquartile range (regional annual CF is total regional generation
over total regional capacity—not an average CF across plants).
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(−9.6 and −0.2 at the 5th and 95th percentiles, respectively) to −2.5
PPPD (−7.3, +0.5). Only 38 of 288 plants showing negative CF trend are
found to be strongly driven by water (i.e., water availability explaining
more than 80% of observed CF trend), and only one-fifth of negative
trends (62 out of 288 plants) are predominantly driven by water (i.e.,
water availability explaining 60% of trend or more). There are 156
plants for which water availability explains less than 20% of the
observed CF trend. More strikingly, there are 117 plants (one-third of
the 362 analyzed plants) that show a negative CF trend despite
increasingwater availability (thus 0%of the trend is explained bywater
availability). A tenth of analyzed plants show both significant negative
CF trend (p < 0.05) and increasing water availability. Interestingly, 54
out of 74 plants with positive CF trends are predominantly driven by
water. In other words, most plants with long-term positive CF trends
benefit from increased water availability, whereas plants experiencing
long-term negative CF trends require explanations beyond water
availability to account for the data.

Although the influence of water availability on CF trend varies
throughout CONUS, some regional patterns are evident. Water avail-
ability is a strongdriver of trend in the southwest andother parts of the
west, including California. Examples include Shasta in northern Cali-
fornia (Fig. 2b), andHoover Dam(Fig. 2c) on theColoradoRiver, where
prolonged,multi-yeardrought has impairedhydropower generation in
recent years23. Other regions where water availability explains 40% or
more of CF trend are distributed throughout CONUS, and include the
northeast (e.g., Robert Moses Niagara, Fig. 2d), various parts of the
Columbia River Basin (e.g., Bliss on the Upper Snake, Fig. 2e, and
Wanapum in the Middle Columbia, Fig. 2f), the Upper Missouri (e.g.,
Garrison, Fig. 2g), Texas, and the Southeast. Isolated examples where
water availability explains 20–40% of CF trend includeMillers Ferry on
the Alabama River (Fig. 2h) and Dardanelle on the Arkansas River
(Fig. 2i). Plants with a statistically significant negative trend in CF that
cannot be attributed to water availability are clustered along the lower
Snake (e.g., Lower Granite, Fig. 2j), the Cascades in Oregon (e.g., Fos-
ter, Fig. 2k), throughout the Southeast, and in a selection of other
basins. Fort Peck in the Upper Missouri (Fig. 2l) and Kentucky Dam
(Fig. 2m) are examples of plants with negative CF trends despite
increasing trends in water availability.

Most CF trends driven by a change in water availability can be
attributed to a change in climate rather than other influences on water
availability (e.g., land use change, humanwater consumption) (Fig. 3a,
b). This finding is based on a comparison of modeled CF using gauge-
assimilated streamflow with modeled CF using natural streamflow
unaffected by other drivers of hydrology. We find that excluding non-
climatic driverswith the naturalflow setting does notmarkedly change
overall results on the influenceof water availability onCF trends.While
actual CF trends are negative for 288 of 362 modeled plants, the CF
trend simulated using natural water availability is negative for only 134

of 362 modeled plants (Fig. 3a). In other words, if climate change was
the only driver of annual hydropower generation in the United States,
one would expect to see only 37% of plants with a decreasing CF trend
over the last forty years, rather than the observed 80% of plants with a
decreasing CF trend. Including non-climatic drivers of water avail-
ability through streamflowgauge assimilation improves the capture of
observed CF trend only marginally relative to the natural flow model,
leading to 181 plants (50% of modeled plants) with a negativemodeled
CF trend. Filtering for the 152 plants with a negative trend in CF that is
statistically significant p <0.05 gives a similar outcome (Fig. 3b).

The minor overall discrepancy between CF trends modeled with
natural versus gauge-assimilated streamflow is the result of large dis-
crepancies between these two settings at a small number of plants. For
78% of modeled plants, the CF trendmodeled with natural streamflow
is of similar magnitude to the CF trend modeled with gauge-
assimilated streamflow (within 10%). The exceptions, which indicate
an important influence of other hydrological drivers in a handful of
catchments in CONUS, are highlighted in Fig. 4. Possible drivers of
decreasing water availability in these basins include land use and land
cover change (affecting rates of runoff generation and evaporation)
and changing patterns of human water consumption, including sur-
face water and groundwater extraction for irrigation, which is a major
water use category in someof the affected basins (e.g., Upper Klamath,
Mid-to-Upper Snake, Upper Red River, Neosho). Changing patterns in
the transfer ofwater into or out of thesebasinsmay alsobe responsible
for some changes observed. Industrial, municipal, and electricity sec-
tor water use accounts for more significant portions of overall water
consumption in eastern basins; changes in these sectors may partly
explain changing water availability absent from natural streamflow
simulations. In addition, uncertainty in hydrologic modeling and
streamflow observations that form the assimilated streamflow may
also contribute to the differences. Although interesting, these cases
are the exception; in general, non-climatic influence on water avail-
ability upstreamof hydropower dams is not a key factor inwidespread,
national-scale CF decline.

Discussion
Possible causes of long-term CF decline
CF trends that cannot be explained by changes in annual water avail-
ability could be caused by a myriad of other drivers. To organize this
discussion, we identify four possible categories of drivers for long-
term CF change: (1) external environmental phenomena (which
include annual water availability as analyzed above), (2) infrastructural
change, (3) dam operational change relating to evolving river and
reservoir needs, and (4) dam operational change relating to evolving
power grid needs (Table 2).

External, long-term environmental phenomena that are beyond
the control of dam operators are a primary driver of change in

Table 1 | Wide regional variation in overall CF and generation decline

Region Trend in annual CF, percen-
tage points per dec-
ade (PPPD)

Implied rate of change in annual generation (assum-
ing no capacity upgrade/retirement), TWhper decade
[cumulative % change since 1980]

Actual rate of change in annual generation (account-
ing for capacity upgrade/retirement), TWh per decade
[cumulative % change since 1980]

CONUS −2.9 PPPD −14.5 [−22.8%] −8.2 [−12.9%]

Pacific NW −2.6 PPPD −5.3 [−18.5%] −2.7 [−9.6%]

California −7.2 PPPD −4.0 [−46.3%] −3.4 [39.4%]

Colorado
Basin

−3.8 PPPD −1.1 [−35.1%] −0.9 [−28.8%]

Northeast −4.5 PPPD −1.3 [−18.8%] −0.2 [−3.0%]

Southeast −1.0 PPPD −1.0 [−13.0%] −0.14 [−1.9%]

Regional CF is computed by first totaling annual generation across all plants, then dividing by total nameplate across plants (i.e., regional CF is not an average of CF trends across each region). The
implied generation trend is computed assuming the 1980 nameplate through the entire period 1980–2022 (implied generation =CFmultiplied by nameplate generation). Actual generation is taken
directly from the observed annual reported generation. The actual generation change illustrates the impact of capacity upgrades on rates of generation decline.
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hydropower generation, as we have seen. Annual water availability for
hydropower generationhas changed significantly inmanyU.S. regions,
leading to a decline in CF in the southwest, California, and elsewhere.
Changes in the seasonal distribution of water availability could also be
important; anthropogenic climate change has been linked to intensi-
fication of streamflow seasonality in unregulated, snow-dominated
watersheds of the United States, driven by changes to precipitation
patterns and warmer winter temperatures (affecting snowpack)24.

A stronger seasonal signal in affected watersheds means more water
flowing into reservoirs in springtime, potentially leading to more
spilled energy, particularly at run-of-river facilities where high flows
that exceed turbine capacity cannot be stored for energy generation
later. This may explain some of the declining CF trends at large run-of-
river dams in the Columbia River Basin, although here (and elsewhere)
any intensification of the natural flow regime is dampened by large
dams (powered and non-powered) further upstream in the basin25.
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Fig. 2 | Change in water availability cannot explain all trends in the annual
capacity factor. a gives the percentage of trend explained by water for each plant;
plants with annual CF trends that are statistically significant at p <0.05 are high-
lighted with a solid black outline. Each of b–m gives an example of actual and
modeled generation at a plant. Together, these examples show the widely varying

influence of water availability on the CF trend, from very strong (explaining all CF
trends) to very weak (explaining no CF trends). In each panel, the time series and
trends represented with broken lines are those determined with the CF modeled
directly from water availability.
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A stronger seasonalflow signal could also prompt operators of storage
dams to lowerflood control guide curves, leading to reducedhydraulic
head levels and thus less generation per unit turbined flow. Increased
frequency of controlled and uncontrolled spill is a further possible
effect of changing hydrological extremes that could reduce a plant’s
annual generation.

Although we lack conclusive evidence on whether observed CF
declines are driven in part by changing within-year hydrology and
high-flow events, we can test for significant trends in these hydro-
logical features. We thus perform an analysis of the trend in five
metrics computed fromdaily streamflowacross a sample of plants (see
“Methods” section). The metrics are 90th percentile of daily inflow
(computed annually), annual maxima of daily, 7-day (rolling), and 30-
day (rolling) inflow, and proportion of annual inflow arriving on the
wettest month. Across 107 plants analyzed (i.e., those showing sig-
nificant CF decline not well explained by annual water availability
trend), the evidence for significant change in the flow regimes is lim-
ited (see Supplementary Information, Fig. S3). About three-quarters of
these plants show no significant increase in any of the flow metrics
analyzed. No plants in the Northwest (WA, OR, ID) show a significant
trend in these metrics. Plants in the state of New York are associated
with an increasing trend in 90th percentile of daily inflow, though not
in annual maxima of daily flow. Importantly, the presence of a trend in
these metrics does not necessarily imply that the flow regime trend is
the driver of CF decline. The general absence of significant trends in
these metrics indicates that changing within-year hydrology is likely
not a major driver of hydropower CF decline in the United States.
Analysis of flow bypassing the turbines (spill) at individual sites would
provide stronger evidence as to the importance of seasonal and peak
flow changes at plants. At present, these spill data are unavailable for a
large sample of US hydropower plants.

Sediment build-up is another external environmental driver that
could affect annual hydropower generation if the associated loss of
storage leads to more frequent spills. Attributing observed CF trends
to this potential driver is challenging. Data on US reservoir sedi-
mentation are piecemeal and storage loss estimates across a large
sample of dams are unavailable26. A recent estimate suggested that
sedimentation has caused overall U.S. reservoir storage to decline
from 850 Gm3 in the 1980s to 810 Gm3 today27, although rates of
storage loss will vary dramatically across dams as a function of
upstream catchment characteristics and change. Importantly, a sig-
nificant loss of storage does not necessarily lead to reduced hydro-
power generation at the plant, since sediment build-up affects neither
hydraulic head nor inflowing water directly. Nonetheless, further data
collection, including a large sample of reservoirs bathymetry surveys
taken over time (or remotely sensed equivalent), and detailed mod-
eling would be required to rule out sedimentation as a primary driver
of CF trend.

Infrastructural change is the second category of possible drivers
of the CF trend identified here. This category includes both infra-
structure deterioration and infrastructural improvements. An example
of the former is wear-and-tear, which may lead to increased unit
downtime for repair as well as lowered efficiency. An example of the
latter is capacity uprating, which would increase average generation
but may reduce capacity factor if water becomes constraining at
higher ratings. Our data suggest that capacity additions have not been
a significant driver of CF trends observed in this study. Nameplate
capacities have remained constant or have marginally declined for
about half of the studied plants; only 37% of plants showing significant
CF decline are associated with a nameplate upgrade of more than 5%
during the study period. Of those that have been upgraded and for
which significant CF decline is observed, we identify just six plantswith
evidence for a historical capacity increase coincidingwithor preceding
a downshift in output relative to water available (see Supplementary
Information, Fig. S5). We thus suspect that nameplate upgrade is a
peripheral rather than a major driver of CF declines observed in
our study.

There is some indirect evidence that infrastructure deterioration
could have contributed to long-term CF decline. This comes in the
form of mandatory outage reports provided by plant operators to the
North American Electric Reliability Corporation (NERC) via its Gen-
erating Availability Data System (GADS), summarized by ref. 28. Their
analysis finds that hydropower units are experiencingmore downtime
for both planned outages and forced outages. Planned outage refers to
routine maintenance, which may be required at an increasing fre-
quency for older generators. Reference 28 reports that the average
planned outage has increased by 41% over the last decade for units
>100MW. For smaller units, planned outages have almost doubled
over this period. The most common reasons reported for these outa-
ges relate to turbine and generator component issues. Failures in
turbine and generator components also account for 69% of generation
lost due to forced outages. Aging infrastructure was also identified by
the U.S. Army Corps of Engineers (a major plant operator throughout
the United States) as a primary reason for a decline in plant availability
from an average of 95% in 1987 to 87% in 199529. Importantly, hydro-
power plant downtime does not necessarily affect the annual capacity
factor as planned outages canbe scheduled for timeswhen the turbine
is not running. If water is held in storage during a planned or forced
outage, then it can used to generate power later. A lack of plant
identifiers in the outage data prevents us from analyzing the extent to
which these factors have influenced the hydropower CF trends
reported in our study. Generator age appears to be unrelated to CF
decline (see Supplementary Information, Fig. S4), although our analy-
sis on this factor is inconclusive since the reported ageof the generator
does not account for refurbishments since installation.

Modeled w/ gauge−assimilated flow

Modeled w/ naturalized flow

Observed

−20 −10 0
CF trend (PPPD)

All modeled plants (n = 362)

a

Modeled w/ gauge−assimilated flow

Modeled w/ naturalized flow

Observed

−20 −10 0
CF trend (PPPD)

Modeled plants with negative trend* in observed CF (n = 152)

b

Fig. 3 |With no other factors in play, a change inwater availabilitywould result
in increasedCF formost hydropowerplants studied. a gives distributions across
all 362 modeled plants, while b is filtered for plants with negative annual CF trend
(*statistically significant at p <0.05).
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A possible major driver of long-term CF decline is a change in
reservoir operations. We divide operational change into two sub-
categories: operational change to support river and reservoir needs
(non-power operations), and operational change to support power
grid needs. Non-power operations may include river ecology
enhancement, navigation, recreation, water supply (including muni-
cipal, industrial, and irrigation water), and flood control objectives.
Operational changes for these objectives can affect hydropower gen-
eration by increasing spilled energy, either directly (e.g., desired spill
to promote fish passage) or indirectly (e.g., undesired spill resulting
from changes to reservoir control curves). Although one can find
anecdotal information on such changes for high-profile dam projects,
a lack of consistent, quantified data on such operational changes
prevents us from linkingCF trends tooperational change across a large
sample of dams. Determining the possible timing of such changes in
operations is also challenging since thesemay ormaynot occur as part
of hydropower relicensing.

There may be clues in the generating behavior of hydropower
plants that indicate possible operational change. One indication of
operational change might be the presence of an abrupt shift in annual
generation relative to available water. Such a shift would be unlikely to
arise as a result of external environmental phenomena, like sediment

build-up, or mechanical wear-and-tear; these drivers would cause a
more gradual decline in capacity factors. Operational change, in con-
trast, could present as a downshift to a new and sustained pattern of
energy generation, particularly if related to regulatory compliance
such as a FERC relicensing agreement. The Electric Consumers Pro-
tection Act (ECPA) of 1986 increased the importance of environmental
considerations in the hydropower licensing process for non-federal
dams (which constitute most hydropower plants in the United States),
with an expanded role for State and Federal fish and wildlife agencies.
By the early 1990s, evidencewas emerging that operational changes at
dams relicensed post-1986 were more often detrimental to plant
generation than not30. Given the large interannual variability of
hydropower generation and the possibility that operational changes
may have occurred at various points over the last four decades, clean
separation of gradual trends from abrupt shifts in our CF time series is
difficult. Nonetheless, a simple test for the presence of a single shift in
the mean over the 40-year period (see “Methods” section) suggests
that such shifts are commonplace, often presenting stronger statistical
evidence than gradual trends in the data. In this study, there are 85
plants with a significant negative CF trend for which water availability
explains 40% or less of that trend. About half of these plants exhibit a
shift in the mean CF that presents with stronger statistical evidence
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Fig. 4 | Gauge-assimilated flows significantly improve the capture of trend
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slope of the trend line lies to the right of each sparkline, highlighting significant
improvement in annual CF trend capture with the gauge-assimilated flow).
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than a linear trendover the studyperiod (see “Methods” section for the
approach to evaluating the strength of evidence for a shift in mean
relative to linear trend). Regions containing multiple dams with an
apparent shift in mean CF include New York in the mid-to-late nineties
(Fig. 5a), southeastern states post-2000 (Fig. 5b), and Willamette Val-
ley, Oregon, between 2001 and 2005 (Fig. 5c). The shifts are not
associated with years of significant generator capacity upgrades or
additions. Although further detailed analysis would be required to
confirm the causes of these shifts, their presence ismore suggestive of
operational change than of external environmental drivers. Indeed, six
of the seven dams identified in New York (Fig. 5a) and three of the five
dams identified in the southeast region (Fig. 5b) had Federal Energy
Regulatory Committee (FERC) licenses renewed within six years of
observed shifts (shift in annual generation may lag license renewal if
new operations are tied to infrastructure investments at the dam). The
highlighteddams in theWillamette Valley (Fig. 5c) are Federally-owned
and operated (i.e., exempt from FERC licensing). Nonetheless, such
projects are also subject to changing operational requirements, and
indeed the observed shift at Cougar coincides with the installation of
new intake level control infrastructure at that dam to support water
quality (temperature) control,whichmay have been complementedby
new water release operations. Further indicating an important role of
operational change, we find large long-term declines in CF to be more
common among FERC-licensed facilities compared to FERC-exempt
facilities (see Supplementary Information, Fig. S4). FERC-licensed
facilities account for about 70% of the 610 plants studied, but 92% (12
out of 13) of the plants with the rate of CF change less than −15 PPPD.
The median CF trend is also lower across FERC-licensed facilities
(−3.02 PPPD, compared to −2.17 PPPD across FERC-except and
Federally-owned facilities).

Hydropower dam operational change could also arise as a result
of changes in the needs of the power grid. The most obvious and
compelling change in energy systems over the last few decades has
been the emergence of intermittent, renewable technologies—namely

wind and solar, which in the U.S. today contribute generation totals
commensurate with the hydropower fleet. These technologies have
created a need for real-time balancing resources that can increase
output quickly in response to a sharp drop-off in renewable genera-
tion, occurring when the sun goes down or when wind speed drops.
Hydropower generators are uniquely suited to this role given their
ramping capabilities, althoughproviding suchflexibility often conflicts
with environmental goals31.

The degree to which these hydropower plants have pivoted
toward providing flexibility for intermittent renewables remains
undocumented at the national scale. Yet, there are many possible
reasons why flexible operations could reduce net annual generation
and thus capacity factors. One reason is that flexible operations can
impair turbine efficiency. Ref. 32 reports a 4% decrease in simulated
generation because of efficiency losses associated with operating for
complementarity with wind and solar. Flexible operations could also
lead to more spilled energy. Consider the case of a dam that must
release some volumeofwaterXm3 over a day or aweek tomeet its non-
poweredobligations. If the plant needs to provide the ability to quickly
rampupgeneration, itmust generate belowcapacity, and itmaynot be
operated around the optimal efficiency point. If that level of genera-
tion requires less than Xm3 water, the difference must be spilled.
Indeed, in their case study of two unidentified hydropower plants in
the Pacific Northwest, ref. 10 reports that entry into the Western
Energy Imbalance Market (EIM) resulted in a loss of net generation,
due partly to the EIM requirements for additional flexibility to be
available. In practice, there could be a variety of mechanisms through
which a change to flexible operations affects annual generation and
thus capacity factor. These could present either as slowly evolving
operations (as VRE technologies gradually expand their share of grid
capacity) or abrupt change (associated with entering a new market
setting).

It’s important to note that wind and solar technologies have
emerged only over the last decade, and thus their influence on trends

Table 2 | Summary of potential drivers of long-term hydropower generation and capacity factor decline

Driver Description Mechanism for reducing annual CF

External environmental phenomena

Decline in annual water
availability

Decline in inflow to reservoirs caused by climate change or
upstream catchment process change

Reduced water available for release to penstock; reduced
reservoir head levels

Shift in the seasonal flow
signal

Change in the timing of water inflows to the reservoir, with a stron-
ger flood season

Stronger flood leads to increased spills and thus a smaller
proportion of water used for power generation

Enhanced reservoir surface
evaporation

Warming temperatures promote an increased loss of water from
storage

Reduced water availability for generation

Sedimentation Accumulation of sediments in hydropower reservoirs Loss of water storage capacity, leading to greater likelihood of
spill periods

Infrastructural change

Wear-and-tear Deterioration of power-generating equipment or dam infrastructure More frequent outages and maintenance (planned or unplan-
ned) and lower efficiency

Capacity additions Nameplate capacity increases with new unit installations Planned capacity additions may be associated with an expec-
ted decrease in capacity factor if water is constrained

Dam operational change relating to evolving river and reservoir needs

Change in reservoir storage
rule curves

Lowering target water levels as flood season approaches Lower reservoir levels lead to reducedhydraulic head and thus
less output (MWh) per unit turbined water (m3)

Fish passage regulations Requirements of non-turbined water release to promote fish
passage

Decreasing proportion of water passing through turbines for
generation

General non-power opera-
tional changes

Changes to release, such as for navigable waters, water quality
control (temperature, dissolved oxygen), and water supply for
downstream municipal, industrial, or agricultural needs.

Several possible mechanisms, including increased non-
powered spill, and loss of water for generation due to diver-
sions directly from the reservoir

Dam operational change relating to evolving power grid needs

Emerging need for ramping
capabilities

Hydropower plants increasingly used for theirflexibility in balancing
variable wind and solar generation

Reduced turbine efficiency of generation with ramping beha-
vior; lower overall powered release

Emergence of other must-
take technologies

Increased deployment of wind and solar technologies with zero
marginal production cost

Reservoir releases are non-powered if grid demands are
satisfied by renewables
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measured over the forty-year period of this study is probably quite
limited. Indeed, CF trends observed for the period 1980–2022 are not
markedly different from CF trends observed for the period
1980–2009, before the significant uptake of wind and solar in US
power grids (see Supplementary Information, Fig. S1). The impact of
emergent VRE may present more strongly in the future as the share of
grid generation met by wind and solar increases. The extent to which
hydropower adapts to this need will depend on operating constraints
at individual plants as well as the maturity and economic viability of
battery technologies for balancing renewable generation at the
grid scale.

In addition to changes in the composition of electricity supply, the
last forty years have seen significant growth in electricity demands, as
well as possible changes in the seasonality of demand. Seasonal
demand change could arise with warming temperatures, which may

lower heating demands in winter and increase cooling electricity
demands in summer23,33. One could reasonably assume that reduced
winter demand could cause a reduction in hydropower generation if
coincident with a surplus in supply (i.e., insufficient demand to justify
levels of hydropower generation of prior years). However, in reality,
hydropower is rarely so dominant in a power grid that its maximal
output will fully satisfy demand. Hydropower also has very low mar-
ginal production costs, so generation remains profitable even during
periods of low demand and low prices. If seasonal hydropower avail-
ability exceeds local demand (such as in the Columbia or Colorado
River Basins during spring), power is generated and exported34.
Moreover, hydropower operators are often obligated to release water
according to the reservoir management rules designed for non-power
objectives, such as complyingwith flood control curves ormaintaining
a minimum flow downstream. Since the water must be released,
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hydropower plants will tend to generate with asmuch of it as possible.
This contrasts with technologies with high fuel costs or othermarginal
costs; such technologies have a disincentive to generate when prices
are low. Hydropower is the marginal producer in some regions; in
those isolated cases, any seasonal shift in load could affect overall
output. In general, any historical shift in annual or seasonal electricity
demand patterns is unlikely to explain a significant portion of long-
term CF decline observed in our study.

Implications of long-term hydropower generation decline
Despite growing demands for electricity and ongoing efforts to
decarbonize the power grid in the United States, this study finds
that a significant majority of hydropower plants currently gen-
erate less energy annually (per unit installed capacity), on aver-
age, than they did in the 20th century. Hydropower plants
depend on water, yet our modeling based on streamflow reana-
lysis data shows that change in water availability cannot fully
explain the observed widespread decline in the hydropower
generation and capacity factor. Other drivers are needed to
explain observed trends in generation and capacity factor, and
while external environmental phenomena and infrastructural
changes may play a role, we speculate tentatively on the weight of
evidence available that changes to dam operations may have been
most influential. Confirming the relative importance of different
drivers of long-term CF decline will be essential to inform rea-
sonable projections of hydropower generation in the coming
decades. The impacts of these drivers on other important
hydropower performance metrics, such as dispatchability (ability
of plants to dispatch power when needed) and flexibility (ability
to quickly ramp up and down output to balance variable loads),
constitute an important topic for future research. If the industry
has traded total generating performance to meet the evolving
needs of downstream communities, aquatic ecology, and power
grids, then the CF trends observed here may be expected to
continue in line with the nation’s environmental goals affecting
both river systems and grid composition. The US has significant
opportunities for hydropower expansion through new
installations35 and turbine upgrades, which could contribute to a
stabilization or possible reversal of the long-term trends we
observe. Nonetheless, the possibility of continued long-term
change in generation should prompt a rethink on how to repre-
sent the hydropower fleet’s energy availability in grid planning
and electricity portfolio studies.

Methods
Annual hydropower capacity factor time series
We analyze capacity factor rather than generation in this study since
several plants have seen a change in generating capacity over the last
four decades through turbine additions and uprating as well as gen-
erator retirements. We study only those plants that have been opera-
tional through the entire study period of 1980–2022, focusing on 610
of the 808 plants in the Conterminous United States with nameplate
>5MW (in 2022). These 610 plants account for approximately 90% of
overall hydropower capacity in the United States.

To create a time series of annual capacity factors for these
hydropower plants, we combine information from different sur-
vey datasets provided by the U.S. Energy Information Adminis-
tration (EIA). Plant nameplate capacities (in MW) are from survey
forms 759 (covering years 1980–1986) and 906 (years
1990–2021)36. Unit-level status codes provided with each year’s
survey are used to identify and remove retired generators. The
available data leave a gap in nameplate information through the
period 1987–1989. Our approach to addressing this gap is a linear
interpolation between the 1986 and 1990 nameplates. About 59
plants are associated with a substantial change in reported

nameplate (>10% change) during this period. Most of these
changes are associated with capacity increases and upgrades that
we can corroborate using various web sources. For 27 of these
plants, the data show a substantial reduction in nameplate capa-
city between 1987 and 1990. Inspection of these cases reveals a
discrepancy between form 759 and form 906, with the former
(sometimes) including additional installed capacity relating to the
pumped storage capability of the plant. We deal with this small
number of instances by backfilling the 1990 reported nameplate
through the decade 1980–1989. All plant capacities (MW) are
converted to implied maximum annual generation (MWh) by
multiplying by the number of hours in each year, accounting for
additional hours in leap years.

Generation data are from EIA forms 759 (covering years
1980–2000), 906/920 (2001–2007), and 923 (2008–2022)37. EIA data
collection and quality-checking procedures have been more rigorous
since 2001 (based on discussion with EIA). We have no reason to
assume that the level of rigor would bias reported generation in one
direction or another in the pre-2001 period. Nonetheless, we perform
some (limited) verification of the pre-2001 generation totals by com-
paring themagainst annual generation totals from theU.S. ArmyCorps
of Engineers, which provides the required data for 13 major plants in
the Pacific Northwest, revealing near-identical annual generation
totals.With both annual nameplate capacity and annual net generation
totals prepared and set to equal units ofMWhper year, annual capacity
factors are computed for each plant as the total annual generation
divided by the maximum generation implied by nameplate capacity in
each year.

Capacity factor trend analysis
Trends for all annual CF time series are computed as the median
of slopes between all pairs of data points in the time series. This is
known as the Theil–Sen estimator (or Sen’s slope)38, preferred to
the ordinary least squares line due to its robustness to outliers.
The statistical significance of each plant’s trend is established
using a bootstrap simulation (10,000 resamples, with replace-
ment). If the autocorrelation coefficient of the annual CF time
series at lag 1 year exceeds 0.3, a block size of 3 years is applied to
preserve autocorrelation in the resamples. The p-value is equal to
the proportion of randomly generated samples with a trend of
greater magnitude than the trend in the original annual time
series. To illustrate, a p-value of 0.2 in a plant with an observed
decreasing trend of 1.5 percentage points (pp) per year indicates
that 20% of randomly generated samples resulted in a decreasing
trend greater than 1.5 pp per year. Throughout the study, we use a
p-value of 0.05 as a threshold for statistical significance in
the trend.

Trend analysis is performed on the full time series (1980–2022) as
well as on a reduced time series (1980–2019) that is aligned with the
available streamflow data. The full time series is used to report
observed CF trends (i.e., Fig. 1), while the CF trends computed for
1980–2019 are used for like-to-like comparison against CF trends
simulated using annual water availability. A comparison of trends
computed over these two time periods is given in Fig. S1 of Supple-
mental Information, showing minimal differences between the two.

Water availability data
Water availability data are from DayflowV238,39—a 40-year
(1980–2019) historical streamflow reconstruction that provides
hourly, daily, and monthly-resolution data for approximately 2.7 mil-
lion NHDPlusV2 stream reaches in CONUS. In this study, we use Day-
flow forced with Analysis of Record for Calibration (AORC) reanalysis
precipitation40,41. Total runoff (i.e., baseflow and surface runoff)
simulated with the Variable Infiltration Capacity (VIC)42 model is rou-
ted through the NHDPlusV2 network using the Routing Application for
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Parallel computation of Discharge (RAPID)43,44 to produce natural
streamflow. Streamflow observations derived from approximately
3000 USGS streamflow gauges are then assimilated to provide a non-
natural (“Assimilated”) setting that serves as a historical reanalysis
streamflow dataset to represent actual hydrological changes in this
study. Further details on model calibration and streamflow perfor-
mance across CONUS at over 7500 USGS stream gauges are provided
in ref. 38.

Dam assignment to stream reaches is achieved using the
Hydropower Infrastructure – Lakes, Reservoirs, and Rivers
(HILARRI) database (version 2)45. This dataset provides the
NHDPlusv2 stream reach (identified using the “COMID”) asso-
ciated with individual dams and reservoirs. Of the 610 plants
analyzed for CF trend in this study, 577 are associated with an
NHDPlusV2 stream reach in HILARRIv2. With the stream reach
identified, we extract from DayflowV2 the annual streamflow
totals for each plant and then simulate the plant’s CF as a function
of water availability using the modeling approach outlined in the
following section. The final set of modeled plants numbers 362
due to the removal of plants with flow data that are significantly
biased or fail to capture the interannual variability of annual CF
observations. These traits indicate possible misallocation of the
stream reach or inaccurate hydrologic processes representation
in Dayflow—which can occur for a variety of reasons, including
uncertainties in inputs, models, and observations. Removal of
these data reduces the number of plants studied but strengthens
confidence in overall results on the effects of water availability on
the CF trend. One notable effect of this final filter is the removal
of many dams in California. This is partially a result of dense
conduit and water transfer networks that are hard to accurately
map in the NHDPlusV2 network and whose effects are not cap-
tured well in CONUS-scale streamflow routing models.

Capacity factor model based on annual water availability
Although inappropriate for modeling sub-annual generating patterns
from hydropower plants, annual hydropower generation has been
modeled quite successfully using linear models in the form
E = α + β×Q, where E is total annual energy generated, and Q is a
variable representing water availability, which could be total annual
inflow to the reservoir, total upstream runoff, or even total upstream
water-year precipitation46–48. The main problem with a linear model in
this setting is the overestimation of generation in extreme years, both
wet and dry. For a wet year, expected generation should level off to
account for the capacity of the plant and increased non-powered spill;
for dry years, reduced hydraulic head, possible deadpool conditions,
and reservoir contingencies to conserve water combine to reduce
generation relative to water available. Moreover, a linear model is
flexible enough to accommodate any level of bias in the hydrological
input, leading to its intercept, α, often serving as a bias adjustment
factor and thus losing any physical interpretability.

To address these issues, we adopt an alternative method that
better captures generation in extreme water conditions while also
aiding in the identification and removal of significantly biased water
availability data. The approach is analogous to the Budyko framework
applied in the field of catchment hydrology49. The Budyko model
estimates long-term average evaporation, Ev, as a function of long-

termaverage potential evaporation, Evp, in the form Ev
Pr = f

Evp
Pr

� �
, where

Pr is long-term average precipitation. We adapt this to E
Emax

= f
Ep

Emax

� �
,

where E is the actual annual energy generated by a hydropower plant,
Emax is the annual energy generation maximum implied by plant
nameplate capacity (meaning E

Emax
is the plant’s capacity factor), and Ep

is the total potential energy available in the annual streamflow at the

plant. We term
Ep

Emax
the “capacity potential.” Since the predictand

(capacity factor) and predictor (capacity potential) share the same
denominator (nameplate capacity), and since actual generation cannot
exceed the potential energy in the annual flow, there is a 1:1 slope from
the origin that separates feasible fromnon-feasible capacity factors for
given water available. We term this the “energy limit.” There is also an
upper limit of capacity factor equal to 1 (the “capacity limit”). Con-
veniently, these two physical limits on generation bound the asymp-
totes of the flexible single-parameter curve (Eq. 1):

CF = 1 +φ� ð1 +φτÞ1=τ ð1Þ

where CF is the annual capacity factor ( E
Emax

), φ is the annual capacity

potential (
Ep

Emax
), and τ is the single parameter that defines the curve’s

position within the feasible solution space (this curve is from ref. 50).
To compute the capacity potential for each year (the input to this
model), annual totalwater availability (i.e., total streamflowat the dam,
taken from the streamflow reanalysis data, Dayflow) at each dam is
converted to potential energy, which is then divided by maximum
energy implied by the plant’s nameplate (Emax):

φ=
ρ× g ×h×Q×2:78× 10�10

Emax

ð2Þ

where ρ is the density of water (1000 kg/m3), g is the acceleration due
to gravity (9.81m/s2), h is the hydraulic head (constant) of the plant
(m), and Q is the total volume of water in streamflow (m3). The con-
stant 2:78× 10e�10 converts potential energy from Joules to MWh to
align with Emax. The hydraulic head is from the Hydropower Energy
Storage Capacity Dataset version 251.

Despite its simplicity, this single-parameter CF model provides
the nonlinearity needed to capture typical behavior in wet and dry
years. Moreover, the model will fail to fit a curve to heavily biased
inputs (due to its physical limits) and can therefore also be used to
easily identify instances where input data (water availability, used to
derive potential energy) are unsuitable for analysis. This filter leads to
us modeling CF for only 362 plants rather than the 552 hydropower
plants with streamflow data available. A two-parameter version of the
model allows for the condition of zero generation in years of non-zero
water availability. The physical justification for this additional para-
meter is that generation can be curtailed dramatically with lowflows as
a result of drought contingency measures. The two-parameter model
is:

CF = 1 +φ� ðγ +φτ Þ1=τ ð3Þ

where γ is the second parameter controlling the orientation of the
curve, constrained such that γ ≥ 1 (since γ<1 would lead to instances of
generation exceeding potential energy in the water available). Gra-
phical representations of these models are given in Fig. S2 and exam-
ple model results for a run-of-river and a storage dam are given in
Fig. S3.We use the two-parametermodel (Eq. 3) in our study, although
for most run-of-river and small storage cases the second parameter is
not required. Parameters are fitted using the quasi-Newton method of
ref. 52. Extensive leave-one-year-out cross-validation conducted across
hundreds of dams demonstrates that this model improves the capture
of CF during wet and dry years relative to a linear model with the same
number of degrees of freedom (i.e., two parameters) (Fig. S4).

Proportion of CF attributable to water availability
We fit the CFmodel (Eq. 3) for all 362 plants with adequate streamflow
(after removing cases of obvious bias as revealed by the computation
of potential energy in the flow) using the entire 1980–2019 streamflow
reanalysis period. Since the CF model is forced only with water avail-
ability, changes in CF that arise due to factors other than water
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availability emerge as a trend in the residuals betweenobservedCF and
modeled CF. The proportion of any negative CF trend explained by
water availability is simply the slope of the modeled annual CF
(1980–2019) divided by the slope of the observed annual CF for the
same period. For each plant, annual CF is modeled using both the
gauge-assimilated streamflow and the natural streamflow. Cases for
which CF trend can be explained by CF modeled with gauge-
assimilated streamflow but not by CF modeled with natural stream-
flow are those that we identify as being driven by influences on water
availability other than climate.

To assess whether some cases with significant CF decline not
predominantly driven by water availability are more likely to have
arisen due to a shift in the mean rather than a linear trend, we adopt a
similar bootstrapping procedure as used to evaluate statistical sig-
nificance in theCF trend. This analysis is conductedonmodel residuals
(modeled CF – observed CF) to remove the influence of water avail-
ability. We first identify the split year that results in the largest differ-
ence of means of the annual model residual series. We then perform
the bootstrap with 10,000 resamples (as in the trend analysis above)
and determine both the slope and the difference in means in each
random sample. The bootstrap results are then used to evaluate rela-
tive likelihood (p-values) for both the observed difference in means
and observed slope. A similar approach is adopted to test for capacity
additions being a driver of CF trend. In this case, we simply select the
year of largest capacity addition and test whether the shift in mean of
the residual presentsmore statistical significance than the linear trend.

Evidence for flow regime change driving CF trend
Daily flow data are compiled for 107 plants which show both
statistically significant CF decline and for which trend in CF
simulated with annual water availability explains less than 60% of
this decline. Based on these data, we compute the following
metrics: annual 90th percentile of daily flow, annual maxima of
daily flow, annual maxima of 7-day flow moving average, annual
maxima of 30-day flow moving average, and proportion of annual
flow arriving in the wettest month.

Data availability
All data used in this study are publicly available and may be used to
reproduce all results, data, and graphics using a comprehensive data
pipeline coded in the R {targets} framework (https://code.ornl.gov/
turnersw/hydro-cf-trends/). Hydropower plant locations on NHDv2
river network are fromHILARRI. Hydropower plant attributes are from
the Existing Hydropower Assets (EHA) database (https://doi.org/10.
21951/EHA_FY2022/1865282) and the Hydropower Energy Storage
Capacity Dataset (HESC) (https://doi.org/10.21951/HESC/1972462). All
hydropower data (generation totals and nameplate capacities) are
from Energy Information Administration, forms 923, 906, 920, 860,
and 759 (https://www.eia.gov/electricity/data.php). Reanalysis
streamflow data are from Dayflow Version 2 (https://doi.ccs.ornl.gov/
ui/doi/464). A consolidated input dataset has been deposited in the
HydroSource database along with results generated in this study53

(https://doi.org/10.21951/hydro_trends/2349418).

Code availability
This study may be reproduced in its entirety from a single, compre-
hensive data pipeline coded in the R {targets} framework. The repro-
ducible data pipeline, which includes the reproduction of all graphics
presented in this article, is stored on the following repository: https://
code.ornl.gov/turnersw/hydro-cf-trends/-/releases/1.0.0.
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