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Tau follows principal axes of functional and
structural brain organization in Alzheimer’s
disease

Julie Ottoy 1, Min Su Kang 1, Jazlynn Xiu Min Tan1, Lyndon Boone1,
Reinder Vos de Wael2, Bo-yong Park 3,4, Gleb Bezgin5,6, Firoza Z. Lussier5,7,
Tharick A. Pascoal7, Nesrine Rahmouni 5, Jenna Stevenson5,
Jaime Fernandez Arias5, Joseph Therriault 5, Seok-Jun Hong 8,
Bojana Stefanovic1,9,10, JoAnneMcLaurin1,11,12, Jean-Paul Soucy2, Serge Gauthier5,
Boris C. Bernhardt 2, Sandra E. Black 1,13, Pedro Rosa-Neto 2,5 &
Maged Goubran 1,9,10

Alzheimer’s disease (AD) is a brain network disorder where pathological pro-
teins accumulate throughnetworks anddrive cognitive decline. Yet, the role of
network connectivity in facilitating this accumulation remains unclear. Using
in-vivo multimodal imaging, we show that the distribution of tau and reactive
microglia in humans follows spatial patterns of connectivity variation, the so-
called gradients of brain organization. Notably, less distinct connectivity pat-
terns (“gradient contraction”) are associated with cognitive decline in regions
with greater tau, suggesting an interaction between reduced network differ-
entiation and tau on cognition. Furthermore, by modeling tau in subject-
specific gradient space, we demonstrate that tau accumulation in the fronto-
parietal and temporo-occipital cortices is associated with greater baseline tau
within their functionally and structurally connected hubs, respectively. Our
work unveils a role for both functional and structural brain organization in
pathology accumulation in AD, and supports subject-specific gradient space as
a promising tool to map disease progression.

Amyloid-β (Aβ) plaques and neurofibrillary tau tangles are key
pathologic substrates for the spectrum disorder called Alzheimer’s
disease (AD), the most common cause of dementia and one of the
most feared consequences of aging1. Aβ and tau progressively

aggregate in theADbrain, drivingdownstreamsynaptic andneuronal
loss and cognitive impairment2,3. The severity of AD-related tauo-
pathy (assessed by imaging or biofluid measurements) outperforms
that of Aβ in predicting future neuronal loss and domain-specific
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cognitive decline in individual patients4. As such, limiting the spread
of tau is a critical target for treatment5. It is thus imperative to gain a
comprehensive understanding of how tau accumulates throughout
the brain.

Traditionally, tau is thought to follow the hierarchical staging
scheme based on neuropathological observations by Braak and
Braak6,7. Tau tangles start in the (trans-)entorhinal cortex and locus
coeruleus, then arise in limbic areas and the neocortex, triggering pro-
inflammatory responses8.While in-vivo positron emission tomography
(PET) imaging of tau and neuroinflammation has replicated Braak
staging at the group level9,10, this staging scheme is less sensitive to
heterogeneity at the individual subject level11,12; posing challenges in
the development of personalized prediction models of tau progres-
sion and patient stratification.

One promising approach is to incorporate brain networks, also
known as the connectome, in individual models of tau accumulation13.
Histopathological and animal model studies traditionally pointed to
the spread of tau in a prion-like fashion through synaptic
connections14–19. Others pointed to tau spread via brain hubs to func-
tionally connected regions20–23, showing similar accumulation rates
between the co-activating regions24–26. Despite thismounting evidence
that brain connectivity serves as a scaffold to tau accumulation in
specific regions or networks, prior work linking tau to the different
scales of brain connectivity has notable limitations. First, functional or
structural connectomes have beenmainly studied in isolation. Second,
connectivity or pathology has traditionally been quantified via atlases
with a limited number of discrete regions/parcels. Such parcellations
inaccurately assume that a given (atlas-delineated) region is homo-
genous in its cytoarchitecture, neuronal connectivity, and/or
function27. Third, current imaging frameworks typically apply simpli-
fied linear reductions to high-dimensional data or assume linear rela-
tionships between biomarkers. However, similar to music being
composed of a superposition of sine waves, brain function exists as
overlapping modes of connectivity variation28,29 that can be non-
linearly embedded in the brain’s functional organization30,31. Finally,
apart from these methodological limitations, it should be recognized
that certain networks are almost invariably protected against tau
despite their connectedness to high-tau regions (e.g., precuneus-
sensorimotor circuit32). Moreover, tau starts and accumulates in a
heterogeneous manner across different regions in various individuals.
In this regard, it is imperative to consider that the different networks
being progressively affected by AD pathology may be largely deter-
mined by underlying macro-scale axes of cortical organization in
connectivity, microstructure, gene expression, and/or function.

To overcome the aforementioned limitations and shed light on
whether AD pathological progression is related to the macro-scale
organizational axes of the brain, we here contextualize the spatial
maps of tau accumulation and neuroinflammation in AD to an emer-
ging approach in understanding brain organization: gradients of
connectivity33. A connectome gradient reflects the concept that pat-
terns of connectivity within the brain vary systematically along a
continuum. The most prominent connectivity gradient describes a
smooth spatial transition in functional connectivity variation from
unimodal (sensory-motor) to trans modal (default-mode) regions34,
which coincides with the brain’s organizational axes from perception
to abstraction35. In various clinical populations, gradient maps have
shown alterations at the structural, functional or molecular level, and
identified key subnetworks associatedwith disease, suggesting clinical
utility for understanding and monitoring disease progression36–41.
Despite the increasing value of the gradient approach in studying
connectomics, no studies have yet investigated how both functional
and structural gradients are altered in AD and relate to patterns of tau,
neuroinflammation, and cognition.

In this work, we use subject-specific resting-state functional MRI
(fMRI) and diffusion-weightedMRI (dMRI), along withmolecular (PET)

imaging, within a highly characterized dementia clinic cohort. We
show that the organization of the brain, as uniquely described by
gradients, plays a role in shaping the distribution of AD-related tau
pathology. Specifically, we show that connectome gradients (i) are
altered in AD, (ii) align with pathological (PET-derived) gradients and
play a role in facilitating pathology progression, and (iii) interact with
tau to affect cognition.

Results
We studied 213 highly-characterized participants from the Transla-
tional Biomarkers in Aging andDementia (TRIAD) cohort, of which 103
were Aβ-negative cognitively normal (CN A-, henceforth referred to as
controls) and 110 were Aβ-positive diagnosed as either CN (CN A+;
n = 35) or cognitively impaired with mild cognitive impairment or AD
dementia (CI; n = 75). All participants underwent 18F-MK6240 tau-PET,
18F-NAV4694 Aβ-PET, structuralMRI, dMRI, fMRI,APOE-ε4 genotyping,
and a comprehensive cognitive battery. A subset of the cohort addi-
tionally underwent 11C-PBR28 neuroinflammation (TSPO) PET (n = 94,
of which 50 were A+) and follow-up tau-PET (n = 87, of which 39 were
A+; average follow-up from baseline scan: 420 ± 79 days). All
demographic data are reported in Table 1. Sex and level of education
were similar between groups. The CN A+ group was slightly older
compared to the other groups (P = 0.02), while CI contained more
APOE-ε4 carriers and had lower cognitive performance (P < 0.001).
Both CN A+ and CI had elevated Aβ in the neocortex and tau in the
Braak I–II regions,while CI also had elevated tau in Braak III–VI regions,
compared to controls (P < 0.001). Details on inclusion and exclusion
criteria, image processing, gradient extraction, cognitive composites,
and statistical experiments are reported in the Methods.

Connectome gradients reveal brain-wide network
reorganization in AD
We investigated the functional and structural organization of the
neocortex by decomposing the connectivity matrices into low-
dimensional components (gradients) using diffusion embedding34,42

(Fig. 1). In such representation, regions (nodes)with similar patterns of
connectivity to the rest of the brain are located close together on the
gradient while nodes with distinct patterns are located further apart.
Gradients, thus, capture the dominating spatial patterns of con-
nectivity variation that change gradually along a continuum.

The first and second gradients of functional connectivity (G1FC
and G2FC) explained 71% of the information (variance) in the first ten
components. G1FC andG2FC distinguished sensory-motor fromdefault-
mode network (DMN) cortices (unimodal-transmodal gradient) and
auditory from visual cortices (auditory-visual gradient), respectively,
on their outer ends (Fig. 2a). These gradient patterns were visually
similar across diagnostic groups (Supplementary Fig. 1a; for inter-
subject variability maps see Supplementary Fig. 2a). Between-group
comparisons of G1FC scores in CI individuals, compared to controls,
revealed significantly reduced network segregation. Here, the unim-
odal and transmodal networks of G1FCmoved closer to each other (i.e.,
becoming more similar in their brain-wide connectivity profile), lead-
ing to an overall gradient contraction inCI (Fig. 2b–d). Thisfindingwas
robust across hemispheres (Supplementary Fig. 3, 4), gradient rea-
lignment strategies (cohort- vs. group-representative connectomes to
which individual manifolds were aligned; Supplementary Fig. 5), and
brain atlases (Supplementary Fig. 6). These between-group differences
in G1FC were correlated with meta-analytic cognitive terms from per-
ception (e.g., sensory, motor) to abstraction (e.g., theory of mind,
semantic, retrieval) (Fig. 2d). Between-group comparisons of the
higher-order functional gradients showed robust G2FC alterations in
dorsal attention and sensory-motor networks (the former already in
CN A+ participants compared to controls; Supplementary Fig. 5).

For structural connectivity, the first and second gradients (G1SC
and G2SC, explaining 48% of the information) distinguished temporo-
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occipital from frontal cortices (posterior-anterior gradient) and
sensory-motor from limbic cortices (superior-inferior gradient),
respectively, on their outer ends (Fig. 2e). Theoverall gradient patterns
were similar across diagnostic groups (Supplementary Fig. 1b; for
inter-subject variability maps see Supplementary Fig. 2b). Group-wise
differences did not indicate a global gradient contraction as for func-
tional connectivity, and they were less consistent across hemispheres
(Fig. 2f–h; Supplementary Fig. 7, 8), gradient realignment strategies
(Supplementary Fig. 9), or atlases (Supplementary Fig. 10). Notably,
robust group-wise differences involved G1SC and G2SC reorganization
of early tau-accumulating regions (cingulate, temporal and orbito-
frontal regions; Supplementary Fig. 9). G1SC differences were corre-
lated with meta-analytic cognitive terms from perception (e.g., pain,
touch) to memory (e.g., episodic memory, face recognition) (Fig. 2h).

For both functional and structural connectomes, while G1 and G2
explainedmost of the information, the explained informationdropped
to <10% for higher-order gradients (Supplementary Fig. 1c).

Sensitivity analyses further validated the robustness of our find-
ings. First, we regrouped participants based on their biomarker profile
only (amyloid [A] and tau [T] PET positivity), irrespective of cognitive
status. Functional and structural gradients were most prominently
altered in A+T+, and similar networks were affected as in our main
analysis (Supplementary Fig. 11a). Second, we replicated gradient
patterns using different connectome thresholding and similarity ker-
nels (Supplementary Fig. 11b). Notably, an alternative kernel based on
normalized angle explained lower information in the structural con-
nectome data (G1SC: 14%, G2SC: 13%) compared to the employed cosine
similarity (G1SC: 28%, G2SC: 20%). Third, the observed regions of sex
differences (Supplementary Fig. 11c) were largely located within the
medial parieto-temporal cortex of the DMN for G1FC, with females
showing lower scores than males (i.e., moving more transmodal).
While, for G1SC, females showed lower scores mainly in cingulo-
opercular and somatomotor cortices.

Connectome gradients relate to pathology distribution
To test the hypothesis that connectivity gradients play a role in shap-
ing the distribution of AD-related pathology, we extracted PET gra-
dients for 18F-MK6240 (tau-PET) and 11C-PBR28 (inflammation-PET)
fromgroup-level SUVR covariancematrices and assessed their relation
to connectivity gradients (Fig. 1). We found that both G1FC and G1SC
significantly correlated with the organization of tau-PET along its
gradients (GTAU) (Fig. 3a). Specifically, G1TAU (explaining 40% of the
information in CI) was closely aligned with G1FC (Spearman ρ = 0.68,
Padj < 0.001; Fig. 3b), indicating that regions with a more similar brain-
wide functional connectivity profile had amore similar brain-wide tau-
PET covariance profile. In contrast to G1TAU, G2TAU (28% of the infor-
mation in CI) highly overlapped with the Braak stages (Fig. 3a-right)
and was aligned with G1SC (ρ =0.70, Padj < 0.001; Fig. 3c) but not G1FC.
Notably, this correlation of G2TAU with G1SC was already prominent in
the CN A+ participants (Supplementary Fig. 12). Taken together, this
suggests a role for structural connectivity in shaping early-stage tau
distribution, while functional connectivity may play amore prominent
role in shaping tau distribution in the CI stage (at the cross-
sectional level).

With regards to neuroinflammation, the alignment of G1INFLAM
with G1FC was significant but less prominent than with G1SC (ρ = 0.39
[Padj = 0.008] vs. ρ =0.72 [Padj < 0.001] in CI; Fig. 3e, f). G1INFLAM also
closely overlapped with the Braak stages (Fig. 3d-right). This indicates
that regions with a more similar brain-wide structural connectivity
profile had a more similar brain-wide inflammation-PET covariance
profile, both in CI and CN A+ (at the cross-sectional level) (Supple-
mentary Fig. 13).

While theG1 andG2 explainedmostof the information in PETdata
(tau: 68%, inflammation: 58%), the explained information dropped
substantially for higher-order gradients (Supplementary Fig. 14).
Connectome-PET correlations were weaker among higher-order gra-
dients (Supplementary Fig. 15a, b). Sensitivity analyses using different

Table 1 | Demographics

Overall CN A- CN A+ CI A+ P-Value*

n = 213 n = 103 n = 35 n = 75

CN, n (%) 138 (64.8) 103 (100.0) 35 (100.0)

MCI, n (%) 41 (19.2) 41 (54.7)

AD dementia, n (%) 34 (16.0) 34 (45.3)

Sex female, n (%) 129 (60.6) 63 (61.2) 24 (68.6) 42 (56.0) 0.447

Age, mean (SD) 69.4 (9.2) 68.7 (9.7) 73.5 (7.8) 68.3 (8.8) 0.012a

Education, mean (SD) 15.3 (3.8) 15.8 (4.1) 14.6 (3.6) 15.1 (3.5) 0.219

APOE-ε4 carriers, n (%) 77 (36.8) (n = 209) 27 (26.5) 9 (25.7) 41 (56.9)

MMSE, mean (SD) 27.4 (4.2) (n = 211) 29.1 (1.2) 28.9 (1.2) 24.3 (5.8) <0.001b

Cognitive composites♯

Delayed memory, z (SD) 0.7 (0.2) (n = 164) 0.8 (0.1) 0.7 (0.1) 0.5 (0.2) <0.001b

Immediate memory, z (SD) 0.8 (0.2) (n = 172) 0.8 (0.1) 0.8 (0.1) 0.6 (0.2) <0.001b

Language, z (SD) 0.8 (0.1) (n = 180) 0.8 (0.1) 0.8 (0.1) 0.7 (0.2) <0.001b

Speed, z (SD) 0.6 (0.1) (n = 174) 0.6 (0.1) 0.6 (0.1) 0.5 (0.1) <0.001b

Executive function, z (SD) 0.6 (0.2) (n = 176) 0.7 (0.1) 0.7 (0.1) 0.5 (0.3) <0.001b

Object recognition, z (SD) 0.9 (0.1) (n = 175) 0.9 (0.0) 0.9 (0.0) 0.9 (0.1) <0.001b

Cognitive flexibility, z (SD) 0.6 (0.2) (n = 169) 0.6 (0.1) 0.6 (0.1) 0.4 (0.2) <0.001b

Word reading, z (SD) 0.7 (0.1) (n = 175) 0.8 (0.0) 0.8 (0.1) 0.7 (0.1) <0.001b

Cortical Aβ SUVR, mean (SD) 1.7 (0.5) 1.2 (0.1) 1.8 (0.3) 2.2 (0.4) <0.001c

Tau SUVR (Br I-II), mean (SD) 1.3 (0.6) 0.9 (0.1) 1.1 (0.3) 1.8 (0.6) <0.001c

Tau SUVR (Br III-IV), mean (SD) 1.3 (0.7) 0.9 (0.1) 1.0 (0.2) 1.8 (0.9) <0.001b

Tau SUVR (Br V-VI), mean (SD) 1.2 (0.5) 1.0 (0.1) 1.0 (0.2) 1.6 (0.7) <0.001b

* P-values were based on ANOVA with Bonferroni correction and Tukey’s post-hoc testing.
a CN A- or CI A+ vs. CN A+: P = 0.02; b CN A- or CN A+ vs. CI A+: P ≤0.001; c all groups: P ≤0.002.
♯ Individual raw scores were standardized following themethod described in Malek-Ahmadi et al. 2018 and averaged across subdomains to create the composite scores. See “Methods” for details.
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covariance thresholding and similarity kernels are reported in Sup-
plementary Fig. 16. Importantly, our gradient method via diffusion
embedding outperformed linear dimensionality reduction via princi-
pal component analysis (PCA) in terms of explained variance of the
extracted components or latent variables, and the association between
the resulting connectome and PET components (Supplemen-
tary Fig. 17).

Tau deposition within connectivity hubs drives tau
accumulation
To further decode the effects of connectivity on tau accumulation, we
performed a similar gradient-based analysis employing longitudinal
tau-PET gradients. G1ΔTAU (explaining 51% of the information in A+)
distinguished between temporal and sensory-motor cortices (tem-
poral-unimodal gradient) on its outer ends (Fig. 4a).G1ΔTAUoverlapped
with the Braak stages (Fig. 4b-right) and was aligned with G1SC
(ρ =0.46, Padj < 0.001; Fig. 4c) and G1INFLAM (ρ = 0.60, Padj < 0.001;
Fig. 4d, e). Conversely, G2ΔTAU (13%)wasmoreclosely alignedwithG1FC
(ρ =0.36, Padj < 0.001) than with G1SC, and did not overlap with the
Braak stages. These correlations were robust across hemispheres
(connectome-ΔPET correlations among the first ten gradients are
displayed in Supplementary Fig. 15c).

Previous work has alluded to the role of tau epicenters, as well as
the effects of either functional or structural connectivity in driving tau
progression24,43,44. However, to our knowledge, no studies have yet
incorporated both subject-specific functional and structural con-
nectomes together to model the effects of connectivity and network
hubs on in-vivo longitudinal tau accumulation. We leveraged the con-
nectome gradient space as a low-dimensional coordinate space that is
sensitive to topological changes of subject-specific connectomes. Our

initial step involved identifying, in gradient space, the nearest con-
nected (based on shortest Euclidean distance) brain hubs (based on
‘degree’) for each ROI at the subject level (Fig. 5a). Once each ROI’s
gradient-derived hubs were identified, we next computed the average
tau SUVR within these hubs (Fig. 5a). We then investigated whether tau
within these hubs was associated with longitudinal tau accumulation
(for all ROIs), accounting for baseline tau within the ROI and age, sex,
and APOE-ε4 status. Our findings, depicted in Fig. 5b, showed that
longitudinal tau accumulation in ROIs of early tau buildup (MTL and
lateral temporo-occipital cortices) was facilitated by high tau deposi-
tion within their structural, but not functional, hubs. Conversely, tau
accumulation in ROIs of the frontoparietal cortex was facilitated by
high tau deposition within their functional, but not structural, hubs. To
further decode this finding, we then selected the top two positive and
negative t-statistic ROIs and averaged the tau within their gradient-
derived hubs (Fig. 5c); where, the temporo-occipital or frontoparietal
ROIs showed lower tau SUVR than their higher-tau structural or func-
tional hubs, respectively. This may be interpreted as high-tau hubs
driving future tau accumulation in their lower-tau connections (in
gradient space).We replicatedour findingswithin theA+ groupbut not
the A- group (Supplementary Fig. 18). Finally, we performed leave-one-
out cross-validation to assess howwell ourmodel predictionsmatched
the observed data (mean relative RMSE ~ 15%, Supplementary Fig. 19).
We also repeated our main analysis using tau within FC or SC hubs as
single predictors of tau accumulation (instead of together in themodel
as our main analysis), showing similar findings (Supplementary
Fig. 20a). Adding baseline Aβ SUVR as a covariate also did not sig-
nificantly alter the results (Supplementary Fig. 21).

We further validated our findings by testing the relative impor-
tance of hub selection and gradient-based connectivity in the model.

Fig. 1 | Methodology of gradient generation. a Our multi-modal input data
included dMRI, fMRI, and PET images, co-registered to a high-resolution custom
brain atlas. b The resulting modality-specific connectomes or covariance matrices
were transformed into a similarity matrix and subjected to diffusion map
embedding. The resulting gradients make up a low-dimensional coordinate space.
The interpretation of gradients (as applied in the current work) is visually

compared to the traditional atlasing techniques, showing overlapping modes of
connectivity similarity vs. discrete regions. c The main analyses involve either
cohort-level investigations using group-wise connectomes/covariance matrices
(Spearman’s rank coefficient ρ between different modalities) or individual parti-
cipants’ connectomes (between-group differences based on t-statistics).
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First, wecomputed the averageburdenof tauwithin eachROI’s nearest
connections, irrespective of that connection being a degree hub. We
observed that tau accumulationwithin anROIwas associatedwith high
tau deposition within the ROI’s nearest connections, irrespective of
hub status (Supplementary Fig. 20b). Thus, distance in gradient space
is a strong predictor of tau accumulation. In contrast, when selecting
non-hubs with weak gradient-based connectivity to the ROI, effect
sizes were weaker (Supplementary Fig. 20c). Notably, when we repe-
ated our analysis using raw FC and SC gradient distances as predictors
of tau accumulation (rather than tau within these connections), only
increased baseline tau level (but not FC or SC) was associated with
faster tau progression (Supplementary Fig. 20d). Supplementary
Fig. 22a depicts unthresholded t-stats maps of the main analysis.

Connectome gradients interact with tau to drive cognitive
impairment
We finally investigated whether regional tau and connectome gradient
scores had interacting effects on both baseline and 2-year changes in
cognition. Both at baseline (Fig. 6a) and longitudinally (Fig. 6c), MMSE

and language scoreswere negatively associatedwithG1FC score among
transmodal regions with greater tau SUVR, while positively associated
with G1FC score among unimodal regions with greater tau SUVR.
Results are shown in A+ participants, with similar findings across all
participants. Figure 6b–d shows the results for G1SC and Supplemen-
tary Fig. 22b shows unthresholded t-stats maps. We performed leave-
one-out cross-validation to assess how well our model predictions
matched the observed data (mean relative RMSE ~ 16%, Supplementary
Fig. 23). Exploratory results for other cognitive domains are shown in
Supplementary Fig. 24 (strongest effects for object recognition). As
with G1, the higher-order gradients likewise showed a significant
interaction between tau and gradient score on cognitive impairment
(Supplementary Fig. 25), though effects were weaker compared to G1.
No significant interaction effects between connectomegradient scores
and inflammation-PET on cognition were observed.

To further dissect these tau-connectome interactions on cogni-
tion, we investigated whether the effects of tau on cognition changed
in a topology-dependent manner along the cortical hierarchy. We
contrasted results within gradient-derived meta-ROIs (representing

Fig. 2 | Functional and structural connectivitygradientsare altered inAD. aThe
first three functional connectivity gradients (GFC) projected onto the left-brain
surface, extracted from the cohort-level connectome (average of n = 213 con-
nectomes). Similar colors along the purple-yellow scale represent similar brain-
wide connectivity patterns. The bar plots represent the corresponding network-
specific averagegradient scores ± standarderrorof themean (SEM).G1FC, G2FC, and
G3FC explained 55, 17, and 9% of the information in functional connectome data,
respectively. b Coordinate system spanned by the first two gradients based on
group-level functional connectomes (average of n = 103, 35, and 75 connectomes,
respectively), indicating G1FC contraction with unimodal and transmodal (DMN)
regions moving closer to each other in CI participants. c Histogram of gradient
scores reflected global G1FC contraction with an expansion of scores centered
around zero. d Between-group comparisons (green: CN A+ [n = 35] vs. controls
[n = 101]; orange: CI [n = 72] vs. controls [n = 101]) of network-basedG1FC alterations

(asterisks represent significant t-statistics at the network-level with two-sided
P < 0.05, adjusted for age, sex, andAPOE-ε4) using a group-level (left) or full cohort-
level (right) gradient realignment strategy. Word clouds of NeuroSynth cognitive
terms associated with regions with positive (red) or negative (blue) t-statistic G1FC
differences between diagnostic groups (using cohort-level realignment strategy).
e G1SC, G2SC, and G3SC explained 28, 20, and 9% of the information in structural
connectome data, respectively. f Coordinate system spanned by the first two gra-
dients. g Histogram of G1SC. h Between-group comparisons (green: CN A+ [n = 35]
vs. controls [n = 102]; orange: CI [n = 72] vs. controls [n = 102]) of network-based
G1SC alterations and corresponding word clouds. Results are displayed for the left
hemisphere; Supplementary Fig. 1, 3, and 7 show right hemisphere projections and
group differences. Source data are provided as a Source Data file. Abbreviations:
CN cognitively normal, CI cognitively impaired, FC functional connectivity, G gra-
dient, SC structural connectivity.
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gradual transitions between composite subnetworks) to those based
on the predefined Braak regions. First, we found that tau was sig-
nificantly associatedwith cognitionacross the entire principal gradient
(Fig. 7a). Conversely, only a fewBraak-based tau-cognitionassociations
reached R >0.6 (none for Braak I-II). Second, the strength of these
associations changed in a topology-dependent manner progressively
along the gradient axes (Fig. 7b). The associations were generally
strongest in the higher-order transmodal/anterior regions while
weakest in unimodal/posterior regions. For example, tau correlated
with non-memory domains gradually along G1FC but not the Braak axis
(e.g., cognitive flexibility in A+: R2 = 0.58 vs. Braak R2 = 0.38). Similarly,
tau correlatedwithmemory gradually alongG1SC but not theBraakaxis
(e.g., delayed memory in A+: R2 = 0.95 vs. Braak: R2 = 0.28). Sensitivity
analyses with different numbers of gradient bins (meta-ROI sizes)
yielded similar results (Supplementary Fig. 26).

Last, we performed a NeuroSynth meta-analytic decoding of each
of our primary template gradients (Fig. 7c and Supplementary Fig. 27),
showing how cortical organization underlies cognitive functions. We
observed that cognitive domains are associated with the gradient

organization from the unimodal (e.g., motor, sensory perception) to
the transmodal (e.g., social, negative emotion, moral, memory) poles
of both the functional and tau-PET primary gradients (Fig. 7c). While,
cognitive terms of facial recognition, sensory perception, andmemory
are also organized at the posterior poles of both the structural,
inflammation and Δtau-PET gradients (Supplementary Fig. 27). Taken
together, our results suggest that connectivity (gradient)-derived
meta-ROIs represent a sensitive method to capture brain-behavior
relationships.

Discussion
Certain brain subnetworks exhibit greater similarity in their extent and
rate of pathology accumulation. Such similaritymay be linked to those
regions’ unique apical position in the cortical hierarchies, which canbe
interrogated in a data-driven manner at the system level through
mapping of connectivity gradients33,34,45. In this work, we decomposed
high-dimensional data of both functional and structural connectivity
into its main axes of variance (gradients) at the subject level and
situated patterns of tau or inflammation along these organizing axes.

Fig. 3 | Connectivity gradients align with PET gradients. a The first three gra-
dients of tau-PET (GTAU) projected onto the brain surface and their corresponding
network-specific average values ± SEM for G1TAU and G2TAU (40 and 28% explained
the information in tau-PET data), extracted from the CI group (average of n = 75 tau
covariancematrices). bHeatmap showing Spearman’s rank correlations ρ between
gradients of functional connectivity (GFC) and GTAU, indicating a strong association
between their primary gradientsG1FC andG1TAU. cρbetweengradientsof structural
connectivity (GSC) and GTAU, indicating a strong association between G1SC and
G2TAU. d The first three gradients of inflammation (TSPO)-PET (GINFLAM) projected
onto the brain surface and their corresponding network-specific average values for
G1INFLAM and G3INFLAM (39 and 11% explained information in TSPO-PET data),
extracted from the CI group (thresholded at 50% sparsity due to low sample size

[average of n = 32 TSPO covariance matrices]). G2INFLAM (19% explained informa-
tion) may primarily reflect partial volume effect and was not included in the bar-
plots. e Heatmap showing ρ between GFC and GINFLAM, indicating a modest
association between G2FC and G1INFLAM. f ρ between GSC and GINFLAM, indicating a
strong association between G1SC and G1INFLAM. Results are displayed for the left
hemisphere; Supplementary Fig. 14, 15 show right hemisphere projections and
correlations. A cubic polynomial was fitted for each of the regressions, indicating
absolute RMSE and R2 of the fitted model. The two-sided P-value of gradient cor-
relations was tested with null models using spatial autocorrelation-preserving
surrogates based on variogram matching (1000 permutations). Source data are
provided as a SourceDatafile. Abbreviations: CI cognitively impaired, FC functional
connectivity, G gradient, RMSE root-mean-square error, SC structural connectivity.
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Our findings are: 1) AD disrupts the topological organization of the
brain by focally altering the connectome gradients, with a notable
contraction of the unimodal-transmodal functional axis; 2) AD-related
gradient contraction interacts with tau to predict cognitive decline; 3)
group-level gradients unveil spatial similarity between brain-wide
patterns of connectivity and ADpathology, with the primary structural
gradient (from tractography) showing good alignment with future tau
accumulationpatterns; and4) subject-level gradients can be employed
to explain future tau accumulation, such that temporo-occipital tau
accumulation is facilitated by high tau within gradient-derived struc-
tural hubs while frontoparietal tau accumulation is facilitated by high
tau within gradient-derived functional hubs. Taken together, these
results suggest that the principal axes of functional and structural
organization of the neocortex as mapped by gradients play a role in
shaping thedistributionandprogressionof AD-relatedpathology. This
work demonstrates that the principal gradients represent an intrinsic
coordinate system to predict tau accumulation in single individuals.

The gradient approach has proven utility in several models of
health and disease including neurodevelopment46–48, aging38, and
neurological/neuropsychiatric conditions such as stroke39, autism37,

epilepsy49, and major depressive disorder50,51. Functional gradients
have served as sensitive biomarkers of treatment response in several
neuropsychiatric disorders51,52. Our study adds to this growing field of
gradient-based applications by investigating connectivity gradients
(both functional and structural) and their relation to pathology in AD.
The gradient technique reduces the number of data points from NxN
nodes (representing region-to-region connectivity) into a series of Nx1
spatial maps (representing region-to-region similarity in brain-wide
connectivity patterns). While a typical (NxN) connectivity matrix is
restricted to the connections between specific pairs of regions, our
brain-wide similarity measure explains the region’s global role in
multiple networks. The derived principal gradients follow established
models of cortical hierarchy and laminar differentiation35.

In AD, we observed an overall unimodal-transmodal functional
gradient contraction, an axis most consistent with cortical maturation
and gradual change in several features of the neocortex44 including
gene expression (sensory-to-association53), myelination (high-to-
low54), PET-derived neurotransmitter receptor profiles55, glucose
metabolism (low-to-high40,41), cerebral blood flow (low-to-high), and
cognition (perception-to-abstraction35). This unimodal-transmodal

Fig. 4 | Longitudinal tau-PET gradients align with connectome and inflamma-
tion gradients. a The first three gradients of longitudinal tau accumulation (GΔTAU)
projected onto the left brain surface, extracted from the A+ group (average of
n = 39 Δtau covariance matrices). b Network-specific average values ± SEM for
G1ΔTAU (top) and G2ΔTAU (bottom), explaining 51 and 13% of the information
respectively inΔtau-PET data, with the first gradient largely overlapping with Braak
stages. c Heatmap showing Spearman’s rank correlation ρ between GFC or GSC and
GΔTAU, indicating good alignment (G1FC-G2ΔTAU: RMSE=0.04, R2 = 0.26; G2FC-
G1ΔTAU: RMSE=0.16, R2 = 0.12; G1SC-G1ΔTAU: RMSE=0.15, R2 = 0.30). Results are

displayed for the left hemisphere; Supplementary Fig. 15 shows right hemisphere
correlations. d ρ between GΔTAU and GINFLAM based on template gradients across
the cohort. e ρ between GΔTAU and GINFLAM based on template gradients in A+. The
two-sided P-value of gradient correlations was tested with nullmodels using spatial
autocorrelation-preserving surrogates based on variogram matching (1000 per-
mutations). Source data are provided as a Source Data file. Abbreviations: FC
functional connectivity, G gradient, RMSE root-mean-square error, SC structural
connectivity.
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contraction may reflect a loss of functional network segregation,
possibly indicative of blurring of individual network specialization56–59

(de-differentiation60). We also showed gradient changes along the
visual-auditory functional axis (explaining less variance than the
unimodal-transmodal axis), with early-stage reorganization of the
dorsal attention network in correspondencewith recentwork61. On the
other hand, our two primary structural gradients captured previously
identified axes of cortical thickness62,63 and neuron density33 and
showed only modest alterations in AD, mainly reorganization of early
tau-accumulating regions (lateral/medial-temporal, cingulate, and
orbitofrontal cortices).

In regard to connectivity-related tau-PET patterns, we observed
that regions exhibiting greater similarity in their connections to the
rest of the brain also exhibit greater similarity in how they co-vary in
their tau distributions. In other words, spatial connectivity similarity

shapes spatial pathology (progression) similarity in AD. Previous in-
vivo imaging studies typically promoted connectivity to tau epicenters
as the main driver of tau spread. Notably, Franzmeier et al. demon-
strated that regions with similar tau-PET accumulating rates were
strongly functionally connected to each other using fMRI20,24.
Schoonhoven et al.64 instead used a single-epicenter epidemic
spreading model based on MEG data to capture neuronal activity
directly and demonstrated a superior role for functional over struc-
tural connectivity on tau spread. However, that model did not include
the entorhinal cortex, a region identified as a common tau epicenter65

with strong structural connections to the rest of the temporal lobe.
Vogel et al.65 found that the structural connectome (from a normative
cohort) outperformed the functional connectome in simulating tau
spread, with the strongest predictions in the earlier disease stages.
Other in-vivo imaging studies with cross-sectional designs similarly

Fig. 5 | Tau within gradient-derived subject-specific hubs drives tau accumu-
lation. a Subject-specific hubswere identified (blue) basedon the graph theoretical
metric called degree extracted from the thresholded and binarized connectivity
matrix, from which the top nearest distance hubs (in gradient space) to each ROI
were selected (yellow), for each participant. Tau SUVR was then averaged within
each of these FC hubs (green; tauFC_hubs) and SC hubs (orange; tauSC_hubs).
b Regression results (n = 86 participants) of longitudinal ΔtauROI with baseline
tauFC_hubs and tauSC_hubs, adjusted for age, sex,APOE-ε4, baseline tauROI, and FWE at
two-sided P < 0.001, replicated for two different atlases. A positive t-statistic (red)
within anROI indicates a positive relationship between tau accumulationwithin the
ROI and baseline tau within the ROI’s hubs, while a negative t-statistic (blue)

indicates a negative relationship. c Schematic showing the baseline tau within the
subject-wise selected hubs nearest connected to the top positive and negative
t-statistic ROI from panel b, averaged across the cohort. A positive t-statistic (red
color in panel b) resulted from a relatively higher tau deposition within the ROI’s
hubs (see average [avg] tauFC_hubs and tauSC_hubs) compared to tau within the ROI
itself, while a negative t-statistic (blue color in panel b) resulted from a relatively
lower tau deposition within the ROI’s hubs. The average Δtau SUVR among all
participants is shownon the outer right panel. Source data are provided as a Source
Data file. Abbreviations: FC functional connectivity, ROI region-of-interest, SC
structural connectivity, SUVR standardized uptake value ratio.
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highlighted close tau-axonal associations in a temporal-occipital-
anterior pattern66,67.

The current work, leveraging gradient-based (brain-wide) con-
nectomics, suggests that tau may not be simply distributed along
either functional or structural connections but instead follows con-
nectivity gradients in a stage- and spatial-dependent manner, creating
overlapping tau distributions. Specifically, in symptomatic patients
with amyloid pathology, the primary gradient of baseline tau-PET
variation was closely aligned with the unimodal-transmodal functional
gradient. The secondary gradient of baseline tau-PET variation, as well
as the primary gradient of Δtau-PET variation, aligned with the
posterior-anterior structural gradient already from preclinical stages
and more closely replicated the pathologic-defined Braak stages of
longitudinal tau progression. Importantly, this primary structural
gradient (from tractography) showed a better alignment with tau
accumulation patterns than the primary functional gradient. Taken

together, this work suggests a role for the structural connectome
gradient in shaping early taudistribution aswell as its progression over
time following a posteromedial-dominant pattern. In support of this
notion, the MTL displays its strongest structural connections to the
posterior but not prefrontal cortices68 and forms a pathway of tau
propagation to posteromedial structures of the DMN along the hip-
pocampal cingulum bundle66.

Our subject-tailored analysis lends further evidence to the notion
of spatial dependence, revealing distinct patterns of tau accumulation
within temporo-occipital vs. frontoparietal cortices. Specifically,
higher rates of temporo-occipital tau accumulation were associated
with higher levels of tau deposition within gradient-derived structural
hubs, whereas frontoparietal tau accumulation was associated with
higher tau within gradient-derived functional hubs. These hubs were
extracted from individual connectome gradients. As tauopathy is
thought to typically start in anatomically defined early-Braak areas, the

Fig. 6 | Interaction between connectome gradient and tau on cognition. a The
interaction effect between regional tau SUVR and G1FC score (aligned to the full
cohort-level template) on baseline MMSE and language in A+ (n= 107 and n =90,
respectively). A negative interaction effect (blue t-statistic in transmodal regions)
indicates that higher tau together with a higher G1FC score (gradient contraction
towards unimodal) results in lower cognition. Similarly, a positive interaction (red
t-statistic in unimodal regions) indicates that higher tau together with lower G1FC
score (gradient contraction towards transmodal) is associated with lower cogni-
tion. b The interaction effect between regional tau SUVR and G1SC score on cog-
nition. The scatterplot illustrates the interaction effect between regional tau
(binned into low [blue] vs. high [orange] for visualization) and G1 score for
representative ROIs (see Source Data file), with linear fits and 95% confidence

intervals. c, d The 3-way interaction effect between time, regional tau SUVR and
G1FC (panel c) or G1SC (panel d) on 2-year cognitive change across all participants.
Sample sizes varied across composite scores: MMSE: nvisit1 = 104, nvisit2 = 89,
nvisit3 = 58 and language: nvisit1 = 99, nvisit2 = 78, nvisit3 = 58. Limbic regions are blue
for G1FC and red for G1SC because they are largely located on the negative vs. the
more positive pole of the respective gradients; while, the prefrontal cortex (blue) is
located on both the negative poles of the respective gradients. All analyses were
adjusted for age, sex, education, APOE-ε4 and FWE at two-sided P < 0.01. Source
data are provided as a SourceData file. Abbreviations: FC functional connectivity, G
gradient, MMSE Mini-mental state examination, ROI region-of-interest, SC struc-
tural connectivity, SUVR standardized uptake value ratio.
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tau may initially follow physical channels to second-order sites, from
whichdiverging patterns of projection can result in synchronization of
regions not physically directly connected to one another. In other
words, there may be initial transneuronal spread of tau manifesting
along intact monosynaptic connections primarily in the temporo-
posterior network along a posterior-anterior gradient. Guided by
polysynaptic connections, functional (hyper-)synchrony, metabolic
activity, and/or selective regional vulnerability69, tau may then accu-
mulate in a more widespread fashion across several regions along the

functional gradient (a gradient that is refined during postnatal
development46 and altered with aging70 which may collectively pre-
dispose those regions to abnormal protein accumulation in certain
individuals). Key to our analysis is the inclusion of structural and
functional subject-specific hubs, as regions may lose their hub status
with advanced disease progression71,72. In sum, in typical AD (encom-
passing the majority of our symptomatic sample), tau may initially
propagate along structural (temporo-occipital) connections, followed
by significant accumulation within the regions that are functionally or

Fig. 7 | Gradient-derived ROIs capture brain-behavior relationships. aCognitive
correlates of tau SUVR within G1FC-derived (left), G1SC-derived (middle), or Braak
meta-ROIs (right). Partial regression (absolute Pearson’s R) adjusted for age, sex,
education, and APOE-ε4. Sample sizes of A+ participants varied across composite
scores: word reading n = 87, delayed memory n = 76, immediate memory n = 82,
executive function n = 86, object recognition n = 86, processing speed n = 84, and
cognitive flexibility n = 81. b The resultant correlation coefficients changed in a
topology-specificmanner along the G1FC and G1SC but not the Braak axes (based on

a linear regression between gradient bin ordering and the tau-cognition [z-scored]
correlation coefficient within each bin, at two-sided PFDR < 0.05). c Z-statistic maps
of the associations between meta-analytic cognitive terms and our primary func-
tional (left), structural (middle), and tau-PET (right) CI template gradients. Terms
are ordered by the weighted mean of their location along 5-percentile bins of the
gradient. Source data are provided as a Source Data file. Abbreviations: CI cogni-
tively impaired, FC functional connectivity, ROI region-of-interest, SC structural
connectivity.
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metabolically co-active, thereby further amplifying the course that was
initially set by structural connectome organization73–75.

Different hypothesesmayunderlie the observed taupatterns.One
of the leading hypotheses proposes a model of prion-like spreading
based on in-vitro and rodent work76,77. In support of this, studies
showed both retrograde and anterograde tau spread to regions with
strong synaptic connections aswell as tauwithin the tracts connecting
those regions, favoring a model of structural trans-synaptic
propagation19,78. Tau has also been shown to spread across synapses
in an activity-dependent manner both in-vitro and in-vivo79,80. Opto-
genetic stimulation of tau-harboring neurons led to faster tau accu-
mulation in connected regions81. However, apart from prion-like
spreading, higher tau load may also arise from tau seeds with local
replication at different epicenters from Braak III onwards82. Montal
et al.83 postulated that tau preferentially accumulates in regions with
high APOE and glutamatergic synaptic gene expressions, supporting
an alternative role for shared genetic susceptibility in focal tau
accumulation74,75. In support of this, our overlapping axes of tau spread
(captured by orthogonal gradients) may reflect that the pathology can
originate from multiple epicenters (e.g., MTL and precuneus), pre-
viously termed secondary seeding regions84. Our work supports the
concept that tau may accumulate at specific locations along the cor-
tical hierarchy because their topological patterns show similar func-
tional and/or microstructural properties and regional vulnerability.

In regard to brain inflammation, the spatial distribution of TSPO-
PET uptake was significantly related to the principal structural and
functional organization of the neocortex, with the former demon-
strating a stronger association than the latter in our cohort. This pat-
tern of inflammation, in combination with its spatial colocalization
with the primary Δtau gradient, may support the idea that reactive
microglia participate in tau seeding/spreading85,86. One biological
explanation of microglia driving tau accumulation could be that
microglia phagocytose the tau and therefore might play an important
role in spreading of tau pathology throughout the brain86. A recent in-
vivo human study demonstrated that brain regions with high TSPO-
PET binding show increased connectivity with other high-TSPO bind-
ing regions, suggesting that microglia activation distributes along
connectivity-based pathways similar to tau87. However, they did not
directly look at spatial colocalization between TSPO and tau-PET.
Herein, we show an overlap of the primary structural connectome,
TSPO-PET and Δtau-PET gradients with Braak-like patterns, demon-
strating a close spatial correlation between connectivity, microglia
reactivity, and tau based on in-vivo human imaging data. Future
research could explore whether early-stage increases in TSPO-PET
signals are associated with an inflammatory state linked to amyloid
removal, while later-stage signals may reflect an increased response to
tissue damage which, in turn, may induce more tissue damage.

Finally, our results on the integration of the dominant con-
nectome gradient axes with cognition demonstrated that global brain
organization shapes the tau-cognition relationship. We observed
consistently high tau effects on cognition for the entire cortical gra-
dient, with progressively stronger effects towards the transmodal or
anterior regions for most domains tested. While this study represents
an advancement in correlating gradient-derived tau SUVR (within
gradient-derived meta-ROIs) with cognition, prior work observed
topology-dependent correlations between fluid intelligence and
gradient-derived Aβ SUVR particularly in transmodal cortices36. We
believe this analytical framework based on macro-scale gradients can
be applied in future studies to study brain-behavior relationships in a
more sensitive way by capturing domain-specific impairment through
gradient-based meta-ROIs (orderly sequences in impaired subnet-
works along the gradient). Furthermore, our observed interaction
between tau and gradient score supports previous work on greater
inter-network connectivity and network specialization blurring in
AD88–90. This increased connectedness between different networks

may in-turn drive future protein propagation and cognitive decline56,91.
Taken together, our findings support the contribution of connectome-
related pathology distribution on cognitive impairment.

Our work has further implications in a clinical context. Based on
our finding that tau in patient-specific gradient-derived hubs can pre-
dict regions of future tau accumulation, clinical trials of brain stimu-
lation aimed at targeting such patient-tailored connector hubs may be
more sensitive in slowing the disease progression.More broadly, given
that brain activity dynamics may exist in a low-dimensional functional
state space40, treatments that aim to modify such pathological state
(e.g., firing instability of neural circuits and impaired synaptic
plasticity92) may be more effective than targeting a pathological sub-
strate in a priori isolated region. Gradients provide a promising avenue
to capture these overarching spatial arrangements of cortical features.
In addition, sensitive methods such as electrophysiology are war-
ranted to elucidate the role of hyperactive neurons in driving tau
progression in the presence of Aβ64,93,94. Targeting network dysfunc-
tion or hyperexcitability has a great potential to reduce tauproduction
and rescue cognitive impairment95,96 and integrating this with con-
nectome gradients is an important topic of further study. Lastly, based
on our finding of a global functional gradient contraction, post-
treatment evaluation of gradient normalization (e.g., increased seg-
regation at the whole-brain level) has promise as a secondary and low-
cost biomarker of trial outcome and treatment response.

This study should be interpreted considering limitations. First, we
focused on the highest-variance gradients per modality. While we
unveiled thebrain-wide trendsof connectivity andpathology similarity
in individuals along the more typical AD spectrum, the first few gra-
dients are not sufficient to capture the asymmetry and different phe-
notypes associated with a more heterogeneous AD cohort. Future
work should map individual ΔPET maps to a larger set of connectome
gradients with smaller explained variance to predict individualized
(patient-specific) progression maps97. Second, the fMRI and dMRI-
derived connectivity measures are proxies of neuronal co-activation
and white matter pathways, respectively. In-vivo tractography is not
sensitive enough to map the full spatial extent of existing tracts, par-
ticularly short-range connections, which may be key in tau spreading.
Third, we did not acquire longitudinal data for TSPO-PET as we did for
tau. Finally, the TSPO-PET uptake is not a direct measure of the
inflammatory response and may reflect binding density and/or meta-
bolic activity rather than an activation phenotype of (micro-)glia98,99.
Moreover, certain studies have identified the presence of TSPO-
negative reactive microglia100. Together, this suggests that the TSPO-
PET signal may not capture all reactive microglia and that the lack of a
TSPO-PET signal does not unequivocally signify a lack of microglial
reactivity. These limitations emphasize the need for additional
research to better understand the distinct cellular compartments and
cell states/phenotypes giving rise to the PET signal. Nevertheless, we
previously showed that TSPO-PET has beenwidely used as a biomarker
of inflammation in diseases of the central nervous system, showing
robust increases in AD compared to controls101. Last, it should be
recognized that the brain connectome has a dual function, serving
both as a direct axonal conduit for tau spread and as a dynamic
influence on the progression of tau, for instance through disease-
induced network dysfunction and decoupling or Aβ-induced neuronal
hyperexcitability102. The effects of these neuroimaging-based struc-
tural and functional measures have often been modeled separately in
previous in-vivo imaging studies. However, functionally connected
areas are inherently structurally connected, either trans-synaptically or
due to common input areas. Hence, dMRI- and fMRI-basedmetrics are
interlinked and model overlapping processes to a certain extent.
Importantly, what is commonly overlooked in interpreting dMRI and
fMRI-based connectivity is that these metrics differ in their methodo-
logical sensitivity across spatiotemporal scales, likely capturing nuan-
ces of mono- vs. polysynaptic connections and local versus global
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connectivity103,104. In addition, caution is warranted due to differential
confounds introduced during data acquisition and processing of dMRI
and fMRI data. Nonetheless, our dMRI/fMRI-based results match pre-
clinical tau progression models at these anatomical scales.

In conclusion, our study offers insight into the system-level spatial
alignment between connectome and pathological (tau/inflammation-
PET) variations across the neocortex in an unbiased and data-driven
manner. We showed that individual connectome gradients are altered
in AD, interact with tau to alter cognition, and drive tau accumulation
in a stage- and region-dependentmanner, such that temporo-occipital
tau accumulation is facilitated by high tau levels within gradient-
derived structural hubs while frontoparietal tau accumulation is
facilitated by high tau levels within gradient-derived functional hubs.
The strengths of our study involve its multimodal, subject-specific
nature and the application and comprehensive validation of the
emerging gradient approach in AD. Our findings support the use of
connectome gradients as a framework for understanding the dis-
tribution of pathological proteins along the major axes of brain orga-
nization underlying specific cognitive domains. The current work
provides a model to arrange AD pathological features along macro-
scale organizational axes and is a stepping stone for future studies
targeting connectome-related pathology accumulation in AD and dif-
ferent neurodegenerative disorders.

Methods
The McGill University, the Montreal Neurological Institute (MNI) PET
working committee, and the Douglas Mental Health University Insti-
tute Research Ethics Board (Mental Health and Neuroscience sub-
committee of the CIUSSS ODIM REB) provided ethical approval
(IUSMD-16-60).

Participants
The Translational Biomarkers in Aging and Dementia (TRIAD) cohort
was launched in 2017 as part of the McGill University Research Center
for Studies in Aging and aimed at describing biomarker trajectories
and interactions asdrivers ofdementia. The current study included213
participants from the TRIAD cohort, of which 103 CN A-, 35 CN A+, and
75 CI A+ with mid cognitive impairment (MCI) or AD dementia. All
participants underwent 18F-MK6240 tau-PET, 18F-NAV4694 Aβ-PET,
structural-, diffusion-, and resting-state functional MRI, APOE-ε4 gen-
otyping, and cognitive testing. Ninety-four and 87 participants addi-
tionally underwent 11C-PBR28 TSPO-PET and follow-up tau-PET
(420± 79 days), respectively. Only high-affinity binders according to
the TSPO rs6971 polymorphism were scanned. The demographics are
outlined in Table 1. Sex was based on self-report. None of the patients
presented with neuropsychiatric disorders other than MCI or AD
dementia. All participants gave their written informed consent prior to
inclusion in the study. They received a compensation to cover travel
expenses and time.

T1-weighted acquisition and processing
T1-weighted MRI images were acquired on a 3 T Siemens Magnetom
using a volumetric magnetization prepared rapid acquisition gradient
echo (MPRAGE) sequence (TR: 2300ms, TE: 2.96ms). Each MRI was
skull stripped using our in-house ML-based tool ICVMapper105 and
further processed using FreeSurfer v7106, including motion correction,
intensity normalization, hemispheric separation, and white/pial tissue
segmentation and parcellation. Incorrect segmentation of pial sur-
faces, which appeared particularly in the MTL of participants with
substantive atrophy, was manually corrected. In addition, each pre-
processed MRI was registered to the MNI template using affine and
nonlinear transformation with the ANTS v2.3.1 registration toolbox.
Cortical regions (nodes) were parcellated based on three different
brain atlases: (i) an in-house developed high-resolution parcellation
based on the multi-modal Glasser atlas re-parcellated into equally-

sized sub-regions-of-interest (ROIs) of ~512mm3 totaling 1318 nodes, (ii)
the structural-based Desikan-Killiany-Tourville (DKT) atlas imple-
mented in FreeSurfer consisting of 66 nodes, and (iii) the functional-
based Schaefer atlas consisting of 100 nodes with addition of the
hippocampus based on the Harvard-Oxford atlas. The parcellation
described in (i) allowed for anunbiased analysis of continuous changes
in both structure and function between nodes while keeping a rea-
sonable resolution for PET and diffusion tractography. We replicated
ourmain results across all atlases to assure robustness to the choice of
parcellation scheme. Last, we overlaid our customized high-resolution
brain atlas with the six Braak regions as defined in107; the parcels
overlapping with multiple Braak regions were assigned to only one
Braak region based on highest percent overlap.

PET acquisition and processing
The 18F-MK6240, 18F-NAV4694, and 11C-PBR28 PET scans were acquired
using a Siemens high-resolution research tomography (HRRT) scan-
ner. The images were acquired at 90–110, 40–70, and 60–90min fol-
lowing radiotracer injection, respectively, and reconstructed using an
ordered-subsets expectation maximization (OSEM) algorithm on a 4D
volume with 4 (x300 seconds), 6 (x300 seconds), and 3
(x600 seconds) frames, respectively. They were corrected for dead
time, decay, random and scattered coincidences, and attenuation
based on a 6-min transmission scan with a rotating 137Cs point source.
The PET images were first co-registered with rigid transformation to
the participant’s T1w MRI (using FreeSurfer). Parcellations were
inverse-transformed from template to individual T1w MRI space for
regional value extraction. The final smoothing corresponded to 8mm
full-width-at-half-maximum of the Gaussian kernel. Standardized
uptake value ratio (SUVR) maps were generated for each radiotracer
andnormalized to the inferiorportion of the cerebellar graymatter. Aβ
status was determined based on visual rating of the Aβ-PET images,
with the final rating based on consensus of two physicians specialized
in dementia imaging.

Resting-state fMRI acquisition and processing
fMRI data were collected with single-shot full k-space multiband echo-
planar imaging (EPI) and the following parameters: TR =0.681 s, TE =
32ms, slice thickness = 2.5mm, number of slices = 54, flip angle = 50
degrees, number of measurements = 870, matrix size: 88 ×88, voxel
size = 2.5 mm3 isotropic, and eyes open fixed on a cross. Data were
preprocessed using fMRIPrep v.20.2.3, including slice timing, skull
stripping, intensity normalization, and co-registration to the
MNI152 space with boundary-based rigid-body and nonlinear trans-
formations. Post-processing nuisance regressors were based on the
CompCor predefined strategy as outlined in Behzadi et al.108 and
included bandpass filtering (0.01-0.08Hz), non-steady-state volume,
head motion with linear/quadratic terms and derivatives, and six
components for the anatomical + temporal CompCors. This was
implemented in Python through Nilearn’s fmriprep.load_confounds
function using the CompCor strategy developed by Wang et al.109 One
control subject was discarded from further fMRI analysis due to
excessive motion. The rs-fMRI data were smoothed with 4mm full-
width-at-half-maximum. More details on the fMRI processing can be
found at https://fmriprep.readthedocs.io/en/latest/workflows.html.

dMRI acquisition and processing
dMRI data were collected with EPI sequence with the following para-
meters: TR = 3500ms, TE = 71ms, flip angle = 90 degrees, field of
view = 232 × 232 x 162, voxel size = 2mm3 isotropic, and 13, 48, and 60
isotropically distributed diffusion-sensitizing gradients with b-value =
0, 1000, and 2000 s/mm2, respectively, as well as five b0 images. Data
were preprocessed using FSL v6.0.5110 and MRtrix3 v3.0.3111, including
correction for susceptibility distortions, motion (both between frames
and within frames), gibbs ringing, and top-up and eddy currents (and
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removal of the full frame if >20% of the slices within the frame are
detected as outlier based on the FSL Eddy report). We estimated the
GM-WM-CSF response functions based on the d’Hollander algorithm112

for 40 randomly selected individuals and generated the group
response functions. We then performed multi-shell multi-tissue con-
strained spherical deconvolution113, intensity normalization in the log-
domain, and anatomically-constrained tractography114 with dynamic
seeding from theWM and cropping at GM-WM boundary. We used 20
million streamlines with a maximum tract length of 250mm and a
fractional anisotropy cut-off of 0.06. Thewhole-brain streamlineswere
weighted by the cross-section multipliers derived from spherical
deconvolution-informed filtering of the tractogram (SIFT2). The sum
of weights (that is, the sum of intra-axonal cross-sectional areas of the
streamlines within a certain fiber bundle) was multiplied by the pro-
portionality constant to generate a measure of the intra-axonal cross-
sectional area of the fiber bundle capacity (FBC)115. The FBC provides
information about the capacity of the bundle to transfer information
and allows to directly compare connectomes between participants.

Cognitive assessments
Neuropsychological evaluation consisted of memory, language, pro-
cessing speed, executive function, cognitive flexibility, object recog-
nition, word reading, and the MMSE. Delayed memory was based on a
composite score of the Logical Memory Test IIA (# story units), the
Free and Cued Selective Reminding Test (free and cued), the Aggie
Figures Visual Learning Test (hits list B), and the Rey Auditory Verbal
Learning Test (hits andA7). Immediatememorywas assessed using the
LogicalMemory Test IA (# story units) and the Free andCued Selective
Reminding Test (free and cued). Language was assessed using the
Category Fluency test and Boston Naming Test. Speed was based on
Trail Making Test A and WAIS-III Digit Symbol, and executive function
was based on Trail Making Test B. Cognitive flexibility and word
reading were assessed using the inhibition/switching and reading
portions, respectively, of the D-KEFS Color-Word Interference Test.
Object recognitionwas assessedusing theBORBobject decision easy B
and orientation match tasks. Individual raw scores were standardized
following the method described in Malek-Ahmadi et al.116, and aver-
aged across subdomains to create the composite scores.

Gradient identification
Amethodological overviewof thedata processing is visualized in Fig. 1.
The steps corresponding to the gradient identification are depicted in
Fig. 1b and described in detail below.

Connectome gradients
Functional connectivity (FC) and structural connectivity (SC) matrices
were generated by mapping Pearson’s R correlation coefficients (for
FC) and a number of reconstructed cross-section streamlines (for SC)
to each of the brain parcellations (see above). These matrices were
then thresholded to retain the top 20% connections per row, Fisher-
transformed (for FC only), and converted into cosine similarity
matrices34. We applied an unsupervised and non-linear dimensionality
reduction technique, diffusion embedding (DE), to transform the high-
dimensional connectome data into the low-dimensional embedded
space. The Euclidean distance between the data points within this
embedded space equals the diffusion distance between probability
distributions centered at those points42. Unlike other dimensionality
reduction techniques such as isomaps or PCA, the DE maps (i) retain
the global relationships between data points, (ii) are more robust to
noise117, and (iii) are computationally fast with single-parameter opti-
mization (α =0.5 and t = 0 to retain the global relations between data
points in the embedded space) (more details on the choice of DE andα
are outlined in the SI of Margulies et al.34). We extracted the principal
ten gradient components for each of the connectivity matrices using
BrainSpace v0.1.3118 in Python v3.7.6. Each gradient represented an

orthogonal axis of spatial (structural or functional) variation across the
cortex, with the first gradient explainingmost of the information in the
participant’s connectome data. Cortical regions (nodes) that are
strongly interconnectedwere located closely together on the gradient,
while weakly connected nodes were further apart. Using the principal
gradients per modality, we created a simplified coordinate system of
spatial variation in connectivity. The relative positioning of nodes
within this coordinate system informs on the (dis)similarity of their
brain-wide connectivity strength. Each gradient was realigned via the
Procrustes algorithm to their corresponding group-wise (template)
gradient derived from the group-averaged FC or SC matrix118. We fur-
ther validated our procedures by applying different (i) sparsity
thresholds (10-30%), (ii) similarity kernels (cosine; normalized angle),
(iii) template alignment (cohort-level; group-level), as well as (iv)
dimensionality reduction (DE; PCA). All validation results are shown in
the Supplementary Data.

PET gradients
Group-wise PET covariance matrices were generated by mapping the
tau-PET and inflammation-PET data to each of the brain parcellation
schemes. Similarly, a longitudinal tau-PET covariance matrix was cre-
atedbasedon: (follow-up−baseline SUVR)/Δtime[days] thresholded at
50% sparsity. We extracted the principal ten gradient components for
each of the PET covariancematrices as outlined above. We performed
two sensitivity analyzes as follows. First, we generated the group-wise
PET covariance matrices and corresponding gradients based on bio-
marker status: A-T-, A+T-, or A+T+. Amyloid status was determined as
described above and tau status was based on visual rating of the tau-
PET images with high retention in early Braak areas in line with Seibyl
et al.119. Second, we applied different thresholdingmethods to the PET
covariance matrices (20-50%). All sensitivity analyzes are shown in the
Supplementary Data.

Statistical analyses
Statistical analyses were performed in Python v3.7 and included: (i)
group-wise differences in connectome gradients, (ii) group-level
associations between connectome and PET gradients, (iii) subject-
level associations between longitudinal tau accumulation and base-
line tau within gradient-derived subject-specific hubs, and (iv)
subject-level associations between connectome gradients, tau, and
cognition.

Themain analyses with connectome gradients are summarized in
Fig. 1c. To investigate regional differences in the connectivity gradient
scores between the diagnostic groups, we applied linear regression
models adjusted for age, sex, and APOE-ε4. T-maps were adjusted for
family-wise errors due to multiple comparisons with a false-positive
rate at two-sided P <0.01 and cluster-wise threshold of 500 voxels.
Summary network-based spider plots were generated by entering the
network-averaged gradient scores as the dependent variable into a
linear regression with the diagnostic group as the independent vari-
able and adjusted for the aforementioned covariates. Finally, we cor-
related our positive and negative t-statistic maps of between-group
differences in gradient scores with the NeuroSynth database (https://
neurosynth.org/). We generated word clouds corresponding to the
regions with the highest Pearson’s R correlations, after removing
demographical and anatomical terms.

Next, we investigated if connectomegradients relate to pathology
distribution. Per diagnostic group, correspondence of the first three
gradients of connectivity (GFC, GSC) with the gradients of PET (GTAU,
GINFLAM) was calculated via Spearman’s rank correlation between spa-
tially matched nodes. Similarly, we investigated the correlation of GFC,
GSC, or GINFLAM with the gradients of longitudinal changes in tau-PET
(GΔTAU). All correlations were adjusted for spatial autocorrelation
based on Variogram matching with 1000 permutations120. The RMSE
and R2 were calculated for linear and non-linear fits between the
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gradients, yielding the most optimal results for a third-order poly-
nomial (Supplementary Tables 1-2).

Next, we investigated if tau deposition within gradient-derived
connectivity hubs drives tau accumulation. Specifically, we investi-
gated the role of tau within (gradient-derived) functional and struc-
tural connectivity hubs on tau accumulation within each brain ROI per
individual participant as follows (Fig. 5a): 1) Select the top most-
connected 50 network hubs (based on the highest brain-wide degree
of the participant’s thresholded and binarized [functional or struc-
tural] connectome), 2) For each of the brain ROI, select the 10 nearest
connected hubs, i.e., with smallest Euclidean distance in 3D con-
nectomegradient space to the region, 3)Within these 10hubs, average
the tau SUVR to extract tauFC_hubs and tauSC_hubs, and 4) Perform a
linear regression across participants: ΔtauROI ∼baselinetauROI +
tauFC hubs + tauSC hubs + covariatesðage,sex,APOEε4Þ. The resulting
T-map was adjusted for family-wise errors due to multiple compar-
isonswith a false-positive rate at two-sided P <0.001 and a cluster-wise
threshold of 500 voxels, and projected onto the brain surface using
trilinear interpolation. The procedurewas repeated using the Schaefer
atlas, by selecting the top brain-wide 15 hubs and the top 5 (gradient-
based) nearest connected for each ROI; to maintain a similar propor-
tion of hubs used relative to the total number of ROIs/parcellations.
Last, we performed three sensitivity analyses to dissect the relative
importance of 1) hub status, 2) connectivity to the ROI, and 3) tau
withinhubs. For thefirst sensitivity analysis, we selected the 10 regions
with the nearest Euclidean distance in gradient space to the ROI irre-
spective of their hub status and averaged the tau SUVR within these
gradient-derived connections. Then, we repeated the aforementioned
linear regression analysis. For the second sensitivity analysis, we
selected 10 non-hubs with the furthest Euclidean distance to the ROI
and repeated the procedure. For the third sensitivity analysis, we
repeated the main analysis using FC and SC gradient-based con-
nectivity as themain predictors rather than tauwithin the connections:
ΔtauROI ∼baselinetauROI + FC hubs + SC hubs + covariatesðage,sex,
APOEε4Þ.

Finally, we investigated if connectome gradients relate to cogni-
tive impairment and cognitive decline. To this end, we first investi-
gated at the cross-sectional level whether the appearance of both
regional tau and gradient alterations are associated with more cogni-
tive impairment through an interaction model adjusted for age, sex,
APOE-ε4, and education. Second, at the longitudinal level, we per-
formed a linear mixed effects model of the interaction between time
(visit 1, 2 or 3), regional tau, and regional gradient score on cognitive
change over 2 years, adjusted for the aforementioned covariates and
random factor for subject ID; only subjects with at least one follow-up
cognitive scorewere included. The resulting T-maps were adjusted for
family-wise errors due to multiple comparisons with a false-positive
rate at two-sided P <0.01 and cluster-wise threshold of 500 voxels and
projected onto the brain surface using trilinear interpolation. Indivi-
dual gradients were aligned to the full cohort-level template. Third, we
investigated whether the relationship of PET with cognition gradually
changed along the GFC or GSC axis. To this end, we performed partial
regression to correlate eachof the cognitive composite scoreswith the
PET SUVR averaged within six discretized (equally sized) spatial clus-
ters along G1FC or G1SC, adjusted for age, sex, APOE-ε4, education, and
FDR multiple comparisons (across 9 composite tests x 6 gradient-
based ROIs x 2 modalities). The resultant correlation coefficients
(Fisher Z-transformed) were plotted against bin-ordering and fed into
a linear regression to test for a low-dimensional representation of
gradual (or progressive) tau changes with cognition along the con-
nectome gradient. We tested the stability of the outcome through
different bin sizes, including 6 and 20 bins, and calculated FDR-
adjusted P-values (across 9 composite tests x 2modalities) both across
all participants and within A+ separately. Similarly, we performed

partial regression to correlate cognition with PET SUVR averaged
within the six Braak stages. Finally, we performed a NeuroSynth meta-
analytic decoding of each of our primary template gradients using the
22 coherent mental functions selected previously121 from the
v5_topic_50 list (https://neurosynth.org/analyzes/topics/v5-topics-50/).
For analysis and plotting, we followed the same method outlined
by Margulies et al.34.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All requests for raw and analyzed data and materials will be promptly
reviewed by McGill University to verify if the request is subject to any
intellectual property or confidentiality obligations. Anonymized data
will be shared upon request to the study’s senior author from a qua-
lified academic investigator for sole the purpose of replicating the
procedures and results presented in this article. Anydata andmaterials
that can be shared will be released via a material transfer agreement.
Data are not publicly available due to information that could com-
promise the privacy of research participants. Related documents,
including study protocol and informed consent forms, can similarly be
made available upon request. NeuroSynth databasewithmeta-analytic
topic terms is available at https://neurosynth.org/analyses/topics/v5-
topics-50/. Source data are provided in this paper.

Code availability
Source code is available on GitHub at: https://github.com/AICONSlab/
AD_connectome_gradients. We also provide an example dataset
necessary to replicate, interpret, and build on the findings reported in
the paper.
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