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Intermittency in the not-so-smooth elastic
turbulence

Rahul K. Singh 1, Prasad Perlekar2, Dhrubaditya Mitra3 & Marco E. Rosti 1

Elastic turbulence is the chaotic fluidmotion resulting from elastic instabilities
due to the addition of polymers in small concentrations at very small Reynolds
(Re) numbers. Our direct numerical simulations show that elastic turbulence,
though a low Re phenomenon, hasmore in commonwith classical, Newtonian
turbulence than previously thought. In particular, we find power-law spectra
for kinetic energy E(k) ~ k−4 and polymeric energy Ep(k) ~ k−3/2, independent of
the Deborah (De) number. This is further supported by calculation of scale-by-
scale energy budget which shows a balance between the viscous term and the
polymeric term in the momentum equation. In real space, as expected, the
velocityfield is smooth, i.e., the velocitydifference across a length scale r, δu ~ r
but, crucially, with a non-trivial sub-leading contribution r3/2 which we extract
by using the second difference of velocity. The structure functions of second
difference of velocity up to order 6 show clear evidence of intermittency/
multifractality. We provide additional evidence in support of this intermittent
nature by calculating moments of rate of dissipation of kinetic energy aver-
aged over a ball of radius r, εr, from which we compute the multifractal
spectrum.

Turbulence is a state of irregular, chaotic, and unpredictable fluid
motion at very high Reynolds numbers (Re), which is the ratio of
typical inertial forces over typical viscous forces in a fluid. It remains
one of the last unsolved problems in classical physics. Conceptually,
the fundamental problem of turbulence shows up in the simplest
setting of statistically stationary, homogeneous, and isotropic turbu-
lent (HIT) flows: What are the statistical properties of velocity fluc-
tuations? More precisely, consider the (longitudinal) structure
function of velocity difference across a length-scale r :

SpðrÞ � δuðrÞ½ �p� �
, ð1aÞ

where δuðrÞ � uαðx + rÞ � uαðxÞ
� � rα

jrj : ð1bÞ

Here, u(x) is the velocity field as a function of the coordinates x
and the symbol �h i denotes averaging over the statistically stationary

state of turbulence. Here and henceforth, we use the Einstein sum-
mation convention, repeated indices are summed. The p-th order
structure function Sp is the p-thmoment of the probability distribution
function (PDF) of velocity differences—if we know Sp for all p then we
know the PDF. Typically, energy is injected into a turbulent flow at a
large length scale L, while viscous effects are important at small length
scales η, called the Kolmogorov scale, and dissipate away energy from
the flow. In the intermediate range of scales SpðrÞ∼ rζp where scaling
exponents ζp are universal, i.e., they do not depend on how turbulence
is generated. The dimensional arguments of Kolmogorov give ζp = p/3,
which also implies that the shell–integrated energy spectrum (dis-
tribution of kinetic energy across wavenumbers) E(k) ~ k−5/3, where k is
the wavenumber. Experiments and direct numerical simulations (DNS)
over last seventy years have now firmly established that the ζp(p) is a
nonlinear convex function—a phenomenon called multiscaling or
intermittency. Even within the Kolmogorov theory, turbulence is non-
Gaussian because the odd-order structure functions (oddmoments of
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the PDF of velocity differences) are not zero. Intermittency is not
merely non-Gaussianity, it implies that not only a few small order
moments but moments of all orders are important in determining the
nature of the PDF.Weoftenwrite ζp = p/3 + δp, whereδp are corrections
due to intermittency. A systematic theory that allows us to calculate ζp
starting from the Navier–Stokes equation is the goal of turbulence
research.

Turbulent flows, both in nature and industry, are often multi-
phase, i.e., they are ladenwith particles,may comprise fluidmixtures,
or contain additives such as polymers. Of these, polymeric flows are
probably the most curious and intriguing: the addition of high
molecular weight (about 107) polymers in 10–100 parts per million
(ppm) concentration to a turbulent pipe flow reduces the friction
factor (or the drag) up to 5–6 times (depending on concentration)1–3.
Evidently, this phenomenon, called turbulent drag reduction (TDR),
cannot be studied in homogeneous and isotropic turbulent flows;
nevertheless, polymer-laden homogeneous and isotropic turbulent
(PHIT) flows have been extensively studied theoretically4–6,
numerically7–23, and experimentally24–28, to understand how the pre-
sence of polymers modifies turbulence, following the pioneering
work by Lumley29 and Tabor and de Gennes30. The simplest way to
capture the dynamics of polymers in flows is to model the polymers
as two beads connected by an overdamped spring with a character-
istic time scale τp. A straightforward parameterization of the impor-
tance of elastic effects is the Deborah number De ≡ τp/τf, where τf is
some typical time scale of the flow. In turbulent flows, such a defi-
nition becomes ambiguous because turbulent flows do not have a
unique time scale, rather we can associate an infinite number of time
scales even with a single length scale31–33. In such cases, a typical
timescale used to define De is the large eddy turnover time of the
flow, τL

23. The phenomena of PHIT appear at high Reynolds and high
Deborah numbers.

Research in polymeric flows turned in a novel direction when it
was realized that even otherwise, laminar flows may become unstable
due to the instabilities driven by the elasticity of polymers34,35. Even
more dramatic is the phenomena of elastic turbulence (ET)36, where
polymeric flows at low Reynolds but high Deborah numbers are
chaotic and mixing, with a shell–integrated kinetic energy spectrum
E(k) ~ k−ξ. It is still unclear whether this exponent is universal or not –
experiments and DNS in two dimensions have obtained 3≤ξ≤4, and
theory37 sets a lower bound with ξ > 3. A three-dimensional DNS of
decaying homogeneous, isotropic turbulence with polymers additives
(modeled as discrete dumbbells) also revealed an exponent ξ ≈ 4 at late
times (with a mild De dependence), when turbulence had sufficiently
decayed and elastic stresses were dominant, likely marking the onset
of ET18. In summary, as shown in Fig. 1, HIT (in Newtonian turbulence)
appears at large Re and zero (and small) De; PHIT appears at large Re
and intermediate De number, while ET appears at small Reynolds and
large Deborah numbers.

Recently, experiments24 and DNS23 revealed an intriguing aspect
of PHIT: The energy spectrum showed not one but two scaling ranges,
a Kolmogorov-like inertial range at moderate wave numbers and a
second scaling range with E(k) ~ k−2.3 resulting purely due to the elas-
ticity of polymers23. This is illustrated in the gray shaded region in
Fig. 1. Evenmore surprising is theobservation thatboth of these ranges
have intermittency correction δp which are the same. This hints that
even at low Re, where elastic turbulence (ET) appears, intermittent
behavior may exist. In this paper, based on large resolution DNS of
polymeric flows at low Reynolds number, we show that this is indeed
the case.

Results
We generate a statistically stationary, homogeneous, isotropic flow of
a dilute polymer solution by the DNS of the Navier-Stokes equations
coupled to the evolution of polymers described by the Oldroyd-B

model:

ρf ∂tuα +uβ∂βuα

� �
= � ∂αp+∂β 2μfSαβ +

μp

τp
Cαβ

 !
+ ρfFα , ð2aÞ

∂tCαβ + uγ∂γCαβ =Cαγ∂γuβ +Cγβ∂αuγ �
1
τp

Cαβ � δαβ

� �
: ð2bÞ

Here, u is the incompressible solvent velocity field, i.e., ∂βuβ =0,
p is the pressure, S is the rate-of-strain tensor with components
Sαβ ≡ (∂αuβ + ∂βuα)/2, μf and μp are the fluid and polymer viscosities, ρf

is the density of the solvent fluid, τp is the polymer relaxation time, and
C is the polymer conformation tensor whose trace Cγγ is the total end-
to-end squared length of the polymer. To maintain a stationary state,
we inject energy into the flow using an Arnold-Beltrami-Childress
(ABC) forcing, i.e., F = ðμf=ρf Þ½ðA sin z +C cos yÞ x̂ + ðB sinx +A cos zÞ
ŷ+ ðC sin y+B cos xÞ ẑ�. The injected energy is ultimately dissipated
away by both the Newtonian solvent (εf) and polymers (εp). The total
energy dissipation rate, εT

� �
, is given by:

εT
� � � εf

� �
+ εp
D E

ð3aÞ

where εf �
2μf

ρf
SαβSαβ
� �

; εp � μp

2ρfτ2p
Cγγ � 3
� �

: ð3bÞ

We show typical snapshots of the two energy dissipation rates on
two-dimensional slices of our three-dimensional DNS in Fig. 2. Details
on numerical schemes and simulations are discussed in the Methods
section.

TheNewtonianABCflowshowsLagrangian chaos in the sense that
the trajectories of tracer particles advected by such a flow have sen-
sitive dependence on initial condition38. Hence we expect that a
polymer advected by the flow will go through a coil-stretch transition
for large enough τp. The back reaction from such polymers may give
rise to elastic turbulence. The energy spectra of the Newtonian flows
(and those for our non-Newtonianflowswith small τp) do not show any
power-law range, and drop-off rapidly in wavenumber k, see Fig. (S1a)
in the Supplementary Material. Beyond a certain value of τp, the flow
becomes chaotic, and the resulting flowswith De ≳ 1 are able to sustain
elastic turbulence.Henceforthwe focus onlyon theflows that showET.

Note an important difference between ET and usual Newtonian
HIT. In the latter, the Kolmogorov length (or time) scale is defined as
the scale where the inertial and viscous effects balance each other.
Although we continue to use the same definition – Reλ and τK are
calculated from the Newtonian DNS – these scales lose their usual
meaning because ET appears at small Re at scales where the inertial
term is negligible. The η we obtain is, as expected, quite close to the
scale of energy injection. Therefore, weuse the box-size L,which is also
the scale of energy injection, as our characteristic length scale.

We present our results for three different Deborah number flows
with De = 1, 3, and 9 and Taylor scale Reynolds number Reλ ≈40. Let us
begin by looking at the (shell–integrated) fluid energy spectrum

EðkÞ �
Z

d3m ûðmÞûð�mÞ� �
δðjmj � kÞ, ð4Þ

where ûðmÞ is the Fourier transform of the velocity field u(x). We show
the spectra for the three De numbers in Fig. 3a. The spectra E(k) show
power-law scaling over almost two decades when plotted on a log-log
scale. Clearly, E(k) ~ k−ξ with ξ = 4 independent of the Deborah number.
Note that in DNS of decaying PHIT, ξ goes from 2.3 to 4 (and beyond as
turbulence decayed) as time progresses18. While ξ = 2.3 was recently
confirmed for PHIT via bothDNS23 and experiments24, we now show via
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DNS that ET is, in fact, a stationary state marked by ξ = 4 which is
sustained by purely elastic effects, for a large enough polymer
elasticity.

We have verified, using representative DNSs, that the scaling
exponents of ET remain the same if we use the FENE-P model for
polymersor a different forcing scheme39, that is notwhite–in–time.We
have also checked that reducing the resolution toN3 = 5123 reproduces
the same spectra. Finally, we have turnedoff the advective nonlinearity
in (2a) and also obtained the same spectra, thereby confirming that the
turbulence we obtain is purely due to elastic effects. We plot all these
spectra in Fig. (S1) of the Supplementary Material.

We also define the energy spectrum associated with polymer
degrees of freedom as

EpðkÞ �
μp

ρfτp

 !Z
d3m B̂γβðmÞB̂βγð�mÞ

D E
δðjmj � kÞ, ð5Þ

where the matrix B with components Bαγ is the (unique) positive
symmetric square root of the matrix C, defined by Cαβ=BαγBγβ40,41. We
obtain Ep(k) ~ k−χ with χ = 3/2, as shown in the log-log plot of Ep(k) in
Fig. 3b. Note that the scaling range of Ep(k) is somewhat smaller than
that of E(k). In the statistically stationary state of ET, the effect of the
advective nonlinearity must be subdominant. Hence, at scales smaller

than the scale of the external force, the viscous term in themomentum
equation must balance the elastic contribution37. Using a straightfor-
ward scaling argument, described in detail in the Supplementary
Material, section IB, we obtain :

ξ =2χ + 1, ð6Þ

which is satisfied by the values of ξ and χ we obtain. For further con-
firmation, we calculate all the contributions to the scale-by-scale
kinetic energy budget in Fourier space (see the Supplementary
Material, section IA). As expected, the contribution from the advective
term in (2a) is negligible. Earlier theoretical arguments37 have
suggested ξ > 3, which has also been observed in experiments42–44 –

ξ ≈ 3.5 over less than a decade of scaling range. We obtain ξ ≈ 4, which
satisfies the inequality and agrees with shell-model simulations45.
Earlier theoretical arguments37,46 had also assumed the samebalance in
the momentum equation that we have, but in addition, had assumed
scale separation and a large-scale alignment of polymers in analogy
withmagnetohydrodynamics, obtaining ξ = χ + 2, which is not satisfied
by our DNS.

Note further that experiments often obtain power-spectrum as a
function of frequency, and they can be compared with power-
spectrum as a function of wavenumber (typically obtained by DNS)
by using the Taylor “frozen-flow” hypothesis47. In the absence of a
meanflowandnegligible contribution from the advective term it is not
a priori obvious that the Taylor hypothesis should apply to ET.Wehave
confirmed from our DNS that a frequency-dependent power spectrum
obtained from a time series of velocity at a single Eulerian point also
gives ξ = 4 (see the Supplementary Material, Fig. (S1b)).

Second order structure function
Next, we consider the second-order structure function, S2(r), which is
the inverse Fourier transform of E(k). This requires some care. As a
background, let us first consider the case of HIT (Newtonian homo-
geneous and isotropic turbulence). Let us ignore intermittency and
concentrate on scaling a-la Kolmogorov. The second-order structure
function is expected to have the following form

S2ðrÞ∼
rζ 2 for L> r >η,

r2 for η> r >0:

(
ð7Þ

The range of scales L > r > η is the inertial range. Let us remind
the reader that thebehavior S2 ~ r2 for small enough r follows from the
assumption that the velocities are analytic functions of coordinates,
which must always hold for any finite viscosity, however small. We
call S2 ~ r2 the trivial scaling. The strategy to extract the exponent ζ2
from DNS is to run simulations at higher and higher Reynolds

Fig. 1 | Polymeric flows. An illustrative sketch of the different regimes of polymer-
laden flows: classical Newtonian turbulence (HIT) at large Re and zero (or small) De,
polymeric turbulence (PHIT) at large Re and intermediate De, and elastic turbulence
(ET) at small Re and large De. The shaded region shows the recently observed
elastic scaling regime in addition to the classical Kolmogorov scaling23,24.

Fig. 2 | Flow visualizations.Two-dimensional slices of the three-dimensional domain showing snapshots of the normalized (a) fluid dissipation field εf= εf
� �

and of (b) the
polymer dissipation field εp= εp

D E
in ET for De = 9.
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numbers, which means smaller and smaller η to obtain a significant
inertial range from which ζ2 can be extracted. In Kolmogorov theory
ζ2 = 2/3, we call this the non–trivial scaling. The theory of ET is much
less developed than that of HIT. Nevertheless, we may assume that
the velocities must still be analytic functions. Hence for ET the fol-
lowing must hold

S2ðrÞ∼ r2 for r ! 0: ð8Þ

As this scaling follows directly as a consequence of the analyticity
of velocities, we again call this trivial scaling. If there is a non–trivial
scaling of second order structure function in ET – here we are not
talking about intermittency corrections to a non-trivial scaling but just
the existence of the non-trivial scaling exponent – it may show up in
the following manner

S2ðrÞ∼
rζ 2 for L> r > ‘,

r2 for ‘> r >0:

(
ð9Þ

This requires the introduction of a new length scale ℓ which can-
not depend on Reynolds number because in ET we are already in the
range of small and fixed Reynolds number. The scale ℓmay depend on
the Deborah number. To check if it does, we plot S2(r)/r2 for
three different De ranging from 1 to 9 in the Supplementary Material
Fig. (S3b). At small enough r they all show S2 ~ r2. As r increases they all
depart from this trivial scaling at a length scale ℓ which depends very
weakly on De, if at all. This implies that even if a non–trivial scaling for

S2 exists in ET, it may require DNS at impossibly high De to be able to
extract ζ2. Nevertheless, we have now demonstrated that in ET:
(a) S2 shows trivial scaling at small r, i.e., the velocity field is

analytic, and
(b) there is a departure from the trivial scaling.

Does the departure from the trivial scaling show a new scaling
range? To explore this possibility we plot on a log-log scale S2(r) as a
function of r in the Fig. (S3a) of the Supplementary Material, but it is
unclear if there is a clear scaling range at intermediate r. Even if there is
a non–trivial scaling exponent, it cannot be detected from the data,
which is the highest resolution DNS of ET done so far.

It often helps to detect a scaling range if we know beforehand
what the scaling exponent is. In ET, unlike HIT, there is no theory that
tells us what ζ2 should be, but we do know that the Fourier spectrumof
energy behaves like E(k) ~ k−ξ, with ξ ≈ 4 (see Fig. 3a). Usual straight-
forward power counting implies that S2(r) ~ rξ−1 ~ r3 (see section IB of
Supplementary Material for details), while we obtain S2 ~ r2. This
paradox is resolved by noting that, in the limit r→0, r3 is subdominant
to r2, hence S2(r) ~ r2 as r→0 for any velocity field whose spectra
E(k) ~ k−ξ with ξ > 3, see e.g., Ref. [48, Appendix G]. This is also known
from the direct cascade regime of two-dimensional turbulence (with
Ekman friction) where E(k) ~ k−γ with γ > 3 and S2(r) ~ r2, see e.g., Refs.
[49,50, page 432]. This suggests that S2(r) satisfies (9) with ζ2 = ξ − 1 ≈ 3.
To test this, we plot the compensated second-order structure function
S2(r)/r3 as a function of r in the Supplementary Material Fig. (S3c). We
detect no range at small or intermediate r where this non-trivial
scaling holds.

Fig. 3 | Spectra and structure functions. a The fluid energy spectra show a uni-
versal scaling E(k) ~ k−4 independent ofDe. A steeper than k−3 fall-off of the spectrum
means the velocityfields are smooth; S2(r) ~ r2 for small r, shown in the inset of panel
(c). b The polymer spectra Ep(k) ~ k−3/2 follows from the scaling of E(k). c Plot of the
second order structure function of second differences, which scale as Σ2(r) ~ r3. The
exponent is the same for the different De, although the range of scaling depends
weakly on De. The inset shows the analytic scaling of S2(r). d Structure-function of
second differences, Σp, for various orders p for De= 9. e The exponents ζp versus p,
calculated from the scaling behavior of Σp. Departure from the straight line ζp = 3p/

2 shows intermittency. The shaded region shows the standard deviation on the
exponents computed from 18 snapshots. The two red + symbols mark the expo-
nents ζ2 and ζ4 obtainedwith an alternate forcing scheme39. That they liewellwithin
error bars goes on to show that the results are independent of the large scale
forcing. f Probability distribution function of δ2u(r) for four different values of r at
De = 9. The distributions are non-Gaussian at small separations, while they become
closer to a Gaussian (shown as a black dash-dotted curve) for large r. The corre-
sponding cumulative distribution functions, computed using the rank-order
method, are shown in the Supplementary Material, section IIIB.
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Now we consider the possibility that S2(r) ~Ar2 +Br3 + h. o. t. Here,
the symbol h. o. t denotes higher order terms in r. We use a trick51,52 to
extract the subleading term, which scales with the non-trivial scaling
exponent: the idea is to remove the analytic contribution by con-
sidering the second difference of velocities:

δ2uðrÞ � uαðx + rÞ � 2uαðxÞ+ uαðx � rÞ� � rα
r

� �
, ð10aÞ

and define Σ2ðrÞ � ðδ2uÞ2
D E

: ð10bÞ

We plot Σ2(r) in Fig. 3c. We find that Σ2(r) shows a significant
scaling range as r→0 with the non-trivial scaling exponent ζ2 ≈ 3. This
implies that, in ET the velocity fluctuations across a length scale r can
be expanded in an asymptotic series in r as

δuαðrÞ
� � � uαðx + rÞ � uαðxÞ

� �
∼Gαβrβ +Hαβr

h
β +h:o:t:, ð11Þ

where Gαβ and Hαβ are (undetermined) expansion coefficients, and
h ≈ ζ2/2 = 3/2. The use of Σ2 is necessary to extract the subleading
contribution.

To appreciate the importance of this result, let us revisit the
Kolmogorov theory of turbulence: in the limit r→0 at a finite viscosity
μf, δuαðrÞ
� �

∼ r since velocity gradients arefinite. But if wefirst take the
limit ν→0 and then r→0 (ν ≡ μf /ρf is the kinematic viscosity)
δuαðrÞ
� �

∼ rh with h ≈ 1/3. The velocity field is rough. In contrast, ET is,
by definition, a phenomenon at a finite viscosity (small Reynolds
number), thus, the limit ν→0doesnotmake sense– the velocityfield is
always smooth. But the non-trivial nature of ET manifests itself in the
first subleading term in the expansion (11), and this is best revealed not
by the velocity differences, but by the second difference of velocity.
This is the first important result of our work.

Intermittency based on velocity differences
The crucial lesson to learn from the previous section is that in ET, to
uncover the non–trivial scaling of velocity differences wemust use the
second differences of velocity rather than the usual first difference.
Other than this peculiarity, the rest of this section follows the standard
techniques47 used to study intermittency/multifractality.

We define the p-th order structure function of the second differ-
ence of velocity across a length scale r as:

ΣpðrÞ � jδ2uðrÞjp
D E

: ð12Þ

We show a representative plot of Σp’s for all integer p = 1, . . . , 6 in
Fig. 3d for De = 9. Clearly, there exists a scaling regime for which the
scaling exponents ζp can be extracted by fitting ΣpðrÞ∼ rζp as r→0. The
scaling exponents as a function of p are shown in Fig. 3e, where we
have also included half-integer values of p.

To obtain reasonable error bars on ζp, we have proceeded in the
followingmanner: first, we find a suitable scaling regime for each order
by visual inspection; next, in these chosen ranges, we find the local
slopes of the log-log plot of Σp(r) vs r, to obtain ζp as a function of r:
ζpðrÞ= ðΔ logΣpðrÞÞ=ðΔ log rÞ. This process is repeated formultiple time
snapshots (two successive snapshots are separated by at least one
eddy turnover time) of the velocity field data. Themean value over the
set of exponents thus obtained is the exponent ζp in Fig. 3e and the
standard deviation sets the error bar which is shown as a shaded
region. Clearly, ζp is a non-linear function of p. This unambiguously
establishes the existence of intermittency in ET.

Furthermore,wehave confirmed that the structure functions Sp of
even order up to 6 grow as rp for small r, see the Supplementary
Material section IIC for discussion. Thereby we confirm, following the
prescription in Ref. 53, that the structure functions of all orders are

analytic. The structure functions begin to depart from this analytic
scaling at a scale that depends very weakly on De (if at all), but this
scale decreases as p increases. We also use another forcing scheme39

and calculate the exponents ζp for p = 2 and 4, marked as two + sym-
bols in red color in Fig. 3e. Within errorbars they agree with the values
we have obtained suggesting that the ζp are universal.

Let us again emphasize that intermittency is a fundamental
property of structure functions, both Sp and Σp. The use of Σp ismerely
to help us extract the exponents ζp.

PDF of velocity differences. Another way to demonstrate the effects
of intermittency is by looking at the PDF of velocity differences across
a length scale. From the structure function we have obtained inter-
mittent behavior for scales r/L < 1. Thus, we expect the PDF of velocity
differences to be close to Gaussian for r/L ≈ 1 and to have long tails
(decaying slower thanGaussian) for r/L < 1. This indeed is the case, as is
shown in Fig. 3f where we plot the PDFs of δ2u(r) for different
separations r (for De = 9). The tails of the distribution of δ2u decay
much slower than Gaussian, thereby clearly demonstrating
intermittency.

Note that also the PDF of the usual velocity differences δu(r) is
non-Gaussian, see the SupplementaryMaterial Fig. (S8). But the PDF of
δ2u falls off slower than δu at the same r, in other words larger fluc-
tuations aremore likely to appear in the seconddifference of velocity–
it is more intermittent. This non-Gaussianity of probability distribu-
tions can be quantified by the Kurtosis (also called Flatness) defined by

KðrÞ=
δuðrÞ½ �4

D E
δuðrÞ½ �2

D E2 and K2ðrÞ=
δ2uðrÞ
h i4� 	

δ2uðrÞ
h i2� 	2 , ð13Þ

for the first and second difference of velocity, respectively. For Gaus-
sian distributions, the Kurtosis is 3. We findK2≈3 as r→ L, i.e., the PDFs
(of δ2u) are close to Gaussian for large separations. From the scaling
behavior of structure function we obtainK2ðrÞ∼ rζ4�2ζ 2 as r→0, which
is consistent with K2ðrÞ∼ r�1:6 obtained from the distribution of sec-
ond differences shown in Fig. 4a. Furthermore, we find that the Kur-
tosis is independent of De. The gray shaded region marks the range
used to compute the scaling exponents for K2ðrÞ. We obtain: − 1.6 ±
0.3, − 1.6 ± 0.1, and − 1.6 ± 0.1 for De = 1, 3 and 9 respectively. This is
further evidence in support of universality of intermittency in ET. The
Kurtosis of first difference KðrÞ is also close to a Gaussian as r→ L, but
grows much slower than K2ðrÞ as r→0 as shown in Fig. 4b. In New-
tonianHIT athighRe, themost recentDNS54,55 shows ζ4 − 2ζ2 ≈ −0.12 so
that K∼ r�0:12. Hence, the intermittency we obtain in ET is more
intense than what is observed in HIT.

We also calculate the cumulative PDF (CDF) of δ2u by rank–order
method, thereby avoiding the usual binning errors that appear while
calculating PDFs via histograms. In section IIIB of the Supplementary
Material, we show that rescaling the abscissa of the CDFs by the root-
mean-squarevalueofδ2udoes not collapse theCDFs for different r, i.e.,
the PDFs are not Gaussian.

Altogether the PDFs of δ2u provide us with three additional evi-
dences in support of intermittency in ET.

Intermittency based on dissipation
In HIT (high Re, Newtonian turbulence) there are two routes to study
intermittency: one is through structure functions and another is
through the fluctuations of the energy dissipation rate47 – the PDF of εf
deviates strongly from a log-normal behavior56. We now take the sec-
ond route for ET, in which case there are two contributions to the total
energy dissipation – εf and εp. In Fig. 5a and b we plot the PDFs of the
logarithm of εf and εp, respectively. We find that the former decays
slower than a Gaussian, i.e., the PDF itself falls off slower than a log-
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normal, whereas the latter decays faster than a Gaussian. The fact that
the PDF of εp falls off much faster than that of εf can even been seen by
comparing Fig. 2a with Fig. 2b. Clearly, the statistics of εp are non-
intermittent. Henceforth, following the standard analysis pioneered
by57 for HIT, we study the scaling of the q-th moment of the viscous
dissipation averaged over a cube of side r,

εqr
� �

∼ rλq , where ð14aÞ

εr �
2μf

ρf
SαβSαβ
D E

r
: ð14bÞ

Here the symbol �h ir denotes averaging over a cube of side r. The
Legendre transform of the function λq gives the multifractal spectrum
(also called the Cramer’s function) f(α):

λq = infα qðα � 1Þ+ 3� f ðαÞ½ �, ð15Þ

where singularities in the dissipation field with exponent α − 1 lie on
sets of dimension f ðαÞ. We plot the f(α) spectrum for ET in Fig. 5c.

There are minor differences between the multifractal spectrum for
De = 3 and 9 on one hand and De = 1 on the other hand. The clear
collapse of the multifractal spectra at large De hints towards a uni-
versal multifractality in ET in the limit of large De. For comparison, we
also plot, in Fig. 5c the multifractal spectrum for HIT as a black dash-
dotted curve57. In HIT the intermittency model based on velocity is
closely connected to the intermittency models based on dissipation47.
The development of such a formalism for ET, although important, is
not considered in this work.

Discussion
We note that the phenomenon of elastic turbulence has no Newtonian
counterpart – in the absence of the polymers, this phenomenon dis-
appears. Nevertheless, as HIT is the model of turbulence that has been
studied in great detail we have used it as an illustrative example to
comparewith ET. Such comparisonmust be donewith care. InHIT, the
theory of Kolmogorov helps us understand the simple scaling of
the energy spectrum, although a systematic derivation starting
from the Navier–Stokes equation is still lacking. The key insight of
Kolmogorov’s theory is that the energy flux across scales, due to the

Meneveau-Sreenivasan

Fig. 5 | Dissipation rates. a PDFs of the logarithm of the fluid energy dissipation
rate εf for all three De numbers. We denote by μlog εf=p

and σlog εf=p
the mean and

variance of the logarithm of energy dissipation rates. The distributions deviate
significantly from a log-normal behavior in both the left and right tails. The right
tails coincide for large De, similar to the coincident right tails at large Re in New-
tonian HIT.b PDFs of the logarithm of the polymer energy dissipation rate εp for all

three De numbers. The PDFs of log εp are sub-Gaussian, i.e., decay faster than a
Gaussian, indicating εp is not intermittent. c The multifractal spectra of the fluid
dissipation field calculated from the scaling of the energy dissipation rate εr cal-
culated over a cube of side r. The black dash-dotted line shows the spectrum for
Newtonian HIT57.

Fig. 4 | Kurtosis.The kurtoses, (a)K2 and (b)K as a functionof the scale r forDe = 1,
3 and 9. The red dashed line is at ordinate equal to 3. We also show in (a) a line of
slope− 1.6. The scaling exponent of kurtosis, obtained from fitting the data in the
gray-shaded region, are: − 1.6 ± 0.3, − 1.6 ± 0.1, and − 1.6 ± 0.1, for De = 1, 3, and 9,
respectively. This demonstrates both the non-Gaussian nature of the PDFs and the

universality of the exponentswith respect toDe. The kurtosis ofδu,K, grows slower
as r→0 and may not be universal. To compare, we also plot, in (b), the corre-
sponding result for Newtonian HIT. Both the kurtosesK,K2 ! 3 (shown in dotted-
red line) as r→ L. This indicates that at large separations the statistics of velocity
difference are close to a Gaussian.
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nonlinear advective term, is a constant. In practice, the flux is a fluc-
tuating quantity, where its mean value determines the simple scaling
prediction ζp = p/3, while the fluctuations of the flux is the reason
behind intermittency. The fluctuations of the flux show up as fluctua-
tions of the energy dissipation rate (because the advective term con-
serves energy), which is multifractal.

Elastic turbulence was first discovered at the start of this century.
Almost all studies of ET, so far, have concentrated on understanding
the scaling of the energy spectrum. A theory at the level of Kolmo-
gorov’s theory for HIT is still lacking. Nevertheless, it is clear that the
mechanism of ET is very different from HIT. In the latter, it is the
nonlinear advective term that is responsible for turbulence, while in
the former the advective term is expected to be subdominant, it is the
stress from the polymers that must balance the viscous dissipation in
the range of scales where ET is found. We show that this is indeed the
case. A consequence of this balance is that the scaling exponents of
E(k) and Ep(k) are related to each other by (6). In ET there is not one but
two possible mechanisms of energy dissipation. A particularly intri-
guing result we obtain is that only one of them, εf, shows intermittent
behavior since the energy dissipation rate due to the polymers is not
intermittent, and its logarithm remains sub-Gaussian.

In summary, we have shown that both the velocity field and the
energy dissipation field in ET are intermittent/multifractal. But this
multifractality is very different from the multifractality seen in HIT. In
HIT, in the limit of viscosity going to zero, the velocity field is rough. In
contrast, the velocity field in ET is smooth at leading order, and
roughness and multifractal behavior appear due to the sub-leading
term. Consequently, although the velocity difference across a length
scale is intermittent, it is necessary to use the second difference of
velocity to properly reveal the intermittency. Finally, note that in HIT,
the multifractal exponents are expected to be universal, i.e., they are
independent of the method of stirring and the Reynolds number (in
the limit of largeReynolds number). In ET themultifractality appears at
small Re and large De > 1. All the evidence from our DNSs suggest that
intermittency in ET is also universal with respect to Deborah number,
method of stirring, and choice of model of polymers, although sig-
nificant future work with high-resolution DNSs is necessary to provide
conclusive evidence.

Methods
We solve eqns. (2a), (2b) using a second order central-difference
scheme on a L = 2π tri-periodic box discretized by N3 = 10243 colloca-
tion points, such that L/N =Δ ≈0.05η, where η � ðν3= εf

� �Þ1=4 is the
Kolmogorov dissipation length scale and ν ≡ μf/ρ is the kinematic
viscosity. Integration in time is performed using the second order
Adams-Bashforth scheme with a time step Δt ≈ 10−5τK, with
τK �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=hεf i

p
. We use 18 snapshots in our analysis, with successive

snapshots separated by ≈ 1.6 × 104τK. We choose a μf so as to obtain a
laminarflow in theNewtonian casewithA =B =C = 1 – this corresponds
to theTaylor scale Reynolds number Reλ ≈40. Next, we choose μp such
that the viscosity ratio μf/(μf + μp) = 0.9 – this corresponds to dilute
polymer solutions14, and we vary τp over two order of magnitudes. The
numerical solver is implemented on the in-house code Fujin; see
https://groups.oist.jp/cffu/code for additional details and validation
tests. The very same code has been successfully used on various pro-
blems involving Newtonian and non-Newtonian fluids58–61.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions are present in the paper
and/or the Supplementary Materials and available as a Source Data
file. Source data are provided in this paper.

Code availability
The code used for the present research is a standard direct numerical
simulation solver for the Navier–Stokes equations. Full details of the
code used for the numerical simulations are provided in the Methods
section and references therein.
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