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The evolution of antibiotic resistance islands
occurs within the framework of plasmid
lineages

Yiqing Wang 1 & Tal Dagan 1

Bacterial pathogens carryingmultidrug resistance (MDR) plasmids are amajor
threat to human health. The acquisition of antibiotic resistance genes (ARGs)
in plasmids is often facilitated by mobile genetic elements that copy or
translocate ARGs between DNA molecules. The agglomeration of mobile ele-
ments in plasmids generates resistance islands comprising multiple ARGs.
However, whether the emergence of resistance islands is restricted to specific
MDR plasmid lineages remains understudied. Here we show that the
agglomeration of ARGs in resistance islands is biased towards specific large
plasmid lineages. Analyzing6784plasmids in 2441 Escherichia, Salmonella, and
Klebsiella isolates, we quantify that 84% of the ARGs in MDR plasmids are
found in resistance islands. We furthermore observe rapid evolution of ARG
combinations in resistance islands. Most regions identified as resistance
islands are shared among closely related plasmids but rarely among distantly
related plasmids. Our results suggest the presence of barriers for the dis-
semination of ARGs between plasmid lineages, which are related to plasmid
genetic properties, host range and the plasmid evolutionary history. The
agglomeration of ARGs in plasmids is attributed to the workings of mobile
genetic elements that operate within the framework of existing plasmid
lineages.

Plasmids are autonomously replicating genetic elements that reside in
prokaryotic organisms. Their ability to persist in the host population
often depends on auxiliary functions encoded in their genome that are
beneficial for their host, for example, resistance to antibiotics. The
ability of plasmids to transfer horizontally between bacterial cells
renders them a common driver of antibiotic resistance gene transfer1.
Indeed, the emergence of antibiotic resistant bacteria in clinical
environments is often linked to the acquisition of plasmids encoding
antibiotic resistance genes (ARGs; e.g. refs. 2–4). Plasmids that encode
multiple ARGs, termed multiple drug resistance (MDR) plasmids,
provide their host with a combination of resistances to multiple
antibiotics5. Pathogens carrying MDR plasmids are one of the major
threats to human health. For example, an epidemiological study esti-
mated that Escherichia coli strains were responsible for most human

mortality attributed to antibiotic resistance in 2019, followed by
Klebsiella pneumonia strains6.

The evolution of antibiotic resistance gene content in MDR bac-
teria is often facilitated by diverse mobile genetic elements (MGEs)
that can mediate gene transfer between DNA molecules via homo-
logous recombination, site-specific recombination, or transposition7.
These include insertion sequences (ISs) and transposons8, as well as
integrons9,10, all of which can be associated with adjacent or cargo
genes that encode for antibiotic resistance (note that this MGE defi-
nition excludes plasmids). Examples are IS26, which is a frequent
component in pseudo-compound transposons11, which mobilize
diverse ß-lactamase variants, and the sulfonamide resistance gene sul1
that is associated with class 1 integrons (reviewed in ref. 7). The
transposition and recombination of genetic elements in bacterial
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genomes generate diverse ARG combinations12 that typically cluster in
specific genomic loci termed antimicrobial resistance island (REIs)13 or
multi-resistance regions (MRRs)7. For example, IS26-mediated trans-
locatable units (TUs) have been shown to insert most efficiently adja-
cent to an existing IS26 copy to form a pseudo-compound
transposon11,14,15. The assembly of resistance islands in plasmid gen-
omes hasbeen studied in detail for specific plasmid types andbacterial
taxa (e.g., refs. 16–18), nonetheless, general quantifications of MGE
contribution to the evolution of antibiotic resistance gene content in
MDR plasmids are lacking.

Plasmids encoding MDR genes are typically large and their gen-
ome size is positively associated with the number of ARGs in the
plasmid genome19. Small plasmids typically carry only a fewARGs (e.g.,
ColE1-like plasmids20). Notably, plasmid size and plasmid mobility are
associated since conjugative plasmids are typically large21. A recent
study suggested that ISs associated with ARGs are frequently found in
conjugative plasmids22–24. Disentangling the association of plasmid
genome size and plasmid mobility with a high number of ARGs
requires us to consider the plasmid evolutionary history. Indeed,
recent studies in the field of plasmid biology suggested a classification
scheme of plasmids into taxonomic units (PTUs25,26). These are groups
of putatively closely related plasmids, that are inferred based on
genome sequence similarity and specific plasmid backbone genes27.
Similar to organisms in the same species, plasmids in the same taxo-
nomic unit are expected to have similar plasmid properties and a
common evolutionary origin. Integrating the plasmid taxonomic unit
in MDR plasmid research enables us to go beyond the plasmid most
general properties (i.e., size and mobility) while accounting for the
evolutionary history of plasmid lineages.

Here we study the evolution of antibiotic resistance gene content
in different lineages of MDR plasmids, with a focus on three genera:
Klebsiella, Escherichia and Salmonella (KES). Plasmids in KES strains
share gene content, suggesting low barriers for plasmid transfer
among hosts in the three genera as well as common plasmid origins25.
To examine ARGs in resistance islands, we analyze colinear syntenic
regions of cooccurring antibiotic resistance genes and mobile genetic
elements. Furthermore, we compare the syntenic regions identified as
resistance islands among plasmids in different plasmid
taxonomic units.

Results
Themajority of resistance genes inKESplasmids are clustered in
compact resistance islands
For the purpose of our study, we clustered 11,995,860 protein-coding
genes in chromosomes and plasmids of 2441 KES isolates into 32,623
clusters of homologous gene families (Supplementary Data 1). Using
the comprehensive antibiotic resistance database (CARD)28, we iden-
tified 114,457 homologs of 397 ARGs in 138 gene families (Fig. 1A).
Members of those 138 families not identified by CARD as ARGs were
excluded from further analysis. Most of the excluded genes (97%)
correspond to chromosomal gene variants not classified as ARGs in
CARD. Note that ARGs in our data are clustered into homologs by
global protein sequence similarity, hence specific epidemiologically
relevant gene variantsmay be clustered into the same gene family (see
Supplementary Data 2). The majority (2013; 78%) of the 2591 ARG-
coding plasmids in our set comprise multiple ARGs. Significant cooc-
currence of ARG families was tested for all possible paired ARG com-
binations. About 30% (ca. 260) of the tested ARG pairs were found to
significantly cooccur in plasmids, with little variation among the gen-
era (SupplementaryData 3). These ARGpairs are termedhere: coARGs.
CooccurringARGs that are associatedwith the sameMGE are expected
to have a similar genomic neighborhood (i.e., similar neighboring
genes). As thenext step in the analysisworkflow, coARGswere retained
only if they were found within the same collinear syntenic block (CSB)
(Fig. 1A; CSBs are clusters of genes whose order is conserved in

multiple genomes29). The majority of coARGs cooccurred in at least
one plasmid CSB (e.g., 85% coARG combinations in Escherichia) (Sup-
plementary Data 3). The CSBs that contained coARGs were further
filtered based on their comparison to sequences of previously recog-
nized transposable elements30–32. Only CSBs that match the known
transposable elements were retained, which was the majority of CSBs
comprising coARGs (e.g., 99.6% in Escherichia; Supplementary Data 3;
Fig. 1A). The length of the retained CSBs had amedian of 8 genes, with
the majority (65%) of CSB instances comprising ≤10 genes (Supple-
mentary Fig. S1). The CSBs identified here do not necessarily corre-
spond to intact MGEs or complete resistance islands, which may be
found inplasmids in partial forms, e.g., due togenomerearrangements
and MGE degradation. The majority of the CSBs we identify here are
better described as pieces of genetic elements12, specifically here,
‘pieces of resistance islands.’ That being said, some of the CSBs we
identified are much longer than MGEs and correspond to conserved
MGEgenomic neighborhoods (see SupplementaryNote SN1). Notably,
the CSBs we identified are found in the majority of MDR plasmids
(1866; 93%). Taken together, most cooccurring ARGs in KES plasmids
are organized in CSBs bearing similarity to transposable elements.

To examinewhich genetic elements are involved in the generation
of resistance islands,we identified all the gene families encoding either
transposases or site-specific recombinases (collectively referred here
as SSRs for simplicity) in our dataset. Themajority of SSR gene families
encode DDE transposases (257 families) and tyrosine recombinases
(161 families). The large number of families in these functional classes
is most likely related to frequent gene duplications. Since our clus-
tering approach is aimed to classify mainly orthologs (as in ref. 33, but
considering multiple replicons), gene families having frequent (non-
identical) duplicates on the same replicon are typically split by our
clustering procedure into multiple clusters that correspond to differ-
ent transposase or recombinase variants (e.g., the paralogs IS26 and
IS26-v134,35). In addition, we characterized families encoding DEDD
transposases (31 families), HUH endonucleases (25 families), serine
recombinases (34 families), as well as three putative Cas1 endonu-
cleases families (Supplementary Data 4). Most of the SSR families (107
out of 116) are characterized by a biased distribution towards plasmids
compared to chromosomes (Supplementary Data 4). A total of 76 SSR
gene families cooccurwith 56ARG families inplasmidswithin theCSBs
(i.e., resistance island pieces). The most frequent SSR gene families
include fourDDE transposases (IS26, IS26-v1, IS6100, Tn3 transposase),
two serine recombinases (Tn3 resolvase), a tyrosine recombinase
(class 1 integron integrase), a HUH endonuclease (IS91 transposase)
and a DEDD transposase (IS110 transposase). Together, these gene
families comprise 66% of the SSR genes in antibiotic resistance islands
as identified in plasmids using our analysis workflow.

Several of the transposases and site-specific recombinases are
expected to coincide in genomes as components of functional trans-
posable elements. In our data, components of Tn3 elements, including
the two gene families of Tn3 resolvase and the family of Tn3 transpo-
sases, significantly cooccur in plasmids (P <0.001, using Fisher test),
which serves as an internal validation for our approach. Different SSR
genes may also cooccur due to causal interference between different
transposable elements. For example, IS4321/IS5075 (IS110 family
transposases) are known to target 38bp terminal inverted repeats of
Tn21 subgroup of Tn3 family36. Indeed, in our data IS110 family
transposases significantly cooccur with Tn3 family transposase in
plasmids (P < 0.001, using Fisher test), hence their distribution in
plasmids is not independent. Similarly, families encoding transposases
of IS110 and Tn3 cooccur in CSBs (i.e., pieces of resistance islands)
significantly more than expected by chance alone (P <0.001, using
Fisher test). We note that while integrons are often found in transpo-
sons, our approach cannot infer the exact contribution of nested
integrons to resistance islands. In our data, tyrosine recombinases (9
gene families) correspond to 16% of the total SSR genes in the plasmid
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resistance islands and are present in 1116 (55%) MDR plasmids within
resistance islands. Taken together, the resistance islands identified
using our workflow comprise diverse combinations of SSRs and anti-
biotic resistance genes.

To further study the distribution of ARGs in plasmid genomes, we
examined the distance between consecutive ARGs by counting the
number of protein-coding genes between two, and up to ten ARGs. If
the ARGs are randomly distributed in the genome, the distance dis-
tribution should fit to a negative binomial distribution. Our results
show that the distance between consecutive multiple ARGs deviates
significantly from the random expectation (using Goodness-of-fit test,
distance distributions were tested separately with α = 0.05). Further-
more, the distance between multiple ARGs was significantly shorter
than the distance of the control group of randomly sampled genes
(Wilcoxon rank sum test, distancedistributionswere tested separately,
α =0.05). Notably, the median distance between two adjacent ARGs in
plasmids is zero, which means that over half of the ARGs have an ARG
as neighbor gene on the same strand. ARGs are thus densely clustered
in plasmid genomes. Further evaluation of the ARG loci in plasmids

showed that 84% of ARGs in MDR plasmids are found in the CSBs we
identified, i.e., in compact resistance islands.

ARGandSSRgene combinations in resistance islands arediverse
and change little over time
To gain an insight into the composition of ARGs and SSR genes in
resistance islands we constructed a network of gene cooccurrence
in resistance islands (i.e., theCSBs identified inourworkflow). Nodes in
the network correspond to either ARG or the main SSR gene families.
The gene nodes are connected by edges if they coincide in at least one
resistance islandwith the edgeweight corresponding to the number of
plasmids where the cooccurrence was observed. The resulting net-
work has a highly condensed structure, that is, the genes (nodes) are
highly connected among each other within the plasmid resistance
islands (Fig. 2A). Highly connected hub-genes appear at the center of
the network: these correspond to two transposasegenes IS26 and IS26-
v1 and resistance genes sul1 and qacEΔ1. The central location in the
network indicates that these genes occur in combinations with most
SSR genes and ARGs in plasmid resistance islands.
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Fig. 1 | Antibiotic resistance genes cooccur in plasmids in dense resistance
islands.AAn illustration of ourworkflow fordetecting resistance islands inplasmid
genomes. Arrow boxes correspond to genes. (1) Protein-coding genes in bacterial
genomeswere clustered into gene families. ARGs and SSRgeneswere identified. (2)
Significant cooccurrence tests for ARG pairs were conducted per replicon type in
each genus. (3) Collinear syntenic blocks (CSBs) including coARGs were identified
across genomes and (4) further compared to previously recognized transposable

elements by sequence similarity (see Methods for additional clarifications). (B)
CumulativeDistribution Function (CDF)plots show that thedistancebetweenARGs
is shorter than the distance between a control group of randomly sampled genes in
plasmids (left), but not in chromosomes (right). Intergenic distances were calcu-
lated by counting the number of protein-coding genes between two, and up to ten,
adjacent ARGs. Source data are provided as a Source Data file.
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To investigate temporal dynamics in the cooccurrence network
we labeled each edge with the earliest report of the genes’ cooccur-
rence in a resistance island. Estimating the age of resistance islands
from sequence divergence is challenging due to the high sequence
conservationof bothARGs andSSRgenes24,37. Hereweuse the isolation
date of the respective strain as a proxy for the time of presence of

specific ARG-SSR combinations. Note that in our dataset, time is
positively associated with the amount of data used in the analysis (i.e.,
number of plasmids publicly available). Between the years 2000 and
2010 there is an increase of 24 plasmids per year, on average. The rate
of data accumulation increases markedly between 2010-2020 to 145
plasmids per year, on average. Combining the temporal data with the
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network components shows that the network size increases with time
and the increase in the number of plasmids at a homogeneous rate
(Fig. 2B). The number of newARGnodes added to the networkper year
is increasing slowly and steadily over time. At the same time, we note
that about half of the ARG nodes (32; 57%) are already present in the
network with the early sampled strains. Between 2011 and 2022, seven
ARGs are added to the network (Fig. 2C). These include resistance
genes to more recently introduced antibiotics. Examples are tet(X4)
that supplies resistance to tigecycline (first reported in 201938),mef(B)
(first reported in 200939) and mcr−1.1 that was first reported in 20163,
but may have been present in livestock associated E. coli already since
the 1980s40.Wenote thatmcr−1.1 in E. coliplasmidswas so far reported
to bemobilized as a single gene by ISApl141,42 (hence, it is not expected
to be found as a coARG). Nonetheless, this ARG is connected in our
network with other ARGs due to a CSB that is conserved in four plas-
mids and includes multiple mobile genetic elements (Supplemen-
tary Fig. S2).

Thenumber of SSRnodeshasa similar trend,with a slight increase
after 2010 (i.e., with the stark accumulation in sequenced plasmids;
Fig. 2B), where it surpasses the increase in the number of ARGs. The
increase in the number of SSRs may be related to diversification of the
SSR gene families, and the increase in plasmid data is useful for
revealing SSR gene variants. For example, IS26 and IS26-v134 transpo-
sases comprise 6,266 and 1,385 identical protein sequences in our
data, respectively. The two transposases are often present in the same
replicon. The protein sequence of IS26-v1 transposase has a single
G184N replacement, which was reported to increase the cointegration
efficiency of IS2635. The twodominant IS26 transposases correspond to
92% of the gene family members and the remaining variants have few
substitutions. The high frequency of identical IS26 homologs may
correspond to either a very recently emerged variant or a highly con-
served variant in the population. To gain further insight into the anti-
quity of the two main variants, we examined the isolation date of the
isolates encoding those variants. The distribution along the isolation
timeline as reflected in our data shows that IS26 is first observed in an
isolate from 1954 and IS26-v1 in an isolate from 1990. The higher fre-
quency of ARG combinations with IS26 in comparison to combinations
with IS26-v1 (Fig. 2A) is in agreementwith earlier observations of IS26 in
the three genera KES. The positive trend of increasing frequency in
time for both IS26 and IS26-v1 suggests that both ISs are highlymobile.
Other commonSSRgene families in our data (e.g., Tn3, IS91, and IS110)
are characterized by a similar pattern of diversification and rapid
increase in the frequency of evolved variants (Supplementary Fig. S3).

The accumulation of edges in the network supply hints for tem-
poral aspects in the evolution of gene combinations in resistance
islands. The number of edges is initially increasing with time and the
number of sampled plasmids (Fig. 2E). From ca. 2014 onwards, the
cumulative number of edges plateaus, suggesting that the repertoire
of gene combinations in the network is close to saturation, despite a
large number of plasmids added to the data. The higher frequency of
ARG-SSR edges overall may be attributed to the larger number of
possible ARG-SSR combinations in the data. The distribution of edge
weight in the network shows that the increase in data from 2010
onwards, contributedmainly to an increase in themedian edge weight
(Fig. 2F), which corresponds to increasing frequencies of the observed

gene cooccurrences in plasmid resistance islands. The distribution of
edgeweights indicates that the cooccurrence of ARGpairs has a higher
abundance in the network compared to ARG-SSR and SSR-SSR pairs
(Fig. 2F). Taken together, the network composition suggests that the
repertoireof ARG combinations in plasmid resistance islands is diverse
but changes only little over time. Basedon these resultswepredict that
additional sequencing may reveal additional instances of existing
combinations but rarely uncover new cooccurring gene combinations
(with the exception of newly emerging resistance genes and SSR gene
variants).

Scarce occurrence of resistance islands in small plasmid types
Which plasmid lineages are typical vehicles ofmultiple drug-resistance
genes? Previous large-scale genomic studies in the literature mainly
focus on the plasmid size and mobility class (e.g. refs. 19,22,43), thus
neglecting the plasmid evolutionary history. Here we make use of a
recently suggested classification scheme of plasmids into taxonomic
units25 and marker genes for the distinction between KES small and
large plasmids (see Supplementary Note SN2). The small plasmid types
are commonly smaller than 19Kb, they are either non-mobilizable (but
see ref. 44) or mobilizable and mostly correspond to ColE1-like plas-
mids. ARGs are rarely found in the small plasmid types; of the total
1961 small plasmid genomes, only 7% harbor ARGs, with 72% of the
small plasmids encoding a single ARG. Correspondingly, resistance
islands are both small and rare in the small plasmid types (Fig. 3).

To further investigate the evolution of small resistance plasmids
we examined the phylogenetic tree of Rop (plasmid primer RNA-
binding protein; RefSeq accession: WP_003978814.1) and compared
the presence of cooccurring ARGs and SSR genes among closely
related plasmids. The Rop sequence is short and highly conserved,
hence our ability to reconstruct a reliable phylogeny using all 903
members of that gene family is limited. Consequently, we split the Rop
phylogenetic analysis into two plasmid groups: plasmids not carrying
resistance genes that reside mostly in Escherichia and Salmonella
(Supplementary Fig. S4), and plasmids residing mostly in Klebsiella
(Fig. 4). The Klebsiella Rop phylogeny shows a clear split into two
clades that correspond to Col440I (partially belongs to PTU-E71) and
ColRNAI (PTU-E4) plasmids. The ColRNAI clade includes large plas-
mids from 21 isolates that correspond to cointegrates (of plasmid
fusions; Supplementary Data 1) and small resistance plasmids in 27
isolates; in 24 of the isolates, the small plasmids encode one aac(6’)-Ib
in the sameTn3-based transposonpreviously reported asTn1331Δ:IS26
(Fig. 4)45,46. Comparing the plasmid sequences reveals that the plasmid
backbones of this sub-clade are almost identical to its sister sub-clade,
the only difference between plasmids in the two sub-clades in the
presence of Tn1331Δ:IS26 (Supplementary Fig. S5). The branching
pattern of the clustered ColRNAI plasmids suggests that a single
ancestral transposon insertion event in the ancestor of these plasmids
is the most parsimonious scenario for the presence of Tn1331Δ:IS26 in
those plasmids. The ARG-carrying ColRNAI plasmids are reported in
isolates from human sampled between 1974 and 2019, suggesting that
this plasmid has a stable persistence in Klebsiella. The Klebsiella
ColRNAI clade further includes three plasmids reported in Escherichia
isolates, which likely correspond to plasmid transfer from Klebsiella to
Escherichia. The larger plasmids in the ColRNAI clade are putatively

Fig. 2 | Temporal network of ARG-SSR cooccurrence in plasmid resistance
islands.ANetworkofARGandSSRgene families that coincide in resistance islands.
The nodes correspond to gene families and the edges to cooccurrence events. ARG
nodes are plotted in a bigger size. B Temporal assembly of nodes in the network
according to the strain isolation date. The number of plasmids used in the network
analysis is shown in a purple line.C Temporal assembly of edges connecting toARG
nodes in the network (D) Phylogenetic tree of IS26. The tree scale bar is in amino
acid substitutions per site. Stacked bars at the tree leaves show the number of each
variant in the gene family, where two dominant transposases, IS26 (yellow) and

IS26-v1 (blue), had 6266 and 1385 members, respectively. The stacked bars at tree
tips are colored according to the predicted plasmid mobility class (see legend in
Fig. 3). The histogram shows the isolation dates of plasmids carrying the two
dominant transposases. Low frequency variants in the data (colored in gray) have
not been verified hence we cannot rule out that they stem from sequencing errors.
Temporal accumulation of (E) edges and (F) edge weights in the network (dots
represent the weight medians, whiskers represent the weight ranges). Plasmids
from 36 isolates sampled before the year 2000 were binned with the year 2000
isolates. Source data are provided as a Source Data file.
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mobilizable or conjugative; these plasmids are untypically large for
Rop-encoding plasmids (see also Supplementary Data 1) and likely
originated from plasmid fusion events. Taken together, resistance
islands comprising multiple drug resistance genes are rare in small
ColE1-like plasmids with only a few exceptions.

ARG cooccurrence in resistance islands is restricted to specific
large conjugative plasmid taxonomic units
Most of the plasmid ARG homologs (98%) in our data are in large
plasmids. Nonetheless, only 38% of the large KES plasmids harbor
cooccurring ARGs and SSR genes, hence a large plasmid size is not
necessarily associated with the presence of resistance islands. Exam-
ples are plasmids classified in PTUs E5, E13, E15, E16, and E21, all of
which are putatively non-mobilizable (Fig. 3). For example, only three
non-mobilizable E15 plasmids harbor resistance islands that comprise
multiple ARGs to ß-lactams and aminoglycosides; the plasmids were
reported in Klebsiella isolates from different clinical studies (e.g.
NZ_CP045677.147). Indeed, the number of ARGs in MDR plasmids is
associatedwith plasmid size19; however,we note that the proportion of
ARGs in such large plasmids is rather low, with a mean of 5.5 ± 4.7%
(±SD). Most of the ARG cooccurrence in resistance islands were
observed in conjugative F-plasmids (IncF) that reside in Escherichia
(PTU-FE) and Klebsiella (PTU-FK) hosts but not in Salmonella (PTU-FS)
hosts. Notwithstanding, several classes of large conjugative plasmids,
including PTUs E41, I2, X1, and X4 are rarely associated with resistance
islands (Fig. 3). Taken together, ARGcooccurrence in resistance islands
is common in specific taxonomic units of large conjugative plasmids.

To study the evolution of large MDR plasmid types we compared
thepatterns of cooccurringARGs and SSRgenes among closely related
plasmids. For that purpose, we inferred the phylogeny of RepB (plas-
mid replication initiator protein; RefSeq accession: WP_004182030.1),
which is the most commonly shared gene family among large con-
jugative plasmid types. RepB-encoding plasmids are themajor carriers
of ARGs, where 44% (1045/2392) of the RepB-encoding plasmids carry
68% (10,490/15,534) of the plasmid ARG homologs. The phylogeny
reveals several RepB clades that correspond to recognized PTUs (and
plasmid incompatibility groups) (Fig. 5A).

The comparison of related PTUs that differ in their mobility may
supply hints for the association of resistance islands with specific
plasmid characteristics. The RepBphylogeny indicates an evolutionary
relatedness between PTUs FE, E5, and E41, which has been previously
suggested based on plasmid sequence similarity48 (note that 17 out of
42 E41 in our set are not included in the RepB phylogeny since they do
not encode a RepB). Plasmids in the three PTUs commonly reside in
Escherichia hosts, with rare occurrence in Salmonella or Klebsiella.
PTU-FE plasmids are mostly conjugative48 and abundantly encode
resistance islands. In contrast, plasmids in the related PTUs E5 and
E41 rarely encode ARGs, where PTU-E5 are non-mobilizable plasmids
and PTU-E41 plasmids are mostly conjugative. While most of the PTU-
FE plasmids are conjugative (n = 462), this group includes also rare
mobilizable plasmids (n = 22) and non-mobilizable plasmids (n = 17).
The presence of resistance islands among PTU-FE plasmids is sig-
nificantly different among plasmids depending on the plasmid mobi-
lity class (P = 0.03, using Fisher test), where the proportion of plasmids
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encoding resistance islands is lower among the conjugative plasmids
(57%) compared to mobilizable (77%) and non-mobilizable (76%)
plasmids. Furthermore, there is no significant difference in the number
of ARGs among the threemobility classes in PTU-FEplasmids encoding
resistance islands (P = 0.43, using the Kruskal–Wallis test). The com-
parison among the related PTUs FE, E5, and E41 indicates that the
presence of resistance islands in plasmids is PTU-specific and fur-
thermore that conjugative plasmids are not necessarily enriched for
resistance islands.

The RepB phylogeny further suggests an evolutionary relatedness
between PTU-FK and PTU-E21 plasmids that commonly reside in
Klebsiella hosts. Plasmids in PTU-FK are mostly conjugative and
abundantly encode resistance islands, while PTU-E21 are mostly non-
mobilizable and rarely encode ARGs (Fig. 3; Fig. 5A). The RepB phy-
logeny supports the classification of plasmids in PTU-FS as closely
related plasmids (Fig. 5A). Plasmids in that group reside in Salmonella
hosts and include both conjugative and non-mobilizable plasmids that
rarely encode antibiotic resistance genes. There is no significant dif-
ference in the occurrence of resistance islands between conjugative
and non-mobilizable plasmids in that group (P =0.66, using the Fisher
test). The comparisonof plasmids in thesePTUs shows that differences
in the frequency of resistance islands depending on the plasmid
mobility class are PTU-specific.

Large conjugative plasmids in PTUs HI1A, HI1B, and HI2 have been
suggested to have shared plasmid sequence similarity25, and the RepB
phylogeny indicates that PTU-HI1A and PTU-HI2 are more closely
related (Fig. 5A). This inference aligns well with the difference in their
host range as reflected in the isolate genomes; HI1B plasmids reside in
Klebsiella, while HI1A and HI2 plasmids reside in Escherichia and Sal-
monella (Figs. 3 and 5A). The split between HI1B and the other two
PTUsmay thus be linked to plasmid divergence during the evolution of
host-specificity. Further comparison among the plasmids depending

on their host genera shows that there is no significant difference in the
presence of resistance islands between HI2 plasmids depending on
their Escherichia or Salmonella host (P = 0.24, using Fisher test), while
theproportion ofHI1Aplasmids encoding resistance islands is larger in
plasmids that reside in Salmonella compared to those that reside in
Escherichia (P <0.01, using Fisher test). Hence the presence of resis-
tance islands in specific PTUs may depend additionally on the plasmid
host range.

The association of resistance islands with specific plasmid types
(PTUs), and in some cases also the plasmid host range, is in agree-
ment with previous studies showing that closely related plasmids
have a shared resistance island content (e.g. ref. 49). To examine this
aspect of MDR plasmid evolution we focus on the five prominent
MDR plasmid PTUs among the RepB plasmids. The pattern of shared
plasmid genes is in accordance with the plasmid PTU classification,
and also the expected patterns of their relatedness as inferred by the
RepB phylogeny (Fig. 5B). That is, the plasmids are generally clus-
tered by PTU with an overlap between the clusters of HI1A and HI2
plasmids. Plasmids in PTU-FE form a tight cluster that supports their
common evolutionary history. In contrary, the PTU-FK plasmids
form a rather sparse cloud, indicating a high diversity of plasmids in
this PTU, and likely a combination of highly diversified plasmid sub-
groups. The proportion of shared genes between the plasmids is
weakly positively associated with the proportion of shared CSBs in
PTUs HI1A and HI1B (rHI1A = 0.67, rHI1B = 0.68, P < 0.01, using spear-
man correlation), but less so for the other examined PTUs (rHI2 = 0.2,
rFE = 0.21, rFK = 0.33, P < 0.01, using spearman correlation). Exam-
ination of shared CSBs among plasmids in the five PTUs shows that
most of the plasmids form a dense cluster, indicating common CSB
content across the five PTUs (Fig. 5C). Plasmids in PTUs FE and FK
form two additional clusters, indicating that they commonly share
CSBs with each other, but not with the other plasmids in the main
cluster (Fig. 5C). The pattern of shared CSBs among the five PTUs
suggests that resistance islands have a narrow distribution in
specific PTUs.

The CSBs that are shared among plasmids in the five PTUs are
rather short, with a median CSB length of four genes. Example is a
CSB that was inferred in 313 plasmids in the five PTUs and comprises
two ARG families: aminoglycoside nucleotidyltransferase (ANT(3”))
and MFS efflux pump (QacE) (see CSB_F_1 in Fig. 6); both of these
families in our dataset include multiple epidemiological variants of
the ARGs. This short CSB is included in multiple CSBs that corre-
spond to previously recognizedMGEs. This includes a CSB similar to
a class 1 integron previously reported to be associated with sul350

(CSB_HI2_3 in Fig. 6) that has a narrow distribution in PTU-HI2 plas-
mids and a CSB similar to a class 1 integron previously reported in
Tn645051 (CSB_FK_3 in Fig. 6) that has a narrowdistribution in PTU-FK
plasmids. Another overlapping CSB includes an ARG cassette pre-
viously reported in class 1 integron52 (CSB_FE_3 in Fig. 6) and has a
narrow distribution in PTU-FE plasmids. Several CSBs reported in
Fig. 6 are shared among plasmids classified into different PTUs. An
example is the CSB_HI2_2 (Fig. 6) that we detected in one plasmid
classified as PTU-FK. The plasmid pLH94-8 was reported in a K.
pneumonia isolate sampled from feces of a healthy human53. The
pLH94-8 plasmid locus of this CSB is almost identical to several other
E. coli plasmids harboring the same CSB (e.g., pSLK172-154). Another
example is CSB_FK_3 (Fig. 6) which we detected in a plasmid classi-
fied as PTU-HI1A. The plasmid p24362-1 was reported in a S. enterica
strain isolated from swine55. The locus corresponding to the CSB is
identical to other PTU-FK plasmids (e.g., pDA33144-22056). The
demonstrative example presented here thus suggests that CSBs in
our dataset are largely PTU specific.

To test if PTU specificity is a general trend in our dataset, we
examined the diversity of plasmids harboring the same CSB using
the Gini-Simpson (GS) index57. This index measures the probability
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Fig. 4 | Phylogenetic tree of 469 Rop sequences in 443 plasmids. Rings of the
phylogenetic tree show (from inner to the outer ring): the presence of ARGs, host
genus, and PTU. The majority of plasmids reside in Klebsiella isolates. The Rop
phylogeny constitutes two main Rop clades that correspond to non-mobilizable
ColRNAI (PTU-E4) plasmids and mobilizable Col440I (PTU-E71) plasmids. A sub-
clade of ColRNAI plasmids harboring ARGs ismarked in purple, in that clade, small
plasmids carrying Tn1331Δ:IS26 are marked by a white square within the ARG ring.
Note that while the isolates in our data are not identical, the plasmid variants
presented heremaycorrespond to the sameplasmidorigin, hence the frequencyof
specific plasmid types reflects the number of isolates where they have been
observed. Branches with bootstrap support ≤70 are colored in orange. The tree
scale bar is in amino acid substitutions per site. Plasmids lacking a PTU assignment
could not be classified using COPLA27. Source data are provided in supplemen-
tary file.
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that two randomly selected plasmids harboring the same CSB are
classified into different PTUs. Note that the CSBs appearing to have a
narrow PTU distribution in the demonstrative example are char-
acterized by a low GS index (Fig. 6). Our result revealed that the
median GS index for all CSBs and all PTUs is 0. Furthermore, the
majority of CSBs (59%) in our set have a GS index ≤0.1. The PTU
diversity of CSBs is significantly negatively correlated with the CSB
length (rs = −0.66; P < 0.001), with longer CSBs having a lower PTU
diversity (Supplementary Fig. S6). Taking together, our demonstra-
tive example shows that CSBs matching to previously documented
MGEs have a rather narrow distribution in specific PTUs, and fur-
thermore the CBSs we analyzed here are characterized by a low
diversity of PTUs. Both lines of evidence indicate that resistance
islands are mostly shared among closely related plasmids having
similar plasmid properties.

Discussion
Microbial organisms encounter diverse challenges in their habitat
including predation, infection, as well as extreme or toxic

environmental conditions. The response to such stressors is diverse
and range from plastic phenotypes to defensive multicellular
structures (e.g. ref. 58). Furthermore, adaptive response in prokar-
yotes can be mediated by the acquisition of new functions via gene
transfer, i.e., in response to phage infection59 or to antibiotics52. In
both of these cases, the acquired genes are typically organized in
dense genomic islands60,61. Our results supply a quantitative assess-
ment, according to which, themajority of antibiotic resistance genes
in plasmids are located adjacent to mobile genetic elements in
resistance islands. The remaining ARGs in MDR plasmids may still be
located in resistance islands, however, if these are rarely found in our
dataset, the coARG instance would be excluded from the final
results. We note that filtering the coARGs for CSBs appearing in
≥4 strains lead to exclusion of 10-15% of the plasmid coARGs (Sup-
plementary Data 3). In agreement with previous studies, our results
implicate the interaction between mobile genetic elements and
plasmids as the major driving force in the evolution of ARG content
in MDR plasmids. Resistance islands are hotspots for the integration
of ARG-carrying MGEs due to several reasons, including functional
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Fig. 5 | Resistance islands in large plasmids. A Phylogenetic tree of 2529 RepB
sequences in 2354 plasmids. Rings of the phylogenetic tree show (from inner to the
outer ring): host genus, predicted plasmid mobility class, PTU and the presence of
resistance islands. Brancheswith bootstrap support ≤70 are colored in orange. The
tree scale bar is in amino acid substitutions per site. BMultidimensional scaling of

shared gene content among plasmids. Plasmids are shown in different colors for
each PTU.CMultidimensional scalingof sharedCSBs amongplasmids. Plasmids are
shown in the same colors for each PTU. Plasmids lacking a PTU assignment could
not be classified using COPLA27. Source data are provided in Supplementary file.
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dependencies between specific SSR families (e.g., Tn402 and Tn21
family62) and possibly also deleterious fitness effect of MGE inte-
gration outside resistance islands on the plasmid functions (e.g., in
essential plasmid loci63). Plasmids carrying mobile genetic elements
are therefore, in themselves, a hotspot for the acquisition ofmultiple
drug resistance genes (e.g., as shown for an IncP-1 plasmid49).

The temporal analysis of resistance islands shows that ARG com-
binations tend to be rapidly saturated. In the last decade, the number
of available plasmid sequences in genomic databases increased con-
siderably, yet the frequency of ARG combinations was growing slower
(Fig. 2B). More than half of the ARGs are already found in resistance
islands in the earliest sampled isolates. The temporal integration of
ARG nodes in the network largely fits earlier reports on the emergence
of specific resistance genes, providing validation for our approach. An
example is the high connectivity of sul1 that supplies resistance to
sulfonamides introduced in the 1930’s64. Additionally, recently repor-
ted resistance genes appear in the network periphery. One example is
mcr-1.1 that supplies resistance to polymyxin and colistin, and was
reported in 2016 in Escherichia isolated from pig feces3,40 (Fig. 2C).
Another example is tet(X4) that was reported in 2019; the tet(X4) gene
supplies resistance to tigecycline, a last resort antibiotic that was
introduced in 2005. The gene was observed in plasmids of Escherichia
isolates sampled already during 2016-2018 from a pig farm as well as
humanpatients38. The newly addedARGnodes increase in connectivity
rather fast, indicating that the agglomeration of ARGs in resistance
islands is a rapid process.

Previous studies on the evolution of MDR plasmids typically
compare plasmid ARG content in the context of plasmid size and
mobility class, without much distinction of the plasmid origins or
properties related to the host range. A recent classification of plasmids
into taxonomic units supplies a framework for comparative plasmid
studies25 while considering their distinct characteristics and origins.
The results we present here add support for the evolutionary relat-
edness of plasmids in the same PTU and furthermore expand on the
evolution of ARG content in specific plasmid lineages.We further show
that the distribution of resistance islands has a narrow PTU range, and
their differential presence among plasmids within the same PTU may

furthermore depend on the plasmid mobility class or the host range.
Quantifying the diversity of plasmids harboring the same CSBs further
revealed a low PTU diversity of CSBs. However, an interpretation of
that result in the context of plasmid evolution is challenging, since our
approach does not allow for an accurate annotation of resistance
island boundaries. Long CSBs in our dataset correspond to conserved
neighborhoods of MGE agglomerates, that are unlikely to emerge
independently in distantly related plasmids. In contrast, short CSBs in
our dataset may correspond either to genuine transposable elements
or degraded pieces of resistance islands. Notably, while we are unable
to distinguish between these two possibilities, our analysis shows that
the plasmiddiversity is generally low for all CSB lengths. Thepattern of
shared resistance islands can be thus explained either by common
origins of the islands in ancestral plasmids and evolution by plasmid
divergence (i.e., vertical plasmid inheritance), or alternatively, barriers
for horizontal transfer of ARGs between plasmids, which are asso-
ciated with the specific characteristics of plasmids in the same PTUs.

Barriers for the integration of ARG-carrying MGEs into plasmids
may be related to the plasmid genetic properties (e.g., mode of repli-
cation and mobility), ecology (i.e., host range) and evolutionary his-
tory. For example, small plasmid types are almost devoid of ARGs; in
our dataset, 62% of the plasmids in small plasmid PTUs are docu-
mented in a host where a large plasmid encoding resistance island is
found as well. Hence the rarity of coARG containing CSBs in small
plasmid types cannot be well explained by plasmid ecology (or host
range) only. The narrow distribution of plasmid size among the ColE1-
like plasmids in KES hosts (see also20 and Supplementary Note SN2)
may indicate that ColE1-like replicons cannot well support a plasmid
size inflation, hence the barrier for ARG acquisition is linked to the
plasmid replicon type. For example, it has been suggested that the
replication mode of IncQ plasmids, which are typically small similarly
to ColE1-like plasmids, may become unstable if the plasmid size sur-
passes ca. 20 Kb65. In contrast, barriers for MGE-mediated integration
of ARGs in the large PTU-FS plasmids (where only 5 out of 114 plasmids
had resistance islands; Fig. 3), are unlikely to be related to plasmid size.
An examination of their hosts showed that only 21 (18%) PTU-FS plas-
mids reside with other plasmids that encode a resistance island in the
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Fig. 6 | The distribution of CSBs matching mobile genetic elements is biased
towards specific PTUs. A demonstrative example of overlapping CSBs and their
frequency inplasmids classified intofive closely related PTUs. Protein-coding genes
in the CSBs are shown as arrows. ARGs in the samegene family have the same color.
Genes with no name correspond to hypothetical proteins. orf_1 corresponds to
GrpB family protein. orf_2 corresponds to SDR family oxidoreductase. The adjacent

table shows the number of plasmids in each PTU where an instance of the CSB was
found. Cells showing the dominant PTU are shaded. The CSB diversity (Div.) was
calculated using the Gini-Simpson index. Details of the presented CSBs are listed in
SupplementaryData 6. *IS440 is annotated asa pseudogene in the genomeversions
analyzed here (in more recent versions this locus is annotated as a gene). Source
data are provided in the full CSB dataset.
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same host, while the remaining FS plasmids are either a sole plasmid in
their host (54%) or reside with other plasmids that do not encode
resistance islands. The FS taxonomic unit includes homologs of plas-
mid pSLT, a virulence plasmid in Salmonella66 where ARGs are rather
rare (e.g.67). The interaction of PTU-FS plasmids with ARG-encoding
MGEs is likely rare due to the plasmid host range. Taken together, our
study reveals that the interaction between plasmids and MGEs is a
major driving force in the evolution of MDR plasmids, where the
interaction and its frequency largelydependon theplasmid taxonomic
units, that is, the plasmid characteristics and its evolutionary history.

Methods
Data collection
Complete genomes of isolates in the genera Escherichia, Salmonella
andKlebsiellawhere plasmids are reportedwere downloaded from the
NCBI RefSeq database (version 01/2021; the same sequenced genomes
dataset was used in our recent publication37). Isolate metadata was
downloaded from BioSample database. The metadata of samples
lacking host information was examined manually in detail. A total of
23 strains sequenced within the framework of laboratory experiments
were excluded. The surveyed genomes include 1114 strains comprising
3098 plasmids from Escherichia, 755 strains comprising 2693 plasmids
from Klebsiella, and 572 strains comprising 993 plasmids from Sal-
monella (Supplementary Data 1). The dataset does not include
redundant genomes of the same strain. Similar and even identical
plasmids were retained if they were identified in different strains (see
Supplementary Data 1).

Identification of ARGs
Homologs of antibiotic resistance genes were identified based on the
comprehensive antibiotic resistance database28 (CARD version 3.1.0)
using Resistance Gene Identifier (version 5.1.1, with parameter --clean).
To reduce the number of mis-assembled or mis-annotated ARGs, we
excluded protein-coding genes whose sequence had less than 70%
identical amino acids to the CARD reference ARG, or their length was
less than 90% or more than 130% of the CARD reference ARG (as in
ref.37). Of the total 3044 genes in CARD, 416 (14%) ARGs had 114,464
homologs in the examined isolates.

Construction of homologous gene families
Gene families were inferred based on sequence similarity as previously
described in our study of Escherichia strains19. Briefly, reciprocal best
hits (RBHs) of protein sequences between all pairs of 9225 replicons
were identified using MMseqs268 (v.13.45111, with module easy-rbh
applying a threshold of E-value ≤ 1 × 10−10). RBHs were further com-
pared by global alignment of the protein sequences using parasail-
python69 (v. 1.2.4, with the Needleman-Wunsch algorithm). Sequence
pairs with ≥30% identical amino acids in the global alignment were
clustered into gene families using a high-performance parallel imple-
mentation of the Markov clustering algorithm70 (HipMCL with para-
meter --abc -I 2.0). A total of 114,457 ARGs were identified in 138 gene
families; the CARD classification was sometime only partially in
agreement with the homologous gene family classification (114,457/
203,591). Most of the contradictions between CARD and our clusters
were chromosomal gene (97%) with only 3% corresponding to plasmid
genes. Aiming for a conservative analysis, members not identified as
ARGs by CARD were excluded.

Transposases and site-specific recombinases identification and
biased distribution test
All gene families constructed in this study were scanned using
InterProScan71 (version 5.59-91.0) against InterPro’s member
databases72. HMM profiles of transposases and site-specific recombi-
nases were obtained from previous studies73,74 to search SSRs using
hmmsearch (HMMER version 3.3.2)75. Three chromosomal gene

families were not included in the further analysis: a serine recombinase
(flagellar phase variation DNA invertase Hin) and tyrosine recombi-
nases XerC and XerD. The biased distribution of gene families towards
plasmids or chromosomes was tested by comparing their frequency in
both replicon types with the frequency of remaining family members
on both replicon types using Fisher’s exact test (as in ref. 37), imple-
mented with the fisher.test function in R (version 4.0.3, two-sided α =
0.05 and correction for multiple comparisons with false discovery
rate (FDR76)).

Gene cooccurrence test
Significant cooccurrence of ARGpairs fromdifferent gene families was
tested using Fisher’s exact test with fisher.test function in R (version
4.0.3, two-sided, α = 0.05) and correction for multiple comparisons
with false discovery rate (FDR) 76. The test was performed for plasmids
in different genera separately (as in ref. 37). For each test, the sample
size n was equal to the number of ARG-coding plasmids. The sig-
nificantly cooccurring ARGs are supplied in Supplementary Data 5.

Inference of collinear syntenic blocks
Collinear syntenic blocks (i.e., conserved gene order) were identified
using CSBFinder-S29 allowing no gene insertion and maximal length of
200protein-coding sequences (version0.6.3with parameter -q4 -ins 0
-lmax 200 -c -cs -alg MATCH_POINTS). CBSs that were found identical
in at least four genomes were retained for further analysis.

Detection of CSBs matching to mobile genetic elements
Sequences of intact transposable elements were collected from three
mobile genetic element (MGE) databases: The Transposon Registry30

(version 10/2021), TnCentral31 (version 10/2021), and ISfinder32 data-
base (version 10/2020). Partial sequences and complete plasmid
sequences were excluded.We searched for the knownMGEs in all 2441
complete genomes using Blast+77 (version: 2.9.0+ parameter: E-
value ≤ 1 × 10−10). The blast hits were further compared with the CSBs
genomic loci (i.e., the CSB coordinates). CSBs that overlapped with
identified MGEs with at least two complete protein-coding genes were
retained for further analysis.

ARG island analysis
The distance between ARGs was counted as the number of protein-
coding genes on the same strand from one ARG to the adjacent n-th
ARG (n = 2–10). The stochasticity of ARG distance was tested using chi
square goodness-of-fit test with negative binomial distribution as the
null hypothesis. The distances between randomly sampled genes was
used as a control, where a similar number of gene families was sam-
pled. Each sampled gene family has a similar family size to the corre-
spondingARG family. The distancebetweenmembers of the randomly
sampled gene families was counted in the same way as for the ARGs,
the sampling was repeated 100 times. The distance distribution of
ARGs and the control group were compared usingWilcoxon rank-sum
test for each step-size separately (n = 2–10).

Network visualization
The network visualization was performed with Cytoscape78 (ver-
sion 3.10.1).

Plasmid typing
We identified the incompatibility (Inc) groups of Rop- and RepB-
coding plasmids using PlasmidFinder (version 2.1.6 with parameters:
-l 0.6 -t 0.9 -mp blastn). Plasmids that remained of unknow Inc
groups were further examined using pMLST79 (version 2.0.3, with
parameter -mp blastn). Plasmid classification into predictedmobility
classes (non-mobile, mobile, or conjugative) was done on the basis
of the plasmid gene content using MOB-suite80 (version 3.0.3).
Plasmids were assigned into PTUs using COPLA27 (version 1.0).
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Phylogenetic analysis
Protein sequences were aligned usingMAFFT81 (version v7.475). Owing
to the large number of identical protein sequences among transpo-
sases, the sequences were filtered into non-redundant amino-acid
sequences prior to the alignment. Maximum likelihood trees were
reconstructed using IQ-TREE82 (version 2.1.2) with Le and Gascuel
(LG83) substitutionmodel and the LG4Xmodel as additional alternative
(with parameter -mset LG -madd LG4X -bb 1000). The resulting trees
were rooted using the midpoint criterion and visualized using iTOL84

(version 6.5.8).

Diversity index
The plasmid diversity of CSBs was calculated according to the Gini-
Simpson index57 with vegan package85 (v2.6-4) in R. The number of
plasmids in each PTU was counted while excluding duplicated CSB
instances in the same plasmid.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The genome data is publicly
available (https://ftp.ncbi.nlm.nih.gov/genomes/refseq/). Antibiotic
resistance genes in comprehensive antibiotic resistance database
(CARD v3.1.0; https://card.mcmaster.ca/); intact transposable ele-
ments were collected from The Transposon Registry (v10/2021;
https://transposon.lstmed.ac.uk/tn-registry), TnCentral (v10/2021;
https://tncentral.ncc.unesp.br/), and ISfinder database (v10/2020;
https://isfinder.biotoul.fr/). The full CSB dataset and gene family
information used in this study is available in Figshare86. Phylogenetic
data of five transposase gene families, Rop, and RepB are also
supplied86. Source data are provided with this paper.
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