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Immune features are associated with
response to neoadjuvant chemo-
immunotherapy for muscle-invasive
bladder cancer

A list of authors and their affiliations appears at the end of the paper

Neoadjuvant cisplatin-based chemotherapy is standard of care for muscle-
invasive bladder cancer (MIBC). Immune checkpoint inhibition (ICI) alone, and
ICI in combination with chemotherapy, have demonstrated promising
pathologic response (<pT2) in the neoadjuvant setting. In LCCC1520
(NCT02690558), a phase 2 single-arm trial of neoadjuvant chemo-
immunotherapy (gemcitabine and cisplatin plus pembrolizumab; NAC-ICI) for
MIBC, 22/39 patients responded (pathologic downstaging as primary out-
come), as previously described. Here, we report post-hoc correlative analyses.
Treatment was associated with changes in tumor mutational profile, immune
gene signatures, and RNA subtype switching. Clinical response was associated
with an increase in plasma IL-9 from pre-treatment to initiation of cycle 2 of
therapy. Tumors harbored diverse predicted antigen landscapes that change
across treatment and are associated with APOBEC, tobacco, and other etiol-
ogies. Higher pre-treatment tumor PD-L1 and TIGIT RNA expression were
associated with complete response. IL-8 signature and Stroma-rich subtype
were associated with improved response to NAC-ICI versus neoadjuvant ICI
(ABACUS trial, NCT02662309). Plasma IL-9 represents a potential predictive
biomarker of NAC-ICI response, while tumor IL-8 signature and stroma-rich
subtype represent potential predictive biomarkers of response benefit of NAC-
ICI over neoadjuvant ICI. Future efforts must include additional independent
biomarker discovery and validation, ultimately to improve the selection of
patients for ICI-related treatments.

Bladder cancer is a common malignancy with over 80,000 new cases
and 17,000 deaths annually in the United States1. Despite aggressive
treatment including neoadjuvant chemotherapy and radical cystect-
omy (RC),muscle-invasive bladder cancer (MIBC) is a potentially lethal
disease with >50% of patients developing recurrent disease and
cancer-related death. Immune checkpoint inhibitors (ICI) have been
FDA approved for patients with advanced/metastatic disease; how-
ever, only a subset of patients derive long-term benefit2–5.

The incorporation of ICI in the neoadjuvant setting is a promising
strategy to improve outcomes in MIBC with two recent trials of
neoadjuvant ICI monotherapy reporting pathologic response rates
(<pT2) of 55 and 66%, and pathologic complete responses (pCR) seen
in 31 and 46%6,7. Adding ICI to first-line chemotherapy has beenmostly
unsuccessful in improving outcome for bladder cancer in the meta-
static setting except for the recent report of the addition of nivolumab
to gemcitabine-cisplatin8. However, we have observed high pathologic
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response rates to combination chemo-ICI (NAC-ICI) in MIBC in
LCCC1520 using gemcitabine and cisplatin plus pembrolizumab9 and
reported 14 of 39 (36%) patients experiencing pCR, and an additional 8
patients with pathologic downstaging, with improved recurrence-free
survival seen in those patients with pathologic downstaging.

Prediction of response to neoadjuvant ICI and NAC-ICI is crucial
since many patients do not benefit from treatment and significant
toxicities are common. Previously identified features associated with
ICI response include tumor mutation burden (TMB)10, neoantigen
burden11,12, expression of antigen presentation machinery13,14, DNA
damage response (DDR) pathway mutations15,16, PD-L1 expression11,17,
IFNγ signature18, intratumoral heterogeneity19,20, and microbiota
features21,22.Modelswith genomic,molecular, and clinical variables can
predict ICI responsewithmoderate accuracy (AUC=0.78–0.82) across
multiple cancer types including bladder cancer23,24. However, there is
not yet a comprehensive and accurate predictive model for chemo-ICI
response, or a predictive model in the neoadjuvant setting. The
interplay between chemotherapy and ICI has been studied, revealing
that while chemotherapy can inhibit ICI by suppressing T cell
function25, chemotherapy can also assist ICI by increasing tumor
inflammation25 and inducing immunologic cell death26.

In this work, we report molecular and cellular features associated
with response and survival following neoadjuvant gemcitabine and
cisplatin chemotherapy plus PD-1 inhibition with pembrolizumab in
MIBC. Treatment is associated with changes in mutational profile,
immune gene signatures, and RNA subtype switching of tumors.
Clinical response is associatedwith an increase inplasma IL-9 frompre-
treatment to initiation of cycle 2 of therapy. Tumors harbor diverse

predicted antigen landscapes that change across treatment and are
associated with APOBEC, tobacco, and other etiologies. Higher pre-
treatment tumor PD-L1 and TIGIT RNA expression are associated with
complete response. Finally, IL-8 signature and Stroma-rich subtype are
associated with improved response rates to NAC-ICI compared to
neoadjuvant ICI (from the ABACUS trial).

Results
Clinical features of NAC-ICI
A summary of the demographic, clinical, and pathologic findings in the
LCCC1520 trial of pembrolizumab plus gemcitabine and cisplatin in
MIBC has been previously published9. Out of 39 enrolled patients, 22
(56%) had a pathologic response (<pT2N0) and 14 (36%) had a com-
plete pathologic response. From LCCC1520, we have multiple speci-
mens (tumor, plasma, and PBMCs) and data types (DNA, RNA, flow
cytometry, and plasma analytes) across three timepoints (pre-treat-
ment/TURBT, cycle 2, and post-treatment/cystectomy) to evaluate
potential biomarkers of response (Fig. 1A). Response (pathologic
response) was not associated with pre-treatment clinical T stage
(Fig. 1B) or baseline ECOG performance status (Fig. 1C), or the occur-
rence of an adverse treatment-related event that required cessation of
chemotherapy (Fig. 1D), although no partial responders (pathologic
response <pT2N0 without pCR) had an adverse event.

Changes during NAC-ICI treatment
To understand how NAC-ICI alters the tumor microenvironment
(TME), we analyzed changes in non-pCR tumors from pre-to post-
treatment. We first analyzed changes in TMB, one of the better pan-
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cancer predictive biomarkers of response to ICI27. TMB decreased
between patient-matched pre-treatment and post-treatment tumors
(Fig. 2A), suggesting the possibility that immune editing–tumor evo-
lution occurred28. The decrease in TMB was not correlated with
changes in tumor purity estimated from pathology (Supplementary

Fig. 2A) or tumor cellularity calculated by Sequenza (Supplementary
Fig. 2B, C). Furthermore, the decrease in TMB does not appear to be
confounded by reduced detection of mutations in small tumors,
because the number ofmutations in paired pre-and post-treatment NR
and PR tumors is not significantly different at post-treatment

0.035

0

10

20

30

40

Pre−Treatment Post−Treatment

T
M

B

Non−pCR patients

0

792

T
M

B

ETV6

TBL1XR1

FGFR3

NOTCH1

CDKN2A

STAG2

TSC1

ERBB3

KDM6A

TP53

2%

2%

4%

6%

7%

9%

9%

13%

19%

43%

0 23
No. of samples

Patient
Timepoint

Missense_Mutation
Frame_Shift_Ins
In_Frame_Ins
Nonsense_Mutation

Frame_Shift_Del
Splice_Site
Multi_Hit

Timepoint

Post−Treatment
Pre−Treatment

B

A

TP53 KDM6A ERBB3 TSC1 STAG2 CDKN2A NOTCH1 FGFR3

G
ai

ne
d

Lo
st

R
et

ai
ne

d

G
ai

ne
d

Lo
st

R
et

ai
ne

d

G
ai

ne
d

Lo
st

R
et

ai
ne

d

G
ai

ne
d

Lo
st

R
et

ai
ne

d

G
ai

ne
d

Lo
st

R
et

ai
ne

d

G
ai

ne
d

Lo
st

R
et

ai
ne

d

G
ai

ne
d

Lo
st

R
et

ai
ne

d

G
ai

ne
d

Lo
st

R
et

ai
ne

d

0

2

4

6

C
o

u
n

t

Frame_Shift_Del

Missense_Mutation

Multi_Hit

Nonsense_Mutation

Splice_Site

C

Changes in mutations by patient, pre-to post-treatment

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

P
re

P
os

t

TP53
KDM6A
ERBB3

TSC1
STAG2

CDKN2A
NOTCH1

FGFR3

Timepoint (pre-versus post-treatment)

G
en

e

Frame_Shift_Del

Missense_Mutation

Multi_Hit

Nonsense_Mutation

Splice_Site

D

Pre-treatment molecular subtypes
E

F

Pre-Treatment Post-Treatment

G

Pre-Treatment Post-Treatment

Consensus subtype MDA subtype

BCell_60gene

Bindea_iDC

Bindea_NK_cellsBindea_Th2_cells
EMT_DOWN FTBRS

TCGA_IFNG
Vincent_IPRES_NonResponder

0

1

2

3

−1.0 −0.5 0.0 0.5 1.0
Absolute increase, pre−to post−treatment

-L
o

g
10

 p
ai

re
d

 W
ilc

ox
o

n
 p

−v
al

u
e

NS

Down, sig.

Up, sig.

Immune gene signatures,
non−pCR patients

H

IGK_Entropy

0

1

2

3

−30 0 30 60
% increase pre−to post−treatment

−L
o

g
10

 p
ai

re
d

 W
ilc

ox
o

n
 p

−v
al

u
e

Intratumor BCR and TCR diversity,
non−pCR patients

I

Lund UNC MDA TCGA Consensus

Changes in mutations by gene, pre-to post-treatment

Fig. 2 | MIBC tumors change with NAC-ICI. A TMB in pre-treatment and post-
treatment tumors from non-pCR patients (paired two-sided Wilcoxon test;
n = 15).BOncoplots of the 10most commonmutations in pre-and post-treatment
tumors compared between timepoints (n = 51 samples). C Mutations in non-pCR
tumors compared between pre-and post-treatment (n = 28 samples).DMutations
gained, lost, or retained from pre-to post-treatment in non-pCR tumors
(n = 28 samples). E Pre-treatment molecular subtype by patient according to
5 subtyping schemes (n = 37). F Change in Consensus subtype among non-pCR
patients frompre-treatment to post-treatment (n = 37).GChange inMDA subtype

among non-pCR patients from pre-treatment to post-treatment (n = 37).
H Changes in tumor RNA-based immune gene signatures from pre-to post-
treatment among non-pCR patients (two-sided Wilcoxon test; n = 37). I Relative
changes (differences divided by pre-treatment mean) in TCR and BCR diversity
metrics among non-pCR patients (two-sided Wilcoxon test; n = 37). For all box-
plots: centre =median; lower bound of box = 25th percentile; upper limit of
box = 75th percentile; lower whisker =minimum value, 25th percentile − 1.5*IQR;
upper whisker =maximum value, 75th percentile + 1.5*IQR.

Article https://doi.org/10.1038/s41467-024-48480-1

Nature Communications |         (2024) 15:4448 3



(Supplementary Fig. 2D), and the difference between median read
depth in pre-treatment (149.5) and post-treatment (136) tumors at
sharedmutational loci is small (Supplementary Fig. 2E). 6 of 14 tumors
lost mutations in the most frequently mutated gene, TP53 (Fig. 2B–D).
Next, we analyzed changes in tumor RNA-sequencing-basedmolecular
subtypes (Fig. 2E). 10/18 tumors switched to a stroma-rich Consensus
subtype (Fig. 2F), and 11/18 tumors switched to a p53-likeMDA subtype
(Fig. 2G), consistent with chemotherapy-induced subtype switching
reported by Seiler et al29. The observed subtype switching does not
appear to be confounded by changes in tumor cellularity (Sequenza)
or tumor purity between pre-and post-treatment samples (Supple-
mentary Fig. 1).

To assesswhether treatment altered gene expression in the tumor
immune microenvironment, we analyzed changes in previously
defined immune gene signatures24,30 (Fig. 2H). From pre-to post-
treatment, signatures for Innate anti-PD-1 Resistance non-response
(IPRES_NonResponder), fibroblast TGF-beta response (FTBRS), and
natural killer cells (Bindea_NK_cells) increased, while signatures for
immature dendritic cells (Bindea_iDC), T helper 2 cells (Bindea_Th2_-
cells), decreased epithelial-mesenchymal transition (EMT_DOWN),
B cells (BCell_60gene), and IFNγ (TCGA_IFNG) decreased (FDR-cor-
rected p <0.05). We also assessed changes in inferred intratumoral
BCR and TCR diversity metrics and observed decreased IGK entropy
from pre-to post-treatment (FDR-corrected p =0.011; Fig. 2I).

To measure systemic effects of treatment, we analyzed immune
populations and plasma analyte concentrations in peripheral blood
sampled at pre-treatment, pre-administration of cycle 2 (C2), and post-
treatment. From pre-treatment to pre-cycle 2, T cell populations
exhibited less PD-1 positivity, consistent with anti-PD-1 treatment
(Fig. 3A). CD4+ Helios + , CD4 +TIGIT +CD39 + , and CD8 +CD39+T
cells increased, showing expansion of anti-inflammatory or regulatory
populations31. CD39 expression may characterize neoantigen reactive
T cells32,33 and populationsmore likely to respond to ICI34. Additionally,
transitional B cells (Lineage- CD19 +CD10 + ) and twomyeloid-derived
suppressor cell (MDSC) populations decreased. In the plasma analytes,
only CXCL9, a chemotactic cytokine for T cells in the tumor micro-
environment (TME)35, increased between pre- and post-treatment
samples (Fig. 3B), but many pro-and anti-inflammatory analytes
increased frompre-treatment to pre-cycle 2 (Fig. 3C). IL-9 increased in
responders compared with non-responders (no pathologic response)
from pre-treatment to pre-cycle 2 (FDR-corrected p =0.047; Fig. 3D).
Overall levels of IL-9 decreased from pre-treatment to pre-cycle 2 in
patients who did not respond (Fig. 3E). The change in IL-9 during the
first cycle of NAC-ICI is a strong predictor of response (AUC =0.83,
p =0.001; Fig. 3F). In a logistic regression model, changes in IL-9
concentration were significantly associated with response (logistic
regression: p =0.015; likelihood ratio test versus null: p =0.001).
Finally, we assessed changes in T andB cell receptor diversity frompre-
to post-treatment and found no significant changes (Supplemen-
tary Fig. 2F).

Clinical correlates of pathologic response
Response to immunotherapy depends on specific T cell targeting of
tumor antigens36. We expected a subset of the tumor antigens to be
driving immunotherapy response in the chemo-immunotherapy regi-
men, so we analyzed the landscape of predicted antigens in pre-and
post-treatment tumors. Pre-treatment tumors exhibited a variety of
predicted antigens from multiple sources, including predicted anti-
gens from endogenous retroviruses (ERVs), indels, fusion events,
single-nucleotide variants (SNVs), and self-antigens (cancer testis
antigens; Fig. 4A). However, the number of predicted antigens per
patient did not track closely with response (Supplementary Fig. 4B),
TMB, Ayers IFNG signature, or CD8 T cell signature (Fig. 4A). We fur-
ther assessed the number of shared predicted antigens because these
could be attractive targets for development of biomarkers or vaccines

that couldhelpmultiple patients.While noneof the predicted non-self-
antigens were shared between patients, several predicted self-antigens
were shared between multiple patients (Fig. 4B). Most antigens were
lost or retained from pre-to post-treatment, with few antigens gained
across treatment; however, there was no response association with
type or count of antigens lost, retained, or gained across treatment
(Fig. 4C). Several of the predicted antigens passed the more stringent
antigen criteria of binding affinity, binding stability, and expression
from Wells et al. (Fig. 4D–F). To assess whether certain mutational
etiologies are targeted during chemo-immunotherapy response, we
analyzed the COSMIC signatures of SNV and indel mutations and
found a large proportion of the mutational landscape in both the pre-
and post-treatment samples is attributable to APOBEC activity
(Fig. 4G). We then predicted the most likely mutational signature for
each SNV and indel mutation. While there were no clear associations
between mutational signature and response, a current-smoker non-
responder (Patient 1) gained new tobacco-related mutations, and one
responder (Patient 2) gained platinum chemotherapy mutations dur-
ing treatment (Fig. 4H).

Next, to identify which patients would benefit most from chemo-
immunotherapy,we assessed the associations of pre-treatment clinical
and immunogenomic features with patient outcomes. We first ana-
lyzed the responseassociations of pre-treatmentTMB,RNAexpression
of 6 immune checkpoints (PD-1, PD-L1, TIGIT, LAG3, TIM3, and VISTA),
and Ayers IFNG signature. Surprisingly, pre-treatment TMB was lower
in partial responders than in non-responders (Fig. 5A). This effect
couldbe due to the interaction between TMBand the occurrenceof an
adverse treatment-related event that required cessation of che-
motherapy, since patients who went on to have an adverse treatment-
related event that required cessation of chemotherapy had higher pre-
treatment TMB (Fig. 5B, Supplementary Fig. 5A). Overall, pre-
treatment TMB was not significantly correlated with Ayers_IFNG sig-
nature (Supplementary Fig. 5B). Of the immune checkpoints, only two
were differentially expressed between response groups, with PD-L1
(Fig. 5C) andTIGIT (Fig. 5D) higher in complete responders than in non-
responders. PD-L1 expression and Ayers_IFNG signature were sig-
nificantly correlatedwith eachother (Supplementary Fig. 5C), andCD8
infiltration (Bindea_CD8_T_cells) was significantly associated with
many of the other immune gene signatures (Supplementary Fig. 5D).
Ayers_IFNG was lower in partial responders than in non-responders
(Fig. 5E). We did not observe significant differences in pre-treatment
Consensus subtype by response group (Fig. 5F). While response was
strongly associated with recurrence-free survival9, over 25% of non-
responders survived beyond 36months, thus we asked which features
were associated with survival in the non-responders. We found that
male non-responders survived longer than female non-responders
(Fig. 5G). The effect of gender on survival by response was not
observed in a comparison data set of metastatic urothelial cancer
treated with ICI (Supplementary Fig. 5E).

To summarize the independent effects of pre-treatment immune
gene signatures, immune checkpoint RNA expression, TMB, and clin-
ical variables in response and survival, we performed elastic net mul-
tivariable regression with 10-fold internal cross-validation. The
variables with the largest coefficients associated with better response
were Bindea CD8 T cell signature, stroma-rich Consensus subtype, and
IL-8 signature, while the variable with the largest coefficients asso-
ciated with worse response were Bindea iDC signature and current
smoker (Fig. 5H). Using themean coefficient values from 10-fold cross-
validation, the response model predictions were strongly associated
with response (Fig. 5I). The variables with the largest coefficients
associated with better survival were male gender, stroma-rich Con-
sensus subtype, and Bindea eosinophil signature, and the variables
with the largest coefficients associated with worse survival were
baseline ECOG performance status of 0, Macrophages signature, and
Martinez Gordon M2 signature (Fig. 5J).
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Comparison of NAC-ICI to neoadjuvant ICI
From a clinical perspective, it will be important to identify which
patients who are eligible for both chemotherapy and immunotherapy
would benefit from the combination. To investigate which patients
benefited from combination chemo-immunotherapy versus immu-
notherapy alone, we compared data from LCCC1520 to ABACUS7, a
trial of neoadjuvant atezolizumab, an anti-PD-L1 agent. First, we
assessed the associations of clinical, immune gene signatures, TMB,
Consensus subtypes, and immune checkpoint RNA expression with
response in LCCC1520 versus ABACUS. IL-8 signature and stroma-rich
subtype were associated with better response to NAC-ICI compared to
ICI alone (Fig. 6A). Patients with high pre-treatment IL-8 signature had

a higher response rate to NAC-ICI, while patients with low pre-
treatment IL-8 signature had similar response rates with NAC-ICI or ICI
alone (Fig. 6B–D). In patients treated with NAC-ICI, tumor IL-8 sig-
nature was associated with the eMDSC immune population in the
peripheral blood (FDR-corrected p =0.007; Supplementary Fig. 6A-B)
and with MDSC signature37 in the tumor (Supplementary Fig. 6C).
Among patients with pre-treatment stroma-rich Consensus subtype, a
higher response rate was observed in patients receiving chemo-
immunotherapy (6/7 patients) versus immunotherapy alone (1/8
patients), while among patients with other pretreatment Consensus
subtypes, similar survival was observed in patients receiving NAC-ICI
or ICI alone (Fig. 6E–F).
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Discussion
We describe here potential biomarkers of response to chemo-
immunotherapy in the phase II trial of neoadjuvant gemcitabine and
cisplatin plus pembrolizumab in patients with MIBC. In this paper, we
identify molecular and cellular features associated with outcome
including a comparison of neoadjuvant chemo-immunotherapy with
immunotherapy and chemotherapy alone.

Several key findings warrant future investigation. First, we
observed tumor molecular subtype switching from pre-treatment to
post-treatment, with many tumors switching to Consensus stroma-
rich, MDA p53 subtypes, an effect not associated with changes in
tumor cellularity. A similar pattern of subtype switching has been
observed by Seiler et al in response to neoadjuvant chemotherapy,
resulting in the CCR4-Scar-like phenotype38. Subtype switchingmaybe
caused by phenotypic transcriptomic changes, or by clonal expansion
of one subtype versus another in a heterogeneous tumor38. Seiler et al
found that patients with CCR4-Scar-like tumors went on to have the
most favorable prognosis. Because many of the tumors in
LCCC1520 switched to a Stroma-rich subtype, perhaps similar to the
CCR4-Scar-like phenotype assessed by Seiler et al, we hypothesize that
subtype switching on neoadjuvant chemo-immunotherapy could
improve patient outcomes post-therapy.

Second, we observed a set of genetic variants in tumors pre-and
post-treatment. Themost frequently mutated genes in the LCCC1520
pre-treatment tumors were TP53 and KDM6A, which are two of the
most commonly mutated genes in muscle-invasive bladder cancer39.
In the 14 non-pCR patients with paired pre-and post-treatment
samples, we observed an abundance of TP53 (10/14) and KDM6A
(5/14) mutations in the pre-treatment tumors. However, 6 of 10 TP53-
mutant tumors lost TP53mutations between pre-and post-treatment,
and 4/5 KDM6A-mutant tumors lost their KDM6A mutations between
pre-and post-treatment, suggesting that immune editing could have
occurred. Alternatively, treatment-induced clonal selection could
have occurred: TURBT could be a bottleneck event, where there is
only clonal outgrowth from a small population of a heterogeneous
original tumor.

In addition to tumor features, we also observed changes in the
immune markers in the peripheral blood across treatment. By flow
cytometry, we observed decreased PD-1 + T cells, increased
CD39+T cells, and decreased MDSCs. The decrease in PD-1 + T cells
could be due to pembrolizumab interfering with the PD-1 flow cyto-
metry antibody, but anti-PD-1 has alsobeen shownnot to interferewith
the specific flow cytometry antibody used40. CD39, along with its role
as a suppression and exhaustion marker, also has been shown to
delineate tumor-reactive CD8 +T cells and associates with response to
ICI but not chemotherapy34. Thus, the increase in CD39 +T cells could
correspond with an increase in tumor-reactive T cells in ICI treatment
but we did not specifically see an increase in CD8 + , CD39 + T cells in
responders. The decrease in MDSCs in the peripheral blood is con-
sistent with a treatment-driven reduction in suppressive populations.
Second, we found increases in the concentration of plasma cytokine
IL-9 in responders versus non-responders from pre-treatment to cycle
2 of treatment. IL-9 can stimulate an anti-tumor response by Th9 cells41

and has been shown to improve ICI response in amousemodel of lung
cancer42. Plasma IL-9 is potentially promising for testing as a predictive
non-invasive biomarker for response to NAC-ICI. IL-9 was the only
plasma analyte whose change from pre-treatment to pre-cycle 2 was
significantly associated with response, linking a change in a peripheral
blood population with the therapeutic effect on the tumor. We also
observed significant overall increases in multiple other analytes,
including IL-8, IL-10, IFN-y, and TNF-a, which could have stimulatory or
inhibitory immune effects.

We also assessed sequencing-based features associated with
outcomes. Using the LENS antigen prediction platform, we were able
to predict thousands of antigens from different sources and compare

these antigens head-to-head by immunogenicity features and by
treatment timepoint. We analyzed shared antigens because these are
attractive targets for development of biomarkers or vaccines that
could helpmultiple patients.We did not find any associations between
antigen types or counts and response.Whilewe cannot yet predictwell
which antigens aremost likely to induce an anti-tumor T cell response,
these data could help in future efforts to understand tumor antigen
immunogenicity. We did, however, see strong associations of two
pretreatment tumor features–IL-8 signature and Consensus stroma-
rich subtype–with improved response to chemo-immunotherapy ver-
sus a previously published studywherepatients received atezolizumab
without chemotherapy (ABACUS), suggesting that these features are
associated with the added response benefit of incorporating neoad-
juvant chemotherapy with immunotherapy. IL-8 is an immunosup-
pressive cytokine rich in the tumor microenvironment that is
associated with worse ICI response43,44 and recruitment of immuno-
suppressive MDSCs to the tumor45. Chemotherapy can decrease spe-
cific immunosuppressive myeloid populations, including MDSCs46,
suggesting that the response benefit in chemo-immunotherapy in IL-8
signature-high tumors could be due to the effects of chemotherapy on
cells that inhibit ICI response. If IL-8 is driving tumor immune resis-
tance, then adding chemotherapy to immunotherapy could provide
differential benefit. Consistent with this notion, tumor IL-8 signature is
correlated with the percentage of the peripheral blood eMDSC flow
cytometry population, and frompre-treatment to pre-cycle 2, both the
eMDSC and PMN-MDSC population percentages decreased. Tumor
stroma and stromal tumor-infiltrating lymphocytes also help mediate
bladder cancer response47, so the increased response in the stroma-
rich bladder cancer subtype could be associated with effects of che-
motherapy on the stromal compartment that improve ICI response.
We have previously shown in a stroma-rich preclinical model that
nanoparticle delivered gemcitabine and cisplatin are able to decrease
alpha-SMA positive cancer associated fibroblasts48. While it is impos-
sible to discern definitively the benefit of the immunotherapy in NAC-
ICI, this manuscript provides evidence that immunotherapy could
have effects (e.g. decreased % PD-1 + CD8 T cells), and these effects are
consistent with improved tumor response.

Several other potential biomarkers associated with outcome.
Females had worse survival among non-responders. While there are
too few females in the trial to assess factors influencing sex-specific
differential survival by response, these data suggest that a potential
biomarker of response might differ by sex. Additionally, iDC and
macrophages were associated with worse outcomes in our multi-
variablemodel. iDCs49 and tumor-associatedmacrophages50 both have
potential roles in attenuating tumor responses to ICB.

We also made several findings of unknown significance. First, we
observed increases in FTBRS signature and decreases in TCGA_IFNG
signature across treatment. High FTBRS signature4 and low
TCGA_IFNG51 have been associated with worse response to ICI, sug-
gesting that the post-treatment tumors might respond worse to any
future ICI treatment than if they had not been treated with NAC-ICI.
Second, we observed decreased IGK entropy from pre-to post-treat-
ment but no significant changes in BCR or TCR diversity. While
CDR3 sequences from IGK are abundant (54% of the B cell population),
no studies to our knowledge have documented that decreases in the
entropy of IGK are associated with NAC-ICI therapy. Third, we
observed that pre-treatment TMBwas not significantly correlated with
Ayers_IFNG signature, consistent with prior literature demonstrating
poor correlation between mutational burden and cytolytic
signatures52,53. While both TMB and Ayers_IFNG signature have been
proposed as potential predictive biomarkers of ICI response18,54, we
report differential associations of the two markers with NAC-ICI
response. Further clinical correlative analysis from future clinical trials
will need to be conducted to contextualize and to evaluate the gen-
eralizability of these findings.
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While analysis of the correlative data from this trial of neoadjuvant
chemo-immunotherapy presents interesting findings, it has several
limitations. The trial is small and has limited data for certain analyses,
increasing the likelihood of spurious findings. Validation on separate
chemo-immunotherapy cohorts in the future will be necessary. While
analysis of pathologic response is confounded by the fact that TURBT
removes much or all of the tumor, our data adds evidence that there

are immune-related predictors of response to TURBT plus NACI-ICI,
suggesting that not only TURBT but also the systemic treatment
associated with longer survival. The comparison immunotherapy-only
trial, ABACUS, used atezolizumab ICI instead of pembrolizumab, and
while both aremonoclonal antibody therapies that target the PD-1 axis,
the two drugs might have important functional differences. The
LCCC1520 and ABACUS patient populations are also different, with a
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younger age (median: 66 vs. 73 years) and higher percentage of
patients who have smoked (85% vs 78%) in LCCC1520 versus ABACUS.
It is difficult to compare trial response rates head-to-head because of
cohort and drug differences, but we compared differential response
within the trials. A prospective randomized trial evaluating the differ-
ent neoadjuvant treatment approaches with integrated biomarker
analyses will help to better define predictive biomarkers for response
and other clinical outcomes.

In summary, plasma IL-9, tumor IL-8 gene signature levels, and
tumor stroma-rich subtype represent potential biomarkers of
response to NAC-ICI. The eventual goal is to predict which patients
would have increased or decreased survival after chemo-
immunotherapy to aid patient selection. Future efforts must include
further independent biomarker discovery and validation, included
within the context of prospective clinical trials, ultimately to improve
the selection of patients for ICI-related treatments.

Methods
Consent and IRB approval
Our research was reviewed and approved by the institutional review
boards atDukeUniversity (DukeUniversityHealth System Institutional
Review Board) and UNC (UNC Institutional Review Board) and con-
ducted in accordance with the ethical criteria set by the Declaration of
Helsinki. All participants provided written informed consent for the
use of their tissue or peripheral blood for these correlative
assessments.

Clinical trial design
Study Protocol can be found in Supplementary Information. Patients
were enrolled between June 2016 andMarch 2020. Power calculations
and statistical tests complywith ICMJE guidelines on reporting and can
be found in Supplementary Information under “Sample Size, Power
Calculations, and Accrual”. Link to the NCT02690558 preregistered
protocol (September 25, 2018): https://cdn.clinicaltrials.gov/large-
docs/58/NCT02690558/Prot_SAP_000.pdf.

Patient cohort
We analyzed correlative samples from the LCCC1520 phase II trial of
neoadjuvant pembrolizumab and gemcitabine and split dose cisplatin
chemotherapy in patients with MIBC prior to RC. In this study, 39
patients were treated with pembrolizumab 200mg IV on day 1 in
combination with gemcitabine 1 g/m2 on day 1 and day 8, and cisplatin
35mg/m2 on day 1 and day 8 every 21 days for 4 total cycles. The first 6
accrued patients received one extra dose pembrolizumab 2weeks
prior toC1D1, and subsequent cisplatin at full dose (70mg/m2) onday 1
prior to a protocol amendment (Fig. 1A). Tumor tissue was collected
pre-treatment from transurethral resection of bladder tumor (TURBT)
samples and post-treatment radical cystectomy samples. Blood was
collected for peripheral blood mononuclear cells (PMBC) and plasma
pre-treatment, cycle 2 day 1, and prior to RC.

Response criteria
We defined response as <pT2N0 at cystectomy. We divided response
into partial response (>pT0 at cystectomy) and complete response
(pT0 at cystectomy).

Tumor purity analysis
Tumor purity was assessed for 5 tumors with matched pre-and post-
treatment samples. An expert pathologist [SW] estimated tumor
counts (papillary and invasive) as a percentage of total cells on
formalin-fixed paraffin-embedded slides stained with Hematox-
ylin & Eosin.

RNA/DNA isolation from bladder tumors
RNA and DNA were extracted from formalin-fixed, paraffin-
embedded (FFPE) tumor tissues at the UNC Lineberger Compre-
hensive Cancer Center Translational Genomics Lab (TGL). Genomic
DNA and RNA were extracted on the Promega Maxwell 16 MDx
instrument using the PromegaMaxwell 16 FFPE Plus LEV DNA or RNA
purification kits, respectively. DNA and RNA quantity and quality
were assessed with the Qubit Flex Fluorometer (ThermoFisher) and
the 4200 TapeStation system (Agilent), respectively. The nucleic
acids were stored at −80 °C until used in DNA and RNA sequencing
library preparations.

Whole-exome sequencing of tumors
Pre- and post-treatment sequencing libraries were prepared from
100ng of DNA using the Illumina DNA Prep with Enrichment kit and
the Illumina Exome Panel. During library preparation, DNA was
amplifiedwith IDT for IlluminaDNAUniqueDual Indexes, resulting in a
pool of twelve dual-indexed paired-end libraries that were sequenced
on Illumina’s NovaSeq 6000 (2 × 100) version 1.5.

TMB calculation
Realigned BAM files from Abra were passed through Strelka, Mutect2,
and Cadabra. High confidence variants were kept. To calculate the
denominator for TMB, samtools provided estimates of coverage depth
at each exome location and bases adequately covered by reads were
counted.

Neoantigen prediction
Predicted neoantigenswere identifiedusing the Landscapeof Effective
Neoantigens Software (LENS) with default parameters55. Antigens were
detected from single nucleotide variants (SNVs), insertions and dele-
tions (InDels), splice variants, gene fusions, viruses, and human
endogenous retroviruses (hERVs). Both SNVs and InDelswere detected
and filtered using the same workflow and parameter set. Specifically,
tumor and normal WES reads were trimmed using TrimGalore! v0.6.2
and mapped to the hg38 human genome reference using bwa mem
v0.7.17. RNA reads were also trimmed using Trim Galore! v0.6.2 and
aligned to thehg38human reference genomeusing STARv2.7.0 f. DNA

Fig. 5 | Clinical and immunogenomic features are associatedwithMIBCpatient
outcomes. A TMB levels from pre-treatment tumors are compared by patient
response status (n = 33 patients: 13 CR, 7 PR, 13 NR; two-sided Wilcoxon tests).
B TMB levels by an adverse treatment-related event that required cessation of
chemotherapy (n = 32 patients: 12 CR, 7 PR, 13 NR; two-sided Wilcoxon test).
C–E RNA expression of PD-L1 and TIGIT, and Ayers IFNG immune gene signature
values, frompre-treatment tumors are compared by patient response status (n = 37
patients: 14 CR, 8 PR, 15 NR; two-sided Wilcoxon tests). Groups are compared by
Wilcoxon p-value. F Consensus subtype of pre-treatment tumors by response class
(Fisher’s exact test, no FDR correction; n = 37 patients). G Kaplan-Meier survival
curves of female and male patients by response status. The difference in survival
between female and male responders is compared by log-rank p-value. H Cross-
validated elastic net coefficients of response, with only the feature coefficients
shown that have 95% confidence intervals from cross validation that do not span

zero (n = 33 patients). Points represent feature beta coefficients in each of 10 folds
of cross validation. Bars represent mean beta coefficient value for each feature
across 10-fold cross validation. Gray error bars represent 95% confidence intervals
for each feature. I Receiver operating characteristic curve of model predictions on
the training set. J Cross-validated elastic net coefficients of survival, with only the
feature coefficients shown that have 95% confidence intervals from cross validation
that do not span zero (n = 33 patients). Points represent feature beta coefficients in
each of 10 folds of cross validation. Bars represent mean beta coefficient value for
each feature across 10-fold cross validation. Black error bars represent 95% con-
fidence intervals for each feature. For all boxplots: centre =median; lower bound of
box = 25th percentile; upper limit of box = 75th percentile; lower whisker =
minimum value, 25th percentile − 1.5*IQR; upper whisker =maximum value, 75th
percentile + 1.5*IQR. Unless otherwise noted, all pairwise comparisons are two-
sided Wilcoxon tests.
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Fig. 6 | NAC-ICI could improve outcomes compared to neoadjuvant ICI in
specific subsets of patients. A Comparison of association of pre-treatment
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LCCC1520 (Chemo-ICI, n = 37). Each pre-treatment immune gene signature’s asso-
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line. B Response status by IL-8 signature in the two data sets. Loess curves are
plotted with error bands spanning the 95% confidence interval. C, D Response
status by data set in patients with high or low pre-treatment IL-8 signature values
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alignments were sanitized with Picard v2.21.4 for duplicate marking,
ABRA v2.20 for InDel realignment, and GATK v4.1.6.0 for base quality
recalibration. Somatic variants were called using MuTect2 from GATK
v4.1.6.0, Strelka v2.9.9, and ABRA v2.20. Variants from each tool were
filtered for PASS status and intersected among the variant callers. The
resulting variant set were annotated using snpEff with a custom
annotation. Transcript quantifications were performed using Salmon
v1.1.0 with a Gencode v37 annotation GTF. SNVs classified as missense
by snpEff’s annotations, were associated a transcript within the upper
quartile of expression (TPM), had at least one tumor RNA read con-
taining the variant, and had NetMHCpan v4.1b binding affinity
< 500nM were included in the LENS report. InDels classified as dis-
ruptive insertion, disruptive deletion, conservative insertion, con-
servative deletion, or frameshift, were associated with a transcript in
the upper quartile of expression, had at least one tumor
RNA read containing the variant, and had NetMHCpan v4.1b binding
affinity < 500nM were included in the LENS report. Splice variants
were detected using NeoSplice v0.0.3, a splice tumor antigen dis-
covery tool. Specifically, tumor-associated kmers were required to
exceed a tumor expression value of 20 and required not to exceed of 4
in a tissue-matched normal RNA sample (kmer_search_bwt.py’s
--tumor_threshold and --normal_threshold parameters, respectively).
Splice variants were also only considered if they originated from a
transcript with a minimum coverage of 100 reads (kmer_graph_infer-
ence.py’s --transcript_min_coverage parameter). Splice variant pMHCs
from NeoSplice were included in the LENS report if the peptide’s
coding sequence was independently detectable within the tumor RNA
sequencing reads and had a NetMHCpan v4.1b binding affinity
<500nM. Gene Fusion tumor antigens were detected using STARFu-
sion v1.10.1 using the associated CTAT Trinity reference. Fusion-
derived pMHCs were included in the LENS report if at least one read
supported the peptide’s coding sequence in the tumor RNA data and
the pMHC had a NetMHCpan v4.1b binding affinity <500nM. Viral
tumor antigens were detected using a modified VirDetect workflow
(Selitsky et al., 2020). Specifically, viruses with at least 25% coverage
from the tumor RNA reads were considered for peptide generation.
The list of potential peptides was generated using a sliding window of
kmer sizes 8–11 across the viral coding sequence. Peptides that had at
least one tumor RNA read supporting the peptide’s CDS and had a
NetMHCpan v4.1b binding affinity <500 nMwere included in the LENS
output. hERV tumor antigens were detected by augmenting the Gen-
code v37 annotation GTF with hERV coding sequences to obtain
quantification through Salmon v1.1.0. hERVs are known to be expres-
sed in normal tissues and these hERVs are unlikely to be suitable tumor
antigens. We filtered hERVs to a subset with at least 2-fold higher
expression in the tumor RNA sample over a normal, tissue-matched
RNA sample. This was performed using EdgeR to account for library
size bias through the counts per million (CPM) metric. Peptides that
survived filtering were used to generate a list of peptides using the
same sliding window approach as the viral workflow. Peptides that had
their coding sequences detectable within the tumor RNA reads and
had a NetMHCpan v4.1b binding affinity < 500nM were included in
the LENS report. Cancer testis antigens and self-antigens were
derived using a list of candidate cancer testis genes from CTDatabase
(http://www.cta.lncc.br/). Transcripts generated by these genes
were quantified using STAR v2.7.0 f and Salmon v1.1.0 and those above
the 95th percentile were included for downstream processing. A slid-
ing window approach, identical to the viral and hERV workflows, was
used to generate a peptide list. Peptides that had coding sequences
detectable within the tumor RNA reads and with a NetMHCpan v4.1b
binding affinity < 500nM were included in the LENS report.

RNAseq from tumor RNA
The SMARTer Stranded Total RNA-Seq kit v2 (Takara) was used to
generate sequencing libraries from the tumor RNA (50ng) as this kit

generates strand-specific Illumina-compatible libraries from partially
degraded nucleic acids. Paired-end sequencing was performed using
the NovaSeq 6000 version 1.0 or 1.5 (2 × 50). All sequencing for this
study was performed at the High Throughput Sequencing Facility
(HTSF) at the University of North Carolina at Chapel Hill.

Gene expression
Reads were aligned to the hg38 genome using STAR, and genes
were quantified using Salmon. On log2 transformed upper-
quartile normalized expression data, molecular subtyping was
performed using the BLCAsubtyping and consensusMIBC R
packages. Immune gene signatures were calculated as the z-score
value of all genes in the signature. T cell receptor (TCR) and B cell
receptor (BCR) repertoire diversity metrics were calculated using
FastQC and Mixcr56,57 from PBMCs as well as inferred from tumor
sequencing data.

RNA Isolation and RNAseq for CD3+ cells
Total RNA was isolated from bead selected CD3+ cells from patient
PBMC using Qiagen’s AllPrep DNA/RNA Mini kit per manufacturer’s
instructions. RNA quantity and quality were assessed with the Qubit 4
Fluorometer (ThermoFisher) and the 2200 TapeStation system (Agi-
lent), respectively. RNAseq libraries were prepared with Illumina’s
Stranded mRNA Prep Ligation kit, starting with 100ng of total RNA.
This method uses oligo(dT) magnetic beads to capture mRNAs with
polyA tails. Paired-end sequencing was performed using the NovaSeq
6000 version 1.0 (2 × 100).

Immunophenotyping of peripheral blood mononuclear
cells (PBMC)
PBMC immunophenotyping was designed, performed, and analyzed
by Immune Monitoring and Genomics Facility, UNC Lineberger
Comprehensive Cancer Center. Cryopreserved PBMCs were thawed
in Dextran-Albumin (CSL Behring #44206-251-10) solution and
washed with AIM-V CTS (Gibco #0879122DK)/5% of Human AB Serum
(Gemini#100-512), following cell resuspension in 1X HBSS (Gibco
#14175-095). Viable PBMC numbers were determined and distributed
at 2 million cells per patient per timepoint per assay tube. Flow
cytometry panels were used to analyze T cell (Supplementary
Table 1), B cell (Supplementary Table 2), and myeloid (Supplemen-
tary Table 3) subsets. Samples were aliquoted and analyses per-
formed separately for T, B, and myeloid cells. Intracellular staining
for Foxp3 in T cell panel and Ki67 in B cell panel were performed by
utilizing eBioscienceFoxp3/TF staining kit (ThermoFisher #00-5523-
00). All stained cells were acquired on BD LSRFortessa (Serial#
H64717700116). Gating strategy was based on fluorochrome minus
one (FMO) control staining to distinguish positive and negative
populations in each subset. All gating and subset analyses were done
by FlowJo v8 (Supplementary Fig. 3). Flow cytometry values were
standardized between aliquots by assessing parent population per-
centage. Percentages of parental populations were analyzed by
paired Wilcoxon tests.

Plasma analyte concentrations
Plasma protein levels were determined by multiplex immunoassay
provided by Meso Scale Discovery (Rockville, MD). The Custom 28-
Plex panel consisted of the 26 analytes in the U-PLEX Human Immuno-
Oncology Group 1 as well as two additional R-PLEX assays. For each
analyte measured, biotinylated capture antibodies were coupled to a
U-PLEX Linker assigned a specific spot arrayed at the bottom of plate
wells. Plasma samples were run in duplicate at 2-fold dilution. Detec-
tion antibodies utilized SULFO-TAGTM labeling, and the electro-
chemiluminescent signal was measured with the MESO QuickPlex SQ
120. Preliminary analyses and data organization were performed using
MSD Discovery Workbench 4.0.
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Code
Data analysis and figure generation were performed using R v4.3.0.
Packages used: ggplot2 v3.4.2, plyr v1.8.8, dplyr v1.1.2, maftools
v2.16.0, flipPlots v1.3.6, ggpubr v0.6.0, pROC 1.18.2, ggcorrplot v0.1.4,
gplots v3.1.3, scales v1.2.1, reshape2 v1.4.4, ggh4x v0.2.4, ggnewscale
v0.4.9, glmnet v4.1.7, caret v6.0.94, caTools v1.18.2, survival v3.5.5,
survminer v0.4.9, ggpmisc v0.5.5, matrixStats 1.0.0, ggrepel v0.9.3

Elastic net modeling
TMB, gene expression of 6 immune checkpoints (PD-1, PD-L1, TIGIT,
LAG3, TIM3, CTLA4, and VISTA), 61 immune gene signatures24 (Sup-
plementary Table 4), Consensus molecular subtype, and 5 clinical
variables (age, T stage, ECOG performance status, gender, and smok-
ing status) were evaluated for their associations with response and
survival. Variables were standardized (mean= 0, SD = 1) and samples
with any NA values were omitted. Elastic net regression with 10-fold
cross-validation was used to build an optimal model of response using
theRpackage caret (tuneLength = 10) and anoptimalmodel of survival
using the R package glmnet58. The β-coefficient mean and 95% con-
fidence interval from the 10 folds were calculated for each predictor.

Statistical analysis
Unlessotherwise noted, groupswerecomparedbyWilcoxon testswith
Benjamini-Hochberg FDR correction, and proportions were compared
by Fisher’s exact test.

ABACUS trial
A single-arm phase 2 study of neoadjuvant immune checkpoint ther-
apy in muscle-invasive bladder cancer7 (NCT02662309). In brief,
patients with histologically confirmed T2-T4a transitional cell carci-
noma of the bladder were treated with two 3weekly cycles of atezo-
lizumab pre-cystectomy. Tumor samples were harvested before
(TURBT) and after (cystectomy) treatment. RNA was extracted from
formalin-fixed paraffin-embedded tumor samples and sequenced
using Illumina sequencing-by-synthesis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
LCCC1520 trial: The processed DNA and RNA sequencing data gener-
ated in this study have been deposited in the dbGaP database under
accession code phs003452.v1.p1. The sequencing data are available
under restricted access due to data privacy laws.Request access canbe
obtained through dbGAP. Access is permitted for 1 year. Individual de-
identified patient clinical variables, besides patient age, are shared
(SupplementaryData 1). Additional source data to reproducemain and
Supplementary Figures. are available in Figshare [https://doi.org/10.
6084/m9.figshare.23705790]. Additional individual de-identified par-
ticipant data, including age, can be shared upon request to the cor-
responding authors. ABACUS trial: The raw sequencing data are
available under restricted access in the European Genome-Phenome
Archive7 under accession EGAD00001006205. Data access can be
granted via the EGA. The authors declare that all other data supporting
the findings of this study are publicly available within the paper and its
supplementary information files.

Code availability
Code to generate the data and figures for this study is available as
Supplementary Code 1.
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