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Unified metal-free intermolecular Heck-type
sulfonylation, cyanation, amination, amida-
tion of alkenes by thianthrenation

Ming-Shang Liu1, Hai-Wu Du1,2, Huan Meng1, Ying Xie3 & Wei Shu 1,2,3

Direct and site-selective C-H functionalization of alkenes under environmen-
tally benign conditions represents a useful and attractive yet challenging
transformation to access value-addedmolecules. Herein, a unifiedprotocol for
a variety of intermolecular Heck-type functionalizations of Csp2-H bond of
alkenes has been developed by thianthrenation. The reaction features metal-
free and operationally simple conditions for exclusive cine-selective C-H
functionalization of aliphatic and aryl alkenes to forge C-C, C-N, C-P, and C-S
bonds at room temperature, providing a general protocol for intermolecular
Heck-type reaction of alkenes with nucleophiles (Nu = sulfinates, cyanides,
amines, amides). Alkenes undergo cine-sulfonylation, cyanation, amination to
afford alkenyl sulfones, alkenyl nitriles and enamines.

Alkenes represent one of the most useful functional groups due to
their profound potential to amyriad of other functional groups as well
their orthogonal reactivity over other polar functional groups1–4.
Owing to the abundance, diversity, and easy-availability of alkenes,
developing efficient and practical functionalizations of alkenes has
been a long-term preoccupation in synthetic chemistry5,6. Among
which, Heck reaction is one of the most straightforward and efficient
means to functionalize alkenes7–9. Typically,Heck reaction gives access
to ipso-substitution of alkenes where a leaving group is bonded to the
olefinic carbon atom by nucleophilic species. Comparably, cine-sub-
stitution of Heck reaction are less investigated. Over the past decades,
transition-metal-catalyzed Heck-type cine-arylation and vinylation of
electron-deficient alkenes bearing a leaving group have been
developed10–18. Straightforward and environmentally benignHeck-type
methods that transform alkenes into versatile carbon electrophiles
would be highly desirable19,20. In particular, alkenyl sulfones, alkenyl
nitriles, enamines, and enamides are of importance in pharmaceu-
ticals, biochemistry, and materials sciences21–24, providing a straight-
foward opportunity in multistep organic synthesis or covalent
modification of proteins in drug discovery to couple with different
electrophiles. Therefore, direct and regioselective sulfonylation, cya-
nation, amination, amidation of alkenes would be an enabling syn-
thetic tool to access such privileged structures. To date, metal-free

intermolecular Heck-type reaction of alkenes to access alkenyl
sulfones25, alkenyl nitriles26, enamines, and enamides remains
underdeveloped27,28.

On the other hand, alkenyl thianthrenium salts29–40 have been
considered as one umpolung strategy of alkenes for further chemical
synthesis pioneered by Shine41,42. Recently, Ritter developed the
practical and scalable synthesis of alkenyl thianthrenium salts43,44,
creating new opportunities for derivatization of unactivated
alkenes15,45,46. In particular, metal-free functionalization of alkenes
represent an attractive aspect to functionalize alkenes under mild
conditions. In 2021, elegant examples of electrochemical aziridination
of alkenes with primary amines have been demonstrated with or
without thianthrene47,48. The generation of dicationic intermediates
also offers potential opportunities for ipso- and cine-substitution
reactions. In 2022, Shu group developed a unified metal-free inter-
molecular aziridination and cyclopropanation of alkenes by thian-
threnation (Fig. 1b, top)49. Sulfonamides, carbamates, amides, primary
amines, and methylenes with acidic protons were all successfully
employed as nucleophiles. In 2021, Wickens and Shu independently
reported the allylic functionalizations of alkenes by thianthrenation to
from C–N, C–C, C–O, and C–S bonds in the presence of nucleophiles
(Fig. 1b, middle)50,51. Recently, Soós group developed an ene-type
Kornblum-Ganem oxidation of alkenes by thianthrenation to access
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various α,β-unsaturated carbonyls (Fig. 1b, bottom)52. Interestingly,
metal-free transformations of alkenes by thianthrenation basically led
to bond-formation at ipso-carbon of alkenyl thianthrenium salts. We
questioned the possibility of realizing a new bond-formation mode of
alkenyl thianthrenium salts to functionalization cine-carbon of alkenes
under metal-free conditions48. Herein, we report a unified protocol for
metal-free cine-functionalizations of alkenes by thianthrenation
(Fig. 1c). The reaction explores the new reactivity of alkenyl thian-
threnium salts to form a new chemical bond at cine-position instead of
ipso-position of vinyl thianthrenium salts. The mild condition allows
for the site-selective C–H functionalization of alkenes to forge C–S,
C–N, C–P and C–C bonds with diverse nucleophiles.

Results
Optimization of the reaction conditions
Westarted the investigationusing sodiummethanesulfinate (1a) and4-
phenylbut-1-enylthianthrenium salt (2a) as model substrates to evalu-
ate the reaction conditions (Table 1). Toour delight, cine-sulfonationof
the C =C bond of the vinyl thianthrenium salt was exclusively formed,
without the formation of formal allylic C-H sulfonation byproduct (3a’)
as previously reported. After evaluation of the reaction parameters, we
define the reaction in DCE (0.1M) at room temperature without any
additive as standard conditions, providing the desired product
(3-(methylsulfonyl)but-3-en-1-yl)benzene 3a in 83% isolated yield
(Table 1, entry 1). The use of other solvents instead of DCE could also
mediate the desired transformation, albeit giving 3a in lower yields
(Table 1, entries 2–9).

Scope of the reaction
With the optimized conditions in hand, the scope of alkenes and
sodium sulfinates is examined and the results are summarized in Fig. 2.
First, the scope of alkenes was evaluated. A wide range of alkenes with
diverse electronic and steric properties are suitable for this reaction,
allowing the corresponding cine-sulfonylation of alkenes by thian-
threnation with sodium methanesulfinate in good yields (3a-3z).
Aliphatic terminal alkene-based thianthrenium salts are all compatible
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Fig. 1 | Impetus formetal-free functionalizations of alkenesby thianthrenation.
a Transition-metal-catalyzed cine-substitution of alkene electrophiles.
b Representative metal-free functionalization modes of alkenes by thiathrenation.
c Metal-free cine-functionalizations of alkenes by thianthrenation (this work).

Table 1 | Condition evaluation for the cine-sulfonation.a

+

1a 2a

MeSO2Na Ph
TT

BF4

DCE (0.1 M)

rt, 10 h

Ph

SO2Me

3a

Ph
SO2Me

3a'

TT+ = S S

Entry Variations as shown Conversion of 2a yield of 3a

1 None >95% 88% (83%)b

2 DCM instead of DCE >95% 78%

3 CH3CN instead of DCE 90% 56%

4 THF instead of DCE >95% 75%

5 DME instead of DCE >95% 77%

6 toluene instead of DCE >95% 76%

7 DMA instead of DCE >95% 52%

8 DMF instead of DCE >95% 63%

9 DMSO instead of DCE >95% 65%
aThe reactionwas conductedusing 1a (0.15mmol) and 2a (0.10mmol) under indicated conditions at room temperature. Yieldwas determinedby 1HNMRof the crudemixtureusingmesitylene as the
internal standard.
bIsolated yield after flash chromatography.
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in this reaction, producing alkenyl sulfones in 52–88% yields (3a-3m).
Alkenes with pendant amides, bromides, esters were compatible in the
reaction, giving the corresponding cine-substitution products (3c, 3d,
3g-3i) in 69–88% yields. It is noteworthy that amides with free N–H,
free alcohols, and alkeneswereall compatible in the reaction to furnish
the desired alkenyl sulfones (3h, 3j, and 3k) in 70–75% yields, leaving
chemical space for further elaboration. In addition, α-branched ali-
phatic alkene-based thianthrenium salts are alsogood substrates in the
reaction, giving corresponding cine-sulfonylation products in 81% and
85% yields (3l and 3m). Moreover, styrenes could be efficiently
involved in the cine-substitutionprocess by thianthrenation, giving the

desired sulfones in 61–92% yields (3n-3s). In addition, cyclic alkenes
were easily converted to alkenylsulfones in 59–89% yields (3t-3w)
under the reaction conditions. Notably, gaseous alkenes, such as
ethylene and propene, could be successfully involved in this cine-
substitution process by thianthrenation, giving 3e, 3x and 3y in
52–88% yields. Lithocholic acid drived alkene with molecular com-
plexity underwent cine-substitution process smoothly, giving the
desired product (3z) in 70% yield.

Next, the scope of sulfinates was tested. para-Substituted aryl
sulfinates with electron-donating (4a-4d) or electron-withdrawing
(4e-4i) groups were all well-tolerated in this reaction, giving
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corresponding cine-sulfonylation products in good yields (61–96%).
Moreover, meta- and ortho-substituted aryl sulfinates were also good
substrates for this reaction to give the desired products (4j and 4k) in
76% and 60% yields, respectively. Fused aryl and heteroaryl sulfinates
underwent cine-substitution to give the desired products (4l and 4m)
in 79% and 89% yields. Vinyl sulfinate proceeded smoothly to give the
corresponding alkenyl sulfone 4n in 84% yield. Notably, allylic, acyclic
and cyclic alkyl sulfinates were compatible in this metal-free cine-
substitution process and afforded the corresponding sulfones in 65-
90% yields (4o-4q). It is noteworthy that bulky sulfinates smoothyl
underwent cine-substitution of C-H bond by thianthrenation to give
the corresponding alkenyl sulfones in 75% and 86% yields (4r and 4s).
In addition, the structure of the alkenyl sulfones was unambiguously
confirmed by X-ray diffraction of 4k. The reaction could be scaled up
to 4.0mmol to afford 4a in 84% yield (1.16 g), rendering the reaction
useful for large-scale synthesis.

Furthermore, the protocol for cine-functionalizations of alkenes
by thianthrenation was further applied to cine-cyanation, cine-

amination, and cine-amidation to forge C-C bonds and C-Nbonds from
C-H bonds (Fig. 3). With slight modification of the solvent and base,
cine-cyanation was achieved with zinc cyanide in the presence of KF
(3.0 equiv) in CH3CN (0.1M) at room temperature, delivering the
desired 2-methylene-4-phenylbutanenitrile (5a) in 70% isolated yield
(Supplementary Tables 2 and 3) (for details see Supplementary
Information)48. Then, the scope of cine-cyanation was evaluated.
α-Branched terminal alkene derived thianthrenium salt is compatible
with this cine-cyanation, delivering the corresponding cine-substitu-
tion product (5b) in 53% yield. Additionally, aliphatic alkenes tethered
with esters, amides, alcohols were all compatible in this reaction,
affording the desired acrylonitriles in 65-77% yields (5c-5e). Moreover,
alkenes with bromides and alkenes were successfully transformed to
the cine-cyanation products in 84% and 47% yields (5f and 5g). Notably,
cyclic and acyclic internal aliphatic alkenes derived thianthrenium salts
were amenable to this cine-cyanation, affording diverse acrylonitriles
in 76% and 46% yields (5h and 5i). Interestingly, styrenes also worked
well for this cine-cyanation to afford 5j in 70% yield.

5, 6

R

Scope of cine-cyanation

CN

Ph

5a, 70%

CN

5c, 77%

N

O

O
CN

HO

CN

CN

OO

Ph
CN

5d, 66% 5e, 65%

5g, 47%

5b, 53%

5h, 76%a
CN

5i, 46% (Z/E = 1.6:1)a

CN CN

5j,  70%b

R
S

S

BF4

+

base

CH3CN (0.1 M), 10 h

1
(Nu = C, N, P)

2

Nu
Nu

CN

5f, 84%

Br

 Scope of cine-amination and cine-amidation

6f, 84%c

N

F

N

6n, 82%c

N

Br

6e, 81%c

N

F

6g, 64%c

N

F

S
O

O

6a, 82%c

N

F

6b, 80%c

1.14 g, 82%d

N

F

Me
O

6c, 81%c

N

F

CHO

6d, 76%c

N

F

Br

6l, 78%c

N

Cl

Br

6m, 82%c

N

Br

Br

6o, 60%e

N NPh

6q, 65%e

N N

6p, 74%e

N N

6s, 57%e

N N

X-Ray for 6g (CCDC 2241240)

F

N

O

O

6h, 80%c

N N

6t, 57%e

O

N

O

O

Me

Me

F

from Metaxalone

6u,  82%c

F

Me

F
F

F
O

N

N

N

S
O

6v, 70%c
from Lansoprazole

N

MeO

F

from Melatonin
6w, 75%c

NH
Me

O

metal-free cine-cyanation

metal-free cine-amination

metal-free cine-amidation

alkyl & aryl alkenes

6i, 66%c 6j, 70%c

N

N

Me

6r, 73%, >15:1 rrc

6k, 36%c 6k', 28%c

+

Ph

P
Ph Ph

O

7a, 69%e

N

F N

N

N

F
N

N
N

F

N
N

N

F

N

cine-phosphonylation

from 1,2,3-triazole

Fig. 3 | Scope of the cine-cyanation, cine-amination and cine-amidation of
alkenes by thianthrenation. The reaction was carried out using 1 (0.15mmol), 2
(0.10mmol), KF (3.0 equiv) in CH3CN (0.1M) at room temperature for 10 h unless
otherwise stated. Isolated yield is shown. aThe reaction was conducted at 50 oC.

bThe reaction was conducted at 50 oC for 24 h. cThe reaction was conducted using
K2CO3 (1.0 equiv). rr = ratio of regioisomers. dThe reaction was conducted on
5.0mmol scale using K2CO3 (1.0 equiv). eThe reaction was conducted using Cs2CO3

(1.0 equiv).

Article https://doi.org/10.1038/s41467-024-44746-w

Nature Communications |          (2024) 15:529 4



Impressively, this operationally simple cine-substitution protocol
could be successfully applied to cine-amination of C-H bonds using
nitrogen nucleophiles (Fig. 3). The reaction of 2q with indole in the
presence of K2CO3 (1.0 equiv) in CH3CN (0.1M) at room temperature
afforded the selective cine-substitution at nitrogen product 1-(1-(4-
fluorophenyl)vinyl)-1H-indole 6a in 82% isolated yield (Supplementary
Tables 4 and 5) (for details see Supplementary Information). Ketone-,
aldehyde-, and bromo-substituted indoles were well-tolerated under
this cine-amination conditions, delivering the corresponding N-vinyl
indoles (6b-6d) in 76 − 81% yields. Additionally, carbazole and imida-
zole were all excellent substrates for this cine-substitution, yielding the
desiredN-vinyl carbazole (6e) and imidazole (6f) in 81% and 84% yields.
Moreover, sulfonamides and amides were smoothly transformed into
corresponding N-vinyl amides in 64% and 80% yields (6g and 6h).
Furthermore, pyrazoles and 1,2,4-triazoles were remarkable substrates
for this cine-substitution reaction, producing the desired N-vinyl pyr-
azole (6i) and triazole (6j) in 66% and 70% yields. 1,2,3-Triazoles were

also compatible in the reaction, delivering a mixture of 6k and 6k’ in
36% and 28% yields.Moreover, a variety of alkenesworkedwell the C-N
bond-forming process from cine-C-H bond of alkenes by thianthrena-
tion. Chloro-, bromo-substituted styrenes and internal styrenes were
compatible with this cine-substitution reaction, generating cine-ami-
nation products (6l-6n) in 78-82% yields. Linear and α-branched ali-
phatic alkenes derived thianthrenium salts were all tolerated under the
cine-amination conditions, delivering corresponding enamines (6o
and 6p) in 60% and 74% yields. Isolated diene selectively underwent
thianthrenation and sequential cine-amination on one alkene, giving
corresponding product 6q in 65% yield. Unsymmetrical alkenes could
be involved in the regioselective thianthrenation and sequential cine-
amination to yield 6r in 73% yield with >15:1 rr. Cyclic alkenes with
different ring size could be involved to this cine-substitution with
imidazole to furnish enamines (6s and 6t) in 57% yield. Additionally,
drug molecules have been derivatized. Metaxalone, and lansoprazole
underwent selective cine-amination reaction of the C-H bond of
alkenes with amides and benzoimidazoles to give N-acyl and N-aryl
enamines (6u and 6v) in 82% and 70% yields, respectively. Interest-
ingly, melatonin underwent chemoselective N-vinylation with of
indoles instead of the amides at cine-position of alkenes to give N-aryl
enamine derivative (6w) in 75% yield under standard conditions.
Additionally, cine-phosphonylation product 7a was got in 69% yield
from phosphoryl nucleophile and alkenylthianthrenium salt.

Mechanistic study
To enhance the practicality of this operationally simple protocol, a
one-pot procedure was evaluated for cine-sulfonylation and amination
(Fig. 4a). The one pot thianthrenation of 4-phenyl-1-butene using
thianthrene S-oxide, followed by the reaction of sodium methane-
sulfinate or imidazole under corresponding conditions were con-
ducted, affording the desired cine-substituted products in comparable
yields (3a, 71%) or (6o, 65%) without any intermediate purification.
Furthermore, the reactions of 1a and 2a in the presence of 2 equiv of
radical scavenger (TEMPO or BHT) were carried out under otherwise
identical to standard conditions, providing the desired alkenyl sulfone
3a in 72% and 83% yields (Fig. 4b). The result that the presence of
TEMPO or BHT did not decrease the efficiency of this reaction,
excluding the radical pathway of this cine-substitution reaction. To
further detect the mechanism of this cine-substitution, the preformed
alkyl thianthrenium salts (8a and 8b) were subjected to nucleophiles
under standard conditions (Fig. 4c). Corresponding alkenyl sulfone 3a
and alkenyl amine 6o were obtained in 63% and 57% yield, suggesting
the primary alkyl thianthrenium saltsmay serve as the intermediate for
the selective cine-substitution process. Additionally, the reaction of
1aa and deuterated alkenyl thianthrenium salt 2cc was conducted
under standard conditions, affording the desired cine-amination pro-
duct 8c in 65% yield. Interestingly, partial deuterium scrambling was
observed (Fig. 4d), supporting the proton exchange of β-position of
alkenyl thianthrenium salt with surroundings and protonation of α-
position of alkenyl thianthrenium.

Based on the mechanistic experiments and literature48–52, a plau-
sible mechanism of the metal-free cine-substitution of alkenyl thian-
threnium salts is proposed anddepicted in Fig. 5. First, the zwitterionic
alkyl thianthrenium salt intermediate M1 could be formed by inter-
molecular addition of nucleophiles on distal position of alkenes to
forge C-S/C-C/C-N/C-P bonds. After protonation ofM1 to form a more
stable intermediate M2, M2 underwent deprotonation on cine-site
yield the zwitterionM3.M3 could undergo intramolecular elimination
to afford alkenyl sulfones, acrylonitriles, enamines, and enamides by
releasing thianthrene.

Discussion
In conclusion, a unified metal-free protocol for diverse intermolecular
cine-functionalizations of the C–H bond of alkenes by thianthrenation
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thianthrenium salt.
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has been achieved. The reaction features metal-free C–H functionali-
zations of alkenes under mild conditions to forge C–S, C–C, C–N, and
C–Pbonds fromC–Hbonds via cine-sulfonylation, cine-cyanation, cine-
amination, cine-amidation, and cine-phosphonylation. The reaction
represents new metal-free reaction mode to functionalize cine-carbon
of alkenyl thianthrenium salts, which is complementary to previous
functionalization at ipso-carbon. Mechanistic investigations revealed
the reaction undergo site-selective nucleophilic addition followed by
regioselective elimination to afford the formal Heck reaction of
alkenes, affording synthetic useful synthons which are difficult to
access from readily accessible starting materials.

Methods
General procedureA for intermolecularHeck-type sulfonylation
of alkenes by thianthrenation
Sodium sulfinate (0.15mmol) and vinyl thianthrenium salt (0.1mmol)
were placed in a 10.0mLSchlenk tubewhich equippedwith amagnetic
stir bar. After back-filledwith nitrogen (this processwas repeated three
times), DCE (1.0mL) was added. The vial was sealed and at room
temperature (for the large hindrance substrates its require at 50 °C)
with stirring until TLC indicated the complete consumption of thian-
threne (typically 10 h or 36h). The reaction mixture was evaporated
and purified directly by column chromatography to afford the
product.

General procedure B for intermolecular Heck-type cyanation of
alkenes by thianthrenation
Zn(CN)2 (17.6mg), KF (17.4mg) and vinyl thianthrenium salt
(0.1mmol) wereplaced in a 10.0mLSchlenk tubewhichequippedwith
a magnetic stir bar. After back-filled with nitrogen (this process was
repeated three times), CH3CN (1.0mL) was added. The vial was sealed
and at room temperature (for the large hindrance substrates it require
at 50 °C) with stirring until TLC indicated the complete consumption
of thianthrene (typically 10 h or 24 h). The reaction mixture was eva-
porated and purified directly by column chromatography to afford the
product.

General procedure C for intermolecular Heck-type amination
and amidation of styrenes by thianthrenation
Nucleophile (0.15mmol), K2CO3 (13.8mg) and vinyl thianthrenium salt
(0.1mmol) wereplaced in a 10.0mLSchlenk tubewhichequippedwith
a magnetic stir bar. After back-filled with nitrogen (this process was
repeated three times), CH3CN (1.0mL) was added. The vial was sealed
and at room temperature with stirring until TLC indicated the com-
plete consumption of thianthrene (typically 10 h). The reaction mix-
ture was evaporated and purified directly by column chromatography
to afford the product.

General procedure D for intermolecular Heck-type amination
and amidation of aliphatic alkenes by thianthrenation
Nucleophile (0.15mmol), Cs2CO3 (32.6mg) and vinyl thianthrenium
salt (0.1mmol) were placed in a 10.0mL Schlenk tube which equipped
with a magnetic stir bar. After back-filled with nitrogen (this process
was repeated three times), CH3CN (1.0mL) was added. The vial was
sealed and at room temperature with stirring until TLC indicated the
complete consumption of thianthrene (typically 10 h). The reaction
mixture was evaporated and purified directly by column chromato-
graphy to afford the product.

Data availability
The X-ray crystallographic coordinates for structures that support the
findings of this study have been deposited at the Cambridge Crystal-
lographicDataCenter (CCDC)with the accession codesCCDC2241239
(4k) and CCDC 2241240 (6g) via www.ccdc.cam.ac.uk/data_request/
cif. The authors declare that all other data supporting the findings of
this study are available within the article and Supplementary Infor-
mation files, and also are available from the corresponding author
upon request.
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