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An individualized protein-based prognostic
model to stratify pediatric patients with
papillary thyroid carcinoma

ZhihongWang 1,9, HeWang2,3,4,9, Yan Zhou2,3,4,9, Lu Li 2,3,4,5, Mengge Lyu2,3,4,
Chunlong Wu6, Tianen He 2,3,4, Lingling Tan6, Yi Zhu 2,3,4, Tiannan Guo 2,3,4,
Hongkun Wu 7,8,10 , Hao Zhang 1,10 & Yaoting Sun 2,3,4,10

Pediatric papillary thyroid carcinomas (PPTCs) exhibit high inter-tumor het-
erogeneity and currently lack widely adopted recurrence risk stratification
criteria. Hence, we propose a machine learning-based objective method to
individually predict their recurrence risk. We retrospectively collect and
evaluate the clinical factors and proteomes of 83 pediatric benign (PB), 85
pediatric malignant (PM) and 66 adult malignant (AM) nodules, and quantify
10,426 proteins by mass spectrometry. We find 243 and 121 significantly dys-
regulated proteins from PM vs. PB and PM vs. AM, respectively. Function and
pathway analyses show the enhanced activation of the inflammatory and
immune system in PM patients compared with the others. Nineteen proteins
are selected to predict recurrence using a machine learning model with an
accuracy of 88.24%. Our study generates a protein-based personalized prog-
nostic prediction model that can stratify PPTC patients into high- or low-
recurrence risk groups, providing a reference for clinical decision-making and
individualized treatment.

Papillary thyroid carcinoma (PTC) is one of the most common endo-
crine malignant tumors in children and adolescents, with an inci-
dence rate increasing by 4.4% yearly1. About 1.8% of thyroid cancers
occur in children and adolescents, and PTC accounts for more than
90% of the cases2. Compared with adult PTC, pediatric PTC (PPTC)
tends to have a larger tumor size, more lymph node metastases, a
greater extrathyroidal extension rate, a higher distant metastasis
rate, and a higher recurrence rate, while the overall mortality rate is
lower. The guidelines for pediatric differentiated thyroid cancer have
gaps regarding individualized diagnoses, treatments, and prognosis
evaluation strategies up to the time of writing2. Specifically, unlike

adults, pediatric patients are not age-stratified and do not receive
individualized treatments: a one-size-fits-all treatment strategy is
adopted for all of them3. Although most PPTCs have a favorable
prognosis, recurrence seriously affects patients’ disease-free survival
and quality of life. Because the risk factors of PPTC recurrence are not
clearly identified, there is currently a lack of effective methods for
evaluating the prognosis of PPTC patients and classifying them into
high- or low-recurrence risk groups. Therefore, patients with a low
recurrence risk may undergo aggressive surgical resections, which
unnecessarily increases their risk of complications. On the other
hand, patients with a high recurrence risk may receive insufficient
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preoperative evaluations and postoperative monitoring, resulting in
a worse prognosis.

To date, the studies on the molecular mechanism of PPTC have
been mostly limited to the genetic level4–6. They mainly focused on
analyzing the PPTC etiology and providing a benign versus malignant
diagnosis but did not produce tools for a personalized prognosis
evaluation. Compared with adult PTC, PPTC is characterized by a
higher prevalence of gene rearrangements and a lower frequency of
point mutations in the proto-oncogenes implicated in PTC. Specifi-
cally, BRAF mutations are rarer, while RET/PTC rearrangements and
gene fusions are more common in pediatric than in adult PTC4,7.
Consequently, these differences may affect the efficacy of gene-based
diagnosis and prognosis evaluations of pediatric thyroid cancer.

Compared to genes, proteins could provide a more valuable
contribution to the prognosis evaluation of diseases because they are
the final products of gene expression8. However, the proteomic
changes caused by PPTC remain unknown. Our previous study showed
the potential of a machine learning-assisted proteomic analysis to
discriminate between benign and malignant thyroid nodules9,10.
Additionally, as we used trace samples from formalin-fixed paraffin-
embedded (FFPE) tissues11, we showed the feasibility of such a study
using preoperativefine-needle aspiration (FNA) sampleswhich contain
only thousands of cells and are hard to be analyzed by ordinary pro-
teomic technology9.

In thiswork,weprofile theproteomic characteristicsof PPTCs and
compare them with pediatric benign nodules and adult PTCs. The
immunity-related pathways and functions are significantly altered in
PPTC, as indicated by dysregulated protein analysis. Moreover, nine-
teen of the dysregulated proteins have been selected by a customized
model to stratify pediatric patients into high- or low-recurrence risk
groups, which achieves an accuracy of 88.24%. Our study provides a
way to stratify pediatric patients with different recurrence risks, which
may be a reference for clinical decision-making and individualized
treatment.

Results
Clinical characteristics of our study population
The overall study design is demonstrated in Fig. 1a. We enrolled 85
PPTC patients (PM) and 83 pediatric patients with benign nodules (PB)
(Fig. 1b), and their clinicopathological features were summarized in
Supplementary Data 1. This cohort included 23 males and 62 females
(male-to-female ratio of 1:2.7) with an average age of 15.6 ± 2.4 years
and 15 males and 68 females (male-to-female ratio of 1:4.5) with an
average age of 15.9 ± 1.9 years in PM and PB groups, respectively. All
patients were admitted to the hospital with a mass in the neck, and
their average tumor size was 2.4 ± 1.3 cm in PM group, which is smaller
than those in PB group 3.8 ± 1.3 cm. In PM group, themedian follow-up
time was 71 months (interquartile range 48–113), during which no
death was reported. Lung metastasis was discovered in one patient
before the operation, andno changewas reported after the radioactive
iodine (RAI) therapy. Postoperative structural recurrence occurred in
12 cases (average age of 14): ten ipsilateral cervical lymph node
metastases and one contralateral cervical lymph node metastase. One
case developed postoperative lung metastases. All the cases of lymph
node metastases were reoperated. During the follow-up evaluations,
we found that the lesions of the patients with lung metastases had
shrunk after the RAI therapy, and no growth ormental retardation was
detected in any patient. Finally, no hematological or other secondary
solid primary tumors were found during the postoperative follow-up.

Three clinical features are the risk factors for PPTC recurrence
To identify the clinical recurrence risk factors in our study cohort, we
built a univariate Cox proportional hazard (CoxPH) model for each of
the eleven clinical features collected for the PM patients (N = 85). Age
(P = 0.0174, hazard ratio (HR) = 0.7928, 95% confidence interval (CI):

0.6547–0.96), total lymph nodemetastasis number (TLNN, P =0.0225,
HR = 1.076, 95% CI: 1.01–1.146), and lateral lymph node metastasis
number (LLNN, P =0.0111, HR = 1.101, 95% CI: 1.022–1.185) had P values
smaller than 0.05. Next, we split the PM patients into two groups
(< or ≥ the median) based on each significant factor. Further analyses
showed significant differences between the Kaplan–Meier survival
curves of the two groups for these three features (Fig. 2a). Moreover,
when treated as a categorical variable (0 representing ages below the
median (16-year-old), 1 otherwise), age was more significantly asso-
ciated with recurrence (P =0.0302, HR =0.2645, 95% CI:
0.0794–0.8804).Our results showed that age, TLNN, and LLNNmaybe
risk factors for recurrence in pediatric patients.

To determine the form of the age variable, the eleven clinical
features were next used as the inputs ofmultivariate CoxPHmodels. In
particular, we input age as either a continuous integer or a categorical
variable (as described in the previous paragraph). Our forest plot
showed the HRs for eleven clinical features, indicating the positive or
negative influence of each feature on the PPTC recurrence. Only
categorical age was almost related to PPTC recurrence. The global
P value (log-rank), the Akaike information criterion (AIC), and the
Concordance Index (C-Index) outperformed when age was used as a
categorical variable (Fig. 2b, c). Therefore, age was determined as a
categorical variable for the downstream analyses.

More than 10,000 protein qualifications with high quality
We collected 234 thyroid tissues from three groups: 85 PM, 83 PB, and
66 adult malignant (AM) nodules. We randomly selected two samples
and conducted one more replicate in each group. The resulting 240
tissues were randomized into 16 batches with 15 tissue samples each,
and one pooled sample was used as a linker for the batches. Among
them, we quantified 10,426 proteins (Supplementary Data 2).

To reduce the statistical bias, we removed 1272 (~12.2%) proteins
with amissing value (NA) rate above85%. This resulted in afinaldataset
including 9154 proteins. Quality control analysis showed the coeffi-
cient of variations (CVs) of the proteins across the 16 pooled samples
were mainly between 0.0 and 0.2, with a median of 0.0493 (Supple-
mentary Fig. 1a); the CVs of the proteins across each pair of replicates
were mostly less than 0.2, with medians of 0.0662, 0.0947, 0.1238,
0.0890, 0.0645 and 0.1123 (Supplementary Fig. 1b). These results
indicate the high stability of our instrument and the reliability of our
data (Supplementary Fig. 1c, d).

To reduce the influence of NAs and batch effects, we imputed the
NAs and then used ComBat to adjust for batch effects, and, by visua-
lizing the resulting data using two-dimensional Uniform Manifold
Approximation and Projection (UMAP), no noticeable batch effects
could be detected (Supplementary Fig. 1e). After these preprocessing
steps, there were 240 samples (87 PM, 85 PB and 68 AM) and 9154
proteins left (Supplementary Fig. 1f).

Proteomic differences among pediatric malignant, pediatric
benign and adult malignant thyroid nodules
To further explore the differences between PM and PB/AM, we deter-
mined the dysregulated proteins and generated two volcano plots
showing 243 (PM vs. PB) and 121 (PM vs. AM) differentially expressed
proteins (DEPs) with fold change (FC) > 1.5 and adjusted P < 0.05
(Fig. 3a, b and Supplementary Data 3). The DEPs with FC > 1.5 from the
two pairwise comparisons were distributed in the scatter plot, and 27
proteins were co-up/downregulated in PM vs. AM and PM vs. PB
(Fig. 3c). Furthermore, the expression of 37 selected proteins shown in
the heatmap, which was from the co-dysregulated proteins and the
top-five up- and downregulated proteins in the two pair-wise com-
parisons (Fig. 3d). According to the enrichment analysis of annotated
keywords performed using STRING database, the most upregulated
proteins in PM, compared to the other two groups, were involved in
MHC-II and immunity (Supplementary Table 1). These results show that

Article https://doi.org/10.1038/s41467-024-47926-w

Nature Communications |         (2024) 15:3560 2



PPTC has a unique protein expression that differs from pediatric
benign nodules and adult PTC.

Next, the functions and pathways enriched for DEPs with 1.5 FC in
the PM and the PB groups were almost all related to immune system
regulation:mainly functions pertaining of T cells andnatural killer (NK)
cells (Fig. 3e, f and Supplementary Data 4). Then, the comparison of
the PMwith theAMgroup further showedpediatric thyroid cancerwas
associated with the regulation of inflammatory or immune-related
pathways (Fig. 3g). These results suggest the development of PPTC is
related to altered immune system functions.

Immune infiltration and expression level of immune check-
points in pediatric thyroid nodules
Since multiple dysregulated immune-related pathways and biological
processes were enriched, we further conducted an analysis of immune
infiltration in the pediatric samples using ‘in silico flow cytometry’
CIBERSORTx12. Seven types of immune cells were imputed, and their

relative proportions are shown in Fig. 4a. The fractions of CD8+T cells
(P = 3.7 × 10−12), macrophages (P =0.031), dendritic cells (P = 1.4 × 10−5)
and Treg cells (P =0.007) vary significantly. CD8+T cells and macro-
phages increased in PM samples, while dendritic cells and Treg cells
decreased in PM samples. To validate immune infiltration results from
in silico analysis, we processed immunofluorescent staining for CD4+
and CD8+ T cells, which marked CD3+ /CD4+ and CD3+ /CD8+ ,
respectively. Representative staining images of enriched CD8+ T cells
and decreasing CD4+ T cells in the PMs are shown in Fig. 4b.

To further explore the tumor immune microenvironment, we
compared the abundances of immune checkpoint proteins between
PB vs. no-recurrence PM (PM-NR) and PM-NR vs. recurrence PM (PM-
R). Among the 31 immune checkpoints quantified in our proteome
data, poliovirus receptor (PVR) and interleukin 10 receptor B (IL10RB)
had significantly lower levels in the most aggressive group PM-R
(Fig. 4c). No immune checkpoint proteins were found upregulated
with an increasing malignancy within PB, PM-NR and PM-R groups.

Fig. 1 | Study overview. a Study design of analyzed cohort and experiment workflow. Created through Biorender.com. b Enrollment and exclusion criteria for pediatric
papillary thyroid carcinoma (PTC), pediatric benign nodule and adult PTC patients.
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Fig. 2 | Analysis of the clinical recurrence risk factors for pediatric papillary
thyroid carcinoma (PPTC). a Kaplan–Meier survival curves of two groups (red:
patients below the median; blue: otherwise) for three significant factors: age, total
lymph node metastasis (TLNN) and lateral lymph nodemetastasis number (LLNN).

P values are derived from Log-Rank Test. b, c Forest plots for two multivariate
CoxPH models using (b) continuous non-negative integer age and (c) categorical
age, respectively. Data are presented as hazard ratio value with 95% confidence
interval. P values are tested by Cox proportional hazard model.
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Fig. 3 | Functional analyses of the dysregulated proteins. a, b Differentially
expressed proteins (DEPs) are shown in the volcano plots: a pediatric malignant
nodules (PM) vs. pediatric benign nodules (PB) and b PM vs. adult malignant
nodules (AM). The cutoff is defined by requiring the fold change (FC) to be greater
than 1.5,with adjustedP <0.05 (BH-adjusted two-sidedWelch’s t test). Thenamesof
the up/downregulated proteins with the top five largest FC are reported in the
plots. c The scatter diagram shows the FC distribution of the dysregulated proteins
in two pairwise comparisons: PM vs. PB and PM vs. AM. The overlapping sig-
nificantly co-dysregulated proteins are colored in red. The proteins significantly
dysregulated in PM/PB are colored in orange, and those dysregulated in PM/AMare
colored in blue. Here, the DEP lists were derived from FC threshold 1.5. d The

heatmap shows 37 proteins: they are co-upregulated/co-downregulated proteins
and the five most up-/down- regulated ones from the volcano plots (a, b). Proteins
were clustered using hierarchical clustering. e Pathway enrichment of the 243DEPs
from the volcano plot with the PM/PB comparisons (FC > 1.5). The red and blue bars
represent the active and inhibited pathways, respectively. f Results of the gene
ontology enrichment of the biological processes using the DEPs in PM/PB.
g Pathway enrichment of 121 DEPs from the volcano plot with the PM/AM com-
parisons (FC > 1.5). The red and blue bars represent the active and inhibited path-
ways, respectively. P values are derived from one-sided Fisher’s Exact Test for
pathway and gene ontology enrichment.
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Fig. 4 | In silico immune infiltration analysis and expression levels of immune
checkpoints. a Relative proportions of seven types of immune cells in pediatric
benign (PB, N = 83) and pediatric malignant (PM, N = 85) samples imputed by
CIBERSORTx. Boxes are first and third quartiles, the center line ismedian, whiskers
are ±1.5 interquartile range, and dots are individual data points. Abundanceoutliers
and missing values are not included in the boxplot, throughout Fig. 4.

b Representative multiplex immunohistochemistry staining in PB (N = 10) and PM
samples (N = 10). The scale bar represents 50μm. c The protein expression abun-
dances of poliovirus receptor (PVR) and interleukin 10 receptor B (IL10RB) in PB
(N = 83), PM-NR (non-recurrence,N = 73) and PM-R (recurrence,N = 12) groups. The
significance throughout Fig. 4 is determined by two-sided Welch’s t test.
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Development of PPTC prognostic prediction models and indi-
vidualized prognostic stratification
To predict the PTC recurrence risk of patients from the PM group, the
PM samples were randomly divided into a training set (n = 50, ~60%)
and an independent test set (n = 35, ~40%). Then, we developed five
models based on two algorithms (Cox proportional hazard model and
random survival forest) and two types of features (clinical features and
proteins). Specifically, we developed the following models: two Cox
proportional hazard models based on clinical features (CliCox) or
protein features (ProtCox); three random survival forests based on
clinical features (CliRsf), protein features (ProtRsf), or clinical and
protein features (CliProtRsf). For each model, we tuned the hyper-
parameters using grid search strategy and three-fold cross-validation,
selected the features, and trained themodel using the training set. The
final hyperparameter settings of the five models are summarized in
Supplementary Table 2. The ProtRsf model was the best-performing
one as it achieved the highest C-index values: 99.62%, 96.86%, and

84.95% on the training, the cross-validation, and the independent test
sets, respectively (Fig. 5a). Notably, the combination of features used
by CliProtRsf only contained 21 proteins without any clinical features,
which means the clinical features did not contribute to the model’s
prediction significantly when protein features existed. The clinical
features even interfered with the protein features; thus, more proteins
were needed to compensate for this effect. However, even with more
protein features selected for themodel, CliProtRsf did not outperform
ProtRsf (containing 19 proteins) in C-index. Therefore, we chose the
ProtRsf model for our downstream analyses.

Then for eachpatient, wepredictedhis/her individualized survival
curve firstly and deduced the Crank risk score. Then, as shown in
Fig. 5b, using the training set, we determined the risk stratification
threshold according to the risk scores of the recurrent and the non-
recurrent patients. Therefore, the PM patients were classified as high
or low-risk according to this threshold. TheKaplan–Meier curves of the
high- and low-risk patients differed significantly in the training and

Fig. 5 | Pediatric papillary thyroid carcinoma (PPTC) prognostic prediction.
a The C-indexes of our five models were calculated on training, threefold cross-
validation, and test sets. b Density curves of the training continuous risk ranking
(Crank) scores of two groups (recurrence (1) or no recurrence (0)). The Fisher
decision boundary was used to differentiate the low- from the high-risk groups.
c The Kaplan–Meier survival curves of the low- and high-risk groups, calculated on
the training and test sets, show significant differences. d Permutation importance
of the 19 proteins from the ProtRsfmodel. eNetwork showing the 19 features of the
ProtRsf model with the connected proteins enriched using the Ingenuity Pathway

Analysis software. fThe relative protein abundances of galectin-3 (LGALS3), thehub
protein of the network (e), in the four groups. Boxes are first and thirdquartiles, the
center line is median, whiskers are ±1.5 interquartile range, and dots are individual
data points. Abundance outliers and missing values are not shown in the boxplot.
Biologically independent samples shown in boxplot: PB,N = 77; Low-risk PM,N = 67;
High-risk PM, N = 18; AM, N = 60. The mild outliers were removed, and a two-sided
unpaired Wilcoxon rank-sum test was used, without continuity correction, to cal-
culate the P values.
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independent test sets, indicating the strong generalization capability
of our model (Fig. 5c).

Analysis of 19 feature proteins
The random survival forest algorithm selected 19 proteins as features
for the ProtRsf model; the importance of these proteins is shown in
Fig. 5d. Of these 19 proteins, five have already been reported in thyroid
cancer studies, including galectin-3 (LGALS3)13, chromogranin-A
(CHGA)14, collagen alpha-3(VI) chain (COL6A3)15, collagen alpha-
1(XXIII) chain (COL23A1)16, and integrin alpha-4 (ITGA4)17. Further-
more, myocilin (MYOC) has been linked to the thyroid’s function18

(Supplementary Table 3). The remaining 13 proteins have not yet been
reported associated with thyroid disease.

Our network analysis showed that 13 of the 19 protein features
were directly or indirectly connected. In particular, LGALS3, the hub
protein, may perform a significant role in pediatric thyroid carci-
noma (Fig. 5e). The protein abundance of LGALS3 in four groups (PB,
PM low-risk, PM high-risk, and AM) is shown in Fig. 5f with Wilcoxon
P values. LGALS3 has the lowest expression in the PB group, with
significant differences compared to the expression in the other
groups. In contrast, its expression was the highest in the PMhigh-risk
group. These results show that a high LGALS3 expression may be
associated with a higher recurrence risk. Moreover, we conducted
transcription regulator prediction and found four transcription
regulators enriched with P < 0.01 (Supplementary Table 4). From
them, sterol regulatory element binding transcription factor 1
(SREBF1) is a reported, prognostically relevant protein in thyroid
cancer19,20.

To explore if the 19 proteins selected by the ProtRsf model were
related to the immune system, we calculated Pearson correlations of
immune cell fractions and the 19 proteins in PM high- and low-risk
groups, respectively (Supplementary Fig. 2). ITGA4 (P = 7.28 × 10−4 and
P = 2.05 × 10−8 in high- and low-risk groups, respectively) and GAL3ST4
(P = 1.56 × 10−4 and P = 1.24 × 10−4 in high- and low-risk groups, respec-
tively) were found positively correlated to CD8+T cells in both groups.
For the 31 immune checkpoint proteins quantified, only the abundance
of IL10RB was found to decrease with the predicted recurrence risk
and highest in PB samples (P =0.0012 and 0.038, respectively; Sup-
plementary Fig. 3).

Overall and individualized performance of the 19-proteinmodel
Wenext evaluated the efficacy of our ProtRsfmodel in stratifying PPTC
patients into groups with a high or low risk of recurrence. The model
could correctly predict the prognosis of 75 cases of our 85 PMpatients
with an accuracy of 88.24% (Fig. 6a). However, ten patients were
wrongly classified: two were false negatives and eight were false
positives. The predicted prognostic survival curves of each mis-
classified patient are shown in Fig. 6b, c.

Then, we carefully analyzed the ten wrong predictions. The two
false negative events corresponded to patients who underwent a
recurrence but were classified as the low-risk group by the model.
However, their recurrences were detected after 104 and 116 months,
which were much longer than the median follow-up time (71 months)
(Fig. 6b). For the false-positive patients, the follow-up times (14, 17, 17,
25, 30, 48, 64, and 67months) were all shorter than themedian follow-
up time (71 months) (Fig. 6c). These patients were only follow-up for a

Fig. 6 | Risk stratification. a Predicted risk stratification for pediatric papillary
thyroid carcinoma (PPTC) patients. The sample indexes of false positives (N = 8)
and the false negatives (N = 2) are labeled. b, c The predicted survival curves of the

two false negatives (b) and eight false positives (c) with their continuous risk
ranking (Crank) scores, sample indexes and recurrence or latest follow-up times
(shown by the vertical lines).
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short period when we started this study, which means they may go
through recurrence in the future.

Discussion
PPTC is the most common endocrine malignant tumor in pediatric
patients, which exhibits different clinical characteristics from adult
PTC. There is still no effective strategy for evaluating the recurrence
risk of pediatric thyroid carcinoma. In our study, we collected 85 PM,
83 PB, and 66 AM thyroid nodule tissues from 234 patients. Using
labeled quantitative proteomic technology, we measured 10,426 pro-
teins, to our knowledge, which is a large-scale proteomic study on
pediatric thyroid cancer patients. It is also valuable data with con-
siderably deeper quantifications (more than 10,000 proteins) in thyr-
oid nodules compared with previous studies which detected
thousands of proteins9,21,22. We next found that immune processes
were upregulated in PM nodules. Finally, we generated a model cap-
able of predicting the recurrence risk of PM patients.

From our clinical data, we found age and lymph node metastases
were important prognostic indicators of PPTCwhich arematchedwith
previous findings23–26. In our PM group, the age of 16 was the cutoff for
predicting recurrence-free survival (RFS), as nine of the 12 recurrent
patients were younger than 16. Furthermore, 69 cases (81.18%) from
our PM group had total lymph node metastases. Additionally, we
found that TLNN and LLNN correlate with RFS. However, unlike pre-
vious studies24, the lymph nodemetastasis rate of our study cohort did
not suggest recurrence, which may be due to the different number of
lymph node dissections. Although several factors were shown to be
related to poor prognosis, however, we found that the risk factors
derived from clinical indicators are only suggestive of clinical phe-
nomena and are, thus, insufficient for formulating prognostic predic-
tions and risk stratification by the model.

It has become a trend for molecular detection to apply to tumor
risk stratification according to the latest version of the World Health
Organization published in 202227. Many studies have suggested that
gene expression and clinical features of PTC were different between
children and adults which is related to different prognosis4,28. Whereas
gene correlation analyses can explain, to a certain extent, the differ-
ence in clinicopathological features between pediatric and adult
thyroid cancers, current genomics studies have a limited role in the
risk stratification of PPTC. Therefore, we chose to use proteomics data
as the base of our predictions since proteins are the biological activity
effectors. Using proteomic data, our predictingmodel achieves higher
performance in predicting recurrence risk. Even when we combined
proteins with clinical features as candidates, the model did not select
any clinical features. The panel of proteins evolved by the model is
significantly more accurate for predicting PPTC prognoses than clin-
ical features.

Among the 19 proteins, CHGA14, COL6A315, COL23A116,29, ITGA417

and LGALS313 have been reported to be associatedwith thyroid cancer,
and MYOC18 is related to thyroid function. Notably, LGALS3 is an
important marker located in the core of the network (Fig. 5e). Its
inhibitor inhibits apoptosis resistance and the invasion of thyroid
cancer cells through the AKT/β-catenin pathway30. In agreement with
these previous findings, in our study, the expression of LGALS3 in the
PM high-risk group was significantly higher than in the PM low-risk
group and the AM group. The high expression of LGALS3 might pro-
mote cancer invasion and impede the function of the immune system
to make the cell apoptosis, leading to cancer recurrence.

Based on the 19-protein panel, our ProtRsf model achieved an
accuracy of 88.24% in stratifying PPTC patients into groups with a high
or low risk of recurrence (Fig. 6a). Although the high performance we
got, ten patients were wrongly classified. We next have carefully
investigated the mispredicted samples (Fig. 6b, c). The eight false-
positive samples arepatientswhoarepredicted to relapsebut havenot
yet done so. These patients have a relatively short current follow-up

period and, in terms of survival curves, each of them has a low risk of
recurrence as of the current follow-up time, but their probability of
recurrence at five years after surgery will increase substantially as time
continues to progress, as shown in the predicted prognostic survival
curves (Fig. 6c). It is therefore difficult to be sure that the model is
predicting them incorrectly at this time and close follow-up is still
needed for these patients to allow time to give us the true answer. For
the two false negatives, the recurrence intervals are both more than
100 months which is much longer than the median follow-up time
(71 months), to some extent, it also represents relatively inert biolo-
gical behavior.

The tumor immunemicroenvironment also plays a key role in the
development and progression of thyroid cancer31. Most studies of the
immunemicroenvironment of PTC have focused on adults rather than
children and adolescents. In our study, we showed the 243 DEPs
between PM and PB patients are closely related to immune dysregu-
lation. Additionally, a high level of PD-L1 is associated with poor
prognoses, such as an increased risk of thyroid cancer recurrence and
lymph node metastases32–36. The results imply that dysregulated
immune cell compositions and altered immune monitoring may play
crucial roles in PTC genesis in pediatric patients.

CD8+T cells recognize tumor cells which express tumor antigens
and attack by inducing cell death37. In adult PTC, CD8+T cells were
found to have a higher frequency than in benign samples38, and the
infiltration of CD8+T cells was related to increasing disease-free
survival39. Our data showed higher levels of CD8+T cells infiltration in
PM than in PB, which is consistent with adult patients. CD4+T cells
were not found to be significantly different between PB and PM.
Similarly, the functions of these cells in tumor prognosis were not
found39,40.

The findings of this study have to be seen in the light of
some limitations. This is a retrospective study in a single center;
therefore, future studies will validate the model on preoperative pro-
spective samples inmore centers to cover the diversity of the samples.
Also, our results need to be validated with a larger cohort and longer
follow-up time to evaluate our model’s generalization. Despite these
limitations, we have shown the feasibility and importance of using
proteomics data for the stratification and prognostic prediction of
PPTC patients.

Proteomics offers, among others, the advantages of high-
throughput quantification and microsampling, the latter enabling
clinical applications with preoperative FNA samples.With thismethod,
we can make high- and low-risk stratification assessments and distant
metastasis predictions before the operation, guide the resection scope
during the operation, evaluate the prognosis after the operation, and
formulate individualized follow-up strategies. Additionally, integrating
multidimensional data (i.e., ultrasound images, gene information,
blood tests, etc.) can depict the state of the tumor more comprehen-
sively and view the tumor fromdifferent perspectives, thus obtaining a
more accurate assessment, which of course cannot be achieved with-
out the support of big data and artificial intelligence.

In conclusion, we generated a protein-based personalized prog-
nostic predictionmodel that could stratify pediatric patients with PTC,
providing a reference for clinical decision-making and individualized
treatment.

Methods
Study population
This study protocol andwaiver of informed consent were approved by
the Ethics Committee of the First Hospital of China Medical University
with the study number 2021-287-2. In this retrospective study, we
evaluated pediatric patients (≤18 years) with thyroid nodules, includ-
ing 85 PM and 83 PB thyroid nodules, who underwent surgery in the
First Hospital of China Medical University between November 2007
and April 2021.
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The exclusion criteria for PMwere the following: (a) with a history
of radiation exposure or family history, (b) with poorly differentiated
PTC, (c) loss of follow-up or incomplete clinical data, and (d) non-
primary operation. We excluded uncertain malignant potential
nodules for the PB group.We also included 66AMpatients with PTC to
compare pediatric and adult thyroid cancer proteomic profiling. The
detailed pediatric patient characteristics are listed in Supplemen-
tary Data 1.

Preoperative pulmonary computed tomography (CT) showed
that one patient had multiple metastases in the lung. All patients were
surgically treated. Lobectomy and ipsilateral central lymph node dis-
sections were performed in unilateral PTC. Total thyroidectomy was
performed in patients with ETE, such as the invasion of nerves, blood
vessels, or trachea. Patients with bilateral PTC underwent total thyr-
oidectomy and bilateral central lymph node dissections. For PM
patient group, 47 (55.29%) underwent lobectomy, and 38 (44.71%) had
a total thyroidectomy. We recorded 16 cases (18.82%) with multifocal
disease, 69 (81.18%) with lymph node metastases and 43 cases (43/85,
50.59%) of lateral cervical lymph node metastases in PM group. Post-
operative treatment included thyroid-stimulating hormone inhibition
and RAI therapies.

After the surgery, the patients were required to have follow-up
visits every 3–6 months for the first year through cervical ultrasounds
and thyroid functional examinations. The re-examination interval was
then prolonged for patients with negative ultrasounds or CT, low
serum thyroglobulin level, or no persistent disease. Disease remission
and recurrence were determined according to the American Thyroid
Association management guidelines2,41. Disease remission was defined
as two consecutive negativewhole-body scans and ultrasounds.Due to
inaccurate evaluation based on serum Tg and TgAb for patients with
lobectomy, only structural recurrence was considered in this study.
Disease recurrencewasdetermined as a newdisease in the thyroid bed
or lymph nodes proven by cytology or histopathology, and/or con-
firmed by ultrasounds or CT scans, or distant metastases detected by
whole-body scan.

Experimental design and statistical rationale
The overall study design was illustrated in Fig. 1a. We collected FFPE
slides for proteomics data acquisition. Each slide was stained with
hematoxylin and eosin and reviewed by at least two experienced his-
topathologists and histopathological subtypes for PM were further
evaluated according to The 15th edition of the World Health Organi-
zationClassification of Endocrine andNeuroendocrine Tumors42. From
the 85 patients, there are 69 cPTC (81.2%), eight diffuse sclerosing
variant PTC (9.4%), six hobnail variant PTC (7.1%), one solid variant PTC
(1.1%) and one columnar cell variant PTC (1.1%). For the twelve patients
with recurrence, ten of them are cPTC, one diffuse sclerosing variant
PTC and one hobnail variant PTC. Each slide was reviewed and pro-
cessed tomake sure the tumor ratiowas approximatelymore than 80%
before proceeding to proteomic sample preparation.

We collected 240 thyroid nodules FFPE slides (10μm thickness)
from 234 patients (85 PM, 83 PB, 66 AM). Two samples from each
groupwere randomly selected as replicates. Tominimize the potential
artificial effects during experiments, we randomly allocated the 240
tissues into 16 batches. In each batch, there were 15 tissue samples and
one pooled sample was used as an internal reference scaling for the
batches. The replicates and pooled samples were analyzed for data
quality control.

Recurrence risk factors among clinical features
To identify recurrence risk factors among the clinical features of the
PTC pediatric patients, we conducted univariate and multivariate
analyses using eleven clinical features. In particular, we used the Cox
proportional hazard (CoxPH) model and combined prognosis infor-
mation: recurrence events, the time interval between surgery and

recurrence, or between surgery and the last follow-up. The eleven
clinical characteristics were: age, gender, maximum nodule size, mul-
tifocality, ETE, total lymph node metastasis rate (TLNR), lateral lymph
node metastasis rate (LLNR), total lymph node metastasis number
(TLNN), lateral lymph node metastasis number (LLNN), surgical
methods, and Hashimoto thyroiditis (HT).

We built a univariate CoxPH model for each clinical feature,
identified the factors whose P values were less than 0.05, split the PM
patients into two groups (< or ≥ the median value) based on each
significant factor, and compared the Kaplan–Meier survival curves of
the two groups. Next, we transformed the age factor from a con-
tinuous non-negative integer to a categorical variable (0 representing
ages below the median value (16-year-old), one otherwise) and per-
formed the sameanalysis. Lastly, the eleven clinical featureswere input
into the multivariate CoxPH model two times: using the continuous
non-negative integer age or the categorical age.We then compared the
global P value (log-rank), Akaike information criterion (AIC), and
Concordance Index (C-Index)of the two cases todeterminewhich data
format was more suitable for the age variable.

Sample preparation for proteomics
FFPE slides were prepared by pressure cycling technology (PCT)43,44.
Briefly, the slides were dewaxed, rehydrated, and de-crosslinked using
heptane, three different concentrations of ethanol (100%, 90%, and
75%), and 100mM tris-base solution (pH = 10), respectively. Next, the
samples were lysed using PCT with a buffer containing 6M urea, 2M
thiourea, 10mM tris (2-carboxyethyl) phosphine, and 40mM iodoa-
cetamide. Then, the samples were digested using trypsin and lysC.
Finally, the digested peptides were desalted by C18 (SOLAµ columns,
Thermo Fisher Scientific, USA). The chemicals were bought from
Sigma-Aldrich (USA), and the enzymes were obtained from Hualishi
Scientific (Beijing, China).

Cleaned peptides were labeled using TMTpro 16-plex reagents
(Thermo Fisher Scientific, USA). Each batch comprised 15 samples and
one pooled sample, which were separated into 30 fractions within a
60min gradient on Ultimate Dinex 3000 (Thermo Fisher Scientific,
USA) equipped with a C18 column (300Å, 5μm×4.6mm× 250mm,
XBridge Peptide BEH, Waters, USA).

Proteomics data acquisition
Each fraction was analyzed using liquid chromatography-mass spec-
trometry (nanoflow DIONEX UltiMate 3000 RSLCnano System and
Orbitrap Exploris 480 with FAIMS Pro™, Thermo Fisher Scientific,
USA). In each acquisition, peptides were separated using a 60min
gradient (from 3% to 28% buffer B (98% acetonitrile (ACN) and 0.1%
formic acid)) at a 300nL/min flowrate on an analytical column (1.9 µm
100Å C18-Aqua, 150mm×75 µm). Buffer A was composed of 2% ACN,
98% H2O, and 0.1% formic acid. All reagents were mass spectrometry-
grade. The mass-to-charge (m/z) range of the MS1 was 375–1800 Th
with a resolution of 60,000 full widths at half maximum (FWHM); the
MS2 resolution was 30,000 FWHM. The turbo-TMT and advanced
peak determination were enabled.

Proteomics data analysis
Proteomic raw files were searched using Proteome Discoverer
(v2.4.1.15) against a FASTA file containing 20,368 entries (human Swiss-
Prot database). Channel TMT-126 was set as the reference for each
batch. Correction factors (Lot# VG306794) were usedwhenwedid the
database searching. The search parameters were set as follows: two
trypsinmissed cleavages allowed;minimal peptide length of six amino
acid residues; precursor ionmass tolerance of 10 ppm; fragment mass
tolerance of 0.02Da. Normalization was performed against the total
peptide amount. The false discovery rate thresholds were set to strict
1% for peptide and protein identification and quantification. Other
settings were left to their default values.
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Proteomics data quality control and preprocessing
The data quality was assessed by evaluating the coefficient of variation
(CV) across the pooled samples and the technical replicates. When
calculating CVs, the missing values were omitted, and log2-
transformed protein abundance was used.

The R package NAguideR was used for missing value imputation,
and the impseqrob method (for robust sequential imputation) was
used. Next, the batch effects correction of the resulting proteinmatrix
was performed using Combat, an empirical Bayes framework from the
R package sva45. For the matrices after imputation and correction, the
non-positive values in the matrix were replaced by half the minimum
value of the positive abundances of the corresponding protein. Each
pair of technical replicates were then combined to one sample by
calculating the mean protein abundance.

The differentially expressed proteins (DEPs) were identified with
fold change (FC) values to be greater than 1.2 or 1.5 (1.2 for modeling
and 1.5 for enrichment analysis), with an adjusted Welch’s t test
P <0.05. To avoid losing toomany proteins by simple filters like FC, we
adopted protein list from FC threshold 1.2 to give our model more
freedom to decide by itself (though more time-consuming) which
protein feature to use. In the enrichment analysis, to avoid over-
complicated results without specificity caused by too many protein
inputs, we used a strict threshold of FC 1.5.

Tumor immune microenvironment analysis
CIBERSORTx12 (https://cibersortx.stanford.edu/) was utilized to profile
the proportions of seven immune cell types in our proteomicdata. The
software required a feature matrix which contained the gene expres-
sion profiles of each cell type of interest. We used a custom signature
matrix generated frompublished thyroid cancer single-cell RNAdata46.
The asterisksmarked significant difference betweenPB andPMby two-
sided Welch’s t test.

The analysis of immune checkpoints
Thirty-one immune checkpoint proteins were quantified in our data.
We conducted two-sided Welch’s t test to compare the abundance of
these immune checkpoint proteins betweenPB andPMusingR (v4.1.1).
Samples with extreme values defined by Tukey’s fences were removed
before plotting the boxplots.

Multiplex immunohistochemistry staining and image analysis
Multiplex immunohistochemistry (mIHC) staining was performed
using methods and reagents following the TSA Opal mIHC protocols
(Akoya Biosciences/PerkinElmer). Briefly, 5 µm thickness FFPE tumor
sections were stained with DAPI and antibodies against the following
markers: CD3 (cat# ab135372, dilution 1:500, Abcam), CD4 (cat#
ab288724, dilution 1:1000, Abcam), and CD8 (cat# ab17147, dilution
1:500, Abcam). Allmarkerswere sequentially applied and stained using
their respective fluorophores in the Opal 7 kit (cat# NEL797001KT;
Akoya Biosciences/PerkinElmer). Stained slides were scanned using
the multispectral microscope, Vectra v3.0.3 imaging system (Akoya
Biosciences/PerkinElmer), under fluorescence and low magnification
at 10 × 40. Following scanning, around four regions of interest (each
region of interest (ROI) 0.6522mm2) were selected per sample using
the phenochart viewer v1.0.9 (Akoya Biosciences/PerkinElmer). ROIs
were analyzed by the image analysis software, InForm v2.8.2 (Akoya
Biosciences/PerkinElmer).

Predicting PPTC recurrence risk using clinical or/and protein
features
To build models for predicting PPTC recurrence risk, the PM samples
were randomly divided into a training set (n = 50, ~60%) and an inde-
pendent test set (n = 35, ~40%). The training set was used for building
prognostic prediction models, including hyperparameter tuning,

feature selection, and model training. The independent test set was
used to evaluate our models’ generalization capability.

We built five models using the R package mlr3. Specifically, we
generated a Cox proportional hazard model based on clinical features
(CliCox), a random survival forest based on clinical features (CliRsf),
a Cox proportional hazardmodel based on protein features (ProtCox),
a random survival forest based on protein features (ProtRsf), and
a random survival forest based on clinical and protein features
(CliProtRsf). For eachmodel, we tuned the hyperparameters using grid
search strategy and threefold cross-validation, selected the features,
and trained the model using the training set. Lastly, we compared the
C-Indexes of the fivemodels in training, cross-validation, and test sets.
The models based on the eleven clinical features did not conduct the
feature selection step due to the small number of clinical features, and
for the ProtCox model, we used the Least Absolute Shrinkage and
Selection Operator (LASSO) for selecting the protein features. As for
ProtRsf and CliProtRsf, we made the feature selection as described
next. Hyperparameters were first optimized, and then 1548 DEPs (PB
vs. PM; FC > 1.2, adjusted P < 0.05) were used for feature selection.
Clinical features were also used besides DEPs in the case of CliProtRsf.
The models were trained for 100 times with different initial states. In
each training, we ranked the features according to permutation
importance and selected the 50 most important features. Finally, we
recorded the selected numbers of each protein and chose the features
selected no less than 50 times as the final feature set.

Prognostic stratification of the PM patients
Using our previously developed ProtRsf model, we predicted the
prognostic survival curve of each PM patient. Then, according to the
prognostic curves, the expectations corresponding to these curves
were calculated and used to compute the recurrence risk score, noted
as Continuous risk ranking (Crank), which is proportional to
the recurrence risk. Next, using the training set, we chose the stratifi-
cation threshold using the Crank scores from the recurrence and the
non-recurrence groups. Specifically, the threshold was calculated by
averaging the mean Cranks of two groups. We then classified the
PM samples as high or low-risk using this threshold. Finally, we vali-
dated our stratification threshold using the independent test cohort,
which allowed us to evaluate the generalization ability of the
final model.

Bioinformatics and statistical analyses
Statistical analysis was conducted using R (v4.1.1) and SPSS (v 23.0).
The Uniform Manifold Approximation and Projection (UMAP) visuali-
zation was performed using the R package UMAP. The heatmap was
generated using the R package pheatmap, with protein-level normal-
ization and hierarchical clustering (Euclidean distance and complete
option were used). The data for normality was determined by
Shapiro–Wilk’s test. The P values of the DEPs in the volcano plots were
derived from a two-sided unpaired Welch’s t test and adjusted using
the Benjamini–Hochberg method. Pathways and networks were ana-
lyzed using the Ingenuity Pathway Analysis (IPA) and visualized with
Cytoscape (v3.8.2). Gene ontology enrichment analysis was conducted
by enrichGO function in R Package clusterProfiler (v4.0.5) using data-
base org.Hs.eg.db (v3.13.0, stored in R package org.Hs.eg.db). Log-rank
test was used for comparing Kaplan–Meier curves in two sample
groups. For the tables of clinical characteristics, continuous variables
were reported as mean± standard deviation (SD), and categorical
variables as frequency and proportion. Two-sided Wilcoxon rank-sum
test (for continuous variables) and chi-squared test (for categorical
variables) were used for comparison. The Pearson correlations
between the fractions of immune cells and the abundance of the
selected 19 proteomic features were calculated using the R pack-
age Hmisc.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomic raw data generated in this study
have been deposited to the ProteomeXchange Consortium via the
iProX partner repository under accession identifier IPX0006407000
(subproject ID: IPX0006407001) or https://proteomecentral.
proteomexchange.org/cgi/GetDataset?ID = PXD050347]. Raw data
and processed data essential to this work are provided in the Supple-
mentary Information and Source Data file. Source data are provided
with this paper.

Code availability
Code for statistical analysis, modeling and visualization presented in
thismanuscript andgenerating correspondingfigure panels and tables
is publicly available on Zenodo at https://zenodo.org/records/
10730561.
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