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Combined KRAS-MAPK pathway inhibitors
and HER2-directed drug conjugate is
efficacious in pancreatic cancer
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Kiran Zahra1, Vikas Somani 1, Iftikhar Ali Khawar1, Hung-Po Chen1,
Paarth B. Dodhiawala1, Lin Li1, Yutong Geng1, Chia-Kuei Mo1, Jay Mahsl 1,
Li Ding 1, Ramaswamy Govindan 1, Sherri Davies 1, Jacqueline Mudd 3,
WilliamG.Hawkins3, RyanC. Fields 3, DavidG.DeNardo 1, DeborahKnoerzer4,
Jason M. Held 1, Patrick M. Grierson1, Andrea Wang-Gillam1,
Marianna B. Ruzinova5 & Kian-Huat Lim 1

Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic
ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to
develop a MAPK inhibitor-based therapeutic combination with strong pre-
clinical efficacy. Utilizing a reverse-phase protein array, we observe rapid
phospho-activation of human epidermal growth factor receptor 2 (HER2) in
PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK
inhibitors lead to swift proteasomal degradation of dual-specificity phospha-
tase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also
present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding
with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In
the presence ofMAPK inhibitors, DUSP6 dissociates from the protective effect
of the RING E3 ligase tripartitemotif containing 21, resulting in its degradation.
In PDAC patient-derived xenograft (PDX) models, combining ERK and HER
inhibitors slows tumour growth and requires cytotoxic chemotherapy to
achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab
deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy,
lead to sustained tumour regression in most tested PDXs without causing
noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, sup-
porting testing the combination of KRAS inhibitors and trastuzumab der-
uxtecan in PDAC. This study identifies a rational and promising therapeutic
combination for clinical testing in PDAC patients.

More than 90% of pancreatic ductal adenocarcinoma (PDAC) cases
harbor activating mutations in the KRAS (Kristen’s rat sarcoma viral
oncogene homolog (KRAS) gene1. KRAS mutant proteins exert their
oncogenic functions by engaging multiple downstream signaling cas-
cades, including the RAF-MEK-ERK mitogen-activated protein kinase

(MAPK) and PI3K-AKT-mTOR pathways. The MAPK pathway is con-
sideredoneof themost critical therapeutic targets basedonnumerous
preclinical studies2. However, MAPK inhibitors, in combination with
targeted agents including PI3K inhibitors or chemotherapy, have
lacked efficacy in clinical trials and have been shown to have significant
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side effects3–5. Our study aimed to develop MAPK inhibitor-based
therapeutic combinations that are based on solid scientific rationale.
We use patient-derived xenografts (PDXs), which are the most clini-
cally relevant models to study non-immunologic mechanisms of drug
resistance and to test therapeutic combinations, as they faithfully
recapitulate the genetic complexity and drug responses of primary
human tumours6.

Here, we show thatMAPK inhibition results in phospho-activation
of human epidermal growth factor receptor 2 (HER2). Mechanistically,
the TEY motif at the C-terminus of HER2 binds and is depho-
sphorylated by dual-specificity phosphatase 6 (DUSP6), and the sta-
bility of DUSP6 protein is mediated by the E3 ligase Tripartite Motif
Containing 21 (TRIM21). Treatment with MAPK inhibitors dissociates
TRIM21 fromDUSP6, causing it to be polyubiquitinated and degraded,
thereby leaving HER2 in a sustained phosphorylated state. While the
combination of small molecule MAPK and HER inhibitors is modestly
effective, the addition of cytotoxic chemotherapy is required to
achieve clinicallymeaningful efficacy. Alternatively,MAPK inhibitors in
combination with DS-8201a, which is a trastuzumab antibody con-
jugated with a cytotoxic payload, deruxtecan, were highly effective,
resulting in complete tumour regression in multiple PDX models.
Lastly, KRAS inhibitors also upregulate HER2 phosphorylation, urging
clinical testing of the combination of KRAS inhibitor plus DS-8201a for
PDAC patients.

Results
Targeting the MAPK pathway is inadequate and compromised
by HER2 activation
To date, combination chemotherapies remain the key treatment
component for PDAC, but the objective response rate is less than 40%
and typically short-lived, underlying the need to develop strategies
that can augment treatment responses. Gemcitabine at concentrations
up to 20μM which covers the half-maximal inhibitory concentration
(IC50) for most PDAC cell lines7,8, dose-dependently induced cleaved
caspase-3 and simultaneously phospho-activated ERK1/2 kinases (p-
ERK1/2) and their canonical substrate p90RSK (p-p90RSK) to various
degrees in KRAS-mutant PDAC cells, including patient-derived cell
lines (PDCLs, Fig. 1a, Supplementary Fig. 1a, b). Other chemother-
apeutic agents used in PDAC treatment, including oxaliplatin, irino-
tecan, 5-fluorouracil (5-FU) and paclitaxel, also robustly activated
ERK1/2, but not the PI3K-AKT cascade (Fig. 1b). PDAC xenograft
tumours treated with gemcitabine showed a markedly stronger p-
ERK1/2 signal by immunohistochemical (IHC) staining (Supplementary
Fig. 1c). Furthermore, analyses of TCGAdatabase showed a very strong
and significant positive correlation between MAPK and two indepen-
dent gemcitabine resistance gene expression signatures9,10 (p ~ 0,
Pearson coefficients >0.8, Fig. 1c). These data suggestMAPK activation
is a stress response that may confer chemoresistance. However, a
phase II clinical study showed that addition of trametinib, a MEK
inhibitor, to gemcitabine did not improve treatment response or sur-
vival in PDAC patients11, potentially due to mechanisms that reactivate
downstream ERK kinases12,13. Ulixertinib is a first-in-class ERK1/2 inhi-
bitor with single-agent activity in MAPK pathway-mutant cancers
demonstrated in a phase 1 clinical trial14,15. We found that ulixertinib
alone showed dose-dependent induction of cleaved caspase-3, sup-
pression of p-p90RSK, and a paradoxical increase in p-ERK1/2 (Sup-
plementary Fig. 1d, e), as published16,17. Gemcitabine and ulixertinib
showed synergism in suppressing PDAC cell viability, as defined by
combination indices (CI, by the Chou-Talalay method18) of <0.9 (Sup-
plementary Fig. 1f). The addition of ulixertinib to gemcitabine induced
more apoptosis according to Annexin-V staining using flow cytometry
(FACS) analysis compared to either agent alone (Supplementary
Fig. 1g). In a murine xenograft experiment using KRAS-mutant PDCLs
(Pa01c andPa02c), the triplet of ulixertinib, gemcitabine andpaclitaxel
wasmore effective in suppressing, but did not regress, tumour growth

(Fig. 1d). A recent phase 1b clinical trial combining ulixertinib, gemci-
tabine, and nab-paclitaxel conducted at Washington University in St.
Louis was prematurely terminated due to poor patient tolerability,
although ulixertinib was able to downregulate KRAS-dependent gene
signatures in tumour samples5. This setback led us to explore other
MAPK inhibitor-based therapeutic strategies that have strong pre-
clinical efficacy.

To identify actionable adaptive responses to MAPK inhibition, we
performed reverse-phase protein array (RPPA) on KRASG12D-mutant
Pa01c and HPAC cells treated with trametinib or ulixertinib for 24 h
(Fig. 1e).We focused on changes that were alteredmore than two-fold.
As expected, both inhibitors downregulated the phosphorylation of
ERK substrates S6 and S6K19, and cell cycle proteins such as phos-
phorylated Rb, Cdc4220,21, Aurora A, and B22. Dual-specificity phos-
phatases 4 and 6 (DUSP4, DUSP6), which are negative regulators of
ERK1/223, were also downregulated. Upregulated markers included
phospho-HER2, total HER3, Matrix Metallopeptidase 14 (MMP14),
epithelial membrane antigen (EMA, a.k.a Mucin1 or MUC1), Interferon
Regulatory Factor 1 (IRF-1), and pro-apoptotic Bcl-2-like protein 11
(BCL2L11 or BIM, Fig. 1f). Phospho-ULK1(S757) was elevated in Pa01c,
consistent with autophagy induction as previously published24,25.
Feedback activation of HER signaling is a known mechanism of resis-
tance to KRAS and MAPK pathway inhibitors in colon and pancreatic
cancers16,26,27. Increased expression of HER1/EGFR, HER2, and HER3 by
immunohistochemistry (IHC) has been reported in up to ~70%28,29,
~60%30,31, and ~24%, respectively32 in PDAC. Western blotting showed
that PDAC cell lines displayed various levels of total and phosphory-
lated HER2 (Supplementary Fig. 1h). In untransformed 293 T cells,
which have low basal HER1–3 expression, ectopic expression of HER2,
and to a lesser degree HER1, robustly enhanced p-ERK1/2, but this was
abrogated by Afatinib (Fig. 1g). HER3 overexpression had no detect-
able impact on p-ERK1/2, consistent with it being a pseudokinase that
needs to heterodimerize with HER1 or HER2 for signaling33. Interest-
ingly, HER2 overexpression downregulated DUSP6, but not DUSP4,
suggesting a mechanistic link between HER2 and DUSP6. We con-
firmed the RPPA results that ulixertinib and trametinib increased the
phosphorylation of HER2 at residues Y1248, Y1221/1222, and Y877, but
not atT686 andY1196, aswell as the phosphorylation ofHER3atY1197,
which mediates HER2/HER3 heterodimerization and activation of the
PI3K pathway34. We also observed increased total HER2 and HER3
(Fig. 1h), as well as phospho-AKT as published16. Consistently,
ulixertinib-treated PDX tumours displayed increased HER2 and p-
ERK1/2, and decreased DUSP4 and DUSP6 IHC staining (Supplemen-
tary Fig. 1i).

To determine the impact of the significantly upregulatedmarkers
from RPPA, we treated seven PDAC cell lines with ulixertinib in com-
bination with afatinib (HER inhibitor), Ro 28–2653 (MMP inhibitor),
GO-201 (EMA/MUC1 inhibitor), or ruxolitinib (JAK inhibitor to block
IRF-1 activation) and performed Annexin-V staining by FACS to assess
apoptosis. Of these agents, only afatinib showed consistently greater
pro-apoptotic effects when combined with ulixertinib or trametinib in
all seven cell lines tested (Supplementary Fig. 2a, b). To corroborate
the Annexin-V data, we performed drug combination experiments and
found that afatinib was the only agent that consistently showed
synergism with trametinib or ulixertinib in suppressing the growth of
these PDAC cell lines (Supplementary Fig. 2c).

To dissect the role of each HER family member in MAPK inhibi-
tion, we knocked down ERBB1/2/3 each using two small hairpin (sh)
RNAs in Pa01c and HPAC cells. ERBB2-silenced cells were the most
sensitive to inhibition by ulixertinib or trametinib, as shown by the
decrease in IC50 values (Supplementary Fig. 2d). Furthermore, high
expression of ERBB2 mRNA was associated with poor relapse-free
survival (RFS) and overall survival (OS; Supplementary Fig. 2e). These
data suggest that HER2 signaling is a resistance mechanism to MAPK
inhibition.
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Proteasomal degradation of DUSP6 sustains HER2 phospho-
activation
Our RPPA and Western blot data demonstrated downregulation of
DUSP4 and DUSP6 following MEK or ERK inhibition (Fig. 1e, h). DUSPs
are dual-specificity MAP kinase phosphatases (MKPs) responsible for
dephosphorylating tyrosine, serine, and threonine residues of differ-
entMAPKmembers35. Among them,DUSP-6, -7, and -9 are cytoplasmic
MPKs that dephosphorylate ERK, while DUSP4 is an inducible nuclear
MKPs that also includes DUSP1 and DUSP536. Therefore, we hypothe-
sized that the downregulation of DUSP4/6 may contribute to HER2

phosphorylation. First, we found that trametinib or ulixertinib down-
regulated DUSP6 and DUSP4, but not the other DUSP members in
PDAC and 293 T cells (Fig. 2a, Supplementary Fig. 2f). Following ulix-
ertinib treatment, DUSP4 and DUSP6 protein levels started to sig-
nificantly decrease in Pa01c cells as early as 3 and 6 h, respectively
(Supplementary Fig. 2g), suggesting that protein degradation is the
main mechanism of downregulation. Indeed, ulixertinib treatment
resulted in robust polyubiquitination of both DUSP4 and DUSP6
(Fig. 2b). Downregulation of DUSP4 and 6 was partially blocked when
Pa01c and HPAC cells were co-treated with the proteasome inhibitor

Fig. 1 | Targeting the MAPK pathway is inadequate and compromised by HER2
activation. aWestern blots showing dose-dependent increases in phosphorylated
ERK1/2, p90RSK, and cleaved caspase-3 levels in PDAC cells treated with the indi-
cated concentrations of gemcitabine for 24h. bWestern blots showing changes in
p-ERK1/2, p-AKT(S473), and cleaved caspase-3 levels after treatment with the
indicated agents for 24h. c Correlation plots with Pearson coefficients (R) showing
strong positive correlation between MAPK and two independent gemcitabine
resistance signatures in PDAC samples from TCGA PanCancer database. d Growth
kinetics of subcutaneous Pa01c and Pa02c xenograft tumours treated as indicated
when the tumour volume reached ~100mm3. Data are presented as mean± SEM.
P-values were calculated using two-way ANOVA with Tukey’s multiple comparison

test.eHeatmapof RPPAdata showing significantlyupregulatedanddownregulated
markers in Pa01c and HPAC cells treated with ulixertinib or trametinib for 24h.
f Venn diagram showing the shared changes in both cell lines. Only markers
showing a Log2 fold change or <-1 or >1 are illustrated. Data are presented as the
mean ± SEMof two biological samples.gWestern blots showing changes in p-ERK1/
2, DUSP4, and DUSP6 levels in 293 T cells transfected with HER1, HER2, or HER3 for
36h and then treated with DMSO or afatinib for 16 h. h Western blots showing
changes in different phosphorylated-HER2 signals, p-HER3, p-ERK1/2, p-AKT,
DUSP4, and DUSP6, in Pa01c and HPAC cells treated with ulixertinib or trametinib
for 24h. a, b, g, h were conducted two times, and one set of data was presented.
Source data are provided in Source Data file.
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bortezomib (Fig. 2c). Notably, this restoration of DUSP4 or DUSP6
protein levels by bortezomib coincided with the attenuation of
phospho-HER2 induced by trametinib or ulixertinib, providing further
support for the idea thatDUSP4orDUSP6maydephosphorylateHER2.

Next, we found that knockdown of DUSP6, but not DUSP4,
resulted in increased phosphorylation of HER2 and as expected, ERK1/
2 (Fig. 2d). Conversely, overexpression of DUSP6, but not DUSP4 or
DUSP7, decreased the total and phosphorylated HER2 at Y1221/1222,
Y1248, and Y877 (Fig. 2e). Wild-type, but not enzymatically inactive
(C293S37) DUSP6 decreased phosphorylated HER2 and p-ERK1/2
(Fig. 2f). These data support DUSP6 as the phosphatase that mediates
HER2 dephosphorylation.

The TEY motif of HER2 promotes binding to DUSP6
DUSP6 is best known as a direct phosphatase of ERK1/2. Phosphor-
ylation of ERK2 at the T185 and Y187 in the TEY (codon 185–187) motif
results in ~6-fold increased affinity of its common docking motif to
DUSP638, which in turndephosphorylates ERK2 in a stepwisemanner39.
By aligning the amino acid sequences of ERK1/2 and HER1–3 proteins,
we found that HER2 also contained a TEY motif (codon 877–879,
Fig. 3a). To determine whether this TEY motif mediates binding with
DUSP6, we synthesized recombinant His-tagged wild-type (WT) or
T185A/Y187A ERK2,WTor T885A/Y887AHER2C-terminus (codon 676-
end) peptides in BL21 bacteria and incubated them in vitro with bead-
bound HA-tagged DUSP6 produced in Pa01c cells. The HA beads were
then washed, and the bound proteins were analyzed by Western
blotting. We found that DUSP6 binds robustly withWT and, to a much
lesser extent,mutant ERK2 andHER2 (Fig. 3b). In a reverse experiment,

we incubated His-beads bound with recombinant His-tagged WT or
mutant ERK2 or HER2 with HA-DUSP6 expressing Pa01c cell lysates,
and similarly observed diminished binding of HER2 and ERK2mutants
to DUSP6 (Fig. 3c). To strengthen these findings, we treated purified
FLAG-HER2 synthesized in 293 T cells with recombinant DUSP6 in vitro
and showed a reduction of phospho-HER2 at Y877 (Fig. 3d). It is known
that ERK2 binds and promotes the phosphatase activity of DUSP640,
which in turn dephosphorylates ERK2. To determine whether similar
phenomenon occurs with HER2, we performed in vitro phosphatase
assay41 using recombinant DUSP6, and found that treatment with
purified HER2 increased the in vitro phosphatase activity of DUSP6 by
~3-fold (Fig. 3e). Together, these data suggest that the TEY motif of
HER2 mediates binding with DUSP6 and promotes its phosphatase
activity.

Next, we investigated themechanismunderlying the regulation of
DUSP6 protein stability. We observed that HER2 overexpression, but
not HER1 or HER3, downregulated DUSP6 (Fig. 1g). Furthermore, co-
expression of HER1/HER2 or HER2/HER3, but not HER1/HER3, down-
regulated DUSP6 (Supplementary Fig. 3a), strongly suggesting a
bidirectional regulation between HER2 andDUSP6. Indeed, short-term
(4 h) treatment with trametinib or ulixertinib prior to DUSP6 degra-
dation resulted in a detectable increase in the interaction between
endogenous HER2 and DUSP6 in PDAC cells, as measured by the
Duolink® in situ proximity ligation assay (Fig. 3f). HER2 overexpression
led tomarked polyubiquitination of DUSP6, and this phenomenonwas
augmented in the presence of MEK or ERK inhibitors (Fig. 3g, Sup-
plementary Fig. 3b). Therefore, MAPK inhibition increased the binding
of HER2 to DUSP6, potentially leading to DUSP6 degradation. In turn,

35

a b

d

c

e f

DUSP6

70

55

35

35

15

35
55

35

35

Pa01c
1

HPAC

DUSP1

DUSP6

DUSP7

GAPDH

2
0.5

Ulixertinib(μM):
Trametinib(μM):

-
- - -

1 - -

DUSP4

2
0.5

-
- - -

1 -

Cytoplasmic 
ERK-

specific

Inducible 
nuclear

DUSP5

DUSP9

DUSP10

DUSP8

DUSP3
Dually-
located

1
- (kDa)

35

35

55

35

250

250

55

Pa01c

Ulixertinib(μM):
Trametinib(μM):

p-HER2(Y1248)

HER2

p-ERK1/2

ERK1/2

DUSP4

DUSP6

GAPDH

2 2
0.5 0.5-

-
- - -
- - -

0.5
HPAC

2 2
0.5-

-
- - -
- -

Bortezomib(μM): - 0.1 - -0.1 0.1 - 0.1 - -0.1 0.1
-

1.0 1.8 3.5 2.1 3.5 1.8 1.0 0.7 2.5 1.1 3.2 1.5Ratio to GAPDH

1.0 2.0 0.02 0.7 0.01 0.4 1.01.2 0.06 0.5 0.01 0.3Ratio to GAPDH

1.0 1.6 0.5 1.1 0.1 0.7 1.0 2.4 0.4 1.8 0.2 0.9Ratio to GAPDH

(kDa)

55

35

55

250

250

250

250

35

HER2

p-ERK1/2

ERK1/2

D
U

SP
4

GAPDH

p-HER2
(Y1248)

p-HER2
(Y1221/1222)

p-HER2(Y877)

Pa01c HPAC

Ve
ct

or

D
U

SP
4

Ve
ct

or

Pa01c HPAC

Ve
ct

or

D
U

SP
6

Ve
ct

or

D
U

SP
6

Pa01c HPAC

Ve
ct

or

D
U

SP
7

Ve
ct

or

D
U

SP
7

0.031.00.11.0 1.41.00.71.0 0.91.00.81.0

0.141.00.31.0 1.51.00.71.0 1.41.00.71.0

0.51.00.21.0 0.71.01.01.0 1.11.01.01.0

0.21.00.21.0 1.11.00.81.0 1.21.01.01.0

Ratio to GAPDH

Ratio to GAPDH

Ratio to GAPDH

Ratio to GAPDH

endogenous
ectopic

DUSP6 DUSP4 DUSP7

(kDa)

IP
:F

LA
G

FLAG-DUSP4

IB:Ubi

W
C

L

FLAG-DUSP6

DUSP4

IB: FLAG

- - 2 - 2Ulixertinib(μM): - - 2 - 2
- - - 0.1 0.1Bortezomib(μM): - - - 0.1 0.1

GAPDH

FLAG

1.0 0.1 1.2Ratio/GAPDH: 1.6 1.0 0.6 1.21.6
DUSP6

EV EV
293T

FLAG/GAPDH: 1.0 0.2 1.01.6 1.0 0.6 1.01.1

35

250
(kDa)

35

55

55

55

55

250

250

250

250

DUSP4

35

35

HER2

p-ERK1/2

ERK1/2

GAPDH

p-HER2
(Y1248)

p-HER2
(Y1221/1222)

shDUSP6

Pa01c

Sc
ra

m

#1 #2
shDUSP6

HPAC

Sc
ra

m

#1 #2

p-HER2(Y877)

Ratio to GAPDH 2.21.0 2.5 2.61.0 1.7

2.31.0 2.7 2.61.0 1.9

1.91.0 1.4 1.81.0 1.7

2.91.0 2.2 4.11.0 3.7

Ratio to GAPDH

Ratio to GAPDH

Ratio to GAPDH

DUSP6

shDUSP4

Pa01c

Sc
ra

m

#1 #2
shDUSP4

HPAC

Sc
ra

m
#1 #2

0.61.0 0.4 0.61.0 0.7

0.51.0 0.6 0.71.0 0.6

0.71.0 0.7 0.71.0 0.5

0.81.0 0.7 0.51.0 0.4

(kDa)

55

35

250

55

35

250

250

250

- +
- - +

HPAC
-- + -

- - +

Pa01c
HA-DUSP6 WT:

HA-DUSP6(C293S):

p-ERK1/2

ERK1/2

GAPDH

p-HER2
(1248)

p-HER2
(1221/22)

HER2

p-HER2(Y877)

0.41.0 1.4 0.31.0 0.8

0.51.0 1.2 0.41.0 0.8

0.051.0 0.9 0.51.0 1.3

0.41.0 1.0 0.21.0 0.6

endogenous
ectopic

Ratio to GAPDH

Ratio to GAPDH

Ratio to GAPDH

Ratio to GAPDH

(kDa)

Fig. 2 | Proteasomal degradation of DUSP6 sustains HER2 phospho-activation.
aWestern blots showing changes in the indicated DUSPs following treatment with
trametinib or ulixertinib overnight (~16 h) in the two different PDAC lines.
b Immunoprecipitation (IP) experiment showing polyubiquitination of stably
expressed FLAG-tagged DUSP4 and DUSP6 in 293 T cells following 16 h treatment
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cWestern blots showing changes in p-HER2 (Y1248), p-ERK1/2, DUSP4, and DUSP6
levels in Pa01c and HPAC cells treated with trametinib or ulixertinib for 16 h, fol-
lowed by DMSOor bortezomib for 6 h.dWestern blots showing changes in p-HER2

and p-ERK1/2 in Pa01c and HPAC cells stably expressing scramble control of two
different shRNAs against DUSP4 or DUSP6. e Western blots showing changes in
p-HER2 and p-ERK1/2 in Pa01c and HPAC cells stably overexpressing an empty
vector, DUSP6, DUSP4, or DUSP7. fWestern blots showing changes in p-HER2 and
p-ERK1/2 levels in Pa01c and HPAC cells stably expressing wild-type (WT) or
enzymatically inactive (C293S) DUSP6. All experiments were conducted two times,
and one set of data for each was presented. Source data are provided in Source
Data file.
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lowered DUSP6 level results in increased HER2 phosphorylation,
forming a positive feedforward loop.

KRAS recruits E3 ligase TRIpartite Motif containing-21 (TRIM21)
to regulates DUSP6 stability
Next, we sought to understand the mechanism governing DUSP6
degradation. In PDAC genetic mouse model, DUSP6 expression was
upregulated in early preneoplastic lesions in response to oncogenic
KRAS signaling42. In support, we found that expression of KRASG12V also
increased DUSP6, although it could still be partially degraded by tra-
metinib or ulixertinib (Fig. 4a). Time-chase experiments using the
protein translation inhibitor cycloheximide in isogenic 293 T cell lines
showed that the decline of DUSP6 was slower in the presence of
KRASG12V (Fig. 4b). Conversely, silencing KRAS in KRASG12D-mutant
Pa01c cells caused DUSP6 to be less stable (Fig. 4c) and more readily
degraded by ulixertinib (Fig. 4d). In support, ulixertinib-induced
DUSP6 degradation was more pronounced when KRAS-mutant PDAC
cells were co-treated with KRASG12D inhibitor MRTX1133 in Pa01c and
HPAC, or KRASG12C inhibitor AMG-510 in MIA Paca-2 (Fig. 4e, f, Sup-
plementary Fig. 4a). These data led us to hypothesize that KRAS
oncoproteins participate in DUSP6 degradation.

To understand the mechanism, we immunoprecipitated FLAG-
tagged KRASG12V from 293T cells and performedmass spectrometry to
identify binding partners. To exclude non-specific hits, we used FLAG-
tagged RALAG23V, which shares ~85% amino acid sequence homology
with KRASG12V as a negative control. Reflecting the robustness of this
data, RAF1 was enriched in KRASG12V lysate whereas subunits of the
exocyst complexes43 were enriched in the RALAG23V lysate. We found
that TRIpartite Motif containing-21 (TRIM21) as an E3 ligase that was
enriched by more than 3-fold in KRASG12V cells (Fig. 5a), leading us to
test whether TRIM21may degrade DUSP6.Western blotting confirmed
that HA-tagged KRASG12V indeed binds to endogenous TRIM21 and
DUSP6. Surprisingly, these interactions were markedly diminished in
the presence of trametinib or ulixertinib (Fig. 5b). Furthermore, time
chase experiment with cycloheximide showed that overexpression of
GFP-tagged TRIM21 rendered DUSP6 protein more stable (Fig. 5c).
Additionally, wild-type, but not enzymatically inactive (C54Y44) TRIM21
diminished K48-polyubiquitination of DUSP6 (Fig. 5d) at baseline and
in the presence of trametinib or ulixertinib (Fig. 5e, Supplementary
Fig. 4b). Conversely, silencing TRIM21 by shRNAs decreased DUSP6
levels and correspondingly increased total and p-HER2 levels in PDAC
cells (Fig. 5f). Phenotypically, TRIM21-silenced PDAC cells formed
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more and larger colonies, but this effect was blocked by afatinib
(Fig. 5g), supporting a role of HER2 signaling in driving this phenotype.
As separate unbiased confirmation, TRIM21-silenced HPAC cells dis-
played enhanced ERBB2 and KRAS signatures by RNAseq (normalized
enrichment scores 6.52 and3.35, respectively, falsediscovery rate q = 0
for both, Fig. 5h). Collectively, our data thus far depict a model in
whichMAPK inhibitors dissociate TRIM21 fromDUSP6, causingDUSP6
to be proteasomally degraded, subsequently leaving HER2 in a more
phospho-activated state which contributes to further DUSP6 degra-
dationwhile simultaneously drives other survival pathways such as the
PI3K-AKT cascade (Fig. 5i).

Targeted MAPK-based combinations require cytotoxic
chemotherapy to achieve meaningful therapeutic efficacy
Thus far, our data have depicted a mechanistic link between MAPK
inhibition and HER2 activation, prompting us to test the combination
ofMAPK inhibitors plus afatinib in PDXmodels.We utilized ulixertinib,
a 1st-in-class ERK inhibitor that has shown single-agent activity in
NRAS-mutant melanoma patients15. Because MAPK inhibition also
activates the pro-survival PI3K-AKT cascade (Fig. 1i), as also widely
reported by others16,45–47, we included the combination of ulixertinib

and the PI3K inhibitor copanlisib for comparison of efficacy. In a pilot
experiment using six KRAS-mutant PDX models, although ulixertinib
plus afatinib or copanlisib weremore effective than single agent alone
in curbing tumour growth (Fig. 6a), no tumour regression was
observed. Because gemcitabine can synergize with ulixertinib (Sup-
plementary Fig. 1f), we added gemcitabine to these two doublet regi-
mens and performed an efficacy analysis in 16 early passaged PDXs,
fourteen of which had a KRAS mutation6 (Fig. 6b). We found that
adding gemcitabine to either ulixertinib + copanlisib or ulixertinib +
afatinib was more effective in inhibiting PDX tumour growth than the
ulixertinib + gemcitabine doublet (Supplementary Fig. 5a). Using the
clinical RECIST 1.1 criteria48, the partial response (PR), stable disease
(SD), and disease control rates (PR + SD, DCR) for each treatment
group after 4 weeks of treatment were gemcitabine:0%, 6%, and 6%;
gemcitabine + ulixertinib:6%, 0%, and 6%; gemcitabine + ulixertinib +
afatinib:12.5%, 25%, and 37.5%; gemcitabine + ulixertinib + copanlisib:
37.5%, 31.3%, and 68.5%, respectively (Fig. 6c). Although the gemcita-
bine + ulixertinib + copanlisib triplet appeared superior to other
combinations, the treated mice experienced significant weight loss
after 2–4 weeks of treatment (Fig. 6d, Supplementary Fig. 5b), leading
to mandatory treatment breaks. After the treatment break, somemice
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of three independent experiments. Data was presented as mean ± SEM. P-values
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failed to recover and had to be euthanized (WU-0007, WU-0011, WU-
0022). For the remaining 13 PDX models, where the mice had recov-
ered enough to resume treatment, only two PDX models (WU-0009
and WU-0016) showed disease progression, whereas the remaining 11
treated PDXmodels had stable disease. Many of these re-treated mice
experienced weight loss again and later had to be euthanized despite
having small tumours. In contrast, the gemcitabine + ulixertinib +
afatinib triplet appeared to be better tolerated as the treated mice did
not exhibit significant weight loss during treatment (Supplementary
Fig. 5a, b). These experiments show that co-targeting the MAPK and

HER signaling with inhibitors may be inadequate and require an
additional cytotoxic agent to achieve meaningful anti-tumour efficacy
in PDAC.

MAPK inhibitors plus antibody-drug conjugate trastuzumab
deruxtecan (DS-8201a) lead to deep and durable treatment
response
Although the gemcitabine + ulixertinib + afatinib triplets showedmore
efficacy in PDXmodels, the DCRwasmerely 37.5%. In addition, afatinib
and ulixertinib share overlapping side effects, including skin rash,
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fatigue, diarrhea, and anorexia5, and thus may not be well tolerated in
patients. Because ulixertinib and trametinib upregulate HER2 expres-
sion, this provided us with an opportunity to test trastuzumab der-
uxtecan (DS-8201a), a humanized monoclonal anti-HER2 antibody
(trastuzumab) conjugated with a topoisomerase 1 inhibitor (der-
uxtecan). Once bound to HER2, DS-8201a is internalized into the
endolysosomes and cleaved by lysosomal enzymes, including cathe-
psins B and L, which are highly expressed in tumour cells49–51, where
deruxtecan is released. Using a clinically approved HER2 IHC staining
protocol, we observed increased HER2 expression in xenograft
tumours treated with either ulixertinib or trametinib (Fig. 7a). By flow
cytometry, both ulixertinib and trametinib significantly increased
surface and total HER2 expression in Pa01C and HPAC cells, which was
reduced by DS-8201a (Fig. 7b). Fluorescence microscopy showed that
trametinib and ulixertinib upregulated HER2 expression at the plasma
membrane, and co-treatmentwith DS-8201a resulted in internalization
of HER2 into the endolysosomes, as labelled using LysoTracker Green
(Fig. 7c). Western blotting showed that DS-8201a induced down-
regulation of total HER2 and p-ERK1/2 and upregulation of DUSP6
(Fig. 7d), supporting our model that HER2 and DUSP6 negatively reg-
ulate each other.

Next, we tested the in vivo antitumour activity of MEK or ERK
inhibitors in combination with DS-8201a in PDAC xenografts. In all
nine models tested, DS-8201a or MAPK inhibitors alone showed

modest suppression of tumour growth. Strikingly, MEK or ERK
inhibitors combined with DS-8201a resulted in sustained tumour
regression in eight out of nine PDXmodels (Fig. 8a). In theWU-0022
model, which harbors a KRASG12R mutation, tumours recurred after
treatment discontinuation, but regression was again achieved after
re-treatment. By the RECIST 1.1 criteria, the ulixertinib +DS-8201a or
trametinib + DS-8201a doublets achieved complete or near-
complete response in all tested models except for WU-0009,
which continued to grow at a lower kinetic (Fig. 7b). In contrast,
trastuzumab plus trametinib slowed but did not regress tumour
growth (Fig. 7c), again signifying the need for a cytotoxic agent for
this strategy. Notably, mice treated with trametinib or ulixertinib
plus DS-8201a retained their body weight throughout treatment
and during observation after tumour regression (Supplementary
Fig. 6a). Furthermore, mice treated with trametinib + DS-8201a
showed no significant abnormalities in blood chemistries compared
to those treated with the vehicle of a single agent (Supplementary
Fig. 6b). At the time of euthanasia, we did not observe histological
abnormalities in the lungs, liver, kidneys, and intestines of combo-
treated mice (Supplementary Fig. 6c).

Because each MEK inhibitor has a different mechanism of
action, we tested whether other MEK inhibitors can similarly upre-
gulate total or phospho-HER2 expression in PDAC cells. We found
that mirdametinib and selumetinib also increased phospho-HER2
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levels by Western blots (Supplementary Fig. 7a), as well as total and
surface HER2 expression in Pa01c and HPAC cells by flow cytometry
(Supplementary Fig. 7b). Together, these data provide a compelling
rationale for evaluating MEK or ERK inhibitors plus DS-8201a in
PDAC clinical trials.

KRAS inhibitors plus antibody-drug conjugate trastuzumab
deruxtecan (DS-8201a) showed promising preclinical efficacy
The development of KRAS inhibitors has been one of the biggest
therapeutic breakthroughs in recent years. Because KRAS inhibitors

AMG-510 and MRTX1133 downregulate DUSP6 (Fig. 4e, f), which has
also been observed by others52–54, we hypothesized that these inhi-
bitors can similarly upregulate HER2 expression. Using FACS assay,
we found that AMG-510 upregulated surface HER2 expression in
different KRASG12C-mutant cell lines, including lung adenocarci-
noma NCI-H2122 and NCI-H2030 (Fig. 9a) and colon adenocarci-
noma SW837 and SW1463 (Supplementary Fig. 8a). The
combination of AMG-510 and DS-8201a showed strong synergism in
curbing the growth of all three cell lines in vitro, with most CI values
falling below0.1 (Fig. 9b). This combination led to a partial response
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in seven out of eight MIA Paca-2 tumours grown in immunocom-
promised mice, while neither agent alone showed meaningful effi-
cacy compared to the vehicle (Fig. 9c). Similarly, MRTX1133
upregulated the surface expression of HER2 in KRASG12D-mutant
Pa01c and HPAC cells, as determined by immunofluorescence
(Fig. 10a) and flow cytometry (Fig. 10b). Knockdown of ERBB2, and
to a much lesser extent ERBB1 or ERBB3, led to increased sensitivity
of Pa01c and HPAC cells to MRTX1133 in vitro (Supplementary
Fig. 8b). The combination of DS-8201a and MRTX1133 at 10mg/kg,
which has little single-agent efficacy, led to partial response in four
out of eight Pa01c xenograft tumours (Fig. 10c). These data support
testing the combination of KRAS inhibitors and DS-8201a in future
clinical trials.

Discussion
As of now, combination chemotherapy remains the primary treatment
approach for all PDAC patients. Targeted therapies and immunother-
apeutics are effectiveonly for a small subset of patients, typically those
with specific genetic alterations, deficient mismatch repair or high
tumour mutational burden. Our study underscores the critical role of
theMAPKpathway inPDAC, not solely drivenby theKRASoncoprotein
but also by therapeutic stress. We provided mechanistic evidence
showing thatMAPK and KRAS inhibitors play a role in destabilizing the
DUSP6 protein, consequently leading to the activation of HER2. This
adaptive mechanism can be exploited by incorporating a HER2-
directed antibody-drug conjugate (ADC), resulting in sustained
tumour regression in PDAC PDXs.

0 103 104 105 0 103 104 105

0

1000

2000

3000

4000

M
FI

✱✱

✱✱✱✱

✱✱✱✱

ns

0

1000

2000

3000

4000

M
FI

✱✱

✱✱✱✱
✱✱✱✱

ns

a

cb

0 103 104 105

Cell surface HER2 

0 103 104 105

Total HER2 
NCI-H2122 (KRASG12C)

AMG-510
+DS-8201a

DS-8201a

AMG-510

Vehicle
Unstained

Unstained
Vehicle
AMG-510
DS-8201a
Combo

0

5000

10000

15000

M
FI

✱✱✱✱
✱✱✱✱

✱✱✱✱

✱

0 103 104 1050 103 104 105

0

5000

10000

15000

20000
M

FI
✱✱✱
✱✱✱✱

✱✱✱✱

ns

0

5000

10000

15000

M
FI

✱✱✱

✱✱✱✱

✱✱✱✱

✱✱

0

5000

10000

15000

20000

M
FI

ns

✱✱✱✱
✱✱✱✱

ns

MIA Paca-2 NCI-H2122 NCI-H2030

Fraction affected by dose

C
om

bi
na

tio
n 

in
de

x(
C

I)

0.0 0.2 0.4 0.6
0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

 Synergism

Strong Synergism

Very Strong Synergism

Slightly Synergism

Moderate Synergism

Nearly additive

Slightly Antagonism

NCI-H2030 (KRASG12C)
Cell surface HER2 Total HER2 Cell surface HER2 Total HER2 

MIA Paca-2 (KRASG12C)

-100

0

100

200

1000

2000

%
 c

ha
ng

e 
fro

m
 b

as
e 

lin
e

Vehicle

DS-8201a

AMG-510

AMG-510 plus 
DS-8201a

MIA Paca-2 subcut. xenograft (N=7/arm)Combination of AMG-510 and DS-8201a

Fig. 9 | KRASG12C inhibitor plus trastuzumab deruxtecan showed promising
preclinical efficacy. a Representative FACS plots and quantification showing
changes in surface and totalHER2 abundance following 16 h treatment, as indicated
in three differentKRASG12C-mutant cell lines. (AMG-510 0.5μM,DS-8201a 0.1μg/ml).
Data represents one of three independent experiments each done in triplicates.
Data are presented as the mean± SEM. P-values were calculated using one way
ANOVA followed by Tukey’s multiple comparisons test. NCL-H2122 Surface HER2
(AMG-510 vs vehicle: p <0.0001, DS-8201a vs vehicle: p <0.0001, DS-8201a + AMG-
510 vs AMG-510: p <0.0001 & DS-8201a + AMG-510 vs DS-8201a: p =0.0120), and
Total HER2 (AMG-510 vs vehicle: p =0004, DS-8201a vs vehicle: p <0.0001, DS-
8201a + AMG-510 vs AMG-510: p <0.0001 and DS-8201a + AMG-510 vs DS-8201a:
p =0.8964); NCL-H2030 Surface HER2 (AMG-510 vs vehicle: p =0.0006, DS-8201a
vs vehicle: p <0.0001, DS-8201a + AMG-510 vs AMG-510: p <0.0001 & DS-8201a +
AMG-510 vs DS-8201a: p =0041), and Total HER2 (AMG-510 vs vehicle: p =0.3401,
DS-8201a vs vehicle: p <0.0001, DS-8201a + AMG-510 vs AMG-510: p <0.0001 and
DS-8201a + AMG-510 vs DS-8201a: p =0.9033; MIA Paca-2 Surface HER2 (AMG-510
vs vehicle: p =0.0047, DS-8201a vs vehicle: p <0.0001, DS-8201a + AMG-510 vs

AMG-510: p <0.0001 & DS-8201a + AMG-510 vs DS-8201a: p =0.2871), and Total
HER2 (AMG-510 vs vehicle: p =0.0030, DS-8201a vs vehicle: p <0.0001, DS-8201a +
AMG-510 vs AMG-510: p <0.0001 and DS-8201a + AMG-510 vs DS-8201a:
p =0.9985). bMedian effect analyses of AMG-510 in combination with DS-8201a in
three KRASG12C-mutant cell lines, as represented by combination indices (CI) cal-
culated using Compusyn software. Cells were cultured in triplicate at six fixed-ratio
concentrations (1:1, 0.5:0.5, 0.25:0.25, 0.125:0.125, 0.063:0.063, and 0.031:0.031)
for 3 days, and viability wasmeasured using the Alamar Blue assay. cWaterfall plot
summarizing changes in tumour volume for eachMIAPaca-2 tumour. Allmicewere
euthanized simultaneously when vehicle-treated mice reached the humane end-
points, and comparison to the baseline was made. The treatment response was
determined using the clinical RECIST 1.1 criteria. Each bar represents an individual
tumour. N = 7/arm. P-values were calculated using one-way ANOVA followed by
Tukey’s multiple comparison test. AMG-510 vs vehicle (p =0.0007), DS-8201a vs
vehicle (p =0.0002), DS-8201a + AMG-510 vs vehicle (p <0.0001), DS-8201a + AMG-
510 vs DS-8201a (p =0084) and DS-8201a + AMG-510 vs DS-8201a (p =0022).
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Co-targeting of KRAS-MAPK and adaptive EGFR/HER1 signaling is
a well-proven strategy in colon cancer. In BRAFV600E colon cancer, the
combination of encorafenib, binimetinib, and cetuximab resulted in an
ORR of 26% and amedian overall survival of 9months55. In heavily pre-
treated KRASG12C-mutant colon cancer patients, adagrasib plus cetux-
imab produced an impressive 46% response rate56. Our PDX data
showed that the combination of ulixertinib and afatinib did not lead to
tumour regression and required the addition of a cytotoxic agent. The
advent of DS-8201a (trastuzuman-deruxtecan) provides an attractive
solution to fulfill the goals of curbing MAPK and HER2 signaling, while
including guided delivery of a cytotoxic. DS-8201a monotherapy sig-
nificantly prolonged the survival of patients with HER2-positive
gastric57, breast58, colon cancers59 and HER2-mutant non-small cell
lung cancer60. More excitingly, DS-8201a demonstrated a response
rate of ~50% in HER2-low (IHC1 + and 2+) metastatic breast cancer
patients, leading to FDA approval for this population61. HER2 IHC 2 + or
3 + staining has been reported in 16–61% of PDAC samples30,62,63. While

this wide variation is due to a lack of standardized staining metho-
dology, it can be safely assumed that a significant portion of PDAC
samples display some level (1 + to 3+) of HER2 expression, which could
potentially be further augmented by MAPK or KRAS inhibitors to
render DS-8201a more effective. Equally importantly, because DS-
8201a does not recognize murine HER2, the lack of systemic toxicities
observed in mice treated with DS-8201a and trametinib must not be
overinterpreted, and proper toxicity and pharmacokinetic assess-
ments are warranted in future clinical trials.

The recent advent of KRASG12C inhibitors (KRASi), including
sotorasib and adagrasib, is a major therapeutic breakthrough for lung
adenocarcinoma, in which KRASG12C mutation is more common64–66. In
PDAC, where KRASG12C mutation constitutes ~1% of all cases, sotorasib
showed an ORR of ~20% and progression-free survival of ~4 months67.
Although KRASG12D inhibitors are still being tested in early phase clin-
ical trials, similar efficacy to sotorasib is anticipated. Here, we showed
that the combination of KRAS inhibitors and DS-8201a is highly
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Fig. 10 | KRASG12D inhibitor plus trastuzumab deruxtecan showed promising
preclinical efficacy. a Representative IF images showing increased surface and
total HER2 expression (red) in Pa01c cells treated for 16 hwith the indicated agents.
LysoTracker Green DND-26 was used to stain the endolysosomes. (MRTX1133
0.5μM, DS-8201a 0.1μg/ml). Scale bars = 20μM. b Representative FACS plots and
quantification showing changes in surface (without cell permeabilization) and total
(with cell permeabilization) HER2 abundance following 16 h treatment, as indicated
in two different KRASG12D-mutant cell lines. (MRTX1133 0.5μM, DS-8201a 0.1μg/ml).
Data represents one of three independent experiments each done in triplicates.
Data are presented as the mean± SEM. P-values were calculated using one way
ANOVA followed by Tukey’s multiple comparisons test. Pa01c Surface HER2:
MRTX1133 vs vehicle (p <0.0001), DS-8201a vs vehicle (p <0.0001), DS-8201a +
MRTX1133 vs MRTX1133 (p <0.0001) & DS-8201a +MRTX1133 vs DS-8201a
(p =0.1598), and Total HER2: MRTX1133 vs vehicle (p =0.0008), DS-8201a vs
vehicle (p <0.0001), DS-8201a +MRTX1133 vs MRTX1133 (p <0.0001) and DS-

8201a +MRTX1133 vs DS-8201a (p =0.1215). HPAC Surface HER2: MRTX1133 vs
vehicle (p <0.0001), DS-8201a vs vehicle (p <0.0001), DS-8201a +MRTX1133 vs
MRTX1133 (p <0.0001) &DS-8201a +MRTX1133 vs DS-8201a (p =0.1502), andTotal
HER2: MRTX1133 vs vehicle (p <0.0001), DS-8201a vs vehicle (p =0.0055), DS-
8201a +MRTX1133 vs MRTX1133 (p <0.0001) and DS-8201a +MRTX1133 vs DS-
8201a (p =0.1926). c Waterfall plot summarizing changes in tumour volume for
each Pa01c tumour, as indicated. All mice were euthanized simultaneously when
vehicle-treated mice reached the humane endpoints, and comparison to the
baseline was made. The treatment response was determined using the clinical
RECIST 1.1 criteria. Each bar represents an individual tumour. N = 7. P-values were
calculated using one-way ANOVA followed by Tukey’s multiple comparison
test. MRTX1133 vs vehicle (p <0.0001), DS-8201a vs vehicle (p =0.0001),
DS-8201a +MRTX1133 vs vehicle (p <0.0001), DS-8201a +MRTX1133 vs MRTX1133
(p =0.0867) and DS-8201a +MRTX1133 vs DS-8201a (p =0083). Source data are
provided in Source Data file.
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promising. Because KRASG12C and KRASG12D inhibitors are expected to
exclusively target and upregulate HER2 in KRAS-mutant cells, the
systemic toxicity of this combination should be limited.

We provide experimental evidence that DUSP6 is a phosphatase
that binds anddephosphorylatesHER2, at least inpartmediatedby the
C-terminal TEY motif of HER2. We showed that destabilization of
DUSP6 following MAPK inhibition resulted in sustained HER2 phos-
phorylation. Prior to this study, two other phosphatases have been
shown to dephosphorylate HER2. Protein tyrosine phosphatase 18
(PTPN18 or BDP1) is the first phosphatase to inhibit HER2 phosphor-
ylation and MAPK activity68. Using an RNAi screen, PTPN13 was also
found to suppress HER2 phosphorylation and MAPK and PI3K
signaling69. In the presence of KRAS, DUSP6 is stabilized by TRIM21 via
its interaction with KRAS. This allows DUSP6 to negatively regulate
ERK1/2 and inhibit mitogenic signaling, which is toxic to KRAS-mutant
cells70. In the presence of MAPK inhibitors, TRIM21 dissociates from
DUSP6, causing it to be degraded and resulting in the sustained
phosphorylation of HER2. Nonetheless, much of the molecular details
of these events remain to be fully understood. First, it remains unclear
howMAPK inhibitors dissociate TRIM21 fromDUSP6. One possibility is
that inhibitor bound MEK and ERK molecules are tightly bound to
DUSP6 andpreclude it from interactingwith TRIM21. Second, the bona
fide E3 ligase that polyubiquitinates and degrades DUSP6 remains
elusive in this context. FBXO31 has been shown to polyubiquitinate
and degrade DUSP671; thus, it would be interesting to determine
whether FBXO31 is involved in MAPK/KRAS inhibitor induced DUSP6
degradation. Third, it is unclear howTRIM21 stabilizesDUSP6. It will be
interesting to determine whether TRIM21 competes with FBXO31 or
other E3 ligases for DUSP6 and protects it from degradation.

In summary, our study offers valuable insights into the potential
therapeutic strategies for PDAC by targeting the KRAS-MAPK and
HER2 pathways. The promising combination of KRAS/MAPK inhibitors
and an anti-HER2 ADC warrants further investigation in clinical trials
for PDAC patients, and potentially other KRAS-mutant cancer types.

Methods
Study approval and rigors
All procedures performed in this study involving animals were in
accordance with the ethical standards of the institutional and/or
national research committee and with the 1964 Helsinki Declaration
and its later amendments or comparable ethical standards and were
approved by Washington University IACUC (Protocol #22-0101). Ani-
mal experiments and analyses were conducted in a blindedmanner by
independent laboratorymembers to ensure rigor. In vitro experiments
were replicated two–four times and with different cell lines.

Cell lines
All cell lines, including HPAC, MIA Paca-2, Capan-1, NCI-H2122, NCI-
H2030, SW837, SW1463 and 293 T cells, were purchased from ATCC
and authenticated on their own cell lines. Pa01c, Pa02c, Pa03c, Pa14c,
and Pa16c were kind gifts from Dr. Channing Der at UNC-CH and
whole-exome sequenced72. All lines were used for <6 months after
receipt or resuscitation from cryopreservation. All cell lines were cul-
tured in DMEM supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin. Mycoplasma testing was performed semi-
annually using a MycoSEQ Detection kit (Applied Biosystems).

Reverse phase protein array (RPPA)
Pa01c andHPAC cell lysates were prepared using pre-made lysis buffer
provided by the RPPA core at MD Anderson Cancer Center. Samples
were probed with antibodies by tyramide-based signal amplification
approach and visualized by DAB colorimetric reaction. Slides were
scanned ona flatbed scanner to produce 16-bit tif image. Spots from tif
images were identified and the density was quantified by Array-Pro
Analyzer. All the data points were normalized for protein loading and

transformed to linear value, designated as “Normalized Linear.” “Nor-
malized Linear” values were transformed to Log2 values, and median-
centered for analysis.

Immunoblotting
Western blotting was performed according to standard procedures.
After appropriate treatment, themediumwas removed, and cells were
washed twice with ice-cold 1X PBS and lysed with ice-cold 1% Triton-X
lysis buffer (25mMTris, pH 7.4, 150mMNaCl, 5mMEDTA, 1%Triton-X)
containing 1X protease (10μg mL−1 leupeptin, 700ngmL−1 pepstatin,
170 ngmL−1 aprotinin, 1mM PMSF) and phosphatase (10mM NaF,
1mMNa3VO4, 1mMNa4P2O7, 5mMNaβ-glycerophosphate) inhibitors.
lysate was transferred to a 1.5-ml microcentrifuge tube on ice and
centrifuged at 13,500 rpm, 4 °C for 10min. The pellet was discarded,
and the supernatant was isolated, quantified by Bradford assay
(Thermo Scientific), equalized for protein concentration, denatured,
and reduced by 6X SDS sample buffer, and boiled for 5min. 30–40μg
of proteins was resolved by SDS-PAGE and transferred to a Nitro-
cellulose membrane (Thermo scientific). Membranes were probed
overnight at 4 °C with appropriate primary antibodies diluted in 5%
bovine serumalbumin (BSA), followedby appropriateHRP-conjugated
secondary antibodies (anti-mouse or anti-rabbit, (1:2500 to 5000
dilution); Jackson Laboratory) and imaging using a chemiluminescent
substrate (Pico or Femto, Thermo Fisher). Densitometry was per-
formedusing Image Lab software. Details on antibodies were provided
in Supplementary Table 1.

Protein degradation assay
293T cells stably expressing HA-KRASG12V and/or TRIM21-GFP were
treated with cycloheximide (10 µg/ml) for the indicated times and
immunoblotted to quantify the half-lives of endogenous DUSP6. The
half-life was calculated using densitometry analysis of immunoblot
images (ImageLab, Bio-Rad) and a one-phase exponential decaymodel
(GraphPad Prism v8/9).

Co-immunoprecipitation and immunoblot analysis
Stable cell lines expressing protein of interest or 293 T cells were pla-
ted on 10 cmplates and transiently transfectedwith different plasmids
according to the experimental setting. Bortezomib was added for 6 h
to allow visualization of polyubiquitination. Cells were washed with
cold PBS twice and lysedwith Triton-X lysis buffer (25mMTris, pH 7.4,
150mM NaCl, 5mM EDTA, 1% Triton-X) containing 1X protease and
phosphatase inhibitors. Cells lysates were incubated with anti-HA
(Thermo Scientific cat#88837) or Anti-FLAG M2 (Sigma-Aldrich
cat#M8823) magnetic beads overnight at 4 °C, washed with TBS-T and
TBS respectively, eluted in 2X SDS sample buffer, and boiled for 10min
at 95 °C, according to the manufacturer’s protocol. Proteins were
resolved by SDS-PAGE, blotted onto a Nitrocellulose membrane, and
probed with primary antibodies (Supplementary Table 1).

In vitro pulldown assays
PlasmidDNA constructs pET-29b(+) encoding humanHis6-taggedwild
type C-terminus of HER2 (HER2C-term676-end), mutant (HER2C-
term676-endTY/AA) andHis6-tagged full length ERK2,wild type (ERK2
WT), mutant (ERK2TY/AA) were transformed into E. coli BL21(DE3)
(Intact Genomics). The expression of His fusion proteins in BL21 cells
was induced by adding 1mM IPTG (GOLDBIO) to the bacterial culture
medium (OD600) and incubating the cells for 4 h at 37 °C. Bacterial
cells were harvested and sonicated in bacterial lysis buffer (GOLD-
BIO#77-86-1) containing protease inhibitors. After removing the bac-
terial cell debris by centrifugation (12,000 g, 30min), the supernatant
was subjected to appropriate amount of Dynabeads™His-Tag Isolation
and Pulldown kit (Thermo Scientific cat#101034) in a total volume of
700μL, 1X Binding/Wash Buffer (100mM Sodium Phosphate, pH 8.0,
600mM NaCl, 0.02% Tween™-20) and incubated overnight at 4 °C,
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and then washed. To continue with pull-down assay, samples of
interest prepared in pull-down buffer (6.5mM Sodium phosphate, pH
7.4, 140mMNaCl, 0.02% Tween™-20) in a total volume of 700μL were
added to the earlier bead-protein complex and incubate for 4 h at 4 °C.
The beads were then washed four times with 1X Binding/Wash Buffer
and eluted in His elution buffer (300mM Imidazole, 50mM Sodium
phosphate pH 8.0, 300mM NaCl, 0.01% Tween™-20) and boiled for
5min in 1× samplebuffer. Proteinswere resolved by SDS-PAGE, blotted
onto a Nitrocellulose membrane, and probed with primary antibodies
(Supplementary Table 1).

In vitro dephosphorylation and catalytic activation assay
In vitro dephosphorylation activity and catalytic activation of DUSP6
were performed using recombinant human DUSP6 protein (Abca-
m#ab183239). 293 T cells transfected with FLAG-HER2 was collected,
lysed using TBS by freeze-thaw method and immunoprecipitated by
Anti-FLAG M2 (Sigma-Aldrich cat#M8823) magnetic beads. The beads
were thenwashed three timeswith ice cold TBS and immediately used.
In vitro dephosphorylation of FLAG-HER2 was carried out by mixing
0.5mg recombinant DUSP6 and Anti-FLAGM2magnetic beads bound
HER2 in 100ml alkaline phosphatase stabilizing buffer (Sigma#A4955).
The mixture was then incubated at 37 °C for 1 h on shaker. After the
reaction, 2x SDS loading buffer was added into themixture and heated
at 100 °C for 10min. 20 µl of the sample was used to detect the
phosphorylation status of HER2 by Western blotting. In vitro phos-
phorylation activity and catalytic activation of DUSP6 was measured
using general substrate p-Nitrophenyl Phosphate (PNPP, BioLabs
Cat#P0757L). 2mg recombinant DUSP6 was suspended in phospha-
tase buffer containing Anti-FLAG M2 magnetic bead-bound HER2 and
p-NPP substrate in total volume of 100μl. Following incubation at
37 °C for half an hour on shaker; then the released by product of p-NPP
was measured at 405 nm.

Duolink II proximity ligation assay (DPLA)
In situ interactions were detected by the Duolink II PLA kit per man-
ufacturer’s protocol (Sigma-Aldrich, St. Louis, MO, USA); PLA probe
anti-rabbit Plus (Cat.#SLCL6875); PLA probe anti-mouse minus (5x,
Cat.#SLCG6564); detection kit red (Cat.#Duo92008).

Drugs
Drugs were obtained from the following: Gemcitabine and DS-8201a
(Washington University Siteman Cancer Center Pharmacy), Paclitaxel
(Selleckchem #S1150), 5-FU (Sigma #F6627), Oxaliplatin (Selleckchem
#S1224), SN38 (Selleckchem #S4908), Hydroxychloroquine (Sigma
#H0915), Trametinib (Selleckchem#S2673), Bortezomib (Selleckchem
#S1013), Ruxolitinib(Selleckchem#s1378), MUC1 inhibitor (GO-201,
Sigma#G7923), MMP inhibitor (R028-2653, AOBIOUS#AOB 2296),
Mirdametinib (PD0325901, Selleckchem #S1036), Selumetinib
(AZD6244, Selleckchem#S1008), Sotorasib (AMG510, MCE # HY-
114277), MRTX1133 (MCE #HY-134813). Ulixertinib was provided by
BioMed Valley under a material transfer agreement (MTA), and
Copanlisib and Afatinib were provided by the NCI Cancer Therapy
Evaluation Program (CTEP) under MTAs. For all drug treatments, an
applicable concentration of 0 (zero) indicates vehicle.

Lentiviral and retroviral production and transduction
To produce the lentivirus particles, shRNA encoding plasmid (Sup-
plementary Table 2) was mixed with packaging plasmids psPAX2 and
pMD2.G in 6 µg:3 µg:1.5 µg ratio in serum free DMEM medium and 4X
polyethyleneimine (PEI) transfection reagent (4 µL PEI 1mg/mL for 1 µg
DNA) was added. Similarly, to produce retrovirus particles, equal
amount of (4 µg each) of retroviral vector containing gene of interest
(Supplementary Table 3) and an envelope plasmid (PCL10A1) were
added in serum free DMEM medium and 4X polyethyleneimine (PEI)

transfection reagent (4 µL PEI (1mg/mL) for 1 µg DNA). After 15min
incubation at room temperature and the mixture was added dropwise
onto 293T cells in 10 cm plates. Next day, medium was replaced with
fresh 10% FBS DMEM after 14–16 h of post-transfection. After 48 h and
72 h post-transfection virus was collected and filter by 0.45-micron
filter. Target cells were transduced with virus in presence of 10 µg/mL
polybrene (Sigma) for 24 h and replaced with fresh medium, then
selected with puromycin (2 µg/mL) for 5 days. Surviving polyclonal
cells was confirmed by immunoblot analysis of the target proteins
before using for desired experiments.

In vitro cell viability assay and calculation of combination
indices
5000 to 10,000 cells/well were plated in triplicates in 96-well plates
one day prior to addition of the inhibitors at the indicated final con-
centrations. After 5 days of culture, viability assay wasmeasured using
Resazurin (or Alamar Blue) colorimetric analysis as described73. For
drug interaction studies, cells were cultured in triplicates in the pre-
sence of six fixed-ratio concentrations for 96 h followed by Alamar
Blue viability assay. For Supplementary Fig. 2c, concentrations of the
drugs were as provided in Supplementary Table 4. Combination indi-
ces were calculated using Compusyn software as described18,74.

2D clonogenic assay
Cells were seeded at density 100–200 cells per well (6–12 well format)
in regular culture media 24 h before drug treatment. Media was
replenished twice weekly. After 3 weeks, cells were washed with PBS
and fixed with 4% formaldehyde following the staining with 0.5%
crystal violet. Plates were digitally scanned, and colonies were quan-
tified using particle analyzer on ImageJ software.

Xenograft tumourigenesis assay
Briefly, 2–5 million PDAC cells or 5X5X5mm chunks of cryopreserved
PDXsweremixed 1:1 (v/v) withMatrigel matrix (Corning, NY, USA) and
inoculated into bothflanks of 8 to 12-week-old femaleNOD-SCIDγmice
(catalog#005557, purchased from the Jackson Laboratory) by needle
injection or small incision subcutaneously at the flanks of eachmouse.
Treatments were initiated when the tumours reached ~100mm3 in
volume. Dosages of each drug: ulixertinib 100mg/kg BID 5 days/week
by oral gavage; afatinib 12.5mg/kg/day by oral gavage; trametinib
0.5mg/kg/day by oral gavage; copanlisib 10mg/kg by tail vein injec-
tion over >20min every other day three times per week when not
combined with gemcitabine, or twice weekly when combined with
gemcitabine; DS-8201 4mg/kg by tail vein injection weekly; gemcita-
bine 75mg/kg by intraperitoneal injection weekly, MRTX1133 10mg/
kg/day by intraperitoneal injection, AMG-510 10mg/kg/day by intra-
peritoneal injection. Mice were euthanized when vehicle-treated
tumours reached the maximum allowed volume (~2000mm3) or
when any of the humane endpoints (>20% decrease of body weight
from baseline, or from appearance and inactivity) was reached, as
described in the IACUC protocol (#22-0101). There were a few occa-
sions, as shown in the Source Data file, when mice with tumors
reaching 2000mm3 that were not immediately sacrificed and eutha-
nasia was delayed till the next measuring day, due to oversight of a
mouse technician who measured the tumor diameters without per-
forming the volume calculations. The Division of Comparative Medi-
cine at Washington University was aware of these events, issued
warning and corrective actions were taken. No sex and gender analysis
were carried out in this study becausePDACaffects all genders equally.

Flow cytometry
For apoptotic assay cancer cells were stained using Annexin V-FITC
andpropidium iodide (PI, BDbioscience#556547), detectedwith FACS
Calibur (BD bioscience). For surface and total HER2 expression
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analysis, cells were stained with Alexa Fluor647 anti-human HER2
(BioLegend). The results were analyzed and quantified using FlowJo
software (BD bioscience) using published gating strategy75 as shown in
Supplementary Fig. 9a, b.

Mass spectrometry
293T cells were retrovirally infected with pBabepuro-FLAG-KRASG12V
or pBabepuro-FLAG-RALAG23V and completed puromycin selection.
Three 10 cm plates of each cell lines were grown to 80% confluency
prior to harvesting for immunoprecipitation using Pierce™ Anti-
DYKDDDDK Magnetic Agarose (cat A36797) according to manu-
facturer’s protocol. The three batches of beads fromeachcell linewere
pooled for further processing. Bead-bound proteins were eluted by
SDS sample buffer and subjected to filter-aided sample preparation
(FASP) and trypsin digestion. Briefly, 30 µl samples were mixed with
200 µl UA buffer consisting of 8M urea (Sigma, U5128) in 0.1M Tris-
HCl, pH 8.5, and added to Microcon YM-30 filter units (Millipore,
MRCF0R030). Samples were spun for 15min at 14,000× g and washed
twice with 100 µl UA buffer by centrifugation at the same speed for the
same length of time. 100 µL of 50mM iodoacetamide (freshly dis-
solved in UA buffer) were added, incubated for 20min at 20 °C in the
dark. Samples were centrifuged at 14,000 × g for 10min, washed twice
with 100 µl UA buffer, and 60 µL of sequencing-grade trypsin (Sigma,
#11418025001) (200–400ng total) in 50mM ammonium bicarbonate
was added to the filter units. Following overnight digestion at 37 °C,
sampleswerecollectedby centrifugation at 14,000× g for 10min. 50 µl
of 0.5M NaCl was added to the filters, centrifuged at 14,000 × g for
10min. Pooled eluates were acidified to 5% formic acid (FA), cleaned
upbyC18 zip-tips (#ZTC18S096,Millipore, and resuspended in 15 µl 1%
formic acid/1% acetonitrile.

Samples were analyzed by reverse-phase liquid
chromatography-electrospray ionization-MS/MS using an Eksi-
gent cHiPLC Nanoflex microchip system connected to a quadru-
pole time-of-flight TripleTOF 5600 mass spectrometer (ABSCIEX).
The Nanoflex system uses replaceable microfluidic traps and
columns packed with ChromXP C18 (200 um ID x 15 cm, 3 μm
particle, 120 Å) for online trapping, desalting, and analytical
separations. Solvents composed of water/acetonitrile/formic acid
(A, 100/0/0.1%; B, 0/100/0.1%). Peptides were loading onto the
column with 98% mobile phase A. After online trapping, peptide
mixtures were eluted into analytical column at a flow rate of
800 nL/min using the following gradient: (1) starting at 2% solvent
B; (2) 2–5% solvent B from 0 to 12min; (3) 5–22% solvent B from 12
to 120min; (4) 22–30% solvent B from 120 to 150min; (5) 30–80%
solvent from 150 to 165 min; and finally 80%(vol/vol) solvent from
165 to 169 min with a total run time of 180min including mobile
phase equilibration. The LC column was maintained at 35 °C
during the run. For Data dependent acquisitions, mass spectra
and tandem mass spectra were recorded in positive-ion and high-
sensitivity mode. The nanospray needle voltage was typically
3800 V. After acquisition of each sample, TOF MS spectra and
TOF MS/MS spectra were automatically calibrated during
dynamic LC-MS and MS/MS auto calibration acquisitions by
injecting 50 fmol β-galactosidase. For collision-induced dissocia-
tion tandem MS (CID-MS/MS), the mass window for precursor ion
selection of the quadrupole mass analyzer was set to ±1m/z. The
precursor ions were fragmented in a collision cell using nitrogen
as the collision gas. Advanced information-dependent acquisition
(IDA) was used for MS/MS collection on the TripleTOF 5600 to
obtain MS/MS spectra for the 20 most abundant parent ions
following each survey MS1 scan (allowing typically for 80ms
acquisition time per each MS/MS). Dynamic exclusion features
were set to an exclusion mass width of 50 mDa and an exclusion
duration of 30 s.

Protein identification and MS1 quantification were performed
with MaxQuant (Cox and Mann, 2008) against the Uniprot Human
Reference Proteome. The MS/MS spectra were searched with fixed
modification of Carbamidomethyl-Cysteine, variable modifications of
oxidation (M), acetylation (protein N-term). Search parameters were
set to an initial precursor ion tolerance of 0.07Da, MS/MS tolerance at
40ppm and requiring strict tryptic specificity with a maximum of two
missed cleavages. The minimum required peptide length was set to
seven amino acids. Peptide identification FDR was set at 1%.

Gene set enrichment analysis
Genes in the RNAseq differential expression data were ranked by Log2
fold change, and pre-ranked gene set enrichment analysis was per-
formedusing ranked lists. The rankingmetric was set to “difference-of-
classes” because the expression data were in Log2 units. Otherwise,
GSEAv.4 was used for analysis in the default format. The generated
data were exported and graphed using the GraphPad Prism
v8 software.

Statistics and reproducibility
All animal experiments were conducted, and tumour volumes
measured in blinded fashion by at least two independent lab mem-
bers after randomization. No statistical method was used to pre-
determine sample size. No data were excluded from the analyses All
results, when applicable, are expressed as themean ± SEM (standard
error of the mean). Statistical analyses were performed using Prism
(v8/9/10) software. Paired or unpaired Student’s two-tailed t-tests
were used to compare two groups when appropriate. For multiple
groups, two-way analysis of variance (ANOVA) with Tukey’s or
Dunnett’s post-hoc test was used. Statistical significance was set
at P < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNA-seq differential expression data of HPAC shTRIM21-knockdown
and scramble shRNA cells have been deposited in NCBI’s Gene
Expression Omnibus (GEO) repository under the GEO series accession
number GSE208568. All remaining data can be found in the Article,
Supplementary and Source Data files. Source data are provided with
this paper.
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