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DeepETPicker: Fast and accurate 3D particle
picking for cryo-electron tomography using
weakly supervised deep learning

Guole Liu 1,2,3,8, Tongxin Niu4,8, Mengxuan Qiu 1,2,3, Yun Zhu 5,
Fei Sun 4,5,6,7 & Ge Yang 1,2,3

To solve three-dimensional structures of biological macromolecules in situ,
large numbers of particles often need to be picked from cryo-electron tomo-
grams. However, adoption of automated particle-picking methods remains
limited because of their technical limitations. To overcome the limitations, we
develop DeepETPicker, a deep learning model for fast and accurate picking of
particles from cryo-electron tomograms. Training of DeepETPicker requires
only weak supervision with low numbers of simplified labels, reducing the
burden of manual annotation. The simplified labels combined with the cus-
tomized and lightweight model architecture of DeepETPicker and accelerated
pooling enable substantial performance improvement. When tested on
simulated and real tomograms, DeepETPicker outperforms the competing
state-of-the-art methods by achieving the highest overall accuracy and speed,
which translate into higher authenticity and coordinates accuracy of picked
particles and higher resolutions of final reconstruction maps. DeepETPicker is
provided inopen sourcewith a user-friendly interface to support cryo-electron
tomography in situ.

Structural biologists have traditionally followed a reductionist
approach to handle cellular complexity, in which the molecular com-
ponents of cells are isolated, purified, and then studied individually.
Although this approach has been tremendously successful, it is also
crucial to study the structures and functions of biological macro-
molecules in their native cellular environments1. Cryo-electron tomo-
graphy (cryo-ET) provides a powerful tool for visualizing
macromolecular complexes under native conformations at sub-
nanometre resolutions and for revealing their spatial and organiza-
tional relationships2. This provides new mechanistic insights into key
cellular processes and new possibilities for applications such as drug

discovery. As biological samples are very sensitive to radiation
damage, the native resolution of cryo-ET is limited to ~2–5 nm given
the dose of imaging electrons that can be tolerated3. This resolution is
insufficient for studying the structures and functions of macro-
molecular complexes. Subtomogram averaging (STA) is commonly
used to obtain higher-resolution structures by aligning and averaging
large numbers of particles of the same macromolecular complexes4.
However, themanual picking of large numbers of particles is laborious
and time-consuming. Automated tools for picking 3D particles from
cryo-electron tomograms with high accuracy and efficiency are criti-
cally needed for high-resolution in situ structural biology.
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In addition to the intrinsically crowded cellular environment, at
least two additional technical challenges are encountered when per-
forming 3D particle localization and identification in cryo-electron
tomograms. First, the total electron dose used in cryo-ET experiments
is limited tominimize radiation damage, resulting in very low signal-to-
noise ratios (SNRs) for the reconstructed tomograms5. Second, the tilt
ranges of cryo-ET experiments are often restricted to ±60 degrees due
to electron penetration depth limitations, which result in missing
wedges in the reconstructed tomograms, causing structural distor-
tions of macromolecular complexes in different orientations6. Overall,
picking 3D particles from noisy and distorted tomograms of crowded
cellular contents is substantially more challenging than picking 2D
particles from cryo-electron micrographs for single-particle analyses.

To pick 3D particles for cryo-ET, both conventional and deep
neural network (DNN)-basedmethods have been developed7,8. Among
the conventionalmethods, templatematching (TM)9 and difference of
Gaussians (DoG)10 are widely adopted. In TM, the position and orien-
tation of a predefined template that best matches the tomogram to be
processed are determined by maximizing their cross-correlation.
However, TM has several limitations, including its strong dependence
on the predefined template, its requirement of manual threshold
tuning for cross-correlation, and its high false-positive rates under low
SNRs. DoG picks particles using a bandpass filter that removes high-
and low-frequency components. However, it picks particles regardless
of their classes, and its performance depends heavily on the tuning of
its Gaussian filters for different datasets.

In recent years, DNN-based methods have become the state-of-
the-art 3D particle picking approaches for cryo-ET7,8,11–13. For example,
Faster-RCNN has been used to automatically locate and identify dif-
ferent structures of interest in tomograms in a slice-by-slice manner,
but the 3D information between adjacent slices was not fully utilized14.
To promote the development of 3D particle picking algorithms, the
SHREC Challenge developed datasets of simulated cryo-electron
tomograms to benchmark different particle picking methods7,8,15.
The results showed that deep learning-based methods achieved much
faster processing speed andmuchbetter localization and classification
performance than conventional methods such as TM. In the
SHREC2019 Challenge, DeepFinder achieved the best overall localiza-
tion performance13. It uses a 3D-UNet to generate a segmentation voxel
map and determines the positions of particles using a mean-shift
clustering algorithm. In the SHREC2020 and SHREC2021 challenges,
MC-DS-Net achieved the best overall classification performance by
using a denoising and segmentation architecture. However, its model
contains many parameters, imposing high hardware performance
requirements. Moreover, MC-DS-Net is trained by real full masks of
macromolecular particles, which are usually unavailable in real-world
cryo-ET studies. In contrast, DeepFinder uses spherical masks for
approximation13. Thesemasks provide goodperformance formedium-
and large-sized macromolecules but worse performance than real
masks for small particles. Considering that real cryo-electron tomo-
grams contain more complex intracellular environments than the
simulated data used in the SHREC Challenges, the performances of
those methods tested in the SHREC Challenges must be further vali-
dated on real experimental cryo-ET data.

Overall, despite the various automated particle picking methods
developed for cryo-ET, their adoption in practice remains limited. This
is mainly due to the limitations in their picking accuracy, processing
speed and, for learning-based methods, manual annotation cost. In
this study, to address the limitations, we develop a new deep learning-
based method named DeepETPicker, which accurately and rapidly
picks 3D particles from cryo-electron tomograms with a low training
cost. It utilizes a 3D-ResUNet segmentation model as its backbone to
distinguish biological macromolecules from their backgrounds in
tomograms. The model training process of DeepETPicker requires

only weak supervision using simplified labels and fewer training labels
to attain performance comparable to that of competing methods,
which reduce the cost of manual annotation. Fast postprocessing is
performed on the generated segmentation masks to obtain the cen-
troids of individual particles. To enhance the localization performance
of DeepETPicker on small macromolecular particles, coordinated
convolution and multiscale image pyramid inputs are incorporated
into the architecture of the 3D-ResUNet model. To address the usual
lack of real fullmasks ofmacromolecularparticles in practice, different
types of simplified weak labels are tested as replacements. To elim-
inate the negative influence of poor segmentation accuracy in edge
voxels, a spatial overlap-based strategy is developed. Finally, to max-
imize the speed of particle picking, a customized lightweight model
and GPU-accelerated pooling-based postprocessing are utilized.

When tested on simulated datasets from the SHREC2020 and
SHREC2021 challenges, DeepETPicker achieves the highest overall
processing speed and the best performance in both localization and
classification. The performance of DeepETPicker is further verified on
four real experimental cryo-ET datasets (EMPIAR-10045, EMPAIR-
10651, EMPIAR-10499 and EMPIAR-11125). The results show that it
outperforms the competing state-of-the-art methods by achieving
higher authenticity and coordinates accuracy in picked particles and
better resolution in final reconstructions. DeepETPicker is provided as
open-source software with an easy-to-use graphical user interface
(GUI)16. It will serve as a fast and accurate tool to support automated 3D
particle picking for high-resolution cryo-ET in situ.

Results
Overview of DeepETPicker
The overall workflow of using DeepETPicker to pick 3D particles from
tomograms (Fig. 1) consists of a training stage (Fig. 1a–d) and an
inference stage (Fig. 1e–i). A tomogram is usually too large to be
directly loaded into the DNN segmentationmodel for training because
of memory constraints. Instead, it is partitioned into cubic volumes,
which are often called subtomograms (Fig. 1a, c, e). During the training
stage, given an input subtomogram, the parameters of the DNN seg-
mentation model of DeepETPicker are adjusted to minimize the dif-
ference between its output and the ground truth, as defined by voxel-
level annotation labels for the input subtomogram. Typically, more
than 90% of the voxels are background voxels in experimental tomo-
grams, and the proportion of macromolecular particles in volume is
very small. To better segment particles of interest and to avoid over-
segmenting the background, subtomograms centred on individual
particles are extracted in the training stage. This strategy ensures that
all annotated particles are used, and that each volume contains at least
one particle. During the inference stage, every tomogram is scanned
with a specific stride s and a subtomogram size of N ×N ×N (Fig. 1e).
The trainedDeepETPicker is used to process unseen subtomograms to
produce voxel-level masks for individual particles. A GPU-accelerated
pooling-based postprocessing operation is then performed to directly
and rapidly identify particle centers (Fig. 1h). In this study, training and
inference of DeepETPicker is performed on a single Nvidia GeForce
GTX 2080Ti GPU.

DeepETPicker is provided as open-source software in Python with
a friendly GUI (Supplementary Fig. 1) that integrates multiple func-
tions, including preprocessing input tomograms,manually annotating
particles, visualizing labeled particles, generating weak labels, and
configuring parameters for particle picking. The visualization results
can be adjusted via filtering and histogram equalization operations.
Users can conveniently label particle centers or delete false labels.
Different classes of particles in the same tomogram can be
labeled simultaneously. The coordinates of labeled particles can be
exported to files with different formats that are compatible with
commonly used subtomogram averaging software.
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DeepETPicker achieves the best overall performance in picking
particles from simulated tomograms
Under the very low SNRs of tomograms, it is difficult to generate full
segmentation masks for macromolecular particles via manual annota-
tion. To simplify the manual annotation process, three types of simpli-
fied masks (Ball-M, TBall-M, and Cubic-M) centred on manually labeled
particle centers are generated (Supplementary Fig. 2a). For each type of

simplified masks, their diameters can be set in different ways (Fig. 2b, c
and Supplementary Table 2). Specifically, for the SHREC2021 dataset of
simulated tomograms, the diameters of the simplified masks can be set
to be proportional to the sizes of their corresponding real masks or as a
constant value of 7 or 9. Utilizing simplified masks with constant dia-
meters as training labels avoids the problem of class imbalance and
simplifies the selection of the loss functions (Supplementary Methods).

Fig. 1 | Overall workflow of using DeepETPicker to pick particles from cryo-ET
tomograms. It consists of a training stage (a-d) and an inference stage (e-i).
a Training tomogram: a reconstructed tomogram is partitioned into individual
cubic volumes, referred to as subtomograms. b Weak labels: different types of
simplified particle masks are generated to centre on manually annotated particle
coordinates. c Training labels: the weak labels are assigned to their corresponding
subtomograms. d Untrained model: a 3D-ResUNet model composed of a con-
volutional neural network with untrained parameters. e Testing tomogram:

subtomograms partitioned from a new tomogram are used to test whether the
trained model can accurately pick particles from unseen data. f Trained model.
g Predicted labels: the trained model is used to predict voxel-level labels of the
testing tomogram.h Postprocessing:meanpooling and nonmaximum suppression
(MP-NMS) and overlap-tile (OT) operations are performed on the predicted labels.
Specifically, an example of performing theMP-NMSoperation on a 2D imagewith a
size of 40×40 pixels is shown. i The positions of the picked particles are extracted
after postprocessing.
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Compared to Cubic-M and Ball-M masks, TBall-M masks provide
more stable and consistent localization and classification performance
(Fig. 2d, Supplementary Table 3, and SupplementaryMethods A.10). In
addition, the 3D-RestUNet model trained by TBall-M achieves a mean
F1-score that is 2% higher in absolute magnitude than that trained by
real masks. This is likely because TBall-M may serve as noisy labels to

replace real full masks, and the introduced label noise improves the
generalization capability of the trained model on unseen datasets.
Interestingly, TBall-Mmasks whose diameters are set in different ways
have nearly the same localization and classification performance
(Supplementary Table 3). Because simplified masks with a constant
diameter are more convenient to set up in practice, the results in the
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remainder of this study are obtained using TBall-M masks with a
constant diameter d = 7.

Precise particle centre localization is important for sub-
tomogram averaging. Compared to other methods reported in the
SHREC2021 challenge, such as URFinder, DeepFinder, U-CLSTM,MC-
DS-Net, YOPO, TM-F, and TM, DeepETPicker achieves the best overall
localization performance in terms of the TP, FP, FN, AD, precision,
recall, and F1-score metrics (Supplementary Table 4). Specifically,
compared to the best results obtained in the SHREC2021 challenge,
DeepETPicker achieves a precision level of 0.958 (an increase of 8.9%
in absolute magnitude), a recall value of 0.921 (an increase of 2.0%),
an F1-score of 0.939 (an increase of 7.1%), and an AD of 1.15 (a
decrease of 24.3%). For tomograms that contain a variety of macro-
molecular particles, accurate classification of these particles is cri-
tical, especially for different particles with similar molecular weights
or similar geometries. DeepETPicker achieves the highest F1-scores
on 10 types of macromolecular particles out of all 12 classes (Fig. 2e
and Supplementary Table 5). The best mean F1-score among the
competing methods is 0.801. DeepETPicker improves this mean F1-
score by 3.75% in absolute magnitude. Overall, the classification F1-
scores increase with increasing molecular weights, indicating that
macromolecular particles with larger molecular weights are easier to
pick, presumably because more voxels are occupied by larger parti-
cles in the same tomogram.

In the SHREC2021 challenge, the Multi-Cascade DS network (MC-
DS-Net) achieved the best classification F1-score and the shortest
inference time15. Compared to MC-DS-Net, DeepETPicker takes
approximately 1/10 of its inference time and achieves better-picking
performance (Fig. 2f and Supplementary Table 6). DeepETPicker
achieves similar performance improvements over the methods in the
SHREC2020 challenge8 (Supplementary Fig. 5a, b). The customized
lightweight and efficient architecture of 3D-ResUNet as well as the
GPU-accelerated pooling-based postprocessing method, namely MP-
NMP, are key factors that contribute to the performance of
DeepETPicker.

The amount of annotated data used for training has a significant
impacts on the picking performance of DNN-based models13. Com-
pared to DeepFinder13, DeepETPicker requires less training data to
achieve the same level of performance on the SHREC2020 dataset
(Fig. 2g). Specifically, themean classification F1-score of DeepETPicker
trained by 3 tomograms surpasses that of DeepFinder trained by 8
tomograms. When the classification F1-scores of particles with differ-
ent sizes are plotted against the number of utilized training tomo-
grams (Supplementary Fig. 5c), DeepETPicker shows a more
pronounced classification performance advantage than DeepFinder
for small particles.

We also examine the particle picking performance under different
particle sizes combined with different tomogram noise levels. Speci-
fically, we add different levels of Gaussian noise to the SHREC2021
dataset (Supplementary Table 7) and examine the influence of the
noise level on the picking performance achieved under different

particle sizes. As the SNR decreases, the classification performance of
DeepETPicker, measured by the F1-score, decreases (Fig. 2h). More-
over, the smaller the particle size is, the greater the decrease in the
classification F1-score at lower SNR levels.

Manually labeling the particle centers in tomograms with extre-
mely low SNRs inevitably introduces bias. For example, we calculate
the Euclidean distance between the particle coordinates derived from
manualpicking and those obtained after refinement for EMPIAR-10499
(Supplementary Fig. 6). We find that 80% of the particles are less than
0.52r from the centre, where r is the particle radius, and 90% of the
particles are less than 0.625 r from the centre. To better examine the
impact of manual labeling bias on the particle picking results of Dee-
pETPicker, we randomly add a shift between 0.5r and 0.7r to the
particle centers of the SHREC2021 dataset. We find that the random
shift has little impact on the picking performance of DeepETPicker for
all complexes with different sizes (Fig. 2i). This indicates that Dee-
pETPicker has good robustness against the localization bias induced
by manual labeling.

We perform ablation studies on DeepETPicker and take 3D-UNet
as the baseline to examine the contributions of the different custo-
mizations made to the 3D-RestUNet architecture in terms of
improving picking performance (Supplementary Table 8). We find
that adding residual connections (RCs) improves the mean F1-score
of particle classification by 2%. Adding coordinate convolution (CC)
and the image pyramid (IP) effectively improves the classification F1-
scores obtained for small particles such as 1s3x and 3qm1 (Supple-
mentary Methods). Data augmentation (DA) improves both the
localization and classification performance of the model by sub-
stantial margins. The deduplication (DD) operation of removing the
smaller particles among adjacent local maxima improves the locali-
zation F1-score by 1%. Finally, the overlap-tile (OT) strategy improves
the F1-scores of both localization and classification by 5% and 4%,
respectively, indicating its importance in the inference stage of
DeepETPicker.

DeepETPicker achieves the best overall performance in picking
purified particles from real tomograms
We compare the performance of DeepETPicker with that of competing
state-of-the-art methods in picking purified particles from two experi-
mental datasets. The first dataset, EMPAIR-10045, consists of tomo-
grams of purified S. cerevisiae 80S ribosomes. It is widely used in the
development of image processing algorithms for electron
tomography17. The second dataset, EMPIAR-10651, consists of tomo-
grams of purified T20S proteasomes from Thermoplasma acidophilum.

For EMPIAR-10045, we pick 80 S ribosome particles using Dee-
pETPicker, crYOLO18, DeepFinder13 and TM9 and examine the same and
different particles picked by these methods in a pairwise fashion by
calculating the intersection and difference sets of the picked particles
(Fig. 3a, SupplementaryTable 9 and SupplementaryMovie 1). Based on
the diameter of the 80 S ribosomes, we set tdist = 12 to calculate the
intersection and difference sets.We find that DeepETPicker picks true-

Fig. 2 | Performance of DeepETPicker in comparison with that of competing
methods on the SHREC2020 and SHREC2021 simulated datasets. a Real full
masks of macromolecular particles. Different colors are used to denote different
classesofmolecules.b SimplifiedTBall-Mmaskswith diametersproportional to the
sizes of their corresponding full masks. c Simplified TBall-M masks with a constant
diameter d = 7. d Classification F1-scores achieved by DeepETPicker using real and
different simplified/weak labels on the SHREC2021 dataset. Size-based: the dia-
meter of each generated mask is proportional to the size of its corresponding real
mask; Const 7 and Const 9: the diameters of the generatedmasks are fixed at 7 and
9, respectively. The dashed line shows the cumulative F1-score achieved by Dee-
pETPicker when trained on real full masks. e Classification performance (measured
in F1-scores) achieved on particles of differentmolecular weights (small: <200 kDa,
medium: 200-600kDa, large: >600 kDa): DeepETPicker versus other particle

picking methods reported in the SHREC2021 challenge. f DeepETPicker runs sub-
stantially faster and achieves substantially higher classification F1-scores than the
competing particle-picking methods on the SHREC2021 dataset. g Classification
performance (measured in F1-scores) under different numbers of training tomo-
grams: DeepETPicker versus DeepFinder on the SHREC2020 dataset. The dashed
line shows the average F1-scores of DeepETPicker when trained by three tomo-
grams. h The influence of the SNR level on the classification performance of Dee-
pETPicker for particles with different molecular weights from the SHREC2021
dataset. The noise levels under different Gaussian kernel σ are 0.127 ~ 0.587 for
σ = 0, 0.101 ~ 0.463 for σ = 1.1, 0.056 ~ 0.254 for σ = 2, and 0.026 ~ 0.110 for σ = 5.
i The influences of different particle centre shifts (biases) on the classification
performance of DeepETPicker. Source data are provided as a Source Data file.
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positive particles that are missed by the method reported in 17 as well
as crYOLO andDeepFinder. Although TMpicksmany particles that are
not selected by DeepETPicker, most of these particles are false posi-
tives (Fig. 3a).

Manual annotations are used to assess how closely an automated
particle-picking method matches the manual particle picked by an
expert. A comparison among the particles picked by the four selected
methods (DeepETPicker, crYOLO, DeepFinder, and TM) and manual
annotation is carried out via the precision and recall metrics (Supple-
mentary Methods A.9). At a fixed recall, DeepETPicker achieves the

highest precision, followed by TM, DeepFinder and crYOLO (Fig. 3b),
indicating that the highest consistency with manual annotation is
achieved by DeepETPicker. Furthermore, the maximal recall values of
DeepETPicker and TM are substantially higher than those of Deep-
Finder and crYOLO (Fig. 3b), indicating that more manually labeled
particles are picked by DeepETPicker and TM. When the recall of TM
reaches its maximum value, its precision decreases sharply, indicating
that more false-positive particles are picked.

The authenticity and coordinates accuracy of the particles picked
by these different methods are further examined based on the results
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of subsequent subtomogram averaging (Fig. 3c–g). For an objective
comparison, no particle screening is performedduring the subsequent
alignment and classification processes because otherwise the mea-
surements of the picked particles could be affected by the screening
protocols used. We only set one class in the 3D classification step and
perform 3D auto-refinement based on the shift and orientation para-
meters of the 3D classification method in RELION. Then, we plot the
number of particles versus the corresponding calculated log-
likelihood contribution (Fig. 3c). We find that the overall range of the
log-likelihood contribution provided by the particles picked by Dee-
pETPicker is consistently higher than those of the particles picked by
crYOLO, DeepFinder, and TM. The same observation holds for the
intersection anddifference sets of the particles (Supplementary Fig. 7).
Furthermore, we calculate the cumulative ratio of particles with the
maximumprobability higher than a threshold and plot the ratio versus
the threshold (Fig. 3d). The cumulative ratio curves of DeepETPicker
and crYOLO are close to each other but substantially better than those
of DeepFinder and TM. Overall, the higher log-likelihood and the
better cumulative statistics of themaximum value probability indicate
that the particles picked by DeepETPicker are more authentic and
accurate.

The assessment of thepickedparticles basedonglobal resolution,
local resolution, and B-factor measurements agrees with the assess-
ment based on the log-likelihood distribution and the cumulative
statistics of themaximumvalueprobability (Fig. 3e–g). Specifically, the
global resolutions of the reconstruction maps derived from the par-
ticles picked by DeepETPicker and TM are both 15.0 Å, which are
slightly higher than those of the reported coordinates (15.1 Å), as well
as those of DeepFinder and crYOLO (15.5 Å). Importantly, the map
generated by particles picked by DeepETPicker exhibits the highest
local resolution in comparison with those of crYOLO, DeepFinder, and
TM (Fig. 3g). Based on the RH plots19 (Fig. 3e), we observe that the set
of particles picked by crYOLO gives the smallest slope, indicating that
it has the highest B-factor. Although the slopes of the sets of particles
picked by DeepETPicker, DeepFinder, and TM are similar, with the
same number of particles, DeepETPicker achieves better global reso-
lution than TM and DeepFinder.

The maps constructed from different particle datasets have
similar global resolutions but different local resolutions and RH plots
(Fig. 3e–g). We hypothesize that this is because of the differences in
authenticity and coordinates accuracy among the different particles
picked by different methods. To test this hypothesis, we perform
subtomogram averaging on the particles in the difference sets and
then compute their global resolutions.We find that particles picked by
DeepETPicker but not by theothermethods (crYOLO,DeepFinder, and
TM) yield correct reconstruction maps (Supplementary Fig. 8) with
global resolutions that are consistent with the RH resolution (Supple-
mentary Fig. 9 and Supplementary Table 9), indicating that particles
picked by DeepETPicker but missed by the other methods are true
positives with authenticity similar to that of the true positives picked
by these methods. The RH resolution is the theoretical resolution

estimated based on the RH plot. However, the particles picked by
DeepFinder and TM but not DeepETPicker yield incorrect recon-
struction maps (Supplementary Fig. 8) with global resolutions that are
much worse than the RH resolution (Supplementary Fig. 9 and Sup-
plementary Table 9), indicating that these particles are mostly false
positives. Therefore, although the additional particles picked by
DeepFinder and TM improve the SNRs of the half maps, i.e., recon-
struction maps of the two independent halves of the datasets, and
contribute positively to the FSC curve with an improved global reso-
lution, they do notmake a positive contribution to the RH plot and the
local resolution.

To further examine the performance of different methods in
picking particles with different shapes, we choose the T20S protea-
some from EMPAIR-10651, which has a cylindrical shape. Following the
same protocol as that of the analysis used above, we pick T20S pro-
teasomes using DeepETPicker, crYOLO18, DeepFinder13 and TM9 and
calculate the same and different particles picked by these methods
(Supplementary Fig. 10). According to the diameter of T20S protea-
somes, we set tdist = 11 for calculating the intersection and difference
sets of the picked particles. Again, we find that DeepETPicker picks
true-positive particles missed by crYOLO and DeepFinder (Supple-
mentary Fig. 10a).

To further check whether this observation is true, a comparison
between the particle picking results of different methods (Dee-
pETPicker, crYOLO, DeepFinder and TM) and manual annotation is
carried out via the precision and recall metrics (Supplementary
Methods A.9). Overall, DeepETPicker and TM achieve comparable
performance metrics, which are slightly better than those of Deep-
Finder and much better than those of crYOLO (Supplementary
Fig. 10b). Furthermore, subtomogram averaging is performed to fur-
ther check the authenticity and coordinates accuracy of the picked
particles (Supplementary Fig. 10c, d). The global resolutions of the
maps reconstructed from the particles picked by DeepETPicker,
crYOLO, DeepFinder and TM are approximately 14.0 Å, 15.4 Å, 17.1 Å
and 16.2 Å, respectively (Supplementary Fig. 10c). In agreement with
the global resolution measurement, the map reconstructed from the
particles picked by DeepETPicker shows more structural details and
better local resolutions (Supplementary Fig. 10d).

DeepETPicker achieves the best overall performance in picking
particles in situ from real tomograms
Automated particle picking from real cryo-electron tomograms of
cellular structures is critically needed for in situ structural biology. The
crowded cellular environment poses a complex and challenging
background for particle localization and identification,which is further
compounded by the low SNRs of tomograms. Here, we first use the
public cryo-ET dataset of native M. pneumoniae cells (EMPIAR-10499)
to test the performance of DeepETPicker in picking ribosome particles
in situ.

Following the same analysis protocol used above for the pur-
ified 80 S ribosomes of EMPIAR-10045, we pick 70 S ribosome

Fig. 3 | Particle picking performance of DeepETPicker compared to that of the
competingmethodsontheEMPIAR-10045experimental dataset. aComparison
between the particles picked by DeepETPicker and the three competing methods
(crYOLO, DeepFinder, and TM). The original image is a result of performing
Gaussian denoising and histogram equalization on the raw tomogram. Different
colors are used to differentiate the same and different particles picked. The same
particles picked by DeepETPicker and the competing method, i.e., those in the
intersection sets of their picked particles, are shown in blue. The different particles
picked by DeepETPicker and the other competing methods, i.e., those in the dif-
ference sets of their picked particles, are shown in red and cyan, respectively.
b Precision-recall curves produced by different methods using manually picked
particles as the reference. c Histogram of the log-likelihood contributions calcu-
lated by the RELION 3D auto-refinement method. Horizontal axis: log-likelihood

contribution. Vertical axis: number of particles. d Particle ratio with a maximum
value probability above a specific threshold calculated by the RELION 3D auto-
refinement method. Horizontal axis: threshold of the maximum value probability.
Vertical axis: ratio of the number of particles. e Rosenthal and Henderson B-Factor
plot, which shows the relationship between the number of particles and the global
resolution of the 3D reconstruction results. The translucent bands around the
regression line denote the 95% confidence interval for the regression estimation.
f FSC curves obtainedby different particle pickingmethods after performing direct
alignment and averaging. g Comparison of the local resolutions of the sub-
tomogram averages obtained for budding yeast 80S ribosomes using the particles
picked by differentmethods (DeepETPicker, crYOLO, DeepFinder and TM). Source
data are provided as a Source Data file.
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particles using DeepETPicker, crYOLO, DeepFinder13, and TM9 and
calculate the same and different particles picked by these methods
(Fig. 4a, Supplementary Table 10 and Supplementary Movie 2).
According to the diameter of the 70 S ribosome, we set tdist = 12 for
calculating the intersection and difference sets of the particles.
Again, we find that DeepETPicker can pick true-positive particles

missed by crYOLO and DeepFinder (Fig. 4a). Although DeepFinder
and TM can pick particles not selected by DeepETPicker, these
particles do not appear to be true positives upon initial visual
inspection.

To further check whether this observation is true, a comparison
between the particle picking results of differentmethods (DeepETPicker,
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crYOLO,DeepFinder andTM) andmanual annotation is carriedout using
the precision and recall metrics (Supplementary Methods A.9). Overall,
DeepETPicker achieves substantially higher precision than the other
three methods under the same recall rate (Fig. 4b), indicating that the
highest consistency with manual annotation is achieved by Dee-
pETPicker. Subtomogram averaging is performed to further check the
authenticity and coordinates accuracy of the picked particles (Fig. 4c–g).
After calculating the log-likelihood contribution of each particle, the
number of particles is plotted against the corresponding log-likelihood
contribution (Fig. 4c). The range of the overall log-likelihood contribu-
tions of the particles pickedbyDeepETPicker again is substantially better
than that of particles picked by crYOLO, DeepFinder, and TM. These
conclusions also hold for their intersection and difference particle sets
(Supplementary Fig. 11). Furthermore, the cumulative curves of the par-
ticle ratios are plotted against the maximum value probability (Fig. 4d).
The cumulative ratio curve of DeepETPicker is consistently higher than
that of crYOLO, TM, and DeepFinder. Therefore, the best log-likelihood
contribution and cumulative statistics of themaximum value probability
indicate that DeepETPicker picks particles in situ from tomogramsmore
effectively andaccurately than theother testedmethods. This conclusion
is further verified by the global resolution, local resolution, and B-factor
measurements (Fig. 4e–g). The global resolutions of the maps recon-
structed from the particles picked by DeepETPicker, crYOLO, DeepFin-
der, and TM are 17.2 Å, 19.2 Å, 27.2 Å, and 19.2 Å, respectively (Fig. 4f). In
agreement with the global resolution measurement, the map recon-
structed from the particles picked by DeepETPicker shows more struc-
tural details and better local resolutions (Fig. 4g). Although DeepFinder
picks more particles, the final refinement step cannot converge into a
correct map. Based on the RH plots (Fig. 4e), DeepETPicker achieves the
highest global resolution using the same number of particles.

Following the same analysis protocol applied for the tomograms
of purified 80S ribosomes in EMPIAR-10045, we further analyse the
same and different particles picked by DeepETPicker versus the other
three methods by subtomogram averaging. We find that the particles
picked only by DeepETPicker but not by the other methods (crYOLO,
DeepFinder and TM) yield correct and plausible reconstruction maps
(Supplementary Fig. 12) with global resolutions that are mostly con-
sistent with the RH resolutions (Supplementary Fig. 13 and Supple-
mentary Table 10). This indicates that the particles picked only by
DeepETPicker are true positives with authenticity similar to that of
common particles. However, all the different particles picked by the
other methods and not by DeepETPicker yield incorrect reconstruc-
tion maps (Supplementary Fig. 12), with global resolutions that are
substantiallyworse than theRH resolutions (SupplementaryFig. 13 and
Supplementary Table 10). This indicates that the different particles
picked by the other methods are mostly false positives. Furthermore,
we inspect the particle distribution of the centre shifts for the same
particles picked by DeepETPicker versus the other threemethods. The
shift range of the particles picked by DeepETPicker is smaller than that
of other methods (Supplementary Fig. 14), indicating that the highest
localization precision is achieved by DeepETPicker.

DeepETPicker achieves the best overall performance in picking
smaller particles in situ from real tomograms
The 80 S and 70 S ribosomes as well as the T20S proteasome studied
above have molecular weights greater than 1 MDa. Particles with
smallermolecular weights generally exhibit lower SNRs in tomograms,
making particle picking more difficult. To test the performance of
DeepETPicker in picking smaller particles in situ, we select a public
cryo-ET dataset of H. neapolitanus alpha-carboxysomes (EMPIAR-
11125)20, whose molecular weight is 562 kDa.

Following the same analysis protocol used above for EMPIAR-
10045, we pick alpha-carboxysome particles using DeepETPicker,
crYOLO, DeepFinder13 and TM9 and calculate the same and different
particles picked by these methods (Fig. 5). According to the diameter
of H. neapolitanus alpha-carboxysomes, we set tdist = 7 for calculating
the intersection and difference sets of the picked particles. Again, we
find that DeepETPicker can pick true-positive particles that are missed
by crYOLO and TM (Fig. 5a). Although crYOLO also picks particles not
selected by DeepETPicker, these particles do not appear to be true
positives upon initial visual inspection.

To further check whether this observation is true, a comparison
between the particle picking results of different methods (Dee-
pETPicker, crYOLO, DeepFinder and TM) and manual annotation is
carried out using the precision and recall metrics (Supplementary
Methods A.9). At a fixed recall rate, DeepETPicker achieves the
highest precision, followed by DeepFinder, TM and crYOLO (Fig. 5b),
indicating that the highest consistency with manual annotation is
achieved by DeepETPicker. DeepETPicker also achieves the highest
recall, indicating that more manually labeled particles are success-
fully picked by DeepETPicker. Furthermore, we perform sub-
tomogram averaging to further check the authenticity and
coordinates accuracy of the picked particles (Fig. 5c–d). The global
resolutions of the maps reconstructed from the particles picked by
DeepETPicker, DeepFinder and TM are similar at ~7 Å (Fig. 5c).
However, the particles picked by crYOLO fail to yield a correct
reconstruction. In agreement with the global resolution measure-
ment, the map reconstructed from the particles picked by Dee-
pETPicker shows more structural details and better local resolutions
(Fig. 5d). We also inspect the particle distribution of the centre shifts
of the same particles picked by DeepETPicker versus the other three
methods. The shift range of the DeepETPicker-picked particles is
smaller than that of crYOLO and TM and is at the same level as that of
DeepFinder (Supplementary Fig. 15), indicating that higher localiza-
tion precision is achieved by DeepETPicker and DeepFinder.

Discussion
Studying the high-resolution structures ofmacromolecular complexes
in situ in their native cellular environments is at the forefront of con-
temporary structural biology. Cryo-electron tomography provides a
powerful tool to achieve this goal. However, its application is limited
by various technical bottlenecks, including the need to pick large
numbers of macromolecular particles from tomograms at very low

Fig. 4 | Particle picking performance of DeepETPicker compared to that of the
competingmethodsontheEMPIAR-10499experimentaldataset. aComparison
between the particles picked by DeepETPicker and the other three competing
methods (crYOLO, DeepFinder, and TM). The original image is a result of per-
forming Gaussian denoising and histogram equalization on the raw tomogram.
Different colors are used to differentiate the same and different particles picked.
The same particles picked by DeepETPicker and the other competingmethods, i.e.,
those in the intersection sets of their picked particles, are shown in blue. The
different particles picked by DeepETPicker and the other competing methods, i.e.,
those in the difference sets of their picked particles, are shown in red and cyan,
respectively.bPrecision-recall curves producedbydifferentmethodsusingmanual
particles as the reference. c Histogram of the log-likelihood contributions calcu-
lated by the RELION 3D auto-refinement method. Horizontal axis: log-likelihood

contribution. Vertical axis: number of particles. d Particle ratio with a maximum
value probability above a specific threshold calculated by the RELION 3D auto-
refinement method. Horizontal axis: threshold of the maximum value probability.
Vertical axis: ratio of the number of particles. e Rosenthal and Henderson B-Factor
plot, which shows the relationship between the number of particles and the global
resolution of the 3D reconstruction results. The translucent bands around the
regression line denote the 95% confidence interval for the regression estimation.
f FSC curves obtainedby different particle pickingmethods after performing direct
alignment and averaging. g Comparison of the local resolutions of subtomogram
averages obtained forM. pneumoniae 70 S ribosomes using particles picked by
different methods (DeepETPicker, crYOLO, DeepFinder and TM). Source data are
provided as a Source Data file.
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SNRs. In this study, we developed a new deep learning-based method,
DeepETPicker, for automatic picking of 3D particles from tomograms
with high accuracy and efficiency.

To address the lack of full segmentationmasks for particles in real
experimental tomograms, we designed three simplified masks, exam-
ined their performances, and found that the masks of TBall-M yielded
the best and most stable results. We incorporated an overlap-tile
strategy into the inference stage to avoid thenegative influencecaused
by the poor segmentation accuracy achieved for edge voxels, which
substantially improved the performance of both localization and
classification (measured in F1-scores). We also proposed the MP-NMS
operation for postprocessing to replace the clustering algorithmsused

previously, which substantially improved the resulting inference
speed. To help users pick particles from unlabeled tomograms and
train DNN-based models, we developed a friendly graphical interface
for DeepETPicker. Users can use this graphical interface to complete
particle labeling, model training, and automatic particle picking with
simple procedures.

We tested theperformanceofDeepETPicker and compared itwith
other state-of-the-artmethods on two simulated datasets (SHREC2020
and SHREC2021) and we found DeepETPicker outperformed the
competing methods with the highest average F1-score and the lowest
computational time.

Fig. 5 | Particle picking performance of DeepETPicker compared to that of the
competingmethods on the EMPIAR-11125 experimental dataset. a Comparison
between the particles picked by DeepETPicker and the other three competing
methods (crYOLO, DeepFinder, and TM). The original image is a result of per-
forming Gaussian denoising and histogram equalization on the raw tomogram.
Different colors are used to differentiate the same and different particles picked.
The same particles picked by DeepETPicker and the other competingmethods, i.e.,
those in the intersection sets of their picked particles, are shown in blue. The

different particles picked by DeepETPicker and the other competing method, i.e.,
those in the difference sets of their picked particles, are shown in red and cyan,
respectively.bPrecision-recall curves producedbydifferentmethodsusingmanual
particles as the reference. c FSC curves obtained by different particle picking
methods after performing direct alignment and averaging. d Comparison of the
local resolutions of the subtomogram averages obtained using particles picked by
different methods (DeepETPicker, crYOLO, DeepFinder, and TM). Source data are
provided as a Source Data file.
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We also examined the performance of DeepETPicker on four
experimental datasets (EMPIAR-10045, EMPIAR-10651, EMPIAR-10499,
and EMPIAR-11125). We developed multiple particle metrics to com-
pare the performanceof DeepETPickerwith that of othermethods.We
found that the particles picked by DeepETPicker consistently showed
the best authenticity and coordinates accuracy with the highest log-
likelihood contributions and the highest cumulative ratio of particles
versus the maximum value probability, which was consistent with the
observation that the particles picked by DeepETPicker produced
reconstruction maps with the best global resolution, the best local
resolution and the smallest B-factors. Although the assessment of
reconstruction resolutions may be affected by the potential existence
of specimen conformational heterogeneity, we foundwhen comparing
DeepETPicker with other methods such as crYOLO, DeepFinder13 and
TM, the particles not picked by DeepETPicker but selected by other
methods generally failed to produce correct reconstructions. There-
fore, the extensive analyses suggested that the accuracy and precision
of the particles picked by DeepETPicker were substantially better than
those of the other methods.

Overall, our study showed that DeepETPicker outperformed
competing state-of-the-art methods on both simulated and real cryo-
ETdatasets. The results demonstrate thepotential ofDeepETPicker for
applications in high-resolution cryo-ET studies in situ. In follow-up
studies, we plan to incorporate particle orientation parameters into
the framework of DeepETPicker, which will provide valuable infor-
mation for the subsequent subtomogram averaging step. Further-
more, we plan to further optimize the classification performance of
DeepETPicker on small particles.

Methods
Inclusion & ethics
We declare that our research complies with all relevant ethical
regulations.

Particle annotation using simplified labels
The supervised training of the DNN model of DeepETPicker requires
pairs of subtomograms and their corresponding voxel-level masks/
labels (Fig. 1a, c). Limited by the low SNRs and reconstruction distor-
tion of tomograms, the manual voxel-level annotation of macro-
molecular particles is challenging and time-consuming. In this study,
our goal is to identify particles rather than toobtain their fullmasks. To
this end, we simplify the manual annotation process by only labeling
the centers of particles, which is simple and efficient. Based on the
annotations, three types of simplified masks centred on the labeled
particles are generated as replacements for the real full masks,
including Cubic masks (Cubic-M), Ball masks (Ball-M) and Truncated-
Ball masks (TBall-M). Specifically, taking the centre of each particle as
the origin, the corresponding simplified masks with sizes of
2r + 1,2r + 1,2r + 1½ � are generated as follows:

M =
�ðx, y, zÞ j x, y, z 2 ½�r,r� \ Z

� ð1Þ

maskcubic x,y,zð Þj x,y,zð Þ2M = c ð2Þ

maskball x,y,zð Þj x,y,zð Þ2M =
c if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
< r

0 otherwise

(
ð3Þ

masktball x,y,zð Þj x,y,zð Þ2M =
c if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
<

ffiffiffi
2

p
r

0 otherwise

(
ð4Þ

where c is the class index. TBall-M ensures that the generated TBall-M
is sufficiently different from Ball-M and Cubic-M (See Supplementary
Methods A.3 for further information). The diameter of each generated

mask is denoted as d =2r + 1, which should be no larger than the
particle diameter. To ensure good particle picking performance, the
diameter of the particles in the given tomogram should preferably be
between 7-25 voxels. If the particle diameter is much larger than 25
voxels, proper binning operations can be used to keep the particle
diameter within the recommended range. Examples of the three types
of masks are shown in Fig. 1b and Supplementary Fig. 2a.

Compared to the real full masks of biological particles, these
simplified masks can be seen as a class of weak supervision labels21,22.
Subsequent experiments show thatDNN segmentationmodels trained
by these simplified labels can effectively segment/detect particles of
interest in tomograms. See Supplementary Methods A.3 for a more
detailed discussion on the rationale behind the selection of the
simplified masks.

Architecture of the 3D segmentation model
The DNN segmentation model of DeepETPicker, called 3D-ResUNet,
adopts an encoder-decoder architecture (Supplementary Fig. 2b).
Specifically, the residual connection idea from 2D-ResNet23 is incor-
porated into 3D-UNet24 to better extract features from tomograms.
The 3D-ResUNet architecture has 3 downsampling layers in its encoder
and 3 upsampling layers in its decoder. Three-dimensional transpose
convolution is used in the decoder to upsample featuremaps. An ELU25

is used as the activation function to accelerate the convergence of the
training process. To improve the localization of particles, coordinated
convolution26 and image pyramid inputs27 are incorporated into 3D-
ResUNet, which takes the voxel of each subtomogram as input and
outputs n probability scores for n� 1ð Þ classes of structures of interest
and the background, respectively, for each voxel. Coordinated con-
volution incorporates the spatial context of input images into the
convolutional filters, while image pyramid inputs preserve features of
input images at different resolution levels.

Configuration for model training and validation
To improve the generalization capability of the segmentation model,
data augmentation is used in the training stage. Specifically, the fol-
lowing transformations are performed on the training datasets: ran-
dom cropping, mirror transformation, elastic deformation less than
5%, scaling in the range of [0.95, 1.05], and random rotation at angles
within [−15�, + 15�]. Training is performed using an AdamWoptimizer28

with an initial learning rate of 10−3 and a weight decay of 0.01. A multi-
class extension of Dice loss29 is used to calculate the difference
between the predicted labels and ground-truth labels:

LDice = 1�
2
PN3

i =0 pigi + εPN3

i=0 p
2
i +

PN3

i =0 g
2
i + ε

ð5Þ

where pi 2 RN ×N ×N denotes the labels predicted by the segmentation
model, gi 2 RN ×N ×N denotes the ground truth, and ε= 10�8 is a small
value added for numerical stability.

A generalized form of the F1-score, F1α =
2P�Rα

P +Rα, is used as a metric
for model validation to place greater emphasis onmodel recall, where
α is a hyperparameter. When α = 1, F1α becomes the F1-score. When
α > 1, the model with higher recall R obtains a higher F1α . In this study,
the hyperparameter α =3 is used.

Postprocessing usingmean-pooling non-maximum suppression
(MP-NMS) and overlap-tile (OT)
The value of each voxel in the score map generated by 3D-ResUNet
denotes its probability of belonging to a certain class, which is in the
range of [0, 1]. A specific threshold tseg is selected to transform a score
map into a binary map. A voxel whose value is below the threshold is
labeled as 0 and otherwise as 1 so that a binary map is generated. Then,
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the proposed MP-NMS operation, consisting of multiple iterations of
mean pooling (MP) and one iteration of non-maximum suppression, is
performedon thebinarymapas the initial input. AnexampleofMP-NMS
applied on a 2D binary image with a size of 40×40 pixels is shown in
Fig. 1h. The first row shows the outputs of different iterations of MP
operations performedon thebinary image. After eachMPoperation, the
voxels at mask edges are pulled closer to the voxel value of the back-
ground. As the number ofMP iterations increases, all voxels of themask
are updated. Eventually, the binary mask is converted into a soft mask.
The further a voxel in the mask is from the background, the larger its
value. Each local maximum can be considered a candidate particle
centre. The larger the localmaximum, thehigher theprobability that it is
a particle centre. MP-NMS can distinguish between the centers of mul-
tiple particles that partially overlap, as long as they have distinguishable
features (Fig. 1h). Compared to clustering algorithms such as the mean-
shift used in DeepFinder13, the MP-NMS operation is substantially faster
when accelerated using a GPU (Supplementary Table 6).

For an MP operation with a kernel size of k × k × k and a stride of 1,
the receptivefieldof eachvoxel after the ith iterationsofMPoperations is

RFi = 1 + k � 1ð Þ � i ð6Þ

To obtain the centroid of a particle with a diameter of 2r + 1ð Þ, the
receptive field RFi should be no smaller than the particle diameter.
Thus, the minimum number of iterations of MP operations is d 2r

k�1e,
where d�e denotes the round-up operation.

To eliminate the negative influence of the poor segmentation
accuracy achieved for edge voxels in subtomograms, an OT strategy
is used in the inference stage. Taking the 2D segmentation case in
Fig. 1h as an example and assuming that the image marked by the
blue box is the output of the 3D-ResUNet model, only the centre
region marked by the yellow box is considered during the inference
stage to eliminate the poor segmentation of edge pixels. The size of
the red box is determined using a hyperparameter termed ‘pad_size’.
Each tomogram is scanned with a specific stride s and a
subtomogram size of N ×N ×N in the inference stage, where
s =N � 2 � pad size. Only the local maximum in the region
of pad size : N � pad size,pad size : N � pad size,pad size : N��
pad size� is retained.

To reduce background interference and avoid repetition during
particle detection, two further postprocessing operations are per-
formed. First, the local maxima below a threshold tlm are removed.
Second, if theminimal Euclideandistancebetween two localmaxima is
lower than a specific threshold tdist , the smaller local maximum is
discarded.

Metrics for picked particles
To compare the performance of DeepETPicker with that of other
competing state-of-the-art methods, three performance metrics
are used:

precision P, recall R, and the F1-score F18,30, which are defined as
follows:

P =
TP

TP + FP
ð7Þ

R=
TP

TP + FN
ð8Þ

F1 = 2 � P � R
P+R

ð9Þ

where TP, FP and FN stand for true positives, false positives, and
false negatives, respectively. For a particle with a radius of r, its pre-
dicted label is considered positive if the Euclidean distance from its

predicted centre to the ground truth is less than r. Otherwise, it is
considered negative. To measure the localization accuracies of particle-
picking algorithms, the average Euclidean distance (AD) from the
predicted particle centre to the ground truth is calculated in voxels.

For real experimental datasets without ground truths, to
compare the authenticity and coordinates accuracy of the parti-
cles picked by DeepETPicker and other competing state-of-the-art
pickers, we used the B-factor, global resolution, local resolution,
log-likelihood distribution, and maximum value probability for
evaluation.

The B-factor of a set of particles is computed by the Rosenthal-
Henderson plot (RH plot)19, which shows the inverse of the resolution
squared against the logarithm of the number of particles. A higher
B-factormeans that a lower inclination and a larger number ofparticles
are needed to reach the same reconstruction resolution.

Another metric is the global 3D reconstruction resolution. By
refining two models independently (one for each half of the data), the
gold-standard Fourier shell correlation (FSC) curve is calculated30–34

using the following formula:

FSC k,4kð Þ=
Real

P
k,4kð Þ F1 Kð ÞF2 Kð Þ

� �

P
k,4kð Þ F1 Kð Þ

�� ��2 F2 Kð Þ
�� ��2� �1

2

,k = Kj j ð10Þ

where K is the spatial frequency vector and k is its magnitude.
F1 Kð Þ, F2 Kð Þ are the Fourier transforms of the reconstructions for the
two independent halves of the datasets. The FSC0.143 cut-off criteria

31

are used to calculate the global resolution.
In addition to the global resolution, the local resolution is

another commonly used metric for evaluating the reconstruction
map35, which can be calculated in different ways by ResMap35,
MonoRes36, DeepRes37, etc. In this study, we use the ResMap
algorithm implemented in RELION17 to analyse the local
resolution.

Furthermore, we propose two new metrics based on the
Bayesian theory of subtomogram averaging implemented in
RELION38. The approach of RELION aims to find the model that
has the highest probability of being the correct one based on
both the observed data and the available prior information. The
optimization of a posterior distribution is called maximum a
posteriori or regularized likelihood optimization. For a given
dataset of picked particles, after a posteriori maximization, each
particle is assigned two estimated parameters: one is called the
log-likelihood to quantify its contribution weight to the final
model, and the other is called the maximum value probability to
quantify the accuracy of the particle parameter estimations (i.e.,
the orientation and the shift). The distribution statistics of the
number of particles versus the log-likelihood and the cumulative
statistics of the number of particles versus the maximum value
probability are used in this study to evaluate and compare the
particles picked by different pickers.

If the authenticity of the picked particles is worse, i.e., more false
positive junk particles are picked, the SNRof the set of picked particles
becomes worse. Then worse subtomogram averaging with reduced
local and global resolutions is expected. Furthermore, a larger number
of particles would be needed to reach the same reconstruction reso-
lution. Thus a higher B-factor would be expected in case the local and
global reconstruction resolutions may not be sensitive enough. It
should be noted that if there is conformational heterogeneity in the
specimen, the reconstruction resolutions, either local or global, may
not be a good indicator to evaluate different pickers. More rigorous
investigations using e.g., map inspection and 3D classification are
needed.

More importantly, the authenticity and the coordinates accuracy
of the picked particles can be assessed by the distributions of particle
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log-likelihood and maximum value probability. For a picked particle
that is false positive or has a large deviation from its true centre, a
lower log-likelihood and a lower maximum value probability would be
calculated to down-weight its contribution to the final subtomogram
averaging. Therefore, a larger number of particles with higher log-
likelihood andmaximum value probability indicate better coordinates
accuracy of the picked particles and better authenticity of the picked
particle set.

Comparison among the particles picked by different methods
To compare the sets of particles picked by two different methods, a
duplication removal operation is performed to calculate their inter-
section and difference sets. Specifically, if the minimal Euclidean dis-
tance between two particles is lower than a specific threshold tdist ,
which is normally set to half of the diameter of the particle, the two
particles are considered the same. The intersection set contains par-
ticles pickedby bothmethods,whereas the twodifference sets contain
particles picked by one but not the other method. For example, if we
denote the set of particles picked by method A simply as A and the set
of particles picked by method B simply as B, the particles in the
intersection set A \ B are picked by bothmethod A andmethod B. The
particles in the difference set A� B are picked by A but not by B,
whereas theparticles in thedifference setB� A arepickedbyBbut not
by A. Further explanations and illustrations of the intersection and
difference sets are given in Supplementary Fig. 3.

Datasets used for performance benchmarking
The performance of DeepETPicker is benchmarked on both simulated
and real cryo-ET tomograms from six datasets: SHREC2020,
SHREC2021, EMPIAR-10045, EMPIAR-10651, EMPIAR-10499, and
EMPIAR-11125. The DeepETPicker hyperparameters used for these
datasets are summarized in Supplementary Table 1. For each of the
four experimental EMPIAR datasets, the overall workflow is to manu-
ally label the selected particles, use the labeled particles for model
training, and, finally, use the trained model to pick particles from all
testing tomograms. Detailed information on how each dataset is par-
titioned for training, validation, and testing is provided in the Sup-
plementary Methods.

SHREC2020 is a dataset of simulated cryo-ET tomograms8. It
consists of 10 tomograms of cell-scale volumes. Each tomogram con-
tains 12 classes of protein particles that vary in size, structure, and
function. Ranked by their molecular weights from small to large, the
Protein Data Bank (PDB) codes of the 12 classes of protein particles are
1s3x, 3qm1, 3gl1, 3h84, 2cg9, 3d2f, 1u6g, 3cf3, 1bxn, 1qvr, 4cr2 and
4d8q. Tomograms 0 to 7 are used for training, tomogram 8 is used for
validation and hyperparameter optimization, and tomogram 9 is used
for testing. DeepETPicker takes tomogram voxels as its inputs. For
each voxel, it outputs 13 probability scores that correspond to the 12
protein classes and the background, respectively.

SHREC2021 is another dataset of simulated cryo-ET tomograms15.
Compared to SHREC2020, some major updates were made to the
simulation process. Gold fiducial markers and vesicles were added to
provide realistic additional challenges. SHREC2021 consists of 10
tomograms of cell scale volumes. Each tomogram contains 12 classes
of proteinparticles that vary in size, structure, and function. Rankedby
their molecular weights from small to large, the PDB codes of the 12
classes of protein particles are 1s3x, 3qm1, 3gl1, 3h84, 2cg9, 3d2f, 1u6g,
3cf3, 1bxn, 1qvr, 4cr2 and 5mrc. Tomograms 0 to 7 are used for
training, tomogram 8 is used for validation and hyperparameter
optimization, and tomogram 9 is used for testing. DeepETPicker takes
tomogram voxels as its inputs. For each voxel, it outputs 15 probability
scores that correspond to the 12 protein classes plus vesicles, gold
fiducial markers, and the background, respectively.

EMPAIR-10045 is a real experimental cryo-ET dataset. It contains 7
tomograms of purified S. cerevisiae 80S ribosomes17. Each tomogram

contains an average of 445 manually picked particles. The original
tomogram and manually picked particle coordinates are contained in
the subdirectory of the EMPIAR entry. Based on the aligned tilt series,
ICON39 is used to reconstruct tomograms with better contrast for
particle picking (Supplementary Fig. 4a). To reduce the computational
cost and to increase the SNR, the tilt series are downsampled 4× before
performing ICON reconstruction so that the diameter of the 80 S
ribosome in the final tomogram is ~23-24 voxels. For particle picking
and performance comparisons, four different methods are chosen,
including DeepETPicker, crYOLO18, DeepFinder13, and TM9. TM is per-
formed by Dynamo40 with a reference map from EMDB entry EMD-
0732 low-pass filtered to 60Å (see the tutorial http://wiki.dynamo.
biozentrum.unibas.ch/w/index.php/Walkthrough_for_template_
matching). A total of 150 manually labeled particles are used for
training and validation of DeepETPicker, crYOLO and DeepFinder (See
Supplementary Methods A.8). The tutorials (http://cryolo.
readthedocs.io/en/stable/tutorials/tutorial_overview.html and https://
deepfinder.readthedocs.io/en/latest/tutorial.html) provided for
crYOLO and DeepFinder are followed for model training and particle
picking. Based on the obtained coordinates of ribosome particles,
subtomograms are directly extracted from the original tomograms.
Subtomogram averaging is performed (Supplementary Fig. 4a) by
following the reported protocol using the same parameters17, includ-
ingCTFestimation, particle extraction, 3D classification (with one class
only) and 3D autorefinement. The CTF model of each particle is gen-
erated using RELION scripts.

EMPAIR-10651 is a real experimental cryo-ET dataset of cylindrical
T20S proteasomes from Thermoplasma acidophilum41. It contains 3
tomograms of purified T20S proteasomes. Based on the aligned tilt
series contained in the subdirectory of the EMPIAR entry, tomo3d is
used to reconstruct the tomograms (Supplementary Fig. 4b). To
reduce the computational cost and increase the SNR, the tilt series are
downsampled 4× before performing tomo3d reconstruction so that
the diameter of the T20S proteasome in the final tomogram is ~21
voxels. Similar to EMPAIR-10045, DeepETPicker, crYOLO18,
DeepFinder13, and TM9 are chosen for particle picking and perfor-
mance comparisons. TM is performed by Dynamo40 with a reference
map from EMDB entry EMD-12531 low-pass filtered to 60Å. A total of
142 manually labeled particles are used for training and validation of
DeepETPicker, crYOLO and DeepFinder (See Supplementary Meth-
ods A.8). Similar to EMPAIR-10045, the model training and particle
picking processes of crYOLO and DeepFinder are performed following
the respective tutorials provided. Based on the obtained coordinates,
subtomograms are extracted from the original tomograms. Then,
subtomogramaveraging is performed in RELION 2.1.0 (Supplementary
Fig. 4b), includingCTF estimation, particle extraction, 3D classification
(with one class only) and 3D auto-refinement. The CTF model of each
particle is generated using RELION scripts.

EMPIAR-10499 is a real experimental cryo-ET dataset of nativeM.
pneumoniae cells treated with chloramphenicol42. In this study, we
focus on picking 70 S ribosome particles from these in situ tomo-
grams. Ten tomograms (TS_77, TS_78, TS_79, TS_80, TS_81, TS_82,
TS_84, TS_85, TS_87 and TS_88) from this dataset are selected for
particle picking and verification purposes (Supplementary Fig. 4c).
CTF estimation and motion correction are performed on the original
movie stacks using Warp 1.0.943, and the tilt series, as well as the tilt
angle files, are imported into IMOD 4.9.1244 for tilt alignment and
tomogram reconstruction using the weighted back-projection algo-
rithm with a radial filter cut-off of 0.35 and a fall-off of 0.05. To reduce
the computational cost and increase the SNR, the reconstructions are
downsampled 4× so that the diameter of the 70 S ribosome in the final
tomogram is ~23-24 voxels. Again, DeepETPicker, crYOLO18,
DeepFinder13, and TM9 are chosen for particle picking and perfor-
mance comparisons. TM is performed by Dynamo with a reference
map from EMDB entry EMD-21562 low-pass filtered to 60Å. A total of
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117 manually labeled particles are used for training and validation of
crYOLO and DeepETPicker, and 703 particles are used for training and
validation of DeepFinder (See Supplementary Methods A.8). Finally,
RELION2.1.0 (SupplementaryFig. 4c) isused toperformsubtomogram
averaging, including CTF estimation, particle extraction, 3D classifi-
cation (with one class only) and 3D auto-refinement. The CTFmodel of
each particle is generated using RELION scripts. The local resolution is
directly calculated using RELION 2.1.0.

EMPIAR-11125 is an experimental cryo-ET dataset of H. neapolita-
nus alpha-carboxysomes20. Three stacks (CB_02, CB_29, CB_59) are
available from its EMPIAR entry for particle picking and verification
purposes (Supplementary Fig. 4d). CTF estimation and motion cor-
rection are performed on the original movie stacks usingWarp 1.0.943.
Tilt alignment is performed using Dynamo (https://github.com/
alisterburt/autoalign_dynamo). To reduce the computational cost
and increase the SNR, the reconstructions produced by Warp are
downsampled 8× and then used for particle picking so that the dia-
meter of the alpha-carboxysome in the final tomogram is ~13 voxels.
Again, DeepETPicker, crYOLO18, DeepFinder13, and TM9 are chosen for
particle picking and performance comparison purposes. TM is per-
formedbyDynamowith a referencemap fromEMDBentry EMD-27654
low-pass filtered to 60Å. A total of 571 manually labeled particles are
used for training and validation of crYOLO, DeepETPicker and Deep-
Finder (See SupplementaryMethods A.8). Due tomemory constraints,
the final reconstructions are performed using 2× downsampled data in
Warp. Then, RELION 3.1 beta is used for the subsequent subtomogram
averaging step, including 3D classification (with one class only) and
auto-refinement (Supplementary Fig. 4d).

Statistics & reproducibility
In this study, 10 independent random replicates were produced on
SHREC2021 datasets. Randomized two-sample t-test (rndttest2) aswell
as nonparametric ranksum test were performed for statistical com-
parison. For real tomograms, sample sizes were determined through
experimental validation. No statistical method was used to pre-
determine sample sizes. DeepETPicker was evaluated across 4
experimental datasets, see detailed information in Supplementary
Table 19. No data were excluded from the analysis. The material for
reproducing the results within Figures and Supplementary Figs. is
available in the SourceData file and the tutorials at https://github.com/
cbmi-group/DeepETPicker.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are avail-
able within the article and its Supplementary Information files. The
simulated tomogram dataset SHREC2020 is available from the web-
site of the SHREC2020 challenge [https://www.shrec.net/cryo-et/
2020/]. The simulated tomogram dataset SHREC2021 is available
from the website of the SHREC2021 challenge [https://www2.
projects.science.uu.nl/shrec/cryo-et/]. The experimental tomogram
dataset of purified S. cerevisiae 80 S ribosomes is available from
EMPIAR under accession number EMPIAR-10045. The experimental
tomogram dataset of purified T20S proteasomes is available from
EMPIAR under accession number EMPIAR-10651. The experimental
tomogram dataset of M. pneumoniae cells is available from EMPIAR
under accession number EMPIAR-10499. The experimental tomo-
gram dataset of H. neapolitanus alpha-carboxysomes in situ is avail-
able from EMPIAR under accession number EMPIAR-11125. For
template matching, reference maps are available from EMDB entry:
EMD-0732, EMD-12531, EMD-21562, and EMD-27654. Source data are
provided with this paper.

Code availability
The code and user documentation for DeepETPicker are openly
accessible at https://github.com/cbmi-group/DeepETPicker16. Detailed
tutorials are provided on each step of particle picking for single-class
and multi-class examples.

References
1. Steven, A., Baumeister,W., Johnson, L. N. & Perham, R. N.Molecular

Biology of Assemblies and Machines. (Garland Science, 2016).
2. Lučić, V., Rigort, A. & Baumeister, W. Cryo-electron tomography:

the challenge of doing structural biology in situ. J. Cell Biol. 202,
407–419 (2013).

3. Koning, R. I. Chapter 24 - Cryo-electron tomography of cellular
microtubules. in Methods in Cell Biology Vol. 97, eds Lynne Cassi-
meris & Phong Tran, 455-473 (Academic Press, 2010).

4. Briggs, J. A. Structural biology in situ—the potential of sub-
tomogram averaging. Curr. Opin. Struct. Biol. 23, 261–267 (2013).

5. McIntosh, R., Nicastro, D. & Mastronarde, D. New views of cells in
3D: an introduction to electron tomography. Trends Cell Biol. 15,
43–51 (2005).

6. Bartesaghi, A. et al. Classification and 3D averaging with missing
wedge correction in biological electron tomography. J. Struct. Biol.
162, 436–450 (2008).

7. Gubins, I. et al. Classification in cryo-electron tomograms.
SHREC’19 Track (2019).

8. Gubins, I. et al. SHREC 2020: classification in cryo-electron tomo-
grams. Computers Graph. 91, 279–289 (2020).

9. Frangakis, A. S. et al. Identificationofmacromolecular complexes in
cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci.
USA 99, 14153–14158 (2002).

10. Voss, N., Yoshioka, C., Radermacher, M., Potter, C. & Carragher, B.
DoG Picker and TiltPicker: software tools to facilitate particle
selection in single particle electron microscopy. J. Struct. Biol. 166,
205–213 (2009).

11. Zeng, X., Yang, X., Wang, Z. & Xu, M. A survey of deep learning-
basedmethods for cryo-electron tomographydata analysis. inState
of the Art in Neural Networks and their Applications, 63–72 (Elsevier
Science, 2021).

12. Hao, Y. et al. VP-Detector: A 3D multi-scale dense convolutional
neural network for macromolecule localization and classification in
cryo-electron tomograms. Computer Methods Prog. Biomedicine
221, 106871 (2022).

13. Moebel, E. et al. Deep learning improves macromolecule identifi-
cation in 3D cellular cryo-electron tomograms. Nat. Methods 18,
1386–1394 (2021).

14. Li, R. et al. Automatic localization and identification ofmitochondria
in cellular electron cryo-tomography using faster-RCNN. BMC
Bioinforma. 20, 75–85 (2019).

15. Gubins, I. et al. SHREC 2021: classification in cryo-electron tomo-
grams. in EurographicsWorkshop on 3DObject Retrieval. (eds Silvia
Biasotti et al.), The Eurographics Association, (2021).

16. Guole, L. et al. DeepETPicker: Fast and accurate 3D particle picking
for cryo-electron tomography using weakly supervised deep
learning. Zenodo, https://doi.org/10.5281/zenodo.
10453937 (2024).

17. Bharat, T. A. & Scheres, S. H. Resolving macromolecular structures
from electron cryo-tomography data using subtomogram aver-
aging in RELION. Nat. Protoc. 11, 2054–2065 (2016).

18. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully auto-
mated particle picker for cryo-EM. Commun. Biol. 2, 1–13 (2019).

19. Rosenthal, P. B. & Henderson, R. Optimal determination of particle
orientation, absolute hand, and contrast loss in single-particle
electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

20. Metskas, L. A. et al. Rubisco forms a lattice inside alpha-
carboxysomes. Nat. Commun. 13, 4863 (2022).

Article https://doi.org/10.1038/s41467-024-46041-0

Nature Communications |         (2024) 15:2090 14

https://github.com/alisterburt/autoalign_dynamo
https://github.com/alisterburt/autoalign_dynamo
https://github.com/cbmi-group/DeepETPicker
https://github.com/cbmi-group/DeepETPicker
https://www.shrec.net/cryo-et/2020/
https://www.shrec.net/cryo-et/2020/
https://www2.projects.science.uu.nl/shrec/cryo-et/
https://www2.projects.science.uu.nl/shrec/cryo-et/
https://www.ebi.ac.uk/empiar/EMPIAR-10045
https://www.ebi.ac.uk/empiar/EMPIAR-10651
https://www.ebi.ac.uk/empiar/EMPIAR-10499
https://www.ebi.ac.uk/empiar/EMPIAR-11125
https://www.ebi.ac.uk/emdb/EMD-0732
https://www.ebi.ac.uk/emdb/EMD-12531
https://www.ebi.ac.uk/emdb/EMD-21562
https://www.ebi.ac.uk/emdb/EMD-27654
https://github.com/cbmi-group/DeepETPicker
https://doi.org/10.5281/zenodo.10453937
https://doi.org/10.5281/zenodo.10453937


21. Tajbakhsh, N. et al. Embracing imperfect datasets: a review of deep
learning solutions for medical image segmentation. Med. Image
Anal. 63, 101693 (2020).

22. Luo, Y., Liu, G., Li,W., Guo, Y. & Yang, G.Deep neural networks learn
meta-structures fromnoisy labels in semantic segmentation. Thirty-
Six. AAAI Conf. Artif. Intell. (AAAI) 36, 1908–1916 (2022).

23. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 770–778 (2016).

24. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger,
O. 3D U-Net: learning dense volumetric segmentation from sparse
annotation. in International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI) 424–432,
Springer, (2016).

25. Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate
deep network learning by exponential linear units (ELUs). in Inter-
national Conference on Learning Representations (ICLR) (2016).

26. Liu, R. et al. An intriguing failing of convolutional neural networks
and the coordconv solution. in Advances in Neural Information
Processing Systems (NeurIPS). 9605–9616 (2018).

27. Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J. & Ogden, J.
M. Pyramid methods in image processing. RCA Eng. 29,
33–41 (1984).

28. Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. in
International Conference on Learning Representations (ICLR). (2019).

29. Milletari, F., Navab, N. & Ahmadi, S.-A. V-net: Fully convolutional
neural networks for volumetric medical image segmentation. in
2016 Fourth International Conference on 3D Vision (3DV). 565-571,
IEEE, (2016).

30. Nguyen, N. P., Ersoy, I., Gotberg, J., Bunyak, F. &White, T. A. DRPnet:
automated particle picking in cryo-electron micrographs using
deep regression. BMC Bioinforma. 22, 1–28 (2021).

31. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM
structure determination. Nat. Methods 9, 853–854 (2012).

32. Frank, J. Three-Dimensional ElectronMicroscopy ofMacromolecular
Assemblies: Visualization of Biological Molecules in their Native
State. (Oxford University Press, 2006).

33. Penczek, P. A. Resolution measures in molecular electron micro-
scopy. Methods Enzymol. 482, 73–100 (2010).

34. Harauz, G. & van Heel, M. Exact filters for general geometry three
dimensional reconstruction. Optik 73, 146–156 (1986).

35. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local
resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

36. Vilas, J. L. et al. MonoRes: automatic and accurate estimation of
local resolution for electron microscopy maps. Structure 26,
337–344.e334 (2018).

37. Ramirez-Aportela, E., Mota, J., Conesa, P., Carazo, J. M. & Sorzano,
C. O. S. DeepRes: a new deep-learning-and aspect-based local
resolution method for electron-microscopy maps. IUCrJ 6,
1054–1063 (2019).

38. Scheres, S. H. RELION: implementation of a Bayesian approach to
cryo-EM structure determination. J. Struct. Biol. 180,
519–530 (2012).

39. Deng, Y. et al. ICON: 3D reconstruction with ‘missing-informa-
tion’restoration in biological electron tomography. J. Struct. Biol.
195, 100–112 (2016).

40. Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H.
Dynamo: a flexible, user-friendly development tool for sub-
tomogram averaging of cryo-EM data in high-performance com-
puting environments. J. Struct. Biol. 178, 139–151 (2012).

41. Fernandez, J.-J., Li, S., Bharat, T. A. & Agard, D. A. Cryo-tomography
tilt-series alignment with consideration of the beam-induced sam-
ple motion. J. Struct. Biol. 202, 200–209 (2018).

42. O’Reilly, F. J. et al. In-cell architecture of an actively transcribing-
translating expressome. Science 369, 554–557 (2020).

43. Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data
preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

44. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer
visualization of three-dimensional image data using IMOD. J. Struct.
Biol. 116, 71–76 (1996).

Acknowledgements
This study was supported in part by research grants from the Strategic
Priority Research Program of the Chinese Academy of Sciences (No.
XDB37040102 to F.S., No. XDB 37040402 to G.Y.), National Natural
Science Foundation of China (No. 31925026, No. 61932018 to F.S., No.
91954201, No. 31971289 to G.Y.), National Key Research and Develop-
ment Program (No. 2021YFA1301500 to F.S.), Chinese Academy of Sci-
ences (No. 292019000056 to G.Y.), and University of Chinese Academy
of Sciences (No. 115200M001 to G.Y.). We thank TengWang for valuable
discussion and technical assistance on docker deployment for
DeepETPicker.

Author contributions
F.S. and G.Y. designed the project and oversaw overall planning and
execution. G.L. designed and implemented the DeepETPicker method
and its graphical user interface. T.N. and M.Q. carried out the compu-
tational experiments. Y.Z. provided technical advice on method devel-
opment and computational experiments. G.L., T.N., G.Y., and F.S. wrote
the paper with inputs from all authors. G.Y. and F.S. secured research
funding.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-46041-0.

Correspondence and requests for materials should be addressed to
Fei Sun or Ge Yang.

Peer review information Nature Communications thanks Tingying Peng
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-46041-0

Nature Communications |         (2024) 15:2090 15

https://doi.org/10.1038/s41467-024-46041-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	DeepETPicker: Fast and accurate 3D particle picking for cryo-electron tomography using weakly supervised deep learning
	Results
	Overview of DeepETPicker
	DeepETPicker achieves the best overall performance in picking particles from simulated tomograms
	DeepETPicker achieves the best overall performance in picking purified particles from real tomograms
	DeepETPicker achieves the best overall performance in picking particles in situ from real tomograms
	DeepETPicker achieves the best overall performance in picking smaller particles in�situ from real tomograms

	Discussion
	Methods
	Inclusion &�ethics
	Particle annotation using simplified�labels
	Architecture of the 3D segmentation�model
	Configuration for model training and validation
	Postprocessing using mean-pooling non-maximum suppression (MP-NMS) and overlap-tile�(OT)
	Metrics for picked particles
	Comparison among the particles picked by different methods
	Datasets used for performance benchmarking
	Statistics & reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




