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A neurophysiological basis for aperiodic EEG
and the background spectral trend

Niklas Brake 1,2, Flavie Duc3, Alexander Rokos 3, Francis Arseneau3,
Shiva Shahiri 4, Anmar Khadra 2 & Gilles Plourde 3

Electroencephalograms (EEGs) display a mixture of rhythmic and broadband
fluctuations, the latter manifesting as an apparent 1/f spectral trend. While
network oscillations are known to generate rhythmic EEG, the neural basis of
broadband EEG remains unexplained. Here, we use biophysical modelling to
show that aperiodic neural activity can generate detectable scalp potentials
and shape broadband EEG features, but that these aperiodic signals do not
significantly perturb brain rhythm quantification. Further model analysis
demonstrated that rhythmic EEG signals are profoundly corrupted by shifts in
synapse properties. To examine this scenario, we recorded EEGs of human
subjects being administered propofol, a general anesthetic andGABA receptor
agonist. Drug administration caused broadband EEG changes that quantita-
tively matched propofol’s known effects on GABA receptors. We used our
model to correct for these confounding broadband changes, which revealed
that delta power, uniquely, increased within seconds of individuals losing
consciousness. Altogether, this work details how EEG signals are shaped by
neurophysiological factors other than brain rhythms and elucidates how these
signals can undermine traditional EEG interpretation.

Electroencephalograms (EEGs) display a mixture of periodic and
aperiodic fluctuations. Almost a century of research has established
that periodic EEG signals are generated by synchronous neural
oscillations1–4. In contrast, aperiodic EEG signals remain relatively
poorly understood. Whereas periodic EEG signals produce peaks in
power spectra, the aperiodic component manifests as the back-
ground spectral trend that decays with apparent 1=f β behaviour5–8.
Differences in the spectral exponent, β, have been correlated with
aging, cognitive performance, neurological disorders, anesthesia, and
sleep9–14. In addition tobeing a useful biomarker, it has beenproposed
that the EEG spectral trend may change independently of neural
oscillations and that spectral detrending is necessary to accurately
quantify differences in brain rhythms14. Deciphering the neurophy-
siological basis of aperiodic EEG is thus necessary for correctly
interpreting EEG biomarkers and for improving algorithms that
quantify brain rhythms.

There exist twomain hypotheses for how the EEG spectral trend is
generated by the brain. The synaptic timescale hypothesis predicts
that the EEG spectral trend is a natural consequence of exponentially
decaying synaptic currents, and that consequently asynchronous
network activity will produce a spectrum with a 1=ð1 + τ2f 2Þ or “Lor-
entzian” trend7,15,16. The second hypothesis is based on the theory of
self-organized criticality which posits that the propagation of action
potentials throughout neural networks produces so-called “ava-
lanches” of activity with magnitudes following a 1/f distribution17–19. It
has been hypothesized that such avalanche dynamics in turn generate
a 1/f trend in EEG8,20,21. These theories are different in two important
respects. Firstly, the avalanchehypothesis implies that the trend in EEG
spectra is informative about the dynamics of the brain, while the
synaptic timescales hypothesis is agnostic. Secondly, the two theories
suggest different shapes for the spectral trend and therefore propose
distinct methods for detrending EEG spectra14.
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Despite these hypotheses, the concept of aperiodic EEG itself
remains controversial. Some argue that the apparent trend in EEG
spectra is an epiphenomenon caused by slower brain rhythms
recruiting larger populations of neurons22,23. According to this view-
point, the EEG spectrum does not require detrending and the spectral
exponent is a conflated measure of various changes in brain rhythms.

Three questions therefore remain open: (1) can EEG signals reflect
arrhythmic neural activity? (2) if so, how do these signals shape EEG
spectra? (3) do EEG spectra need to be detrended, and if so, what is the
most physiologically meaningful method of detrending? To investi-
gate these questions, we combined numerical forward modelling of
scalp potentials with biophysical calculations of single-neuron
dipoles24–26. With this approach, we simulated biophysically realistic
EEG signals generated by networks exhibiting a range of dynamics.
These simulations revealed several mechanisms, besides brain
rhythms, that affect EEG signals and together shape the spectral trend.
To test model predictions, we recorded EEG of humans receiving an
infusion of the drug propofol, a general anesthetic that targets GABA
receptors and slows the decay time of inhibitory synaptic currents27–30.
These experiments identified specific EEG changes during propofol
administration that were expected to contaminate brain rhythm esti-
mates. Using ourmodelling insights, we corrected for these sources of
contamination and reevaluated known EEG signatures of losing con-
sciousness. Overall, this study develops a biophysically grounded
theory describing the neural basis of aperiodic scalp potentials and
provides practical conclusions for the spectral analysis of EEG data.

Results
EEG cannot reflect asynchronous neural activity
To understand the neurophysiology that underlies the EEG spectral
trend, we began by investigating the properties of EEG generation at
the single-neuron level. These properties are informative because they
shape the ensemble EEG regardless of coherence or neural synchrony

(See Definitions and theoretical framework in Methods). To examine
these properties, we performed simulations of biophysically and
morphologically detailed neuron models (Fig. 1a). To start, we did not
assume any dynamics of presynaptic neurons and therefore modelled
synaptic input with independent Poisson spike trains (Fig. 1a), an
assumption that we relax later. From these currents, a single-neuron
dipole was computed26 (Fig. 1b). The neuron was placed at a random
location in the cortex and the single-neuron EEG signal was calculated
using the New York head model24 (Fig. 1c). This entire procedure was
repeated many times with various representative neuron morpholo-
gies (Table S1) and with the neurons placed at various locations in the
cortex. The average spectrum, which we will refer to as a unitary
spectrum, is the expected EEG spectrum generated by a single average
cortical neuron (Fig. 1d).

The unitary spectrum exhibited two important features. First,
even with random synaptic input, the unitary spectrum displayed a
trend. This trend could be described as the sum of two Lorentzian
functions

S fð Þ= A1

1 + 2πτ1 f
� �2 +

A2

1 + 2πτ2 f
� �2 , ð1Þ

as predicted by simple linearmodels of EEG generation7,16 (Fig. 1d). The
slower (τ1) and faster (τ2) timescales were governed by the deactiva-
tion kinetics of GABA receptors (GABARs) and AMPA receptors
(AMPARs), respectively (Fig. 1e, f). These simulations validate previous
predictions that the relative contribution of excitatory and inhibitory
currents to the EEG signal fundamentally affects the spectral trend16.

Second, the unitary spectrum reflects the amplitude with which
an average neuron contributes to the EEG signal. To investigate this
idea in more detail, we examined the effect of varying all the model
parameters within physiologically reasonable ranges (Fig. 1g). Mea-
suring the average power of the resulting single-neuron EEGs revealed
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Fig. 1 | EEG cannot reflect asynchronous neural activity. a Example morphology
of a layer 2/3 pyramidal neuron. Inputs at AMPAR (red) and GABAR (blue) synapses
were simulated with Poissonian spike trains, shown in raster plot. Only
1000 synapses shown for clarity. Neuron morphology adapted from Budd, J. M. L.
et al. Neocortical axon arbors trade-off material and conduction delay conserva-
tion. PLoS Comput. Biol. 6, e1000711 (2010). b The x, y, and z components of the
single-neuron dipole vector, calculated from (a). c Left: single-neuron EEG signals
were simulated at themarkedelectrode location,with theneuron located at various
source locations, e.g., location A and B. Right: the location-averaged EEG spectrum
(black) computed by averaging over the source locations shown in black dots on
the brain template. Loc.=location; Avg.=average. d Location-averaged spectrum
generated from 1000 simulations of 11 representative neuron morphologies
(Table S1). The spectrum was fit by Eq. 1 and the two Lorentzian components are
shown in dashed red lines. e The unitary spectrumwas calculated while varying the

deactivation kinetics of GABARs (τI ) and the parameter τ1 was estimated. Red line
has a slopeof 1. f Sameas e, but showing τ2 as a functionof thedeactivation kinetics
of AMPARs (τE ). g Sampling distributions for model parameters. λE , τE , and gE

represent the average input rate, the deactivation time constant, and maximal
conductance for AMPAR synapses. λI , τI , and gI represent the same parameters for
GABARsynapses. EL and gL represent the reversal potential and conductanceof the
passive membrane leak current. h Distribution of single-neuron EEG power (loca-
tion-averaged as in c) based on 20,000 simulations with parameters sampled from
the distributions shown in (g) and morphologies sampled as described in Table S1.
i Black: Median EEG spectrum across 14 subjects, with error bands indicating
minimum and maximum spectral density. Grey: the predicted EEG spectrum of 16
billion uncorrelated neurons receiving Poissonian synaptic input (grey), with
parameter values sampled from the distributions in (g). Error bands reflect 5–95%
quantile range.
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a range of possible amplitudes for the contribution of individual
neurons to the EEG signal (Fig. 1h). These simulations show that no
physiologically plausible parameters could allow 16 billion uncorre-
lated neurons to generate detectable EEG signals (Fig. 1i). More
importantly, these calculations quantify how far off a completely
asynchronous cortex is fromgenerating detectable EEG signals. These
calculations account for the EEG strength contributed by synaptic
current amplitudes, neuron geometry, average firing rate of neurons,
the number of neurons, the conductivity of various tissues, and the
geometry of the cortex. Therefore, this result indicates that neural
dynamics are responsible for the approximate four orders of magni-
tude difference between the simulated asynchronous spectrum and
real EEG recordings.

Detectable EEG requires onlyweak, locally synchronized dipoles
If the amplitude of EEG signals precludes asynchronous activity from
shaping EEG spectra, what types of arrhythmic activity could influence
EEG signals? To begin addressing this question, we first quantified in
general how much dipole correlation is required to generate detect-
able EEG signals. To do so, we imposed a simplified spatial organiza-
tion on a cortical template whereby neighbouring neurons produced
correlated dipoles. Specifically, the dipoles of neurons separated by d
mm were correlated with a coefficient of ρ dð Þ=ρmax expð�d2

=σ2Þ,
where ρmax is themaximal dipole correlation and σ2 is the spatial scale
over which correlations decline (Fig. 2a). Based on this correlation
scheme, the geometry of the cortex, average densities of neurons, and
the single-neuron EEG amplitudes from the previous section, we esti-
mated the power of the ensemble EEG signal that would be produced
with different values of ρmax and σ2 (seeMethods). To capture the EEG
spectral trend, we estimated that broadband EEG signals need to have
a total power of between 50 and 200 μV2 (Fig. 2b). Thus for neural
activity to generate detectable EEG signals, this activity needs to be
capable of driving single-neuron dipoles that are correlated up to a
value (ρmax) of 0.06–0.12 (Fig. 1c), assuming a liberal range for σ2 of
5–13mm (Fig. 1c; see Methods). While the existence of EEG rhythms
prove that neural oscillations can generate the requisite dipole

synchrony, it remains to be determined if and how such a degree of
dipole coherence may be achieved by arrhythmic neural activity.

Synapse topology is sufficient for dipole correlations
To investigate the ability of neural activity to generate coherent
dipoles, we simulated dyads of neurons and investigated the level of
correlation achievable between the two single-neuron dipoles. In our
simulations, we noticed that if a single synapse was activated, the
orientationof the resultingdipole could be accurately predictedby the
orientation of the synapse relative to the soma (Fig. 3a, b). This result
held across all neuron morphologies investigated (Fig. S1). From this
observation, we devised a minimal model of dipole coherence. To
generate synaptic input, we projected the synapses of two neurons
onto a sphere and correlated the inputs of synapses with close angular
distances (Fig. 3c). By changing the maximal correlation between
synapses, dipole correlation between neurons of various morpholo-
gies could be tuned continuously between 0 and ~0.3 (Fig. 3d, e).
Shuffling the location of the synapses abolished any dipole correlation
(Fig. 3d). These results demonstrate that to generate detectable EEG
signals, it is necessary and sufficient for synaptic input to exhibit
temporal and spatial correlation. These conditions do not by them-
selves preclude any specific type of neural dynamics. Indeed this
minimal model relied on independently sampled spikes at every time
point and thus generated EEG signalswith no temporal autocorrelation
and a spectrum with the same shape as the asynchronous unitary
spectrum (Fig. 3f). Therefore, the plausibility of aperiodic EEG signals
depends solely on the ability for a network of neurons to generate
arrhythmic activity with the requisite levels of spatiotemporal
correlation.

Subcritical networks can generate aperiodic EEG signals
We next investigated network models that could generate detectable,
aperiodic EEG signals. To determine whether network activity could
produce coherent dipoles, we utilized the results from the previous
section (Fig. 3). After simulating a presynaptic neuron population, we
used the UMAP algorithm31 to embed the population onto a sphere in
such a way that minimized the distance between presynaptic neurons
with correlated spiking activity (Fig. 4a). These presynaptic neurons
were then projected onto the dendrites of the postsynaptic dyad
(Fig. 4a). By construction, synapses with higher correlations should
have smaller angular distances, thus optimizing for dipole coherence.
Effectively, this procedure testswhether it is geometrically possible for
a network to generate sufficiently coherent synaptic input for EEG
generation.

To understand the mechanisms of aperiodic EEG generation, we
attempted to construct the simplest network that could generate
dipole coherence. Our previous results demonstrate that randomly
connected networks cannot generate coherent dipoles, because they
cannot produce spatially correlated activity. We therefore continued
on to use the simplest neural network that exhibits spatial topology,
namely, a spatial network. To construct the network, each neuron was
embedded in a plane and connected preferentially to nearby neurons
(Fig. 4b). For simplicity, we modelled individual neurons as binary
nodes, i.e., each neuron was either spiking or quiescent. Spikes pro-
pagated along network connections, causing subsequent neurons to
fire with some probability (Fig. 4b). This simple model falls within the
category of a branching network, because the dynamics are governed
by a single parameter called the branching number, denoted by m,
which reflects the average number of spikes successfully elicited
across the network when a single neuron fires.

Our simulations revealed that the maximal achievable dipole
correlation increasedwith thenetwork’s branchingnumber (Fig. 4c, d).
A purely asynchronous network ðm=0Þ was unsurprisingly incapable
of generating correlations among single-neuron dipoles (Fig. 4d). On
the other hand, a slightly subcritical network (m=0:98) was capable of
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generating dipoles that were correlated by 0.18 ± 0.001 for an average
pair of postsynaptic neurons (mean± SE, n = 10,000; morphologies
sampled as described in Table S1; biophysical parameters sampled as
in Fig. 1g). This branching number is significant because previous work
has found that networks with a branching number ofm=0:98 closely
reproduced the in vivo dynamics of cortical spiking across many dif-
ferent species32,33, making this a physiologically plausible parameter
value. Placing synapses suboptimality led to proportionally lower
dipole correlation, revealing that subcritical dynamics can still drive
coherent dipoles with suboptimal synapse placement (Fig. 4e). Based
on the amplitude of the computed unitary spectrum (Fig. 4f), we
estimated that subcritical network activity can produce realistic EEG
amplitudes with synapse optimality as low as ~25% (Fig. 4g; see Meth-
ods). As a reference, an optimality index of 50% means that strongly
correlated synapseswill onaverage lieon the samehemisphereof their
respective neurons, a geometry reminiscent of the apical-basal com-
partmentalization of cortical pyramidal neurons.

Notably, stronger dipole correlations coincided with longer tem-
poral autocorrelations in network activity (Fig. 4f), a phenomenon
directly resulting from the causality of spikepropagation (Fig. 4b). This
means that EEG signals produced by propagating cortical spikes must
have higher power at low frequencies if the signals are to be of
detectable amplitudes. This result illustrates a fundamental constraint
that may in part explain the 1/f scaling of EEG spectra at lower

frequencies (Fig. 4g). More broadly, these results demonstrate a bio-
physically feasible mechanisms that allows arrhythmic neural activity
to generate EEG signals, and to consequently influence the broadband
features of EEG spectra.

Narrowband EEG changes could result from arrhythmic activity
The above calculations show that arrhythmic neural activity can in
theory generate broadband EEG signals, meaning that narrowband
EEG power need not reflect brain rhythms. We therefore asked whe-
ther EEG signals that are produced by arrhythmic activity can con-
found traditional EEG interpretation, namely, that changes in
bandpower reflect differences in neural oscillations. To address this
question, we considered a scenario where the EEG signal is generated
by two subpopulations of neurons: a population exhibiting synchro-
nous oscillations, and a second population exhibiting subcritical
dynamics (m=0:98). If these population are completely independent
of one another, their EEG contributions will by definition add together
linearly. To investigate further, we simulated the scenario in which the
two populations’ postsynaptic signals are intermixed (Fig. 5a). One
interpretation of this setup could be a cortical neuron that is receiving
oscillatory input from, say, the thalamus, while also receiving sub-
critical input from the local cortical circuitry. Compared to neurons
receiving entirely oscillatory input or entirely subcritical input, the
neuron receiving mixed input produced a unitary EEG spectrum that
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exhibited a mixed phenotype (Fig. 5b). Increasing the strength of the
oscillatory and/or aperiodic input altered the amplitude of the spectral
peak and/or spectral trend (Fig. 5c–e). However, changes to the
spectral trend did not multiplicatively scale the oscillatory peak
amplitude. As a result, quantifying the amplitude of oscillatory peaks
relative to the spectral trend produced incorrect interpretations
(Fig. 5f–h): dividing the peak amplitude by the background trend
erroneously suggested that the neural rhythm decreased when aper-
iodic activity became stronger (Fig. 5d, g), and severely under-
estimated the neural rhythm increase when aperiodic activity
increased concomitantly (Fig. 5e, h). We therefore concluded that if a
spectral peak is clearly discernible, then arrhythmic neural activity has
a minimal confounding influence and detrending is unnecessary.
Importantly, however, if no spectral peak is obvious, then there is no
guarantee that changes in power result from differences in neural
oscillations.

Spectral slope is an inconsistent measure of EI balance
The above results focused on the role of neural dynamics in shaping
the EEG spectrum. However, Fig. 1d–f shows that the kinetics of
postsynaptic responses also impact the broadband properties of EEG
spectra. To further investigate this mechanism shaping EEG spectra,
we performed a full sensitivity analysis of the spectral slope with
respect to the biophysical parameters in the single-neuron models.
The unitary EEG spectrum was simulated with many different para-
meter values (Fig. 6a) and the overall slope of the spectrum was
calculated14 between 1 and 40Hz (Fig. 6b). These simulations revealed
that the spectral slopewas consistently affectedby four parameters: τI ,
gE , gI , and EL (Fig. 6c). These results can be explained through Eq. 1.
The parameter τI directly determines the slow timescale, τ1, of the
unitary spectrum (Fig. 1d), whereas synaptic conductances, gE and gI ,

directly govern the contributions of inhibitory and excitatory synaptic
currents, respectively. The reversal potential, EL, of the leak current
alters the spectral slope because when EL is more depolarized, GABAA

receptors experience a higher driving force, thus amplifying the con-
tributions of inhibitory currents.

Surprisingly, the analysis of the spectral slope revealed a strong
interaction between gL and both λE and λI (Fig. 6c). When the leak
conductance was low (gL< 0.1 mS cm−2), the spectral slope was found
to be negatively correlated with the λE :λI ratio (Fig. 6d, e; Fig. S2b),
which contradicts the predictions of linearmodels of EEGgeneration16.
The reason is that when the leak conductancewas low, higher E:I ratios
drove the average membrane potential close to the reversal potentials
of GABA receptors (Fig. S2a). This caused neurons with low gL to
experience vanishing GABAR driving forces and amplified AMPAR
driving forces at high E:I values, consequently and counterintuitively
making the spectral slope anticorrelated with the E:I ratio (Fig. 6e).
However, when the leak conductance was high (gL>1 mS cm−2), the
membrane potential fluctuated less and stayed within a relatively lin-
ear regime (Fig. S2a). Consequently the spectral slope was positively
correlated with E:I ratio (Fig. 6e) as predicted by linear models of EEG
generation16. A similar albeit weaker effect was observed in the rela-
tionship between the spectral slope and the gE :gI ratio (Fig. S2c).
Generally, we conclude that the overall spectral trend is significantly
affected by biophysical parameters that alter postsynaptic responses,
but changes in the slope value do not alone inform what parameters
are changing.

Changes to synaptic responses confound brain rhythm
quantification
Differences in postsynaptic responses alter EEG spectra in a funda-
mentally different way to arrhythmic neural activity. Postsynaptic
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Article https://doi.org/10.1038/s41467-024-45922-8

Nature Communications |         (2024) 15:1514 5



Aperiodic 
presynaptic 
population

Oscillating
presynaptic 
population

a c d e

b Oscillation only Aperiodic only Mixed input

0.5 5 50
Frequency (Hz)

lo
g 

po
w

er

0.5 5 50
Frequency (Hz)

0

5

10

D
et

re
nd

ed
 p

ow
er

 (d
B)

0.5 5 50
Frequency (Hz)

lo
g 

po
w

er

0.5 5 50
Frequency (Hz)

0

5

10

D
et

re
nd

ed
 p

ow
er

 (d
B)

0.5 5 50
Frequency (Hz)

lo
g 

po
w

er

0.5 5 50
Frequency (Hz)

0

5

10

D
et

re
nd

ed
 p

ow
er

 (d
B)

f g h

0.5 5 50
Frequency (Hz)

lo
g 

po
w

er

0.5 5 50
Frequency (Hz)

lo
g 

po
w

er

0.5 5 50
Frequency (Hz)

lo
g 

po
w

er

Fig. 5 | Measuring oscillatory peak power relative to spectral trend may pro-
duce misleading results. a Illustration of mixed input model. Half of the neuron’s
synapses received oscillatory rhythmic input (blue) and the other half received
input from a subcritical network (red). The strengths of oscillatory and subcritical
dynamics were adjusted by tuning two parameters, αR and αA, respectively, which
determined the degree to which synaptic inputs differed from homogenous Pois-
son processes. See Methods for details. Neuron illustration created with BioR-
ender.com. b Unitary spectrum for neurons receiving Poisson input (grey),
compared with the unitary spectra for neurons receiving input entirely from the
oscillatorypopulation (left; black), entirely from the subcritical population (middle;
black), or mixed input as in (a) (right; black): αR =αA =0:1. c Oscillatory input was
strengthened by increasing αR from 0.1 (black) to 0.5 (blue), with αA fixed at 0.1.
The spectra were fit using a FOOOF-like algorithm14, except that here the aperiodic

component was modelled with Eq. 1 (solid grey line). d Aperiodic input was
strengthened by increasing αA from 0.1 (black) to 0.5 (red), with αR fixed at 0.1.
e Both oscillatory and aperiodic inputs were strengthened by increasing both αR

and αA from 0.1 (black) to 0.5 (magenta). f Detrended spectrum of neurons
receivingmixed input before (black) and after (blue) oscillation strength increased.
The unitary spectra in (c) were divided by the solid grey line. g Detrended power
before (black) and after (red) aperiodic strength increases. Notice that the
detrended power at 2Hz decreases, despite the strength of oscillations remaining
the same. h Detrended power before (black) and after (magenta) both oscillation
and aperiodic strength increases. Notice that the detrended power at 2Hzdoes not
increase asmuch as in (f), despite the oscillation increasing in strength by the same
amount.

10:1 1:1 1:10
E:I ratio (λE:λI)

1 20 40
Frequency (Hz)

-6

-4

-2

0

Po
w

er
 (d

B)

10:1 1:1 1:10
-0.5

0

0.5

1

1.5

Sl
op

e 
(1

-4
0 

H
z)

ρ = -0.66

10:1 1:1 1:10
-0.5

0

0.5

1

1.5

ρ = 0.36

   Hz0.1 1 10

   ms0 10 20

   nS0 1 2

   mV-70 -50

  mS/cm20.01 1

λE
λI
τEτI
gE
gI
EL

gL

λE
λI
τE
τI
gE
gI
EL
gL

λE λI τE τI gE gI EL gL 0

0.1

Sensitivity index

1 40
Frequency (Hz)

10-16

10-15
a b c

d e

PS
D

 (μ
V2 /H

z)

Slope sensitivity

E:I ratio (λE:λI) E:I ratio (λE:λI)

gL low gL high

10−15.1

f 0.36

More
inhibition

More
excitation

Fig. 6 | Sensitivity of spectral slope to biophysical parameters governing
postsynaptic responses. a Sampling distributions formodel parameters, the same
as the ones used in Fig. 1g. b Example single-neuron EEG spectrum, fitted with the
equation 10α=f β between 1 and40Hz. cSensitivityof the spectral slope,β, tomodel
parameters, with first and second order interactions, calculated from 20,000

simulated spectra. d Simulated spectra were averaged depending on the ratio
between λE and λI . Lower E:I ratios correspond to more inhibition. e The spectral
slope is plotted against the E:I ratio for each simulation. Left: simulation where the
leak conductancewas low (gL<0:1mS cm−2; n = 7366 simulations). Right: simulation
where the leak conductance was high (gL>1 mS cm−2; n = 5184 simulations).

Article https://doi.org/10.1038/s41467-024-45922-8

Nature Communications |         (2024) 15:1514 6



kinetics effectively interact as a convolution with synaptic input and
should therefore interact with oscillatory peaks in a multiplicative
manner. Moreover, postsynaptic mechanisms should affect power
generated by all types of neural dynamics equally. To test this, we
systematically altered the biophysical parameters that govern post-
synaptic currents and analyzed the unitary spectra generated by
various types of synaptic inputs, including white noise (Fig. S3),
subcritical dynamics (Fig. 7a), as well as three types of dynamics that
exhibit spectral peaks: a recently proposed recurrent Isingmodel that
exhibits co-existence of oscillations and avalanches34 (Fig. S3), an
underdamped second-order system driven by white noise (Fig. S3),
and finally a simple sinusoidal rhythm (Fig. 7b). We investigated the
effects of neurophysiological parameters that affect the spectral
slope, as identified by our sensitivity analysis (Fig. 6c): GABAR kinetics
(τI), the leak current reversal potential (EL), and the conductances of
excitatory (gE) and inhibitory (gI) synapses. Changing these para-
meters altered the unitary spectra in distinct manners, but impor-
tantly had identical effects across the different types of the input
dynamics (Fig. 7a, b; Fig. S3).

The spectral changes caused by altering biophysical parameters
do not reflect differences in neural dynamics and therefore represent
confounds for EEG analysis. To correct for the effects of these para-
meter changes, we fit the part of the spectral trend produced by
synaptic timescales using a FOOOF-like algorithm14, except that the
background trend was modelled using Eq. 1 (Fig. 7c; Fig. S4). As
anticipated, detrending the spectra in this way corrected for the con-
founding effects of the parameter changes (Fig. 7d, e; Fig. S4).

In conclusion, our modelling results indicate that there are two
distinct mechanisms of peak-trend interaction in EEG spectra. In one
case, there are changes in the relative contribution of rhythmic and
arrhythmic neural activity to the EEG signal. In this case, the peaks and
spectral trend change relatively independently from one another, and
thus detrending is unnecessary for quantifying spectral peak ampli-
tudes (see Discussion). In the other case, changes in biophysical
parameters alter the mechanism of EEG generation itself. In this case,
EEG differences are unrelated to neural dynamics; these changes can
confound EEG signals from all neural sources, and thus even spectral
peak amplitudes can be potentially corrupted.
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Model predicts andquantifies effects of propofol on EEG spectra
The above results suggest that spectral detrending may be important
in pharmacological experiments since many drugs target ion channels
and alter postsynaptic responses. To test this model prediction, we
investigated the EEG signatures of the general anesthetic propofol, a
GABAA receptor modulator that lengthens the decay time of synaptic
inhibition27–30. We recorded the EEG of 14 subjects during a fixed-rate
infusion of propofol lasting until loss of consciousness (LOC) (Fig. 8a).
The moment of LOC was identified by the dropping of a held object,
which has been shown to provide an accurate, binary measure of LOC
with precise timing35,36. The median LOC-aligned spectrogram was
calculated from the Cz channel, which revealed an increase in low
frequency power and a decrease in high frequency power starting
before LOC (Fig. 8b). Comparing the average power spectrum at
baseline (0–10 s prior to propofol infusion) to that following propofol
infusion (0–10 s prior to LOC) revealed an increase in low frequency
power and a decrease in high frequency power, thus giving the
appearance of a rotation of the power spectrum (Fig. 8c).

Our modelling results suggest that propofol inflates low fre-
quency power by increasing the slow timescale, τ1, of the spectral
trend (Figs. 1d, e; 7). To test this, we estimated τ1 from the EEG data by
fitting a modified Eq. 1 to the EEG spectra (Eq. 6; see Methods). This
modified function fit the spectral trend well except at frequencies less
than ~3Hz (Fig. 8d; Fig. S5a–c), where our modelling results suggest
the spectral trend is coloured primarily by neural dynamics, such as
delta oscillations and/or subcritical network activity, but not synaptic
kinetics (Figs. 4 and 5). Corroborating this interpretation, the low fre-
quency (<3Hz) part of the trend waxed and waned from second to
second, occasionally disappearing entirely, whereas the fitted synaptic
timescale remained stable between time windows (Fig. S5c). The
extracted timescale, τ1, was remarkably consistent prior to the infusion
of propofol, with an average value of 16.7 ± 1.4ms (mean± SE, n = 14)
(Fig. 8e). Following the infusion of propofol, τ1 began increasing,
reaching a value of 43.2 ± 4.6ms (p ≈ 10−4; paired two-tailed t-test)

0–10 s prior to LOC (Fig. 8e). Similar changes were observed at other
electrode sites (Fig. S6). By plotting the estimated value of τ1 at each
time point against the estimated effect-site concentration of propofol,
quantified using the Marsh model37, we constructed a dose-response
curve of fold change in τ1 against estimated propofol concentration
(Fig. 8f). The inferred dose-response curve for τ1 quantitatively mat-
ched in vitromeasurements of inhibitory postsynaptic current kinetics
in the presence of bath applied propofol27–29 (Fig. 8f). Thus, the chan-
ges in τ1 were consistent with expectations based onpropofol’s known
pharmacology. These observations support the model’s prediction
that GABAR kinetics significantly shape EEG spectra and that broad-
band EEG changes do not necessarily reflect differences in brain
dynamics.

Correcting for synaptic timescales reveals a unique
signature of LOC
Our modelling results predicted that propofol’s effect on synaptic
timescales will produce errors in conventional quantifications of
brain rhythms. Past studies have suggested that LOC frompropofol is
associated with changes in the delta (0.5–3Hz), alpha (8–15 Hz), and
beta (15–30Hz) frequency ranges38. To investigate the consequences
of spectral detrending on EEG signatures of LOC, we compared raw
bandpower to detrended bandpower in the delta, alpha, and beta
frequency ranges. To compare EEG dynamics across individuals, data
were aligned simultaneously to themoment of propofol infusion and
LOC; this was done by rescaling time in each experiment by the
latency to LOC (median: 135 s; range: 95–285 s). Similar results were
obtained when time was not rescaled (Fig. S5d). Consistent with
previous studies38, raw baseline-normalized power increased in the
delta, alpha, and beta band following propofol infusion (Fig. 9a–c).
Whereas alpha power increased quickly and plateaued prior to LOC,
delta power rose slowly and continued increasing until after LOC
(Fig. 9d). Notably, beta power increased concomitantly with alpha
power, but then began decreasing prior to LOC, eventually
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producing a beta power not statistically different from baseline post-
LOC (Fig. 9d).

To correct for the confounding effects of propofol, we divided
EEG power at each timepoint by the estimated synaptic timescales
fitted from the previous section (Fig. 9e). We then normalized
detrended power by the detrended power at baseline (Fig. 9f), such
that changes in bandpower reflected the spectral changes unexplained
by the increase in τ1. This procedure entirely removed the apparent
rotation in the EEG spectra following propofol infusion (Fig. 9g). As a
result of this detrending, power in the alpha, beta, and delta bands
clearly increased at distinct times (Fig. 9h). Alpha and beta power
appeared following propofol infusion and plateaued well before LOC.
In contrast, detrended delta power did not increase until the moment
of LOC, at which point it increased sharply (Fig. 9h; Fig. S5d). In sum-
mary, whereas the raw EEG signal failed to exhibit a strongly time-
locked signal at the moment of LOC, removing the anticipated con-
founds of propofol revealed a sharp increase in delta power within
seconds of LOC. This analysis combined with our modelling results
suggest that pharmacological changes to synaptic kinetics may mask
the true dynamics of neural oscillations when spectral detrending is
not performed. In addition, these results point to distinct roles for
alpha and delta power in the function of propofol as a general
anesthetic.

Discussion
In this study, we explored the neural basis of the EEG spectral trend
and examined its implications for EEG interpretation and analysis.
Several important conclusions cameout of this investigation. First, this
work provided biophysical evidence that arrhythmic neural activity is
capable of generating detectable EEG signals. Second, our modelling
consolidated the predictions of simpler computational models16,20 and
indicated that the EEG spectral trend is shaped by the interactions of
many factors, including synaptic kinetics, excitatory-inhibitory ratio,
and aperiodic network dynamics. Third, our analysis revealed that

spectral peak amplitudes are minimally affected by fluctuations in
arrhythmic neural activity. On the other hand, we found that systemic
changes in synaptic current properties do necessitate detrending to
accurately interpret spectral changes as variations in neural activity.
Our results suggested that this latter scenario is particularly important
for EEG recordings used in tandem with pharmacological
interventions.

Traditional spectral analysis assumes that EEG power within
canonical frequency bands reflect various brain rhythms. Our model-
ling results seriously challenge this assumption. Specifically, if a
spectral peak is not evident within a given frequency band, our work
justifies a physiologically plausible and biophysically realistic alter-
native hypothesis, namely, that the bandpower reflects broadband
neural activity. Our results thus validate the principle assumption of
spectral detrendingmethods, such as the FOOOF algorithm14, which is
that peak detection is a necessary prerequisite to quantifying oscilla-
tory power.While power lying outside spectral peaks could potentially
reflect neural rhythms, there is no theoretical guarantee for this
interpretation based on spectral analysis alone.

Importantly, our results do not necessarily support a purely data-
driven approach to detrending EEG spectra. While changes in
arrhythmic activity affect spectral peaks in an additive manner (Fig. 5),
changes in synaptic currents multiplicatively scale spectral peaks
(Fig. 7); these two mechanisms thus require two distinct methods of
detrending, i.e., subtractive versus divisive detrending, respectively.
Without prior knowledge, it is unclear which method is required.
Moreover, given the amplitude of peaks above the background trend
typical in EEG spectra, small additive changes in the trend would alter
the peak amplitudes minimally compared to the errors introduced by
incorrectly detrending (Fig. 5). Overall, we conclude that spectral
detrending should not be performedunless there is clear physiological
and biophysical justification and validation.

In the analysis presented here, there was prior knowledge of the
well-documented action of propofol on GABAR kinetics27–29, clearly
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indicating the necessity for divisive detrending. To mitigate the
chances of overfitting, we constrained parameter values to physiolo-
gically reasonable ranges, and validated that the fitted spectral chan-
ges and τ1 values quantitatively matched expectations. Even so, our
decomposition of spectra into physiologically distinct components
was likely imperfect, especially considering that changes to GABAR
kinetics also probably affected aperiodic network dynamics39 (see
below). Although inhibitory synapses and network timescales are
expected to affect spectra indifferent frequency ranges (Figs. 1, 4, 5, 7),
these ranges overlap, making it challenging to definitively dis-
ambiguate these two mechanisms. Such caveats may be addressable
with future refinements to EEG detrending algorithms, e.g., by
including phase information or using generative models to improve
parameter inference40.

Past modelling has suggested that the EEG spectral exponent
reflects the E:I ratio, which relies on the assumption that low frequency
power is dominated by inhibitory currents16. Our results broadly vali-
date this assumption, suggesting that the E:I ratio is an important
driver of the spectral trend. However, our results also demonstrate
that the spectral exponent is not a reliablemeasure of E:I ratio because
of nonlinearities in membrane potential dynamics related to the
reversal potentials of AMPARs and GABARs (Fig. 6), an aspect not
considered in previous work16. In addition, we found that other bio-
physical parameters, such as synaptic timescales and leak currents
contribute to shaping the EEG spectral trend. These findings are con-
sistent with past studies that have associated neuronal timescales with
the expression levels of various ion channels and receptor subunits41. It
seems likely that changes in the spectral trend can reflect a large
number of physiological mechanisms that converge to govern synap-
tic kinetics and the effective E:I ratio. Other biophysical mechanisms
not explored here, such as active membrane currents42 and dendritic
calcium spikes43, could also potentially contribute to shaping EEG
spectra by changing postsynaptic response kinetics and amplitudes.
Broadly, we conclude that the spectral exponent reflects physiological
factors other than neural oscillations and is therefore a com-
plementary biomarker to brain rhythm quantification.

While several studies have suggested that avalanche criticality
maybe responsible forbroadband 1/fβ scaling in EEG spectra8,18,21,44, our
results corroborate other models of recurrent neural networks20 and
indicate that avalanche criticality would likely contribute to only
slower frequency components of EEG (Fig. 4, in the limit asm ! 1). In a
general sense, our model suggests an underlying mechanism for the
observed 1/f trend comparable to that proposed for how purely
oscillatory networks might produce such a trend. In the oscillatory
case, it has been suggested that large networks oscillate slower than
smaller networks, thus leading to a 1/f trend22,23. Our results suggest
that propagating spikes that exhibit longer correlation timescales can
produce more coherent dipoles, thus contributing more to the EEG
signal. This in turn would cause EEG spectra to be dominated by lower
frequency aperiodic signals. While still technically challenging, our
model could be tested by extending recent work characterizing the
functional clustering of synapses within individual dendritic
branches45–49, and by measuring the geometric relations between
correlated synapses across neighbouring neurons.

Delta rhythms are a ubiquitous feature of general anesthesia,
being readily induced in humans by propofol, sevoflurane, thiopental,
and xenon38,50–55, potentially indicating a universal signature of
unconsciousness bridging both general anesthesia and sleep56–58. To
the best of our knowledge, such an abrupt change in delta power as
reported here has not been previously reported in EEG studies, even
when themoment of LOCwas resolvedwith high temporal precision38.
Although practically detrending power relies on simplified models of
EEG spectra, our analysis clearly shows that the slow changes in delta
power prior to LOC can be explained by propofol’s action on GABAR
kinetics, and thus demonstrates that delta power originating from

changes in neural dynamics appears after the propofol-induced
increase in alpha and beta power (Fig. 9). According to our simula-
tions, it is possible that the observed increase in low frequency power
is due to the brainmoving closer to avalanche criticality (Figs. 4 and 5).
Opposing this interpretation are models of excitatory/inhibitory net-
works, which suggest that increasing inhibition promotes the asyn-
chronous state39. Furthermore, detailed analyses of EEG signals have
suggested that altered states of consciousness are related to a depar-
ture away from, and not towards, critical dynamics59,60. Based on these
studies, we should rather expect changes in network criticality that
decrease delta power. It seems likely, therefore, that the increase in
delta power at the moment of LOC is related to changes in delta
rhythms. If so, our observations lend evidence to the view that delta
rhythms are fundamental to losing consciousness. A target effect-site
concentration protocol could be used to investigate lower doses of
propofol in more detail, which our observations suggest may induce
alpha rhythmsbut not delta rhythms. If so, these experiments could be
used to dissect the behavioural correlates of these two rhythms in
more detail.

In summary, we conclude that aperiodic neural activity can con-
tribute to EEG signals, and that the spectral trend is further shaped by
many physiologicalmechanisms, such as excitatory/inhibitory balance
and synaptic timescales.We conclude that the spectral exponent is not
merely a conflated measure of brain rhythms and thus provides a
complementary biomarker of brain state. However, we also conclude
that the spectral exponent does not have a singular physiological
interpretation. Finally, we conclude that EEG spectra do need to be
detrended when quantifying brain rhythms, but only if postsynaptic
current properties are systematically altered. Otherwise, detrending
likely introduces significant errors to brain rhythm quantification and
should therefore be avoided.

Methods
Definitions and theoretical framework
The EEG signal can be described as the linear superposition of electric
fields generated by all neurons in the brain3,61. We refer to the indivi-
dual contribution of a single neuron to the ensemble EEG signal as a
single-neuron EEG. Otherwise stated, the ensemble EEG signal is the
linear summation of N single-neuron EEGs. This means that the power
spectral density of an EEG signal can be expressed as

SN fð Þ=
X
i

Siðf Þ+2
X
i<j

γij fð Þ
ffiffiffiffiffiffiffiffi
SiSj

q
, ð2Þ

Here, Si is the power spectrumof the single-neuron EEGgenerated by a
given neuron i, and γij is the coherence between the single-neuron EEG
of neuron i and neuron j. Spectral peaks are thought to appear due to
coherence at a given frequency3. Because the coherence function, γij ,
interacts multiplicatively with single neuron EEG spectra, the spectral
features of the ensemble EEG will be governed in part by the spectral
features imparted by neurons at the single cell level. Moreover, this
influence will be independent of the nature of brain dynamics, except
insofar as these dynamics alter the single-neuron EEG spectrum.
Broadly, this paper concerns itself with investigating how broadband
single-neuron EEG signals influence the spectral features of the
ensemble EEG.

Postsynaptic neuron simulations
Neuron morphologies as well as their relative abundance were the
same as those used by Hagen et al.25 (Table S1). The same biophysical
parameters were used for all neuron subtypes. For simulations,
morphologies were segmented such that each compartment was less
than 10 μm. Each postsynaptic neuron was modelled with an axial
resistance Ra = 100Ω cm and amembrane capacitance of 1 μF cm−2. All
compartments were passive. The maximal leak conductance (gL) was
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investigated in a range from 0.01 to 5 mS cm−2 and the leak reversal
potential (EL) was investigated in a range from −75 to −45 mV (Fig. 1g).
The number of synapses for each cell was equal to the total dendritic
length times a density of 1 synapse per μm for excitatory synapses and
0.15 synapses per μm for inhibitory synapses62–64. Synapses were dis-
tributed among all compartments proportionally to the compart-
ments’ surface area. Post-synaptic currents were modelled as the
differenceof exponentials. Excitatory synapseshada reversalpotential
of 0mV, a rise time of 0.3ms, a decay time constant (τE) between 1 and
3.5ms, and a peak conductance (gE) between 0.2 and 2 nS (Fig. 1g).
Inhibitory synapses had a reversal potential of −80 mV, a rise time of
2ms, a decay time constant (τI) between 5 and 20ms, and a peak
conductance (gI) between0.2 and2nS (Fig. 1g). For illustrating specific
example spectra, e.g., those shown in Figs. 1d, 2f, 4f, g, 5 and 7, the
following parameter set was used: gL = 1 mS cm−2, EL = −58 mV,
τE = 1.8ms, gE = 0.7 nS, τI = 10ms, and gI = 0.7 nS. All simulations of
neurons were performed in Python 3.8.10 using the package LFPy
2.2.465, running the NEURON simulation environment under the
hood66.

Ensemble EEG amplitude estimation
Because dipoles sum linearly, the EEG signal generated by N neurons
can be decomposed as a superposition of N single-neuron EEG signals.
It follows that the ensemble EEG will have an average power of
σ2
N =

PN
i = 1σ

2
i + 2

P
i<jρijσiσj, where the single-neuron EEG signals pro-

duced by neurons i and j have average powers of σ2
i and σ2

j , respec-
tively, and a pairwise correlationof ρij . Dipole correlations should arise
if two conditions are satisfied: (1) synaptic inputs are correlated, which
we assumed to decrease with distance; and (2) dipole orientations are
aligned, which we assumed depends on both condition 1 and on the
angle between the apical-basal axes of the neurons. We therefore
modelled the dipole correlation of two neurons as
ρij = expð�d2

ij=σ
2Þ cos θij , where dij is the distance between the two

neurons, σ is some characteristic spatial scale of correlation, and θij is
the angle between the apical-basal axes of the respective neurons. We
estimated these parameters using the ICBM152 v6 anatomical brain
template24,67,68, assuming auniformdensity ofμ = 100,000neuronsper
mm2 of cortical surface area69.

The brain template is a triangular mesh with faces of areas Aj and
normal vectors~Nj . Given a randompoint, xi, on themesh, we used the
vertex points of themesh to analytically calculate the “signed number”
of neurons within a given radius r, given by

νi rð Þ=
X
j

μ Aj f j r, xi
� �� �

~Nj � ~Ni, ð3Þ

where f j r,xi

� �
is the fraction of triangular mesh face j that intersects a

ball of radius r centred at point xi. We repeated this k =2000 times
with different starting points, xi, to estimate an average
�ν rð Þ= 1

k

P
kνiðrÞ. This allowed us to estimate the average pairwise cor-

relation across the entire cortex with the following formula

�ρ=
1

N � 1

Z
r>0

exp �r2=σ2� �
d�ν rð Þ, ð4Þ

It follows that the expected signal power of the ensemble EEG
signal is σ2

N =Nσ2
0 +N N � 1ð Þ�ρσ2

0, where σ2
0 is the expected power of a

single-neuron EEG (Fig. 1).
Experimental quantification of σ2 would require measuring and

comparing the isolated dipoles of individual neurons, a procedure that
is not possible. However, correlations in subthreshold membrane
potentials have been investigated in cats, both in the presence and
absence of oscillations70. These experiments revealed that in the
absence of oscillations, subthreshold fluctuations were correlated
between neocortical neurons up to ~5mm apart, but were

uncorrelated between neurons ~13mm apart70. Because dipoles are
predominantly generated by subthreshold currents4,71, these data
suggest a possible lower and upper bound for σ2.

Subcritical network model
Presynaptic neurons were connected to dout = 10 other neurons in the
presynaptic network. The probability of two neurons being connected
was determined by their distance, using an exponentially decaying
coupling kernel. This rule forced network connectivity to be local in
nature. Each neuron followed a Poisson point process with a rate
λE ð1�mÞ, where λE was sampled from thedistribution shown inFig. 1g.
When a neuron spiked, each of its neighbouring neurons had a prob-
ability of m=dout of firing an action potential within the following 4
ms32. The parameterm thus tuned the amount of spike propagation in
the network, changing the network behaviour from completely asyn-
chronous whenm=0, to near avalanche criticality asm approached 1.
The above formalism was used to simulate excitatory presynaptic
neurons. We also added inhibitory neurons totalling 15% of the entire
network. Spike trains for inhibitory neurons were sampled from the
spike trains of nearby excitatory neurons and supplemented with
independent Poisson processes. The procedure was such that inhibi-
tory neuron firing was driven by recurrent connections to the same
proportion as excitatory neurons and followed a predetermined firing
rate (λI). In this setup, the influence of inhibitory neurons on the net-
work was modelled implicitly in the branching number39, but were not
explicitly represented in the network connections. This simplification
allowed the effective branching number of the network to be entirely
governed by a single parameter m.

Embedding synapses onto postsynaptic dendrites
Dipole synchrony has been previously modelled either by separating
inhibitory and excitatory input into somatic and apical compartments,
respectively3, or by having counterphase input into the basal and
apical compartments72,73; both of these models can be thought of as
optimal mappings of two anticorrelated populations of synapses.
Inspired by these models, we developed a procedure to generate
dipole synchrony given any presynaptic topology. First, the pairwise
correlation between each pair of presynaptic neurons was determined
by the spike time tiling coefficient (STTC)74, a measure of spike train
correlation which accounts for the likelihood of spikes overlapping by
chance. The pairwise correlations among all presynaptic neurons were
computedbased on40 s long simulations of the presynaptic networks.
The Uniform Manifold Approximation and Projection (UMAP) algo-
rithm, a dimensionality reduction technique31, was then used to opti-
mally project the presynaptic network onto a sphere such that the
angle between presynaptic neurons with high STTCs was minimized.
After this embedding step, the dendrites of the postsynaptic neurons
were orthogonally projected onto the sphere. Finally, the following
procedurewas run until all connectionswere formedbetween pre- and
post-synaptic neurons: (1) a postsynaptic dendrite segment was cho-
sen randomly (with replacement) with a probability proportional to its
surface area; (2) the presynaptic neuron closest on the spherical
embedding was chosen and a connection formed.

Tomodel suboptimal synapseplacement, we randomly perturbed
the spherical embedding before mapping the synapses. Each point in
the embedding was perturbed by a distance π arccosð1� 2α 1� Xð ÞÞ
along a randomly chosen bearing, where α∼Uniform½0,1�: Here, X is
what we refer to as the optimality index (Fig. 4e). By construction,
when X = 1, the points on the sphere are not perturbed at all, while
when X =0, all the points on the sphere are perturbed by a distance
sampled from the function π arccosð1� 2αÞ. Consequently, for X =0,
the distribution of points on the sphere is uniformly random.

This procedure can be thought of as amodel of dipole correlation
that generalizes beyond dichotomous input. Alternatively, this pro-
cedure can be considered in terms of observations from recent
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studies, which have reported that functionally related synaptic inputs
cluster within individual dendritic branches, and that input from
similar presynaptic populations target similar dendritic compartments
in the postsynaptic population45–49. These experimental observations
hint at a more continuous mapping of synaptic input along dendrites
than a strictly binary apical-basal compartment paradigm, which is
precisely what is achieved when the above mapping algorithm is
applied to a continuous presynaptic network topology, such as the
planar subcritical network used in Fig. 5.

Mixed synaptic input
For modelling oscillatory input, we used a published formalism of
rhythmogenesis, where counterphase sinusoidal inputs were applied
on the apical and basal dendrites72,73. Specifically, every synapse on the
neuron received an inhomogeneous Poisson point process as input,
with a rate function λx 1 +αR sin 2πωt + kð Þ� �

, where λx depends on
whether the synapse is excitatory λE

� �
or inhibitory (λI), αR tunes the

strength of the rhythm, and k =π for apical dendritic synapses and
k =0 for basal dendritic synapses. For simplicity, to model other
rhythms,wegeneralized this formalismbydefining the rate functionof
each synapse as maxðλxð1 +αeYðtÞÞ,0Þ, where eY = Y ðtÞ if the synapse was
an apical synapse and eY = 1� Y ðtÞ if the synapse was a basal synapse,
for any time series Y ðtÞ with zero mean and unit variance. This meth-
odology was simpler than modelling networks for each type of
dynamic and embedding the synapses as described in the above sec-
tion, but more importantly this methodology allowed us to make
direct comparisons between the modelled EEG signals generated by
different rate functions.

Experimental design and procedure
Following MNH Ethics Board approval, we recruited 16 American
Society of Anesthesiologists (ASA) class I or II patients (18–65 years old)
presenting for lumbar disk surgery as subjects for the study. All subjects
gave written informed consent to participate in the study. The stan-
dards of care of the Canadian Anesthesiologists’ Society in regard to
monitoring, equipment and careproviderwere rigorously applied. Gold
cup electrodes (Fz, Cz, Pz, C3, C4, CP3, CP4, M2 as reference; FC1 as
ground; impedance ≤ 5 kOhm) were glued to the scalp to obtain a
continuous EEG recording, whichwas amplifiedwith a 0.1–300Hz band
pass anddigitized at 1024Hz. For eachparticipant,weobtained2minof
recording during preoxygenation with eyes closed. The participant was
then asked to hold anobject (0.5 kg cylinder; 2.5 cmdiameter and 15 cm
long) in a vertical position with their dominant hand and to keep the
eyes closed. Preoxygenation continued for another 2min. Lidocaine 2%
(40mg) was given to attenuate the discomfort caused by the propofol
injection. Allmedicationswere given intravenously via a catheter placed
on the non-dominant arm. Propofol was given at the rate of 1mgkg−1

min−1 and maintained until the cylinder fell from the participant’s hand.
Following LOC, gentle jaw lift was applied if needed to relieve airway
obstruction. The ability of the participants to respond to loud verbal
command was assessed 60 seconds after the fall of the object: all failed
to response and remained immobile. The study was then terminated.

Data analysis
Two participants were excluded because of failure to comply with the
instructions during induction. One kept talking, the other keptmoving
their dominant arm. The final data set was therefore based on 14 sub-
jects (10 males; 12 right-handed). Artifacts in the data were removed
following visual inspections of the time series. Spectrograms were
computed with the multitaper method, using three tapers over 2 s
windows, with 1.9 s overlap. Group averages were either computed as
the averagepower spectral density across subjectswith time aligned to
LOC, or with time rescaled so that both the infusion onset and LOC
were aligned across individuals. To rescale time, LOC-aligned time for
each subject was scale by the latency from infusion to LOC.

Consequently, a rescaled time value of −1 is equivalent to the moment
of propofol infusion onset and a rescaled time value of 0 is equivalent
to the moment of LOC.

Estimated propofol concentration
For estimating the effect-site concentration of propofol for each sub-
ject, weused theMarshmodel, amulticompartment pharmacokinetics
model37. We used a plasma to effect-site equilibration rate constant
keo = 1:21 min−1 75. Faster and slower values for keo would shift the
estimated dose-response curve in Fig. 8f right and left, respectively,
but would not be expected to qualitatively change our results.

Detrending EEG spectra
To detrend EEG spectra, we used a modified version of the FOOOF
algorithm14, whereby a background trend isfitted in addition to several
Gaussian functions to account for oscillatorypeaks. Peaks at 60Hzdue
to noise were removed from spectra using MATLAB’s fillgaps func-
tion prior to fitting the spectral trend. The FOOOF algorithm provides
two options for the background trend, A=f β or A=ðk + f βÞ. Here, we
wanted a biophysically interpretable background function, and
therefore startedwith the sumof two Lorentzian functions (Eq. 1). This
function is an exact analytical solution to the computational model of
Gao et al. 16 and has several benefits. Firstly, it provides exact fits to our
simulations, which allowed us to investigate theoretical consequences
of detrending EEG spectra. Secondly, the parameters are physiologi-
cally interpretable. τ1 and τ2 reflect the kinetics of GABARs and
AMPARs (Fig. 1), while A1 and A2 reflect the amplitudes of inhibitory
and excitatory contributions to the EEG signal. Thirdly, it is thought
that the spectral exponent, β, reflects the relative contribution of
excitation to inhibition16, i.e., it depends on the ratio of A1 to A2 (Fig. 1).
However, we found here that this is not always the case (Fig. 6).
Therefore, Eq. 1 makes fewer assumptions about its parameters than
the two options provided by the FOOOF package.

For analyzing experimental data, we modified Eq. 1 to provide
better fits to the data and reduce the chances of overfitting. In contrast
to our simulations, we found that high frequency power plateaued in
our data around where we would expect the influence of excitatory
synaptic time scales to be exerted (Fig. 1d, f). We therefore replaced
the second term in the equation with a constant term,

A1τ1= 1 + 2πτ1f
� �2� �

+ λ: ð5Þ

This constant term, λ, captures the fast excitatory time scales as
well as any high frequency contributions from action potentials4,
muscle activity76, and amplifier noise7, which were not present in our
simulations. Importantly, because this equation has physiologically
interpretable parameters, with τ1 reflecting inhibitory synaptic time
scales (Fig. 1d, e), we could constrain the range of τ1 to avoid over-
fitting. Specifically, we constrained τ1 to be greater than 10ms and less
than 75ms when fitting propofol data, as we expected propofol to
increase the physiological range of GABAR kinetics (Table S2).

This modified equation fit the EEG spectra at baseline conditions
well, but following propofol infusion, the equation did not decay fast
enough to capture the EEG spectra (Fig. S7). This was seemingly
because the original equations oversimplified the kinetics of inhibitory
synapses. Notably, Eq. 1 is an analytical solution for exponentially
decaying synaptic responses, whereas real synaptic responses are
characterized by a rise time and decay time: exp (−t/τ1) −exp (−t/τr). It
follows that a more accurate synaptic response function for the power
spectrum is given by

A1 τr � τ1
� �2

1 + 2πτr f
� �2� �

1 + 2πτ1 f
� �2� � + λ, ð6Þ
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where the first term is the analytical solution to the power spectrumof
the difference of exponentials. τr is the risetime of inhibitory synaptic
currents, which we fixed at τr =4 ms to keep the number of fitting
parameters low77. Notably, if we fixed both τr =4 ms and τ1 = 20 ms,
physiologically plausible values77, all our baseline data could be cap-
tured by simply changing A1 and λ (Fig. S5a). Moreover, fitting Eq. 6
provided consistent and physiologically plausible estimates for τ1 both
at baseline and following propofol infusion (Fig. 8e, f). Thus, Eq. 6 is
biophysically motivated, physiologically interpretable, has only three
parameters to fit, and captured our data well both at baseline and
following the infusion of propofol (Fig. 8d; Fig. S5a–c).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Computed EEG spectrograms for all subjects have been uploaded to
Figshare78 (https://doi.org/10.6084/m9.figshare.24777990), alongwith
all the simulation results required to reproduce our figures. Source
data are provided with this paper.

Code availability
Code used to run simulations, analyze data, and generate manuscript
figures79 has been deposited in Zenodo (https://doi.org/10.5281/
zenodo.10359818) and is also available on GitHub (github.com/nik-
lasbrake/EEG_modelling).
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