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Perception of motion salience shapes the
emergence of collective motions

Yandong Xiao 1 , Xiaokang Lei 2, Zhicheng Zheng3, Yalun Xiang3,
Yang-Yu Liu 4,5 & Xingguang Peng 3

Despite the profound implications of self-organization in animal groups for
collective behaviors, understanding the fundamental principles and applying
them to swarm robotics remains incomplete. Here we propose a heuristic
measure of perception of motion salience (MS) to quantify relative motion
changes of neighbors from first-person view. Leveraging three large bird-
flocking datasets, we explore how this perception of MS relates to the struc-
ture of leader-follower (LF) relations, and further perform an individual-level
correlation analysis between past perception of MS and future change rate of
velocity consensus. We observe prevalence of the positive correlations in real
flocks, which demonstrates that individuals will accelerate the convergence of
velocity with neighbors who have higher MS. This empirical finding motivates
us to introduce the concept of adaptive MS-based (AMS) interaction in swarm
model. Finally, we implement AMS in a swarm of ~102 miniature robots. Swarm
experiments show the significant advantage of AMS in enhancing self-
organization of the swarm for smooth evacuations from confined
environments.

The collectivemotion of organisms, e.g.,flocks of starlings, colonies of
army ants, schools of barracudas milling, and herds of zebra, is one of
the most pervasive and spectacular manifestations of coordinated
behavior. Collective motion has been studied for decades from bio-
logical, physical, and engineering perspectives1–8. The bird flocking is
one of themost extensively studied examples of collectivemotion. For
example, the studies on starlings9–11, pigeons12, jackdaws13–15, and
chimney swifts16 proposed the topological10, metric16, or plastic15

interactions in the flocking models to explain different motion pat-
terns of collective behaviors.

While the proposed topological, metric, or plastic interactions
have been successful in explaining macro-level behaviors, they are
largely phenomenological and primarily rooted in computational
theories rather than biological evidence. These local interactions ori-
ginate from the physics-oriented Vicsek-like model17, a simplified rule

of averaging-alignment. It is apparent that this description fails to
comprehensively encapsulate the underlying principles that govern
the collective motions observed in animal flocks within their natural
environments. For example, starling flocks display the so-called wave
of agitationor shimmeringwaves to reduce risk of predation18, and fish
slow down to avoid collisions whereas birds fly at low variability of
speed and lose altitude during turning19.

In order to go beyond this averaging-type interaction, a natural
thought is to dissect bio-inspired mechanisms from real animal flocks.
It is particularly important to initiate the modeling from the perspec-
tive of individual first-person perception during this exploration. At
the individual level, the macro-phenomena emerging from group-
level, such as hierarchical leading relations in pigeon flocks12, stem
from individuals adjusting their movements based on information
perceived from the surrounding environment and neighbors’
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movements. Even though this idea is widely accepted that individual
first-person perception shapes the self-organization of collective
behaviors20,21, the majority of swarm models bypass this aspect at the
initial stages of modeling. Instead, they tend to favor averaging-type
interactions and idealized perceptions. As an example, they do not
explicitly incorporate the perception of neighbors’motions but rather
directly feed neighbors’ absolute coordinates and velocities to syn-
thesize reactive actions. It is not biologically plausible and suffers from
redundant inputs, effective information dilution22, and sensory
overload23.

Moreover, transcending the confines of mathematical modeling
pertaining to real animal flocks and the validation of their mechanisms
through numerical simulations, physical swarm robotics provides a
versatile test-bed that amalgamates physical authenticity with con-
venient analyzability24. This facilitates the investigation of group-level
organization of collective behaviors that emerges from individual-level
attributes like individual perception, decision-making, and kinematics
within a tangible real-world setting. As an illustration, a research
endeavor integrated the computational and robotic approaches to
investigate the interaction strategies among individuals within
schooling fish25. Nevertheless, the reality remains that existing local
interactions have not adequately supported the implementation of
bio-inspired mechanisms for the practical utilization of swarm
robotics26,27. The majority of swarm models integrated into robots
commonly employ the position-based and averaging-type interactions
to engender the observable phenomena of alignment, attraction, and
repulsion17,28–30. Nevertheless, practical applications necessitate a
higher degree of complexity and a broader range of group adaptability
across diverse contexts, such as collective anti-predators15, collective
turn31, cooperative transportation32 or excavation33, collective chase or
escape34–36, and more. Clearly, the progression of swarm robotics with
the capacity to tackle various collective tasks is intricately linked to the
elucidation of the fundamental mechanisms governing the different
collective patterns, dynamics, and functionalities observed in natural
animal flocks.

Despite extensive research conducted across the fields of biology,
physics, and robotics, a definitive pathway to bridge bio-inspired
mechanisms with the applications of swarm robotics has yet to be
firmly established. Once this promising route is well-defined, it has the
potential not only to validate the effectiveness of self-organization
underlying collective behaviors, but also to offer substantial guidance
and improvements in practical design and distributed control strate-
gies for swarm robots. In this study, by leveraging three large bird-
flocking datasets, we try to integrate a comprehensive research chain,
starting with investigating the interactions with neighbors in real bird
flocks, translating bio-inspired mechanisms into swarm model with
explicit empirical evidence, and eventually applying in swarm robotics
to examine the efficacy of self-organization in collective tasks.

Initially, we endeavor to propose a heuristicmetric tomeasure the
relative motion changes between a pair of individuals from the focal
one’s first-person view. This serves as an initial step in elucidating the
connection between the perception of neighbors’movements and the
inherent leader-follower dynamics, as leadership emerges from the
adaptation of one’s movements upon perceiving the motions of
neighbors. In addition, through research onmotion perception and the
utilization of three large bird-flocking datasets, our objective is to
answer thequestionofwhat specificmotion characteristic an individual
possesses to lead the flock. Subsequently, we aspire to translate these
findings into bio-inspired mechanisms supported by explicit empirical
evidence. Thus,wemodel leaders’ characteristicmotions as an adaptive
interaction rule about how the focal individual interacts with its
neighbors after perceiving theirmotions. Finally, we adopt the adaptive
interaction rule learned from real flocks for swarm robotics consisting
of ~102 two-wheel differential miniature robots. Extensive swarm
experiments focusing on collective evacuation and collective following

provide compelling evidence that bio-inspired mechanisms augment
the self-organization of the swarm across various collective tasks.

Results
We utilize the high-resolution movement data from bird flocks exhi-
biting various motion patterns, including mobbing15, circling16, and
transit15. The mobbing and transit datasets were derived from video
recording capturing the 3Dmovements of all individuals within flocks
of wild jackdaws (Corvus monedul) in Cornwall, UK13–15. The circling
dataset comprised 3D tracks reconstructed from video recordings of a
flock of 1800 chimney swifts (Chaetura pelagica) as they entered an
overnight roost in Raleigh, USA16. The mobbing flocks recorded the
collective anti-predator events during which individuals gathered
together to inspect and repel a predator (Fig. 1a and Supplementary
Movie 1). The circlingflockswith hundreds of chimney swifts displayed
the circling approach pattern from surrounding areas near a roost site
(Fig. 1b and Supplementary Movie 2). The transit dataset showed the
highly ordered and smooth movement of jackdaw flocks flying
towards their winter roosts (Fig. 1c and Supplementary Movie 3). See
Supplementary Note 1, 2 and Supplementary Fig. 1 for detailed infor-
mation about the data collection and processing of three datasets. In
this study, we totally get 140, 94, and 1483 tracks of mobbing, circling,
and transit flocks, respectively. See Supplementary Figs. 2–10 for the
overview of flocking trajectories. Supplementary Fig. 11 counts the
flock size and flocking time of all flocks analyzed in this work. Besides,
we use four metrics, e.g., group order, trajectory curvature, group
density and instability of neighbor37 to systematically measure the
properties of collective motions (see Supplementary Note 3 for the
detailed definitions and results). Based on the aforementionedmetrics
of collectivemotion, threedatasets couldbe classified into twodistinct
motion patterns: the mobbing and circling datasets demonstrate
maneuver motion, characterized by collective sharp turns aimed at
repelling predators or by engaging in collective circling behavior near
a roost site. In contrast, the transit dataset exhibits a notably smoother
and highly ordered motion, indicative of coordinated movement
towards winter roosts.

Flocks with higher maneuver motions display stronger nested
leader-follower relations
To unveil the interactions embedded in flocks exhibiting different
patterns of collective motions, we first focus on quantitatively asses-
sing how leader-follower (LF) relations12 are structured within the
flocks, as the interactions among neighbors could be viewed as the
influences exerted by leaders on followers. The LF relationship, as
defined in this study, pertains to the emergent leadership resulting
from the consensus of velocity among pairs of individuals within the
flock, distinct from the underlying social structure that some indivi-
duals are more influential than others. For a pair of birds i and j during
the time period ts,te

� �
, their normalized temporal flying directions are

denoted as v̂iðtÞ and v̂jðtÞ, respectively. For time stamp t and a time
interval τ, the degree of motion alignment of this pair is defined as
Cij t,τð Þ= v̂i tð Þ � v̂j t + τð Þ. Here the sign of τ means the lag (τ < 0) or
advance (τ >0) time of focal i from the viewof neighbor-j. For a given τ,
we average Cij t,τð Þ over all the time stamps t from the period ½ts,te�,
yielding hCijiðτÞ= hCijðt,τÞi, which indicates the LF relation between
birds i and j in the flock within ½ts,te� (see “Methods”).

The value of τLFij that makes hCijiðτÞ reach the maximal value is
referred to as the leading or lag timeof this pair’s LF relation. τLFij <0 (or
> 0) means that the flying direction of individual-i lags |τLFij | seconds
behind (or advances |τLFij | seconds before) that of individual-j to keep
themaximal consensus. It could be interpreted as a case of individual-i
following (or leading) individual-j. For example, in a mobbing flock
shown in Fig. 1a, due to τLF61 = � 0:87<0, bird-1 is the leader of bird-6,
because bird-6 falls 0.87 s behind to maintain the maximal alignment
with bird-1 (Fig. 1d and Supplementary Fig. 16).
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For a flock within ts,te
� �

, we construct an LF relation matrix
TLFðts,teÞ by assigning its ði,jÞ-entry as τLFij if τLFij <0; and 0 otherwise
(see matrices in Fig. 1d–f). An LF relation matrix can also be repre-
sented as a directed network, where the directed edge points from
the leader j to its follower i if there exists τLFij <0 (see LF networks in
Fig. 1d–f).

Interestingly, we find that the LF network of the mobbing (or
circling) flock displays a highly nested structure38–41 and is completely
hierarchical42 (Fig. 1d, e). Thisfinding observed in the jackdawand swift

flocks is consistent with previous findings in pigeon flocks12. Here, the
nested structure means that for those birds with few leaders (i.e., they
have a high position in the hierarchy), their leaders also tend to be the
leaders of those birds who havemany leaders and a lowposition in the
hierarchy. A completely hierarchical structure means that birds with
lower positions will never be leaders of birds with higher positions in
the hierarchy. However, for the transit flock shown in Fig. 1c, its LF
relation matrix doesn’t display neither a nested nor a hierarchical
structure (Fig. 1f).
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Fig. 1 | The leader-follower relations of different patterns of collectivemotions.
The flocking trajectories are from three datasets: mobbing (a), circling (b), and
transit (c), which are categorized into maneuver (mobbing and circling) and
smooth (transit)modes of collectivemotions. In (a–c), the gradient color fromblue
to red corresponds to the recording time from beginning to end. d–f The LF rela-
tion matrix and corresponding LF network of three flocks shown in panels
a–c, respectively. The negative values (τLFij <0) in LF relation matrix represent that
individual-j leads individual-i, and equals the directed edges pointing from leader-j
to follower-i in the corresponding LF networks. The box colors from black to white
correspond to the descending order of absolute value of τLFij . The axis in (d–f) is
ordered by the nestedness of their corresponding LF networks. The nestedness of

LF networks as a function of average order for three flocking datasets of mobbing
(g), circling (h), and transit (i). The right marginal plots show the nestedness dis-
tribution of LF networks. The order parameter is a temporal measurement evalu-
ating the motion polarization of a flock at time t, i.e.,

PN
i = 1v̂iðtÞ=N, and the average

order is the mean of polarization over the whole time. In (d–i), the LF relation
matrices are calculated from the whole period of each flock, and the nestedness is
measured by NODF. In (g–i), each point represents a flock from three datasets, and
the nonparametric regression and bootstrap sampling are performed to calculate
the trend (red curve) and its 94% confidence interval (red shadow) between nest-
edness and average order.
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To systematically study the hierarchy in the flocks with different
motion patterns, we calculate the nestedness of LF networks for the
three flocking datasets (see Supplementary Note 4 for discussion of
nestedness metric). Note that we calculate the nestedness by binariz-
ing the LF matrix, meaning that we set non-zero elements as 1 and all
other elements as 0. The distributions of nestedness values displayed
inmarginal plots of Fig. 1g–i demonstrate that the nestedness of transit
flocks is significantly lower than that ofmobbing and circling flocks (p-
value = 0.017 and 5.54e−52, respectively, Mann–Whitney U-test). Fur-
thermore, we plot the nestedness of the LF network of a flock as a
function of its average order for three flocking datasets. Here, the
order of a flock at time t is a temporal measurement evaluating its
motion polarization, and the average order of a flock is the average of
its order over the entire period of measurement. We find that both
mobbing and circling flocks exhibit a general positive correlation
between their average order and the nestedness of their LF networks
(Fig. 1g, h). However, this positive correlation is not evident in transit
flocks (Fig. 1i). Furthermore, these findings are consistently supported
across separate flock records (a collection of some tracks, e.g., mob-
bing-01), as well as different group sizes and flocking durations (Sup-
plementary Figs. 20–22).

Perception of motion salience measures the relative motion
changes
Overall, the comparison across three datasets indicates that the
mobbing and circlingflocks tend to exhibit amoredistincthierarchyof
LF relations compared to transit flocks. In the case of mobbing or
circling flocks, we could infer that the clear LF structure and hierarchy
contribute to high group order. Similarly, the hierarchy in LF networks
emerges when the flocks with maneuver motion display high group
order. Regrettably, the relation is not clearly evident in transit flocks.
These findings lead us to pose a fundamental question: what are the
interaction rules responsible for the emergence of nested and hier-
archical LF relations? To address this question, we investigate how
individuals perceive changes in the motion of their neighbors. The
emergence of leading relationships occurs as individuals adjust their
movements based on the perceived motions of their neighbors.

In cognitive science, a seminal model known as the salience
model, along with its variants has documented human shifts of visual
attention in both spatial and temporal dimensions43,44. Coincidentally,
empirical evidence in fish schooling has revealed the selective atten-
tion phenomena, wherein individual directional decisions are influ-
enced by the relative strength of visual features among neighbors45–47.
Furthermore, a large-scale motion-capture system has unveiled the
visual attention of freely-behaving pigeons48. Drawing inspiration from
these findings, we recognize that individual perception should incor-
porate attention information from the first-person perspective, parti-
cularly regarding movement changes of neighbors over a time period.

Therefore, we propose a heuristic measure called individual per-
ception of motion salience (MS) to quantify the relative movement
changes of neighbor-j from the focal individual-i’s first-person view
within the period ½t � τ,t� in the form of

Mij t,τð Þ= ff x̂ij tð Þ,x̂ij t�τð Þð Þ
τ

1 + v̂i tð Þ�x̂ij tð Þ
2

� �α 1 + v̂i t�τð Þ�x̂ij t�τð Þ
2

� �α

i≠ j, j 2 Si,0 < τ < t
� �

:
ð1Þ

x̂ijðtÞ= ðxj tð Þ � xiðtÞÞ=jjxj tð Þ � xi tð Þjj, xj tð Þ is individual-j’s position vec-
tor at time t, ∠ means the angle between two vectors in 3D Cartesian
coordination, and Si indicates the collection of neighbors of focal-i.
Note that due to the limitation of recording area in the original
observation studies, we roughly assume that, for a bird flock from
three dataset, Si represents all individuals appeared in the flock when
calculating Mij t,τð Þ. Here τ, being 0< τ < t, means the lag time for
individuals i and j at time t, and τ is also referred to as the perceiving

time. In line with a few flock models37,49, τ shares the similar view that
the sensory information during an interval is calculated and then
updated. We underscore that the definition of MS represents a heur-
istic endeavor aimed at quantitatively capturing the relative changes in
motions between a pair of birds, rather than constituting a computa-
tional visualmodel of a bird’s actual visual perceptual capabilities. This
formulation enables the discrete-data analysis of real flocks and its
direct applicability in swarm robotics.

The diagram of definition of motion salience is shown in Fig. 2a.
Mij t,τð Þ comprehensively quantifies the perception of neighbor-j’s
motion changes relative to the focal individual-i during the period
½t � τ,t�. The larger Mij t,τð Þ, the more pronounced movement of indi-
vidual-j felt by individual-i during ½t � τ,t�. Note that whileMSequation
does not directly account for variations of velocity and speed, we
observe that it effectively encompasses these variations by taking into
account the relative position changes between the initial and final time
stamps (see detailed analysis in Supplementary Note 5).

In order to replicate the anisotropic effect ofmotionperception in
real birds, the last two components on the right-hand of MS equation
in Eq. (1) embody the forward-oriented preference in perceiving the
motion of neighbor-j from the first-person view of focal individual-i
(Fig. 2b). It simulates that, for the focal individual-i, its perception
capability diminishes as the first-person view transitions from the front
to the back. Here the first-person view of individual-i aligns with itself
heading at time t. For example, ifffðv̂i,x̂ijÞ=0, it means that neighbor-j
locates directly ahead of the focal-i’s movement direction, and the
focal individual could fully perceive the neighbors because ð1 + v̂i �
x̂ijÞ=2 is 1. Once ffðv̂i,x̂ijÞ deviates from 0 to π or −π, it represents that
the neighbor-j gradually moves from the front to back of the focal-i,
and assumes the ability of motion perception could increasingly
diminish since ð1 + v̂i � x̂ijÞ=2 decreases from 1 to 0.

We incorporate the anisotropic factor α ≥0 in MS to control the
fact of forward-oriented preference in biological perception16,50,51 (Fig.
2c). If α =0, Mij t,τð Þ ignores the blind area of perception because the
last two components in Eq. (1) always equal to 1 regardless of the
relative positions of neighbors. Increasing α couldmake Eq. (1) amplify
the anisotropic effect of motion perception, that is, the ability of
individual perception gradually becomes more restricted towards the
frontalfield of vision. For instance,α = 10 controlsMij t,τð Þ≈0when the
neighbor-j’s relative position is beyond the horizontal sight
ð�π=2,π=2Þ of the focal individual-i (Fig. 2c).

Individualswithhighermotion salience tend to lead thegroup in
the maneuver motions
According to Eq. (1), we could construct MS matrix
M t,τð Þ= ½Mij t,τð Þ�

N ×N
and derive the average MS of each individual

Mi t,τð Þ by averaging each column of M t,τð Þ. Moreover, besides the
nestedness value capturing the hierarchy of LF relations at the group
level, we also calculate the local reaching centrality42 to quantify the
leading tier of each individual in an LF network derived from a flock
within the time period, labeled as Li t,τð Þ 2 ½0,1� (see “Methods”). The
larger the Li, the higher the leading role of individual-i. As illustrated in
Fig. 1d, bird-1 positioned at the top of LF network guides all the
downstream individuals, resulting in the largest L1 = 1. Conversely,
Bird-6, situated at the bottommost tier of the LF network, exhibits the
lowest L6 =0.

An in-depth study of the correlation between leader-follower (LF)
and motion salience (MS) enables us to disclose the role of individual
motion characters during the group formation to answer a funda-
mental question: what kind of motion characteristics does an indivi-
dual possess to lead the flock? Leader’s motion character could be
interpreted as the interaction rule about how the focal aligns with
neighbors after perceiving their motions. For example, according to
themobbingflock shown inFig. 1a,we calculate the LF network andMS
matrix (α =0) from a short period ½t � τ,t�, and then derive each
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individual’s leading tier (Li t,τð Þ) and average MS (Mi t,τð Þ) (Fig. 3a).
Interestingly, the two vectors composed of Li t,τð Þ and Mi t,τð Þ show a
strong positive correlation. Finally, for the mobbing flock within
t � τ,t½ �, we compute the Spearman correlation coefficient (ρ) between
the two vectors composed of Li t,τð Þ or Mi t,τð Þ over different combi-
nations of t and τ (see Fig. 3b for α =0, Fig. 3e for α = 1 and Supple-
mentary Movie 4). Compared with the mobbing flock (shown in Fig.
1a), we perform the same correlation analysis for circling and transit
flocks shown in Fig. 1b, c (see Fig. 3b–g). An intriguing observation
from our study is that, when considering the forward-oriented pre-
ference of visual perception (α = 1), both mobbing and circling flocks,
renowned for their highly maneuverable motions, demonstrate a
predominance of positive correlations between LF and MS across
different combinations of t and τ (Fig. 3e, f). This suggests that indi-
viduals with higher MS tend to play the higher-tier leading role for the
majority of a flock’s duration. By contrast, the transit flock displays
well-mixed positive and negative correlations between LF and MS at
different combinations of t and τ (Fig. 3g).

Next we extend the correlation analysis to three flocking datasets
(Fig. 3h–j). When α =0, three flocking datasets display quite similar ρ
distribution centered around 0. However, if we consider the forward-
oriented sight of birds16,50,51 (α >0), the two flocking datasets with
maneuver motions display the distribution of ρ dominated by positive
values, while the transit flock dataset still display the distribution of ρ
centered around 0. The domination of positive ρ occurred in the
situation of forward-oriented preference of perception (α >0) accords
with the spatial structure of the leading position, which aims to
investigate the relations between the leading tier and fraction of

neighbors present in the front view (Supplementary Note 6). The
findings illustrate that in mobbing and circling flocks, the higher
leading tier an individual occupies, themore likely it will be at the front
of flock to lead the group. In contrast, the transit flocks do not show
any preference between the leading tier and neighbors’ relative posi-
tion (Supplementary Fig. 25). Furthermore, even when controlling for
the average speed of a flock (e.g., categorizing three flocking datasets
by average speed in 1m/s intervals or average angular speed in 0.1 rad/
s intervals), we consistently observe predominantly positive correla-
tions between LF and MS across the majority of speed ranges in both
mobbing and circling datasets. This trend persists irrespective of
whether the categorization is founded on average speed or average
angular speed. However, such a pattern is not evident in the transit
dataset (Supplementary Figs. 26 and 27).

Given the well-known finding that faster individuals tend to
assume leadershippositions in animal groups52,53, twonatural concerns
arise regarding the correlation of MS-Speed and comparison of cor-
relation between LF-MS and LF-Speed. Here the Speed of each indivi-
dual are three types: average speed, average radial speed and average
angular speed. See Supplementary Note 7 for detailed introduction
and results. Interestingly, regardless of three flocking datasets and α
values in MS, correlation betweenMS and three types of Speed do not
demonstrate a significant positive or negative dominance. Moreover,
we perform the correlation analysis between LF and Speed, and then
compare the correlation of LF-MS and LF-Speed in three datasets. We
find that the flocks (or sub-flocks) with maneuver motions, such as
mobbing and circling flocks, show a notably stronger positive corre-
lation of LF-MS than that of LF-Speed (Supplementary Fig. 31).

Moving trajectory

Moving trajectory
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- - /2 0 /2
0

0.2

0.4

0.6

0.8

1
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Fig. 2 | Perception of motion salience in collective motions. a Diagram of MS to
quantify the relative movement changes of neighbor-j from the focal individual-i’s
first-person view. b The anisotropic effect of motion perception in Eq. (1) mimics
the idea that the perception capability diminishes as the focal individual’s first-
person sight extends from the front to theback. cThe anisotropic factorα ≥0 inMS

controls the fact of forward-oriented preference in biological perception. The
x-axis indicates the heading between two vectors v̂i and x̂ij , and y-axis corresponds
to the second or third term of right-hand of Eq. (1). If α =0, we ignore the blind area
ofmotionperception.With increasingα >0,we assume that the ability of individual
perceiving movements of around neighbors gradually narrows to the front vision.
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Conversely, for the transit flocks, the correlation of LF-Speed is sig-
nificantly greater than that of LF-MS (Supplementary Fig. 32). In sum-
mary, LF-MS may be more effective in describing the flocks with
maneuver motions, whereas LF-Speed is better suited for character-
izing flocks with smooth motions. These finding do not contradict the

well-known property that faster birds tend to occupy leadership
positions53,54. One reason is that we also observe a tendency for leaders
to fly at the front of the flock in the datasets we analyze (Supplemen-
tary Fig. 25). The difference between MS and Speed could mainly be
attributed to the scope of their respective definitions. As per the
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definition, MS directly or indirectly encompasses variations in posi-
tion, heading, speed and acceleration over a period of flock, whereas
three types of speed serve as scalar representations of collective
motions. It becomes apparent that speed, in contrast to MS, does not
offer a comprehensive attribute for discerning themodes of collective
motion, particularly in the case of highly agile flocks.

Individuals will accelerate convergence of velocity with neigh-
bors who have higher MS
Nonetheless, the empirical observation pertaining to MS and LF is
currently situated at the group level, underscoring the necessity for
additional research at the individual level to elucidate how individuals
alignwith neighbors upon perceiving theirMS. Such investigationswill
serve to strengthen the justification for translating empirical insights
derived from real flocks into mathematical models in swarm robotics.
In this context, our focus lies in individual-i’s computation of its
neighbor’s MS within the past interval ½t � τpre,t�, aimed at examining
the future trendofmotionchanges between the focal individual and its
neighbors during the subsequent time span of ½t,t + τnext�. For the
mobbing flock shown in Fig. 4a, b shows the perception of neighbors’

M1jðt,τpreÞ (and the normalization w1jðt,τpreÞ=
M1j ðt,τpreÞP
j2S1

M1j ðt,τpreÞ
) from the

focal bird-1 within the past period ½t � τpre,t� (colored by blue in Fig.

4a), and Fig. 4c displays the temporal velocity consensus v1 tð Þ � v2ðtÞ
� 	

between bird-1 and 2 within the subsequent period ½t,t + τnext� (colored
by red in Fig. 4a). We use two kinds of metrics to describe the trend of
motion changes between a pair of birds.

A common approach to represent motion trend is by calculating
the average of temporal velocity consensus over the interval
½t,t + τnext�, denoted as ϕijðt,τnextÞ= hviðtÞ � vjðtÞi. Then for bird-1, we
perform the correlation analysis between two vectors composed of
w1jðt,τpreÞ and ϕ1jðt,τnextÞ, respectively (Fig. 4d). It is intriguing that
across all individuals present in the flock, negative correlations
between wijðt,τpreÞ and ϕijðt,τnextÞ are consistently prevalent for dif-
ferent combinations of τpre and τnext (Fig. 4f). Moreover, we also notice
the persistence of this negative correlations in three flocking datasets
(Supplementary Fig. 34). This result agrees well with our intuition, as
seen from the perspective of individual-i. When perceiving its neigh-
bor-j who moved with significant motion changes (reflected in the
higher value ofwijðt,τpreÞ) in the past period ½t � τpre,t�, it could lead to
a less synchronized velocity consensus (indicated by a lower value of
ϕijðt,τnextÞ) in the subsequent period ½t,t + τnext�.

Another method is calculating the average slope of temporal
velocity consensus within the future period, which is denoted as
kijðt,τnextÞ= hslope of the curve viðtÞ � vjðtÞ at time ti (Fig. 4c) and the
slope at time t is calculated as vi tð Þ � vj tð Þ � vi t � 1ð Þ � vjðt � 1Þ. From
the definition, unlike ϕij t,τnext

� �
measures the degree of velocity

consensus in the future period, kij t,τnext
� �

directly depicts the change
rate of the convergenceor divergenceof velocity consensus. It isworth
noting that the value of ϕij t,τnext

� �
calculated from the subsequent

period may be impacted by the past Mijðt,τpreÞ. For example, a higher
Mijðt,τpreÞ may lead to the reduced velocity consensus between a pair
of birds by the endof ½t � τpre,t�, subsequently resulting in a lower level
of vi tð Þ � vjðtÞ at the beginning of ½t,t + τnext�. However, kij t,τnext

� �
overcomes this issue by solely indicating the rate of changes of vi tð Þ �
vjðtÞwithin the interval ½t,t + τnext�, irrespective ofwhether vi tð Þ � vjðtÞ is
high or low at the beginning of this interval.

Clearly, a larger value of kij t,τnext
� �

implies that two individuals
are aiming to alignwith eachothermore rapidly in the future. Figure4e
shows the correlation analysis between two vectors composed of
w1jðt,τpreÞ and k1jðt,τnextÞ for bird-1. Interestingly, Fig. 4g indicates that
among all individuals, positive correlations between wijðt,τpreÞ and
kijðt,τnextÞ prevail consistently across different combinations of τpre
and τnext. Furthermore, we also observe the enduring presence of this

positive correlations in three flocking datasets (MS with α =0 in Fig.
4h–j and MS with α = 1 in Supplementary Fig. 35). These phenomena
may assist us in comprehending why individuals with higher MS tend
to occupy the higher leading tier, because the positive correlations
couldbe interpreted that if neighbor-j is perceived to have a higherMS
by the focal individual-i (equals to higherwijðt,τpreÞ), the focal one will
be quicker to align with neighbor-j’s velocity (equals to higher
kijðt,τnextÞ). This perhaps leads to a time delay for individual-i to con-
verge with the heading of neighbor-j. Coincidently, the time delay
accords with definition of an LF relation fromneighbor-j to individual-i
in this study.

To ensure a thorough analysis of the results, we conduct the
correlation analysis betweenwij and kij (or ϕij) within the same period
of ½t � τpre,t� (Supplementary Fig. 36a), instead of using wij from ½t �
τpre,t� and kij (or ϕij) from ½t,t + τnext� respectively. The results show
that ϕijðt,τpreÞ continues to exhibit a predominance of negative cor-
relation with wijðt,τpreÞ (Supplementary Fig. 36b–d). It makes sense
that substantial alterationsmanifest in the relative positions of a pair of
birds, simultaneously resulting in a reduced level of synchronized
velocity consensus. However, shifting our focus to kijðt,τpreÞ, we could
not observe a prevalence of positive correlations between wijðt,τpreÞ
and kijðt,τpreÞ as opposed to the emergence of such correlations
between wijðt,τpreÞ and kijðt,τnextÞ in a consecutive timeframe (Sup-
plementary Fig. 36e–g). The disparity in correlation outcomes
obtained from kijðt,τnextÞ and kijðt,τpreÞ respectively confirms the
existence of a time delay for a bird to adapt its heading subsequent to
perceiving its neighbors’ motion.

Hence, our conclusion is that the prevalence of positive correla-
tions between wijðt,τpreÞ and kijðt,τnextÞ signifies that individuals will
accelerate the convergenceof velocitywith neighborswhohavehigher
MS. In other words, if individual-i detects neighbor-j with higher MS in
the past, it will promptly modify its heading to align more swiftly with
neighbor-j in the future.

Finally, this empirical finding motivates us to introduce the con-
cept of adaptiveMS-based (AMS) interaction in swarmmodel, such as,

vi t + 1ð Þ= v̂i tð Þ+
P

j2Si
wij tð Þv̂j tð Þ and wijðtÞ=

Mij ðt,τÞP
j2Si

Mij ðt,τÞ
(Fig. 5a and

“Methods”). In AMS, the coefficient wij signifies that the impact of
neighbor-j’s velocity is directly proportional to Mij . If individual-i
observes that neighbor-j has a higher MS compared to other neigh-
bors, individual-i will weigh the influences of neighbor-j more heavily
to adapt its heading in the subsequent step. As a result, this leads to a
better alignment between individual-i and j.

Adaptive MS-based interaction effectively captures the funda-
mental characteristics observed in real bird flocks
A natural concern arises regarding the capability of AMS to encapsu-
late the fundamental characteristics observed in actual bird flocks,
particularly its influence on shaping the development of nested and
hierarchical LF relations in collective motions. For the sake of com-
parison, we also consider two MS-free interactions: (i) adaptive inter-
action based on transient heading difference55,56 (ATHD), which could
adaptively make the neighbors with larger (or smaller) transient
heading difference exert larger (or smaller) influences on the focal
individual (Fig. 5b and “Methods”); (ii) average interaction17 repre-
senting the standard Vicsek model where the focal agent equally
interacts with its neighbors located in the sensing radius (Fig. 5c and
“Methods”).

To verify this, we use a self-propelled particle model in 3D, where
agents follow the local interaction rules, and the additional potential
well is imposed ononeof individuals to lead the flockcomeback to the
origin (see “Methods”). For example, starting from the same initial
conditions, the flock trajectories in Fig. 5a–c show that AMS and ATHD
interaction could make the informed individual (red trajectories)
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Fig. 4 | Correlation analysis between MS and average of (or average slope of)
temporal velocity consensus at the individual level.We use the flock within the
past time interval of ½t � τpre,t� (highlighted by blue in panel a) and to generate

M1jðt,τpreÞ (and the normalizationw1jðt,τpreÞ=
M1j ðt,τpreÞP
j2S1

M1j ðt,τpre Þ
, see panel b). c Thenwe

examine two kinds of metrics to describe the future trend of motion changes
between the focal individual-1 and neighbor-j in the subsequent time period of
½t,t + τnext� (highlighted by red in panel a). One is the average of temporal velocity
consensus, denoted asϕ1jðt,τnextÞ= hv1 tð Þ � vjðtÞi. Another is calculating the average

slope of ϕ1j t,τnext
� �

according to the curve of temporal velocity consensus (see

inset in panel c), denoted as k1j t,τnext
� �

= hslope of the curve v1 tð Þ � vj tð Þ at time ti.
The slope at time t is calculated as v1 tð Þ � vj tð Þ � v1 t � 1ð Þ � vjðt � 1Þ. For individual-1

in the flock shown in (a), we could perform the correlation analysis between two
vectors composed of w1jðt,τpreÞ and ϕ1jðt,τnextÞ, respectively (d), and between two

vectors composed of w1jðt,τpreÞ and k1jðt,τnextÞ, respectively (e). Across all indivi-

duals appeared in the flock, we observe the prevalence of negative correlations
between wijðt,τpreÞ and ϕijðt,τnextÞ (f), and positive correlations between wijðt,τpreÞ
and kijðt,τnextÞ (g) for different combinations of τpre and τnext. Note that one step

corresponds to 1/60 s inmobbing and transit datasets, and 1/30 s in circlingdataset.
In (h–j), we also observe the enduring presence of positive correlations between
wijðt,τpreÞ and kijðt,τnextÞ among all birds in three flocking datasets. In this figurewe

take α =0 to calculate MS.
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successfully lead the whole flock, but the average interaction fails.
Interestingly, we find that within the same period of time, the curva-
ture of trajectories generated by AMS (two peaks in Fig. 5d) is larger
than that of ATHD (one peak in Fig. 5e). It indicates that AMS could
generate more maneuver motions than that of ATHD. Furthermore, in
comparison with ATHD and average interaction, AMS interaction
results in highly nested LF relations (Fig. 5g) and a prevalence of
positive correlation between LF and MS (Fig. 5h).

To deeply understand the effect of AMS, we conduct the hybrid
simulations by integrating AMS with ATHD (or average interaction).
For instance, Supplementary Fig. 37 illustrates our approach where all
individuals initially followATHD (or average interaction), followedby a
gradual adjustment of the percentage of individuals utilizing AMS
from 0% to 100% (x-axis of Supplementary Fig. 37a, b). Subsequently,
we compare the nestedness of LF networks and distribution of LF-MS
correlation across varying percentages of individuals employing AMS.
Our findings indicate an increase in the nestedness of LF networkswith
a higher percentage of individuals utilizing AMS (Supplementary

Fig. 37a, b). Furthermore, as the number of individuals employing AMS
increases, the distribution of LF-MS correlation across different com-
binations of t and τ progressively shifts towards a prevalence of
positive correlation (Supplementary Fig. 37c, d). The results validate
the significant role of AMS interaction in shaping the emergence of
nested and hierarchical LF relationships in collective motions, as well
as replicating the trend of predominantly positive correlation between
MS and LF.

Note that MS is capable of capturing variations in both azimuth
and elevation angles in a 3D context, while in a 2D setting, it simplifies
assessment to changes solely in the azimuth angle within a plane. The
results obtained from simulations in 2D are consistent with those in 3D
(Supplementary Fig. 38). In addition, we introduce a configurable
parameter for the number of individuals leading the group to evaluate
the effectiveness of leadership in this simulation (see Supplementary
Note 8). Our findings indicate that AMS shows advantages over the
other two MS-free interactions in terms of promoting effective lea-
dership using fewer informed individuals.

0 5 10 15 20
t (s)

0

0.05

0.1

0.15

C
ur

va
tu

re
 o

f t
ra

je
ct

or
ie

s

0 5 10 15 20
t (s)

0

0.05

0.1

0.15

C
ur

va
tu

re
 o

f t
ra

je
ct

or
ie

s

0 5 10 15 20
t (s)

0

0.05

0.1

0.15

C
ur

va
tu

re
 o

f t
ra

je
ct

or
ie

s

Absence of MSPresence of MS

AMS ATHD Average

AverageAMS ATHD

a b c

d e f

g h

g

i(t)

j1(t)j2(t)

j3(t)

0

0.05

P
(

)

-1 -0.5 0 0.5 1
0

0.05

P
(

)

-1 -0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

P
(

)

-1 -0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

P
(

)

AverageAMS ATHD

AMS

AMS AMS ATHD Average
0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
es

te
dn

es
s

moving trajectorywithin

i(t)

j1(t)j2(t)

j3(t)

i(t)

j1(t)j2(t)

j3(t)
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Collective evacuation experiments in swarm robotics
Considering the impact of AMS in collectivemotions, we further adopt
it to swarm robotics (see “Methods” and Supplementary Fig. 40) to
demonstrate the advantages of self-organization in swarm experi-
ments. For simplicity in the experiments, we ignore the blind area of
motion perception and thus set α =0 in AMS.

Collective evacuation experiments are designed to explore the
impact of AMS on enhancing the self-organization of the swarm for

evacuating a narrow exit (Fig. 6a). Similar to the application of a drone
swarm successfully navigating in confined and cluttered environ-
ments, we integrate a state-of-the-art framework57 into the collective
evacuation experiments. This framework encompasses diverse forms
of interactions, including but not limited to aligned movement, colli-
sion avoidance between agent or agent-wall, and guidance for agents
to navigate towards the exit. In this study, AMS is only introduced into
the alignment component, replacing the commonly used average
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Fig. 6 | Collective evacuation experiments. The snapshots of collective evacua-
tion experiments for the swarm consisted of 50 robots using average interaction
(a), ATHD (b) and AMS with 100% MS (c). The exit width is 600mm. The colored
areas highlight the spatial distributions of the swarm. The spending time of all the
swarm evacuating the narrow exit as a function of different exit widths from
experiments (d) and simulations (e). The spending time as a function of different
percent of the swarm successfully passing the gate from experiments (f) and

simulations (g). In (d–g), the error bar represents the standard deviation (SD)
calculated from 10 independent experiments and 50 independent simulations. The
statistics of historical trajectories of all 50 robots in 10 independent experiments
(h) and 50 independent simulations (i). The color scales in (h), and (i) correspond to
the probability density estimate of historical trajectories. The black line indicates
the wall. The swarm size is 50 in the experiments and simulations.
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interaction in prior works8,57, while retaining the other relevant terms
(see “Methods” and Supplementary Fig. 41 for detailed information
about the swarm model of collective evacuation). Note that this
experiment has no informed robot to explicitly lead the swarm to
evacuate the narrow exit.

The spatiotemporal distributions of the swarm with 50 robots to
evacuate a narrow exit (600mm) are shown in Fig. 6a–c. When the
swarm utilizes average or ATHD interaction, the observed behavior
aligns with the intuitive anticipation that in cases where the exit is not
adequately spacious, the swarm would disperse and occupy the entire
space within the narrow exit58, ultimately leading to congestion (Fig.
6a, b and Supplementary Movies 5–7).

AMS interaction surpasses this limitation by spontaneously
inducing three distinct collective behaviors in sequence: first, the
swarm undergoes a contraction process away from the narrow exit;
then, it aligns directly with the center of the narrow exit; and finally, it
evacuates smoothly as a cohesive unit (Fig. 6c and Supplementary
Movies 5–7). In particular, we observe that in order to spare space for
swarm contraction, some individuals temporarily sacrifice their eva-
cuation time to move towards the opposite direction of the exit
(highlighted by red boxes in Supplementary Fig. 42). To gain a deeper
understanding of self-organization of AMS,we focus on comparing the
dot product between desired alignment heading v̂al,i and real moving
heading vi. Note that the other four parts of velocity components
except v̂al,i remain consistent across AMS, ATHD, and average inter-
action in the evacuation experiments (see “Methods” for details). After
analyzing the results shown in Fig. 6a–c, we find that the dot product
between viðtÞ and v̂al,iðtÞ in descending order is AMS, ATHD and
Average, and AMS has the least variance of dot product (Supplemen-
tary Fig. 43). It demonstrates that throughout the evacuation process,
AMS, compared to other interactions, enables each individual to
achieve maximum consistency between aligning with neighbors (v̂al,i)
and following the actual direction (vi, resulted from various types of
interactions with surrounding environments and neighbors) of
movement. Given that all individuals are potentially guided towards
the exit, if each individual maintains maximum alignment consensus
with neighbors and the actual direction of movement, the swarm
should be well-organized to efficiently evacuate through the narrow
exit. Moreover, we also test the correlation between wijðt,τpreÞ and
kijðt,τnextÞ for the swarm trajectories generated by three interactions
(Supplementary Fig. 43). The results show that only AMS indicates the
prevalence of positive correlation between wijðt,τpreÞ and kijðt,τnextÞ,
whereas we could not observe this in the other two interactions.

Therefore, for spending time of swarm evacuation, AMS interac-
tion shows tremendous advantages over average and ATHD interac-
tion. For instance, AMS interaction with 100% MS shortens the
evacuation time by about 18% compared to the average interaction
under three different gate widths (Fig. 6d, e). To fully understand the
advantage, we record the spending time as a function of the percent of
the swarm successfully evacuating the exit under different interaction
types (Fig. 6f, g) anddifferent swarm sizes (Supplementary Fig. 44). For
AMS, the evacuation time increases almost linearly with the percent of
the swarm that succeeds in exiting. Conversely, the average and ATHD
interaction divide the evacuation process into two stages: the first 80%
of the swarm spends the time as the same of AMS interaction, but the
last 20% evacuate very slowly. The findings align with the observed
phenomena in the experiments: when employing average or ATHD
interaction, robots positioned directly in front of the exit could evac-
uate smoothly, whereas robots situated on either side of the swarm
tend to rush straightly towards the sides of the exit, thereby leading to
congestion. Interestingly, AMS interaction could induce the swarm to
spontaneously emerge from the contraction process to directly face
the exit and then evacuate as a whole.

The spontaneous emergence of swarm contraction is also vali-
dated by the statistics of historical trajectories of all individuals from

10 independent experiments (Fig. 6h) and 50 simulations (Fig. 6i). (See
Supplementary Fig. 45 for statistics of historical trajectories of other
exit widths). Furthermore, different parameters, i.e., swarm size and
the top x%MS used in AMS interaction, are systematically investigated
to verify the generalization of AMS interaction in collective evacuation
(Supplementary Fig. 46).

Discussion
The research on collective behaviors of animal flocks and swarm
robotics is increasingly dependent and mutually supportive59–61. The
extraction of self-organization principles from animal groups is
essential for the development of bio-inspired distributed control
strategies in swarm robots. Conversely, these swarm robots serve as
crucial test-beds for validating the effectiveness and expanding the
potential applications of self-organization for collective tasks. Despite
extensive exploration of these three aspects, either independently or
as integral components of the research chain, a comprehensive
research continuum spanning from biological observation to bio-
inspired mechanisms and onward to swarm robotics is still lacking.

Our research endeavors to establish a comprehensive and inter-
disciplinary framework that involves the exploration of interactions
governing self-organization in collective motions, and the subsequent
applicationof theseprinciples to swarm robotics for collective tasks. In
particular, this study utilizes three large bird-flocking datasets
encompassing diverse ecological context andmotion patterns, namely
mobbing, circling, and transit. Given that the emergence of a leading
relation is intrinsically connected to the adjustment of movement
upon perceiving neighbors’ motions, we propose a heuristic measure
called perception of neighbors’ motion salience from the individual’s
first-person view, and systematically investigate the relationships
between MS and LF. At flock level, the correlation between MS and LF
indicates that individuals with higher MS tend to lead the group in the
maneuver motions. Delving deeper into the individual level, the cor-
relation between the past perception of MS and future change rate of
velocity consensus vividly suggests that individuals will accelerate the
convergence of velocity with neighbors who have higher MS. Hence,
the empirical evidence strongly supports the justification for incor-
porating the adaptive MS-based interaction observed in natural flocks
into swarm models.

We acknowledge collective behaviors (e.g., mobbing, roosting, or
transit) in relation to the ecological environment and physiological
characteristics of the study species. However, our primary focus of this
study is to elucidate the fundamental mechanisms that shape the
emergence of collectivemotions and subsequently translate them into
a bio-inspired swarmmodel, supported by explicit empirical evidence.
Regrettably, due to our limited expertise in ecology and animal
behavior,we are unable to thoroughly consider the intricate ecological
context in our analysis. For example, in the mobbing and transit
datasets15, Jackdaw (Corvus monedula) consistently forms long-term
monogamous relationships, with both parents contributing to rearing
the young. Consequently, the large number of individuals recorded in
these datasets encompasses mated pairs, unpaired individuals, and
juveniles.We openly admit that our analysis overlooks the influence of
pair-bonded relationships on quantifying MS, however, these rela-
tionships can notably impact MS measurements. We anticipate that
future research endeavors will address this gap, offering a more
nuanced understanding of MS within the ecological and physiological
attributes of the study species.

Besides, we believe that one of the advantages of MS eliminates
the necessity for an exhaustive depiction of the entirety of collective
motion processes. This is because MS only necessitates the relative
position of the initiation and termination time stamps during a given
interval tomeasure the relative alterations inmotion between a pair of
birds. As a result, MS offers a versatile approach that can be applied to
different types of collective tasks, making it highly adaptable and
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generic. Meanwhile, MS-based adaptive interaction could be readily
integrated into diverse modeling frameworks for collective tasks, pri-
marily requiring incorporation of the alignment term. For instance,
this approach is implemented in a swarm of miniature robots to con-
duct collective evacuation experiments, demonstrating notable
improvements in the self-organizationof the swarmfacilitatedbyAMS.
The swarm exhibits a spontaneous emergence of three distinct col-
lective behaviors in succession: initially undergo a contraction process
far from the narrow exit, then directly face the center of narrow exit,
and finally evacuate as a whole. The entire evacuation process effec-
tively prevents the congestion on both sides of the narrow gate.
Moreover, we also test the performance of AMS in another type of
swarm experiment known as collective following, which simulates the
collective behaviors observed during foraging activities62,63. As implied
by its name, collective following presupposes the presence of an
informed individual guiding the group towards multiple destinations
that frequently varyduring foraging activities. The results demonstrate
that AMS enables the swarm to promptly respond to the transient
perturbation, thereby sustaining a high level of collective responsive-
ness within the group (see details in Supplementary Note 9 and Sup-
plementary Movies 9–11). We believe that MS-based adaptive
interaction will have a positive translational impact on the deployment
of more advanced autonomous swarm robots64 and more sophisti-
cated collective tasks65–67.

While the MS-based adaptive interaction presents a promising
avenue for integrating bionic mechanisms into bio-inspired swarm
robotics, we acknowledge that significant efforts are still needed.
These efforts include advancing beyond the current position-based
measurement of MS to accurately reconstructing the retina-based
individual perception34,68,69, as well as bridging the disparity between
mathematical modeling of motion salience and perceptual devices on
robot70,71, etc.

Overall, this study underscores the significance of inter-
disciplinary integration in advancing the exploration of collective
behavior and illustrates a promising pathway for successfully trans-
lating bio-inspired mechanisms observed in natural flocks into the
realm of swarm robotics. Particularly noteworthy are the impressive
outcomes of self-organization observed in the swarm evacuation
experiments, emphasizing the pivotal role of swarm robotics as a
testing ground. These findings not only affirm the efficacy of bio-
inspired mechanisms but also broaden their scope for applications in
collective tasks, facilitating interdisciplinary collaboration across the
domains of biology, physics, engineering, and allied disciplines.

Methods
Constructing the leader-follower relation matrix of a flock
For a pair of individuals in a flock with the recording time from ts to te
(Fig. 1a), we could compute the temporal degree of motion alignment
between the focal one’s flying direction (v̂i) and those of neighbors (v̂j)
in the form of,

Cij t,τð Þ= v̂i tð Þ � v̂j t + τð Þ i≠ j, j 2 Si

� �
: ð2Þ

Here t is the time stamp, τ is the time interval belonging to
ts � te,te � ts
� �

, and Si indicates the collection of neighbors of the
focal i. Hereinafter, the vector symbols with hat (i.e., v̂i) means the
normalized vector. Note that due to the limitation of recording area in
the original observation studies, we roughly assume that, for a bird
flock from three dataset, Si represents all individuals appeared in the
flock when calculating Cij t,τð Þ.

For a given τ, the average of Cij t,τð Þ over different time stamps
within theperiod ½ts,te� is denoted as hCijiðτÞ. Thus,we collect the curve
of hCijiðτÞ as a function of τ. τLFij is the value tomake the curve of hCijiðτÞ
reach themaximal value.Wedisregard τLFij if it locates atfirst 25%or last
25% of τ-axis, as we consider this τ to be too short for directional

copying72. Meanwhile, τLFij is not considered if the maximal hCijiðτÞ is
not larger than 0.8. See Supplementary Fig. 16 for details. Note that
hCijiðτÞ≠ hCjiiðτÞ and τLFij ≠τ

LF
ji , because Eq. (2) does not satisfy the

exchange law for a pair of individuals.
Besides, within the circling dataset, we observe the assemblage of

numerous swifts hovering over the roost actually comprises multiple
sub-flocks. We find that LF relation matrix could successfully classify
the circling flocks into sub-communities with more similar motion
patterns (see Supplementary Note 2 and Supplementary Fig. 10 for an
example).

Quantifying the leading tier of each individual fromLF networks
The leading tier of each individual from an LF network of a flock within
t � τ,t½ � could be calculated by the local reaching centrality of an
unweighted directed graph42 as following,

Li =
1

N � 1
Σ

j2Si

1

dout
ij

, ð3Þ

where N is the number of nodes, dout
ij means the out-distance from

node i to node j, andSi = fj 2 f1, � � � ,Ngj0 ≤dout
ij <1g indicates the set of

nodes with finite out-distance from node i. For example, in an
unweighted directed graph, if node i without out-degree edges must
locate at the bottom layer, then dout

ij =1 and Li =0; if node iwith 1-step
out-degree edges to the rest nodes must locate at the top layer, then
dout
ij = 1 and Li = 1. Therefore, Li implies the hierarchical layer of each

node in a directed network. For a flock within the time period ½t � τ,t�,
we first calculate the LF network, and consequently yield the leading
tier of each individual Liðt,τÞ by Eq. (3). Note that we set the non-zero
elements in LF relation matrix as 1 when calculating Liðt,τÞ.

The adaptive MS-based interactions in swarm model
The prevalence of positive correlations between wijðt,τpreÞ and
kijðt,τnextÞ inspires us to introduce the adaptive MS-based interaction
(AMS) to the classical self-propelled swarmmodel17. In themodel, each
agentmoves towards a heading with a constant speed v0. The position
of agent i is updated as

xi t + 1ð Þ=xi tð Þ+ v0v̂i tð ÞΔt: ð4Þ

Hereinafter, v̂i tð Þ=viðtÞ=jjviðtÞjj is the normalized velocity of agent
i, and vi tð Þ is updated as

vi t + 1ð Þ= v̂i tð Þ+
X
j2Si

wijðtÞv̂j tð Þ: ð5Þ

Here, Si represents the neighboring agents (except i itself) within
a circle of sensing radius ral that is centered at agent i. wij is the
weighted coefficient to reflect the heterogeneity of local interactions
between a pair of individuals, which indicates the influences from
neighbors exerted on the focal individual. According to the findings in
bird flocks, AMS assumes that the neighbor with higher MS could
impose muchmore influences on the focal individual. Thus,wij , as the
coefficient of adaptive interaction, could be quantified by MS in the
form of,

wijðtÞ=
Mijðt,τÞP
Mijðt,τÞ

for j2Si, ð6Þ

where Mij t,τð Þ calculated by Eq. (1) equals the MS of neighbor j per-
ceived by agent i within the period ½t � τ,t�.

Furthermore, to further investigate the effects of paying more
attention to neighbors with larger MS in AMS, we introduce a tunable
percent parameter, denoted as x%, to select the neighbors from Si
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according to their MS values. For the focal agent i, (i) getting the
metric-based neighbor set Si by the given distance criterion ral and
calculating wij for j 2 Si based on Eq. (6); (ii) picking up a part of

neighbors as a new set Sx%
i if the cumulative sumofwij in a descending

order is just larger than x%; (iii) renormalizing wij =
wijP
wij

for j 2 Sx%
i

and settingwij =0 for j=2Sx%
i . Here AMS-x%means at least the top x% of

MS are involved in AMS. By this definition, the tunable x% could even
further amplify the attention effect of neighbors with higher MS. For
instance, if x%= 50%, AMS-50%makes the focal agent exclusively align
with the least neighbors cumulatively possessing the top 50% MS,
disregarding any influences from neighbors with the latter 50% MS.

The simulation of swarm model
For comparison purpose, we also consider two MS-free interactions.
One is a kind of adaptive interaction, called adaptive interaction based
on transient heading difference55,56 (ATHD). Unlike perceiving MS
within a time period, ATHD could adaptively make the neighbors with
larger (or smaller) transient heading difference exert larger (or smal-

ler) influences on the focal individual, such as,wijðtÞ=
sinðΔij ðtÞÞP
j2Si

sinðΔij ðtÞÞ
with

ΔijðtÞ= minfjθiðtÞ � θjðtÞj,2π � jθiðtÞ � θjðtÞjg 2 ½0,π�. θi tð Þ 2 ½�π,π�
denotes the heading of agent-i at time t. This interaction strength
adaptively increases with the increment of heading differences
between neighbors and the focal individual. Once the difference is
larger enough, i.e., larger than π=2 in ATHD, the contribution will
decrease and eventuallywill becomezero. AnotherMS-free interaction
is the commonly used average interaction, where wij = 1 for j 2 Si,
leading the adaptive interaction to degenerate to the standard Vicsek
model17. This implies that the focal agent interacts equally with
neighbors within its sensing radius.

In Fig. 5, we use a classical self-propelled particle model to com-
pare the above different interaction rules as following15,73,
vi t + 1ð Þ= v0ΩηðΘ½Pj2Si

wij tð Þvj tð Þ � βixi tð Þ�Þ. In this model, all particles
move with a constant speed v0 and align their directions of motion
based on the local interaction rules, with some noise added. The
operator Ωη imposes the noise through rotating the vector by a ran-
dom angle chosen from a uniform distribution with maximum ampli-
tude of η, and operatorΘ normalizes the argument to be a unit vector.
Note that the term �βixi tð Þ is introduced as additional potential well
that pushes particle i back towards the origin73. Here to mimic the
leading effect, the potential well is only imposed on individual-1 (β1≠0,
red trajectories in Fig. 5a–c) to lead the flock come back to origin, and
βi =0 for other particles. We run this model in 3D without boundary
conditions. Initially, particles are randomly distributed in a 3D sphere
with a radius of R = 50m andmove in randomdirections with constant
speed v0 = 10m=s. The parameters used in Fig. 5 are
N = 30, ral =30m,Δt =0:05 s,η = 0.05, and β1 = 0:08. We set the per-
ceiving time τ =20Δt in AMS.

Swarm robotics system
To demonstrate the implication of AMS to enhance the self-
organization of real swarming robots, we build a swarm robotics sys-
tem that consists of ∼ 102 miniature two-wheel differential mobile
robots in a motion capture arena (Supplementary Fig. 40). Each robot
is equipped with two stepper motors with reduction gears, a PCB
board (with STM32F103RC8T6 microcontroller) for motion control
and power management, a PCB board (with STM32F103RCT6 micro-
controller and NRF24L01 wireless communication module) for com-
munication and decision-making, and a marker deck at the top for
hosting passive infrared reflective balls (4–5 balls with diameter of
10mm) for localization (Supplementary Fig. 40a). The diameter of
robot’s main body is 60mm and the diameter of marker deck at the

top is 84mm. The robot, powered by two 3.7 V rechargeable lithium
batteries (2*800 mAh), can move according to specified linear and
angular speed control commands. A NOKOVmotion capture system is
used to track the robot position xðtÞ (center of body) and heading θðtÞ,
from which real-time linear speed vðtÞ and angular rate ωðtÞ of the
robot areobtainedbydifferential calculation. For simplicity, allmotion
control commands for swarming robots in our experiments are com-
puted on a service computer and then simultaneously broadcasted to
the swarm with a fixed time interval Δt through a customized wireless
communication protocol. After receiving the motion command of the
desired linear speed vdðt + 1Þ and heading θdðt + 1Þ calculated from the
swarm model, each robot performs the angular rate command
ω= minfΔθ=Δt,ωmaxg within a control loop, where Δθ=θdðt + 1Þ � θðtÞ
andωmax is themaximumangular rate. To guarantee the transferability
of the swarmmodel to hardware experiments, the system is capable of
sending motion control commands as fast as 20Hz (i.e., support
Δt ≥0:05 s) and capturing each robot’smotion states up to 300Hz.We
take the maximum angular rate ωmax = 19.1 deg/s in the swarm
experiments. See Supplementary Fig. 40c for the architecture of
swarm robotics system.

Due to the limitation of arena size, we perform the swarm
experiments with up to 50 robots (Supplementary Fig. 40b). However,
to perform the swarm experiments with hundreds of robots, we
transfer the real robots to semi-physical simulation with the same
motion characteristic in Pybullet (Supplementary Fig. 41c and Sup-
plementary Movie 8).

Swarm model of collective evacuation
The swarmmodel of collective evacuation in this work is inspired by a
state-of-the-art framework that enables drone swarm to navigate suc-
cessfully in confined and cluttered environments8,57. Adopting from
the original framework, it includes 5 parts for agent-i:
(i) alignment with neighbors in the sensing radius, v̂al,i;
(ii) repulsion among the near neighbors, v̂a

rep,i;
(iii) inter-agent collision avoidance, v̂a

col,i;
(iv) agent-wall collision avoidance, v̂wcol,i;
(v) guidance velocity for agent to pass through the exit, v̂g,i.

Thus, in any instant, the velocity for agent-i resulting from the
contributions above is

vi t +Δtð Þ= 1� δt

� �ðv̂al,i + v̂arep,iÞ+ v̂g,i + δtðv̂a
col,i + v̂

w
col,iÞ, ð7Þ

where δt = 1 if the collision avoidance of either inter-agent or agent-
wall is active at time t. Otherwise, δt =0. Once δt = 1, in order to
prevent the inter-agent or agent-wall collision avoidance, we reduce
the normal speed v0 to a very low level vcol. All the parameters used in
collective evacuation experiments and simulations are listed in
Supplementary Table 1.

The alignment exerted on agent-i is the weighted average of
neighbor-j’s velocity,

val,i = v̂i +
X
j2Sal,i

wijv̂j if dij < ral: ð8Þ

wij , calculated by Eq. (6), denotes theMS-based adaptive interaction. If
wij = 1, it reduces to the average interaction.

v̂a
rep,i represents the repulsion among inter-agent to push them

farther apart when the neighbors are closer than the pre-defined dis-
tanceda

rep. The repulsion term pushes the near neighbor j farther apart
as below,

varep,ij =
da
rep � d

ij

� �
xi�xj

dij
if dij <d

a
rep

0 otherwise
:

(
ð9Þ
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The total repulsion calculated for agent i with respect to the
repulsive set Srep,i = fjjdij <d

a
repg is va

rep,i =
P

j2Srep,i
va
rep,ij .

The inter-agent collision avoidance exerted on agent i from
neighbor j is similar with repulsion of Eq. (9), while the threshold of
inter-agent distance da

col to trigger the collision avoidance is smaller
than that of da

rep and we assume it only considers the neighbors are
standing in the front view within ½�π=2,π=2�, i.e.,

va
col,ij =

da
col � dij

� �
xi�xj

dij
if dij <d

a
col andffðv̂i, xj � xiÞ 2 ½�π=2,π=2�

0 otherwise
:

(

ð10Þ

Hereffðv̂i,xj � xiÞ represents the relative anglebetween neighbor-
j’s position and agent-i’s moving direction. Thus, vacol,i =

P
va
col,ij

for j 2 Sa
col,i = fjjdij <d

a
col andffðv̂i, xj � xiÞ 2 ½�π=2, π=2�g.

Besides, as the walls act the role of border in the experiments, we
assume the agent-wall collision avoidanceonly responds to the nearest
wall located in agent i’s front view:

vwcol,i =
xi � xw

i if dw
i <dw

col andff v̂i, x
w
i � xi

� � 2 � π
2 ,

π
2

� �
0 otherwise

:

(
ð11Þ

Here dw
col is distance of agent-wall collision avoidance, dw

i is dis-
tance between agent i and the nearest wall, and xw

i indicates position
of wall that are the nearest to agent i. Note that for simplification in the
calculations we assume the walls are consisted of many virtual cylin-
ders with diameter of 50mm (Supplementary Fig. 41b).

Finally, to ensure the goal-oriented swarm evacuation in a con-
fined environment, we assume that each virtual cylinder in the wall
could indicate the exit direction according to their location (Supple-
mentary Fig. 41b). Therefore, we consider that agent-i could receive
themoving guidance from the walls that are within a circle of radius rg
centered at agent-i,

vg,i =

P
kSw

i
v̂wk if dw

ik < rg
0 otherwise

:

(
ð12Þ

Here dw
ik means the distance between agent i and wall k,

Sw
i = fkjdw

ik < rgg is the collection of walls that located in a circle of
radius rg centered at agent-i, and v̂w

k represents the guidance direction
of wall k. The meaning of Eq. (12) is similar with the case that agent
walks along the wall to the exit if it is close to wall.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mobbing and transit datasets from ref. 15 have been deposited in
https://figshare.com/s/472d354cc9e823a8f48f. The circling dataset
from ref. 16 is available at https://doi.org/10.5061/dryad.p68f8.

Code availability
All source codes and minimal dataset related to the work can be found
at74 https://github.com/xiaoyandong08/Perception_of_Motion_Salience.
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& Ulrich, W. A consistent metric for nestedness analysis in eco-
logical systems: reconciling concept and measurement. Oikos
117, 1227–1239 (2008).

41. Saavedra, S., Reed-tsochas, F. & Uzzi, B. A simplemodel of bipartite
cooperation for ecological and organizational networks. Nature
457, 436–466 (2009).

42. Mones, E., Vicsek, L. & Vicsek, T. Hierarchy measure for complex
networks. PLoS ONE 7, e33799 (2012).

43. Itti, L. & Koch, C. Computational modelling of visual attention. Nat.
Rev. Neurosci. 2, 194–203 (2001).

44. Krasovskaya, S.&MacInnes,W. J. Saliencemodels: a computational
cognitive neuroscience review. Vision 3, 56 (2019).

45. Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. &Couzin, I.
D. Revealing the hidden networks of interaction in mobile animal
groups allows prediction of complex behavioral contagion. PNAS
112, 4690–4695 (2015).

46. Lemasson, B. et al. Motion cues tune social influence in shoaling
fish. Sci. Rep. 8, 1–10 (2018).

47. Poel, W. et al. Subcritical escape waves in schooling fish. Sci. Adv.
8, eabm6385 (2022).

48. Kano, F., Naik, H., Keskin, G., Couzin, I. D. & Nagy, M. Head-tracking
of freely-behaving pigeons in a motion-capture system reveals the
selective use of visual field regions. Sci. Rep. 12, 19113 (2022).

49. Bode, N.W. F., Faria, J. J., Franks, D.W., Krause, J. &Wood, A. J. How
perceived threat increases synchronization in collectively moving
animal groups. Proc. R. Soc. B. 277, 3065–3070 (2010).

50. Smith, K., Ba, S.O.,Odobez, J. &Gatica-Perez, D. Tracking theVisual
Focus of Attention for a Varying Number ofWandering People. IEEE
Trans. Pattern Anal. Mach. Intell. 30, 1212–1229 (2008).

51. Heras, F. J. H., Romero-Ferrero, F., Hinz, R. C. & Polavieja, G. G. de.
Deep attention networks reveal the rules of collective motion in
zebrafish. PLOS Comput. Biol. 15, e1007354 (2019).

52. Krause, J., Hoare, D., Krause, S., Hemelrijk, C. K. & Rubenstein, D. I.
Leadership in fish shoals. Fish Fish 1, 82–89 (2000).

53. Pettit, B., Ákos, Z., Vicsek, T. & Biro, D. Speed determines leadership
and leadership determines learning during pigeon flocking. Curr.
Biol. 25, 3132–3137 (2015).

54. Jolles, J. W., King, A. J. & Killen, S. S. The role of individual het-
erogeneity in collective animal behaviour. Trends Ecol. Evol. 35,
278–291 (2020).

55. Xiao, Y., Song, C., Tian, L. & Liu, Y.-Y. Accelerating the emergence
of order in swarming systems. Advs. Complex Syst. 23, 1950015
(2020).

56. Balázs, B., Vásárhelyi, G. & Vicsek, T. Adaptive leadership over-
comes persistence–responsivity trade-off in flocking. J. R. Soc.
Interface 17, 20190853 (2020).

57. Soria, E., Schiano, F. & Floreano,D. Predictive control of aerial swarms
in cluttered environments. Nat. Mach. Intell. 3, 545–554 (2021).

58. Garcimartín, A., Pastor, J. M.,Martín-Gómez, C., Parisi, D. & Zuriguel,
I. Pedestrian collectivemotion in competitive roomevacuation. Sci.
Rep. 7, 1–9 (2017).

59. Winfield, A. F. T., Harper, C. J. & Nembrini, J. In Proceedings of the
2004 international conference on Swarm Robotics 126–142
(Springer-Verlag, 2004).

60. Brambilla,M., Ferrante, E., Birattari, M. &Dorigo,M. Swarm robotics:
a review from the swarm engineering perspective. Swarm Intell. 7,
1–41 (2013).

61. Francesca, G. & Birattari, M. Automatic design of robot swarms:
achievements and challenges. Front. Robot. AI 3, 29 (2016).

62. Detrain, C. &Deneubourg, J.-L. InAdvances in Insect Physiology (ed.
Simpson, S. J.) Vol. 35, 123–173 (Academic Press, 2008).

63. Talamali, M. S. et al. Sophisticated collective foraging with minim-
alist agents: a swarm robotics test. Swarm Intell. 14, 25–56 (2020).

64. Zhou, X. et al. Swarmofmicroflying robots in thewild.Sci. Robot. 7,
eabm5954 (2022).

65. Talamali, M. S., Saha, A., Marshall, J. A. R. & Reina, A. When less is
more: robot swarms adapt better to changes with constrained
communication. Sci. Robot. 6, eabf1416 (2021).

66. Yang, L. et al. Autonomous environment-adaptive microrobot
swarm navigation enabled by deep learning-based real-time dis-
tribution planning. Nat. Mach. Intell. 4, 480–493 (2022).

67. Gardi, G., Ceron, S., Wang, W., Petersen, K. & Sitti, M. Microrobot
collectives with reconfigurable morphologies, behaviors, and
functions. Nat. Commun. 13, 2239 (2022).

68. Miñano, S., Golodetz, S., Cavallari, T. & Taylor, G. K. ThroughHawks’
eyes: synthetically reconstructing the visual field of a bird in flight.
Int. J. Comput. Vis. 131, 1497–1531 (2023).

69. Ravi, S. et al. Bumblebees display characteristics of active vision
during robust obstacle avoidance flight. J. Exp. Biol. 225, jeb243021
(2022).

70. Falanga, D., Kleber, K. & Scaramuzza, D. Dynamic obstacle
avoidance for quadrotors with event cameras. Sci. Robot. 5,
eaaz9712 (2020).

71. de Croon, G. C. H. E., De Wagter, C. & Seidl, T. Enhancing optical-
flow-based control by learning visual appearance cues for flying
robots. Nat. Mach. Intell. 3, 33–41 (2021).

72. Sridhar, V. H. et al. Inferring social influence in animal groups
across multiple timescales. Philos. Trans. R. Soc. B 378,
20220062 (2023).

73. Attanasi, A. et al. Collective behaviour without collective order in
wild swarms of midges. PLOS Comput. Biol. 10, e1003697 (2014).

74. Xiao, Y. et al. Perception of motion salience shapes the emergence
of collective motions. GitHub https://doi.org/10.5281/zenodo.
11123823 (2024).

Article https://doi.org/10.1038/s41467-024-49151-x

Nature Communications |         (2024) 15:4779 15

https://doi.org/10.5281/zenodo.11123823
https://doi.org/10.5281/zenodo.11123823


Acknowledgements
We thank Professors Nicholas T. Ouellette and Dennis J. Evangelista for
kindly sharing the flocking datasets. Y.D.X. is supported by the National
Natural Science Foundation of China (61902418). X.P. is supported by
the National Natural Science Foundation of China (62076203).

Author contributions
Y.D.X. conceived the project. Y.D.X. designed and managed the whole
project. Y.D.X. performed all the real data analysis, analytical/numerical
calculations, and simulations. Y.D.X. designed the collective evacuation
experiment. X.L. designed the collective following experiment. X.P.,
X.L., Z.Z., and Y.L.X. built the swarming robotic system. X.L., Y.L.X., and
Z.Z. performed swarm experiments. Y.D.X. wrote themanuscript. Y.-Y.L.
edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-49151-x.

Correspondence and requests for materials should be addressed to
Yandong Xiao or Xingguang Peng.

Peer review information Nature Communications thanks Marina Papa-
dopoulou and the other anonymous reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-49151-x

Nature Communications |         (2024) 15:4779 16

https://doi.org/10.1038/s41467-024-49151-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Perception of motion salience shapes the emergence of collective motions
	Results
	Flocks with higher maneuver motions display stronger nested leader-follower relations
	Perception of motion salience measures the relative motion changes
	Individuals with higher motion salience tend to lead the group in the maneuver motions
	Individuals will accelerate convergence of velocity with neighbors who have higher�MS
	Adaptive MS-based interaction effectively captures the fundamental characteristics observed in real bird�flocks
	Collective evacuation experiments in swarm robotics

	Discussion
	Methods
	Constructing the leader-follower relation matrix of a�flock
	Quantifying the leading tier of each individual from LF networks
	The adaptive MS-based interactions in swarm�model
	The simulation of swarm�model
	Swarm robotics�system
	Swarm model of collective evacuation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




