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Solar cycle as a distinct line of evidence
constraining Earth’s transient climate
response

King-Fai Li 1 & Ka-Kit Tung 2

Severity of warming predicted by climate models depends on their Transient
Climate Response (TCR). Inter-model spread of TCR has persisted at ~ 100% of
its mean for decades. Existing observational constraints of TCR are based on
observed historical warming response to historical forcing and their uncer-
tainty spread is just as wide, mainly due to forcing uncertainty, and especially
that of aerosols. Contrary, no aerosols are involved in solar-cycle forcing,
providing an independent, tighter, constraint. Here, we define a climate sen-
sitivity metric: time-dependent response regressed against time-dependent
forcing, allowing phenomena with dissimilar time variations, such as the solar
cyclewith 11-year cyclic forcing, to be used to constrain TCR,which has a linear
time-dependent forcing. We find a theoretical linear relationship between the
two. The latest coupled atmosphere-ocean climate models obey the same
linear relationship statistically. The proposed observational constraint on TCR
is about 1=3 as narrow as existing constraints. The central estimate, 2.2 oC, is at
the midpoint of the spread of the latest generation of climate models, which
are more sensitive than those of the previous generations.

Comprehensive climate models, which incorporate more and more
known relevant physics, have becomemore sensitive, as measured by
their warming response to doubling atmospheric CO2 experiments in
the latest generation, 6th Coupled Model Intercomparison Project
(CMIP6)1. Tighter observational constraint is needed to determine the
plausibility of the more sensitive models2. The climate science com-
munity has devoted over four decades to constrain a canonical climate
sensitivity metric, the Equilibrium Climate Sensitivity (ECS), which is
the global surface warming at equilibrium to doubling atmospheric
CO2 concentration. At equilibrium there should not be any ocean
heat uptake; extrapolating from our current state with large but
inadequatelymeasuredoceanuptake to that equilibriumstate involves
uncertainties. Another climate sensitivitymetric, the Transient Climate
Response (TCR), is defined as the global surface temperature response
to 1% per year increase in atmospheric CO2 at the time of doubling.
The idealized forcing is to standardize the forcing in themodel runs for
this experiment. The model produced warming in response to it

depends on each model’s climate sensitivity: the more sensitive the
model is, the higher TCR it produces. TCR is more relevant for pro-
jections and mitigation decisions within a century, and more closely
related to the social cost of carbon3, compared to ECS. It has been
estimated that halving the range of uncertainty for TCR has a present
economic value of $10 trillion4.

Combining multiple lines of evidence can often achieve a reduc-
tion of uncertainty for the estimates of climate sensitivity and that
strategyhas been successfully applied to ECS5 by combining three lines
of evidence, with historical warming being one of them, and the other
two being from paleo climates. There is however a lack of truly inde-
pendent lines of evidence for TCR other than historical warming,
because, unlike ECS, TCR involves a specific time-dependent forcing,
and there are no other known analogs. Here, by proposing a regressed
climate sensitivity metric, dissimilar time-variations of forcing can be
incorporated, and this allows more independent phenomena to be
included as lines of evidence. We demonstrate here its use in
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constraining the TCR utilizing the observed response to solar-cycle
forcing.

The existing line of evidence uses the observed historical global
warming6–8 to directly constrain the TCR ofmodel simulated warming.
Thedominant uncertainty in this approach lies in the different forcings
used in different models to reproduce the observed historical warm-
ing. Largely because of the uncertain aerosol forcing inmodels, model
simulated warming is not a good discriminator of model sensitivities,
because most climate models succeeded in simulating the same
(known) centennial warming, despite their widely different climate
sensitivities (albeit more so for ECS than for TCR)9. Recent improve-
ments in estimating the constraint involve turning the historical
warming inmodels into an “Emergent Constraint” for TCRby seeking a
linear relationship for shorter, post-1975 decades that had more con-
stant aerosol loading, with empiricallyfitted slope and intercept10,11. On
the other hand, climate models have not been tuned to simulate the
solar-cycle forcing. As a result, solar responses are found to differ
widely frommodel tomodel, with larger response generally for higher
TCR. Consequently, this phenomenon may provide a more distinct
discriminator for model TCRs, and—without the “shared bias” of
attempting to simulate the same well-known observation—may be
more suitable for use in “Emergent Constraints”. Furthermore, solar
cycle has a separate external forcing than CO2. The response to this
external forcing is amplified by the climate feedback processes of the
Earth system. It is hoped that by examining the solar-cycle response at
the Earth’s surface, we can estimate the effect of the climate feedback
involved, andhence the climate sensitivity of the Earth system.This is a
different approach than some of the current ones, for example, of
using the effect of Arctic snow-albedo12, or tropical low clouds13,14 to
provide a constraint on the climate sensitivity (ECS in the cited cases).
Using a component of the feedback process to constrain ECS or TCR
requires an additional assumption that the other feedback compo-
nents are “unbiased”, e.g. not compensating9. This structural uncer-
tainty has so far not been assessed.

Nevertheless, arguments against using the solar-cycle forcing are:
(a) its cyclic-in-time forcing is very different than the linearly increasing
forcing of the TCR experiment; (b) there is a difference in the lag of
response to forcing introduced by the deeper ocean because of the
difference in time scales in the two phenomena; (c) whether the two
phenomena experience the same climate feedbacks, and (d) methods
used to extract the expected small solar-cycle signal need to be par-
ticularly effective in reducing contamination by internal variability and
other forcings. Amodified climate sensitivitymetric, which is the time-
dependent response regressed against time-dependent forcing, is
defined here to overcome problem (a). We will use both 2-layer emu-
lators of climate models and the climate models themselves in dis-
cussing why we think difficulties (b) and (c) can be overcome. To
address (d), we will describe and test a more sophisticated space-time
method to extract the solar-cycle response.

Results
Solar-cycle response extracted from instrumental record
The 11-year solar cycle, also called the 11-year sunspot cycle, is a quasi-
periodic phenomenon associated with dark spots on the surface of the
Sun. Thebrightening effect in the surrounding faculaeovercompensates
the dimming effect of the dark spots, producing more radiation during
the solar maxima (solar max) than solar minima (solar min). This varia-
tion between solar min and solar max in the Total Solar Irradiance (TSI)
has been measured by orbiting satellites since late 1978 to be variable
between cycles but close to 1Wm–2, in a disk facing the sun at the top of
the atmosphere. (TSI is defined as the spectrally integrated power from
the sun received at the topof the Earth’s atmosphere. TSI=4 is the power
per unit spherical area of the Earth). The relative accuracy (the variation
between solar max and solar min) is high, but because of changing
satellites, the long-term variability in TSI is more uncertain and has been

a subject of debate15. Nevertheless, the secular trend is small16, and we
are concernedonlywith the relative variation. TSI before the satellite era
has been reconstructed based on proxies of the solar dark and bright
magnetic regions. The uncertainties, mostly involving the trend, are
discussed in Methods, and found to be small.

Using the most recent observed surface temperature dataset
HadCRUT517, which provided 200 ensemble members to assess var-
ious aspects of observational uncertainty,wecalculate the globalmean
solar-cycle response κSOLAR as the regression coefficient against TSI,
denoted by TSOLAR tð ÞjTSI tð Þ� �

. (See Methods for how regression is
calculated analytically and numerically).

The mean value is obtained as the ensemble mean (over the
200 surface temperature sets) for the modern period 1956–2014 (see
Fig. 1), involving 5 complete solar cycles, with brackets denoting the
“very likely” range (5–95%):

κSOLAR =0:084 0:070 to 0:097½ � �C=Wm�2 ð1Þ

The two groups used in the Linear Discriminant Analysis (LDA)
analysis are the solar max group and the solar min group. The years
with TSI above (below) the local mean are classified into the solar max
(min) group. The local mean is determined using Empirical Mode
Decomposition18,19 (see Methods). The latest climate models, CMIP6,
ended their historical runs after 2014. Since we want to use the same
period for both observation and model outputs, 2014 is the last year
we can use. To avoid known systematic bias of our method from
having uneven number of years in the solar max group and solar min
group when we extract the solar signal using our LDA method, com-
plete solar cycles need to be used (with at most one-year difference
between the two groups). It is the nature of the solar-cycle phenom-
enon that there usually are more years in solar min group than in the

Fig. 1 | Solar-cycle response, κSOLAR, extracted by the Linear Discriminant
Analysis61,63 (see Method). The blue histogram, with expanded horizontal scale,
shows the distribution of global solar response regressed against the Total Solar
Irradiance, κSOLAR of 200 HadCRUT5 ensemble runs17. The box and whisker sum-
marize the 17–83% and 5–95% ranges of the HadCRUT517 distribution, respectively.
The black dots are the values of κSOLAR for three other datasets: GISS44,71 and
NOAA72,73, which are geographically complete (by in-filling), and ERA45,46, which is
also geographically complete but is a reanalysis. ERA is used here to assess the
difference between Sea-Surface Temperature (SST) and 2-m surface temperature
(seeMethods).All observationdata cover 1956–2014exceptERA,which coversonly
1960–2004 due to data availability. The yellow histogram shows the “null dis-
tribution” of κSOLAR obtained by bootstrap resampling of the real data and then
applying the same Linear Discriminant Analysis (LDA) method (see Methods and
Supplemental Information) as that used to obtain the blue result. A total of 60,000
bootstrap resamples are drawn from the 200HadCRUT5 ensemblemembers. An L-
block resampling of 11 years is applied to take into account autocorrelation. Note
the expanded left vertical scale for the yellow bootstrap samples.
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solar max group, as solar max is usually reached rather quickly.
Starting the period earlier than 1956will increase the number of excess
years in the solar min group, until 1946 (with 34 maxes and 35mins).
However, global observational data prior to 1950 are sparser. There-
fore, we select 1956–2014 for the present study and the maximum
number of solar cycles that we can use is five.

In addition, Fig. 1 shows the null distribution obtained using the
method of bootstrap with replacement, by randomly scrambling the
years of the observed data relative to the TSI20. Autocorrelations up to
11 years is taken into account by randomly sampling,with replacement,
blocks of the time series each of length L = 11 years using the L-block
method21. The extracted solar-cycle signal in Eq. (1) is statistically sig-
nificant at over 99% confidence level. Furthermore, compared to the
“null distribution” obtained from the solar-cycle “signals” in the 48
CMIP6 Pre-Industrial Control runs known to have no solar-cycle for-
cing, the observed signal is statistically significant at 100% confidence
level. See Fig. 2. That is, no solar response is found by our method
when it should not exist. Sensitivity to major volcano eruptions is
discussed in “Methods” and Fig. 3 and found to be small.

Solar cycle and TCR
As the only known phenomenon with a well-measured radiative for-
cing in the decadal range, the observed global response to the 11-year
solar cycle can serve to constrain TCR for the following reasons:22

(1) The spatial patterns of the tropospheric and surface temperature
response to 2% solar forcing and to 2×CO2 are nearly the same in
general circulation models23, as originally proposed by Manabe
and Wetheral24 for persistent forcing. The observed latitudinal
pattern of the 11-year solar cycle is also nearly the same, within
observational uncertainty, as that predicted for CO2 induced
global warming and TCR25. As for the latest climate models, we
compare in Fig. 4 the spatial structure of the TCR, calculated
based on 41 CMIP6 models that have archived TCR runs in the
open domain, with the spatial structure of the solar-cycle
response calculated based on 51 CMIP6 models that have the
solar cycle forcing in their historical runs. They are very similar,
though with different amplitudes, consistent with Manabe and
Wetheral24. The common features include: general warming over
the globe, Arctic amplification of warming, more warming of the
continents than over the oceans. And more warming over the

Arctic than over the Antarctic, the latter being more affected by
the cold ocean upwelling than radiation from above.

(2) Effective Radiative Forcing (ERF) is defined as the effective
radiative forcing at the top of the atmosphere after the strato-
sphere and troposphere has adjusted to the forcingwhile holding
the surface temperature unchanged. A forcing agent with the
same ERF as CO2 should yield the same surface warming. ERF for
the solar-cycle forcing has been calculated by the 6th Assessment
Report (AR6)9, putting it on the same footing as CO2 when
measuring their effects on surface warming, despite their very
different long- and short-wave behaviors in the stratosphere. This
will be discussed in more detail later.

(3) The fast climate radiative feedbackmechanisms relevant for both
phenomena appear to be the same, as deduced from their tro-
pospheric patterns; the responses would both have been smaller
without these climate feedbacks. We previously inferred from
observations26, and diagnosed explicitly using an aqua-planet
model23, that the radiative anddynamic feedbackmechanisms for
the solar-cycle response are: evaporative, water vapor plus lapse
rate, cloud, and albedo feedbacks, same as those at play in
the response to CO2 forcing. The response to the solar radiative
forcing contains these climate gains, which ismeasured by TCR27.
This is likely the reason why when we normalize the smaller solar
response by its smaller forcing, we find a linear correspondence
with the TCR normalized by its larger forcing.

(4) Observational data analysis of the tropospheric solar-cycle
response illustrates the pathway of the response from where
the forcing is the largest to where the response is the largest26.
Net radiative forcing at visible and infrared frequencies, which is
the bulk of the solar-cycle forcing, is largest in the tropical region
and yet the response at the surface is smallest there. Thewarming
is largest over the polar region where the forcing is the smallest.

Fig. 2 | Solar-cycle response vs PreIndustrial Control. Same as Fig. 1, except the
observed solar-cycle responses (κSOLAR) are compared against the Pre-Industrial
Control (piControl) runs in CMIP6. The yellow histogram shows the “null dis-
tribution”ofκSOLAR simulatedwithout solar-cycle forcing for all 48CMIP6models in
the piControl runs. It is distributed around zero with both positive and negative
values, similar to that from a random distribution. The larger negative values are
frommodels thatdonot have adequate spin-up of their oceans. See Supplementary
Table S1.

Fig. 3 | Solar-cycle response obtained by excluding years of volcano eruption.
Same as Fig. 1 except the solar responses (κSOLAR) are calculated by excluding the
two years after the Pinatubo and after El Chichón volcanic eruptions. The blue
histogram, with expanded horizontal scale, shows the distribution of global solar
response regressed against the Total Solar Irradiance, κSOLAR of 200 HadCRUT5
ensemble runs17. The box and whisker summarize the 17–83% and 5–95% ranges of
the HadCRUT517 distribution, respectively. The black dots are the values of κSOLAR

for three other datasets: GISS44,71 and NOAA72,73, which are geographically complete
(by in-filling), and ERA45,46, which is also geographically complete but is a reanalysis.
All observation data cover 1956–2014 except ERA, which covers only 1960–2004
due to data availability. The yellowhistogram shows the “null distribution”ofκSOLAR

obtained by bootstrap resampling of the real data and then applying the same
Linear Discriminant Analysis (LDA) method (see Methods and Supplemental
Information) as that used to obtain the blue result. A total of 60,000 bootstrap
resamples are drawn from the 200 HadCRUT5 ensemble members. An L-block
resampling of 11 years is applied to take into account autocorrelation. Note the
expanded left vertical scale for the yellow bootstrap samples.
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The tropical ocean surface is warmed little because of evapora-
tive feedback. As water over the oceans is evaporated, heat is
mostly carried aloft as latent heat instead of being absorbed by
the ocean; the large ocean inertia does not come into play
significantly to delay the response. We do not find more than a
few months of lag. The latent heat of evaporation is deposited
near 200–300 hPa in the tropical troposphere. There, down-
gradient poleward heat transport aloft followed by thermal
downwelling to the cold polar surface under the stable static
stability of the polar lower troposphere combine to produce the
characteristic spatial pattern of polar amplification of surface
warming, the samemechanism as that for CO2-induced warming.
Themechanismswere analyzed23 using an aqua-planetmodel and
persistent forcing; it was found that the two phenomena share
similar amplification mechanisms for the fast climate feedbacks
in the troposphere although their stratospheric response is very
different. We will show here that the relationship continues to
hold for cyclic solar forcing.

A different climate sensitivity metric
For time-varying forcing, we define ameasure of sensitivity to external
forcing as the regression of response to forcing, denoted as
μ= T tð ÞjF tð Þ� �

. The response is taken to be the global-mean surface
temperature change, T, excluding unforced variability. The forcing, F,

is the global-mean ERF9. For solar-cycle forcing and response, we
have μSOLAR = TSOLAR tð ÞjFSOLAR tð Þ� �

:

μSOLAR is related to κSOLAR through a scaling factor:

μSOLAR =
∂TSI

∂FSOLAR
κSOLAR � bκSOLAR ð2Þ

where from AR69, 1
b � FSOLAR tð ÞjTSI tð Þ� �

= 0:72 1�αð Þ
4 , α being the

planetary albedo. See later and Methods for assignment of uncer-
tainties. Therefore, instead of finding μSOLAR using regression, we
simply multiply b to κSOLAR, which we have already obtained above, to
get μSOLAR.

Normalized TCR
For the TCR experiment, a climate sensitivity metric can be defined as
the global warming response regressed against its ERF:

μTCR = TTCR tð ÞjFTCR tð Þ� �
We additionally define the normalized TCR as:

TCR � TCR
F2 ×CO2

ð3Þ

Fig. 4 | Comparison of the surface temperature spatial structures. a CMIP6
model Transient Climate Response (TCR) runs with 1% per year increase in CO2.
Shown is the mean spatial pattern of 60th–79th years minus the mean spatial
pattern of 1st–10th years averaged over the 41models with TCR data. b Solar cycle
spatial pattern extracted by the Linear Discriminant Analysis (LDA) method as the
pattern that best distinguishes the solar max group from the solar min group for
the period 1956–2014 (see “Methods”). Shown is the average of 51 models with
solar-cycle forcing. The LDA-projected times series TSOLARðtÞ of each model is
normalized to the unity regression coefficient hTSOLARðtÞ∣TSIðtÞi = 1 so that the LDA

spatial pattern carries the unit of temperature. (TheTSOLARðtÞ used toobtain κ in the
text carries the unit of temperaturewhile the LDA spatial pattern is normalized to a
unity globalmean). Theremay be a small contamination of the solar-cycle signal by
the ElNiño–SouthernOcean (ENSO) internal variability in the spatial pattern. This is
removed in the second step of our spatial-time method for solar-cycle response
extraction, whereby the time series of the response is regressed against the cyclic
Total Solar Irradiance (TSI). This regression also removes remaining, if any, global
warming contamination.
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This quantity is not the sameas μTCR, but it is only slightly less (see
later). When the regressed quantity cannot be calculated from the
archived models, the normalized TCR is used.

Since the ERF from doubling CO2, F2 ×CO2
, is not an observed

quantity, observations cannot constrain TCR itself, only the normal-
ized TCR. AR69 assessed that the ERF for doubling CO2 has a ±12%
uncertainty. Using the normalized TCR avoids including this rather
large uncertainty in our metric for TCR. We recommendmodels in the
future report their TCR response regressed against the forcing,
because the regression of the response to the linear forcing is better
than simple ratios in reducing the contamination by other climate
variability, in addition to absorbing the 12% uncertainty in the hypo-
thetical forcing.We also recommend comparing the spreads in TCR by
using the spread-to-mean ratio, where the numerator is the spread (5
to 95% range unless otherwise specified) and the denominator is the
mean:

rTCR =
ΔTCR

TCR
ð4Þ

Equation (4) can be applied directly to our normalized TCR,
without having to first converting it to TCR.

Previously, direct observational constraints on TCR were pro-
vided by the “historical difference method”, considering the ratio of
historical change in global-mean temperature6–8 since thepreindustrial
period, ΔT , and in radiative forcing, ΔF :

μTCR ≈μHIST =
ΔT
ΔF

The uncertainty from the historical change method is large
because (i) the temperature data in the beginning of the industrial era
is sparse; (ii) the difference may include internal variability; and (iii)
more importantly: “the single largest contribution to formal error in
calculated TCR is, however, due to uncertainty in ΔF”8. And the largest
component of this uncertainty is due to aerosol forcing7. There is no
aerosol involved in solar-cycle forcing, which we will use as a separate
constraint.

Expected linear relationship
We propose to use μSOLAR to constrain μTCR. We expect a linear rela-
tionship between the two because both are amplified by the same
climate gain factor on decadal time scales. This can be shown analy-
tically in a 2-layer “emulator”. Such emulators9,28 were extensively used
in AR6. It consists of a surface layer of temperature T, with heat
capacity C, which is being forced by F =Q tð Þ, radiating to space above
and losing heat to the deeper ocean layer below28–30, whose tempera-
ture is denoted here as Td with heat capacity Cd :

C
d
dt

T = � λT +Q� γ T � Td

� �
Cd

d
dt

Td = γ T � Td

� � ð5Þ

Numerical solutions are shown in Fig. 5. Exact analytic solutions
are available for a linear forcing and for a periodic forcing, given by
Geoffroy et al.28, who also gave parameter values obtained by cali-
brating the 2-layer emulator with CMIP5 models. The solution consists
of an instantaneous response to forcing plus slow and fast adjust-
ments. Because of the disparity of time scales, the upper layer quickly
adjusts, while the lower layer adjusts much slowly due to the larger
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Fig. 5 | Numerical and analytic solutions of the two-layermodel. Numerical and
analytic asymptotic solutions of the full 2-layer model in Eq. (5). a Temperature
response in the mixed layer and in the deep ocean of the solution with linearly
increasing forcing. b Same as (a) but for the sinusoidal forcing solutions. c Linear
relations in the numerical and analytic solutions with linearly increasing forcing.

d Same as (c) except for the sinusoidal forcing solutions. The approximate analytic
solutions (Eq. (6ab)) are obtained using two-timing asymptoticmethod for the TCR
forcing; for the solar-cycle forcing, it is obtained by ignoring deep ocean feedback
onto the surface-layer temperature.
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heat capacity of the deeper ocean29. We use an asymptotic solution,
obtained using the two-timing method and verified to be accurate, to
better show the dependence on these two timescales.

For the TCR experiment, the warming response to a switched-on
radiative forcing

QTCR tð Þ=qTCRt for t >0 and QTCR tð Þ=0 for t ≤0 is found to be:

T tð Þ= Q t � Δð Þ
λ

,

where Δ � τ0 1� e�t=τ
� �

, τ0 � Cd

λ
, and τ � λ+ γ

γ

� 	
τ0,

and

Td tð Þ= Q t � Δd

� �
λ

where Δd � τð1� e�t=τÞ

ð6aÞ

The instantaneous “equilibrium” response28, Q tð Þ
λ , is the response

obtained by ignoring ocean inertia. Due to ocean inertia, there is a lag
of Δ tð Þ in the surface temperature response, starting at 0, reaching the
asymptotic value of τ0 ≈80 yr in τ ≈ 240 yr. The TCR experiment per-
iod is too short to reach that asymptotic value. The transient lagduring
the shorter TCR experiment period is linearly increasing, as
Δ tð Þ≈ ð γ

λ+ γÞt, with the end value: Δ 70yrð Þ≈ 20yr. The thermal para-
meters used in the estimates here are from the mean of the emulator
model ensemble28.

Regression of response to forcing yields:

μTCR = TTCRjQTCR

� �
=
β
λ
≈

1
λ+ γ

,

where β �∂ t � Δð Þ
∂t

≈1� γ
λ+ γ

=
λ

λ+ γ

ð6bÞ

The normalized TCR can be found as:

TCR=
TCR

qTCR × 70yr
=
T 70yrð Þ � T 0ð Þ
qTCR × 70 yr

=
Q 70 yr� Δ 70yrð Þð Þ
λ×qTCR × 70yr

≈
1

λ+ γ

ð6cÞ

The usual climate gain factor estimated using an energy-balance
(one layer)model is 1

λ, which is larger because ocean heat uptake is not
taken into account.

Because the solar-cycle response does not penetrate through the
whole depth of the mixed layer31, it does not experience the full-depth
heat capacity. We let η be the fraction of the mixed layer depth that it
penetrates to (to be determined from observation or constrained by
the lag in the response). Since the signal does not penetrate the deeper
ocean layer, Td is not affected by it, and can be set to be zero30 in the
approximate solution. For a sinusoidal solar-cycle forcing:
QSOLAR =qSOLAR sinðω tÞ, the approximate solution is:

TSOLAR =
qSOLAR sin ω t � δð Þð Þ
ðλ+ γÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + tan2 ωδð Þ

p =
qSOLAR sin ω t � δð Þð Þ cosðωδÞ

ðλ+ γÞ ,

where tanðωδÞ � ωηC
λ+ γ

, and

μSOLAR = TSOLARjQSOLAR

� �
=
cos ωδð Þ
λ+ γ

∂ sin ω t � δð Þð Þ
∂ sin ω tð Þ =

cos2 ωδð Þ
λ+ γ

ð7Þ

The analytical result in Eq. (7) is found to be very accurate com-
pared to the full two-layer numerical solution (See Fig. 5). The lag is
between 0 to 2 years for η between 0 and 1. Especially accurate are the
approximate expressions for the normalized TCR and also for the solar
response regressed against forcing, which are being used in the
expected linear relationship (see Fig. 5c, d). These relationships are
independent of model parameters used in Fig. 5a, b.

Although the two phenomena are forced by separate forcings and
the responses can be extracted separately, their sensitivity metrics are
related by a linear relationship because they each are proportional to
1

λ+ γ; see Fig. 5c, d. Therefore:

μTCR =
1

λ+ γ
=aμSOLAR, where a=

1
cos2ðωδÞ ð8Þ

When the regressed formof themodel climate sensitivitymetric is
not available, we use the normalized TCR:

TCR=aμSOLAR ð9Þ

The slope a depends only on the lag of the solar response. It is
close to 1 because the lag in the solar-cycle responses in observations is
close to 0, subject to a maximum of 6-month uncertainty because
annual-mean data are used.

Linear relationship in CMIP6 models
54 CMIP6 models are available on esgf-node.llnl.gov. Meehl et al1.
computed TCR for 37 models consistently using the ESMValTool.
Zelinka et al.32 computed the ERF in a set of 27models; one (EC-Earth3)
of these was not used inMeehl et al. Among the 26 commonmodels, 6
(CAMS-CSM1-0, CESM2-WACCM, CNRM-CM6-1-HR, FGOALS-F3-L,
INM-CM4-8, and SAM0-UNICON) did not follow CMIP6’s protocol,
which requires at least 500 years of spin-up of their oceans before
TCRs are calculated (see Supplementary Table S1, and the discussion
on the effect ofnot having sufficient spin-uponTCR inMethods,which
can give rise to 30% uncertainty); they are objectively excluded. In
addition, NORESM2-LM did not provide information on branching off
time or preindustrial control, and so is also excluded. Information on
MPI-ESM1-2-LR, which was not included in ref. 32, became available
recently, and is added to our list. Sensitivity to including all 27 CMIP6
models is discussed in a later section and Fig. 10. CMIP5models didnot
adopt a consistent spin-up protocol33, thus introducing an additional
but artificial decadal variability, and so are not used.

CMIP6 models seem to be consistent with Eq. (9). We use linear
least-squares fit of the model pairs, andMonte-Carlo bootstrapping to
find the spread of the slopes. The CMIP6 ensemble yields a regressed
slope of 1.02 [0.97,1.16] for a best fit from the origin, consistent with
Eq. (9) with slope 1 obtained above from a simpler model. This con-
sistency test is not a proof; for that purpose, a CMIP6model withmany
versions each with a different TCR is needed, which is however not
available.

Emergent constraint
Suppose we do not know the functional form G xð Þ that relates the
quantity y, to be constrained, to a quantity x, which could be observed:
y=G xð Þ, but would like to discover it. The discovered relationship that
“emerges” by exploring model pairs x,yð Þ empirically is referred to
as an “emergent constraint”. Often because of the limited model
points, the best one can do is through a local approximation around
a typical point x0,y0

� �
in a cluster of model data points:

y� y0 ffi G0 x0
� �

x � x0

� �
, that is, a linear relationship of the form:

y=Ax +B. Model points are then regressed onto this line. The constant
term B= y0 � G0 x0

� �
x0 is sometimes referred to as the “intercept”. It is

often nonzero in practice regardless of whether the true functional
relationship passes through the origin. Both slope and “intercept” of
the local approximation are affected by the scatter from the centroid
of data points.

In Fig. 6 we empirically fit the model pairs using least-squares to
this line. Bootstrapping with replacement generates 10,000 random
sets of data with 20 points each. The 10,000 linear- least-squares fits
form a probability density function, from which 5%–95% band is
defined. The result obtained through robust regression remains the
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same. Projecting the observed (blue band) onto this 5–95% range of
slopes determined from model scatters yields

TCR =0:65 0:58 to 0:73½ � �C=Wm�2 ; rTCR =23% ð10Þ

In the language of regression analysis, x is the predictor, while y is
the predictand. The first value, 0.65, is the predicted mean value (or
sometimes called the “best estimate”). The brackets enclose the 90%
confidence level of that predicted mean; the maroon dashed lines in
Fig. 6 indicate the prediction limits of the mean. This interval does not
necessarily include 90% of the predicted model y given model x. The
latter is called34 the 90%predicted y intervalgiven x, and couldbemuch
wider. It is useful for a different purpose: to predict where individual
model’s TCR lies in 90% of the cases given a value of x. We are asking
instead where the “best estimate” lies in 90% of the cases.

The centroid of the model data points happens to lie within the
observed range (the blue vertical band). This is the narrowest part of
90% interval bounded by the dashed curves. The uncertainty range
would havebeen larger if the observed range hadoccurred to the right
or left of this narrow point. Also, the derived range is not sensitive to
the slope of the regression lines since the various straight lines pivot
near this point.

For comparison, recent emergent constraints on TCR using
CMIP6 models based on simulated historical warming post-1975 gave
1.68 [1.0 to 2.3] °C by Nijsse et al.11, and 1.60 [0.90 to 2.27] °C by
Tokarska et al.35. AR69 combined these to claim 1.7 [1.1 to 2.3] °C. These
have wider spreads of 77%, 86% and 71%, respectively. Ours, at 23%, is
the narrowest, about 1=3 of existing constraints.

However, all three, including AR6’s and ours, may be subject to a
criticism of model-fitting bias, which is often raised in machine learn-
ing literature, but has so far not been considered in Emergent Con-
straint research. The two-parameter fit to the straight line used in the
Emergent Constraints includes an “intercept”, which is not physically
justified but is employed solely for the purpose of yielding a better fit
to the “training data”. The “training data” here is the CMIP6 models.
This may be a bias toward CMIP6 models.

Eliminating this bias, Emergent Constraint without an intercept
should yield a wider range:

TCR=0:671 0:577 to 0:833½ � �C=Wm�2 ; rTCR = 38% ð11Þ

obtained for fits to lines through the origin (Fig. 7). The uncertainty
range of our one-parameter fit is still ∼ 1=3 of existing constraints:
120%7 and 139%8, when compared to other one-parameter fits of
historical warming.

A still more conservative approach34,36 makes no assumption about
the existence of any relationship between x and y, and suggests not
leveraging models whose “observables” (x) are inconsistent with the
current observed to “discover” a linear relationship. So only the model
points within the blue band are fully weighted. Weighting of the points
away from the blue band less using Kullback-Leibler divergence in
information theory, a new probability density distribution is then con-
structed, from which it yields: TCR=0:62 0:39 to½ 0:86� �C=Wm�2 ;

rTCR = 76%. See Fig. 8. This wider uncertainty range is not adopted here
since we have established that a linear relationship does exist.

Another “line of evidence” uses direct observational constraint of
warming in the instrumental record (without using the Emerging
Constraint) to yield a rTCR of 120% by Lewis and Curry7, and 139% by
Richardson8 (see “Methods”). Though their uncertainty ranges are
much larger, these direct constraints were obtained without having to
use an adjustable “intercept”, and are therefore not subject to criti-
cisms often leveled at some Emergent Constraints about not including
“structural uncertainty”37.

Process-based estimate of TCR
AR69 uses an energy-balance model for its process-based estimate.
Here we use a two-layer model emulator, with its parameter calibrated
against observations instead ofmodels for the estimate. This approach
does not use CMIP6 climate model pairs to empirically determine
the relationship and thus avoids the possible criticism that we used
some CMIP6 models which may “run too hot”. We find almost the
same result on the TCR constraint as above. It shows consistency
with the Emergent Constraint approach but is probably not indepen-
dent enough to be considered an additional line of evidence.
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Fig. 6 | Emergent Constraint. CMIP6 model’s normalized TCR (defined as
TCR=F2 ×CO2

) vs 11-year global-mean solar-cycle response μSOLAR in 2-m tempera-
ture regressed against the Effective Radiative Forcing; both in units of °C/W m–2.
The shaded blue region indicates the spread of the observations. The regressed
lines are drawn in green (only 50 are shown). The solid maroon line indicates the
mean of the fit. The dashed maroon curves bound the 5–95% interval of the fit and

should be interpreted as the prediction limits of themeannormalized TCRgiven an
observed value of the solar response. The box and whisker represent the 17–83%
and 5–95% “likely” and “very likely” intervals, respectively, obtained using 10,000
bootstrap samples of the 200 HadCRUT ensembles (each sample has 200 points
with replacement), plus a Gaussian noise of b, which is the “error in variable”. The
super and subscripts indicate “very likely” interval of the estimated parameter.
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Using Eq. (9), which is independent of CMIP6 models, we have

TCR=aμSOLAR =ab κSOLAR ð12Þ

The proportionality constant, b= ∂TSI
∂FSOLAR

, is the ratio of TSI and the
ERF after stratospheric and tropospheric adjustment, where
∂FSOLAR
∂TSI = 1

4 1� αð Þξ , α being the planetary albedo and ξ the ratio of solar
radiation at the top of the troposphere and top of the atmosphere.

The planetary albedo has been measured very accurately by
satellites, with an accuracy of ±1% for the 2.5–97.5% range or,

equivalently, ±0.86 for the 5–95% range, with very little interannual
variability and has a symmetry between the two hemispheres38. Gray et
al. performed a wavelength dependent calculation of the albedo for
the solar-cycle specific irradiation and concluded that it is almost the
same as the wavelength-averaged planetary albedo. In contrast, the
modeled planetary albedo is more variable, and perhaps overtly sen-
sitive to the surface temperature. This explains some of the scatter of
the slope in Fig. 6. Another cause for the scatter may be due to the
slight differences in the solar-cycle response lags in models. We use
observed values for these quantities to calibrate the emulator.

0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
rio

r:
 0

.6
09

 [0
.3

77
 to

 0
.8

65
]

P
os

te
rio

r:
 0

.6
24

 [0
.3

93
 to

 0
.8

61
]

HadCRUT
0.659 [0.554 to 0.763]

1

1. bcc-csm2-mr

2

2. bcc-esm1

3

3. canesm5

4

4. cesm2

5

5. cnrm-cm6-1

6

6. cnrm-esm2-1

7

7. e3sm-1-0
8 8. ec-earth3-veg

9

9. gfdl-cm4

10

10. giss-e2-1-g

11

11. giss-e2-1-h

12

12. hadgem3-gc31-ll

13

13. ipsl-cm6a-lr

14

14. miroc-es2l

15
15. miroc616
16. mpi-esm1-2-hr17
17. mpi-esm1-2-lr

18

18. mri-esm2-0

19

19. nesm3

20

20. ukesm1-0-ll

Fig. 8 | Prior and posterior TCR ranges, following Brient and Schneider 2016
and Brient 2020. The vertical box and whiskers are the 17–83% and 5–95% ranges
of the CMIP6 TCR, respectively. The gray and orange bars are the prior and pos-
terior TCR ranges, respectively. The prior TCR range is defined by the primitive
probability density estimate of the 20 TCR values without any weighting. The
posterior TCR range is defined by the probability density estimate of the 20 TCR
values weighted by the Kullback–Leibler divergences of the CMIP6 models. To
derive the Kullback–Leibler divergence for each CMIP6model, we apply the spread

of the 200 HadCRUT solar responses to each CMIP6 solar response and calculate
Δi =

R1
�1p xð Þ ln p xð Þ

q xð Þ
� �

dx, where p xð Þ and q xð Þ are the distributions of HadCRUT
ensembles and the CMIP6 solar response, respectively. Note that the regression
errors of the CMIP6 solar responses aremuch smaller than theHadCRUT spread, so
a more conservative approach is to use the HadCRUT spread instead of using the
regression errors. The weighting of each CMIP6 model is then given
by wi =

exp �Δið ÞP
j
exp �Δjð Þ.
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Fig. 7 | Emergent Constraint without intercept. Same as Fig. 6 except that the
modelpoints arefitted to a linear linewithout intercept. CMIP6model’s normalized
TCR (defined as TCR=F2 ×CO2

) vs 11-year global-mean solar-cycle response μSOLAR in
2-m temperature regressed against the radiative forcing; both in units of °C/Wm–2.
The shaded blue region indicates the spread of the observations. The regressed
lines are drawn in green (only 50 are shown). The solid maroon line indicates the
mean of the fit. The dashed maroon curves bound the 5–95% interval of the fit and

should be interpreted as the prediction limits of themeannormalized TCRgiven an
observed value of the solar response. The box and whisker represent the 17–83%
and 5–95% “likely” and “very likely” intervals, respectively, obtained using 10,000
bootstrap samples of the 200 HadCRUT ensembles (each sample has 200 points
with replacement), plus a Gaussian noise of b, which is the “error in variable”. The
super and subscripts indicate “very likely” interval of the estimated parameter.
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The simulatedvalueof ξ is sensitive to the spectral resolutionof the
input solar spectrumdue to the stratosphericO3 absorption in theUltra-
Violet (UV) range. Gray et al.39 estimated the stratosphere- adjusted
radiative forcing (RF) for the 11-year solar cycle based on fixed dyna-
mical heating approach andobtaineda valueof ξ tobe0.78using a solar
UV spectrum with 1-nm resolution. ~0.15 of the reduction from 1.00 is
due to the stratospheric O3 absorption of the solar variation at wave-
length below 300nm; the rest of the reduction is due to the combina-
tion of stratospheric O3 absorption of the solar variation above 300nm
and the stratospheric temperature adjustment40. Earlier studies using
coarser spectral UV resolutions obtained higher values: Larkin et al.41

first obtained a value of 0.88 using a two-streammodel with six spectral
bands; Hansen et al.42 reduced it to 0.83 using a solar spectrum at 5-nm
resolution. We adopt Gray et al.’s39 value with 1-nm resolution. AR6 also
adopted this value for stratosphere-adjusted RF, to which it added
–0.06 for tropospheric adjustment to yield ξ =0:72 for use with ERF.

By imposing 5 satellite-observed solar-induced O3 changes and
using 2 radiative transfer schemes, Isaksen et al.43 showed that the O3

solar RF varied from –0.005Wm–2 to 0.008Wm–2 relative to the
mean. These values are close to zero since an increase in ozone in the
stratosphere absorbsmore of the ultraviolet part of the solar radiation,
but the increase in ozone heating emits more downward long-wave
radiation that almost compensates the decrease in short-wave radia-
tion. Larkin et al.41. also tested their solar RF by replacing the simulated
O3 solar responsewith theobserved, and the values remain the sameas
0.23Wm–2 in both cases due to the above-mentioned compensation.
Because of their broadband calculations, they reported the resulting
solar radiative forcing to only the second decimal place. We adopt
Isaksen et al.’s values for the uncertainty in ξ . The standarddeviationof
the 10 net O3 solar radiative forcings listed in Isaksen et al.’s43 Table 1 is
0.0047. For a mean radiative forcing of 0:26×0:72 =0:187Wm�2, we

estimate a percentage uncertainty in ξ to be 0:0047=0:187 × 1:65,
which is ±4.1% (5–95% range). For observational data analysis we use:
∂FSOLAR
∂TSI = 1

4 1� αð Þξ =0:127 ±4:2%, where ξ =0:72 ð±4:1%Þ (5–95%
range), α =0:29 ð±0:86%Þ (5–95% range), and the total uncertainty for

this quantity is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:1%ð Þ2 + 0:86%ð Þ2

q
=4:2% (5–95% range). The reci-

procal is: b= 1
0:127 ð±4:2%Þ= 7:87±0:33 (5–95% range).

The uncertainty in the reconstructeddetrendedTSI is 0.049Wm−2

for the period 1950–2014 (see “Methods” and Fig. 9), about 5%.
The solar response determined from HadCRUT517 yields, for the

“very likely” range:

rTCR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔκSOLAR

κSOLAR

� 	2

+
Δb
b

� 	2

+
Δa
a

� 	2

+
ΔTSI
TSI

� 	2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:097� 0:070

0:084

� 	2

+0:0842 +0:0862 +0:052

s

= 34:2%

ð13Þ

Because some of the errors are not Gaussian, the above estimate
may not be accurate. By performingMonte-Carlo bootstrapping of the
slope, along with error in variable, we obtain the more accurate result
of 34.4%, which is close to (13); both should be rounded to 34%. The
best estimate for the normalized TCR is 0.66 °C/W m–2.

For comparison, Padilla et al.30 obtained estimates of TCR of 1.6
[1.3 to 2.6]�C, giving rTCR =81%. They also used a two-layer emulator as
here but with Td set to zero, and applied historical forcing and
observed warming to constrain model parameters.

TCR in conventional units
Our central value in terms of normalized TCR, based on the Process-
Based Estimate and the one-parameter Emergent Constraint, is
0.66–0.67 °C /Wm−2. We take the average as the best estimate of the
central value. For comparison with the TCR in conventional units, we
need to multiply it by F2 ×CO2

. The value of F2 ×CO2
to use, for con-

sistency, should bewhatwas divided intomodel TCR to normalize it as
the vertical coordinate in Fig. 7. For the 5 models that are consistent
with the observational constraints of solar amplitude and slope in
these figures, the mean value is 3.38Wm–2. Using this mean value, our
best estimate (the average of process-based estimate and the emer-
gent constraint) is TCR = 2.2 °C. Using AR6’s mean value of 3.93Wm–2

for doubling CO2 forcing would have increased the value of estimated
TCR in °CbeyondAR6TCR’s “likely” and “very likely” ranges. However,
this higher ERF value is not constrained by observations.

Using the common procedure of Emergent Constraint (with an
intercept), a narrower range of:

2:2 ½2:0 to 2:5� �C ð14Þ

in conventional units is obtained here, which is 1=3 that of AR6’s
estimate using historical warming and Emergent Constraint. However,
given our reservation about the 2-parameter fit used in the common
Emergent Constraint procedure, a more conservative estimate is

2:2 ½2:0 to 2:8� �C ð15Þ

based on our best estimate of the central value and the range in
Eq. (11).

Sensitivity to including models that do not follow protocol
There are 7 CMIP6models thatwere excluded in Fig. 7 because they do
not follow the CMIP6 protocol, which requires that models have at

Fig. 9 | Comparison of two reconstructed TSI time series. a The two raw time
series. b The detrended time series. The removal of the nonlinear secular trend is
done using Empirical Mode Decomposition. The mean absolute difference is cal-
culated by adding the absolute values of differences between the two time-series
for each year, then the sum divided by the number of years.
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least 500yearsof spin-upof their oceans before the calculationof TCR.
Including them (see Fig. 10)widens theuncertainty range slightly, from

TCR=0:67 0:58 to 0:83½ � �C=Wm�2 ; rTCR =38%

to

TCR=0:63 0:56 to 0:83½ � �C=Wm�2 ; rTCR =43%:

The upper range remains unchanged. It lowers the lower uncer-
tainty range slightly from 0.58 to 0.56. We argue that these models
should not be included.

Discussion
Our observational constraint of Earth’s Transient Climate Response
based on the solar-cycle phenomenon is ∼ 1=3 as narrow as existing
estimates, which were previously all based on the observed historical
warming. This reduction of uncertainty is achieved through a number
of factors: (i) the solar phenomenon has more accurately measured
forcing, compared to the large aerosol uncertainty in historical
warming; (ii) the TCR from models are calculated using a consistent
protocol; (iii) we use a climate sensitivity metric that involves nor-
malizingmodel TCRby their individual radiative forcing, thus avoiding
the including the latter’s 12% uncertainty in TCR itself; (iii) only
instrumental temperature record since 1950s is used.

With improvements in the modeling of physical processes, cli-
mate models have become more sensitive. CMIP61 models now
generally have a higher TCR than previous generations, with a 5–95%
inter-model range of 1.3 °C–3.0 °C. Our central estimate of 2.2 °C
is near the midpoint of the intermodal spread of CMIP6 model
TCRs, implying that some sensitive CMIP6 models (compared with
previous generation) may be more consistent with the proposed
observational constraint. In particular, climate models, such as GFDL-
CM4, CANESM5, UKESM1-0-LL, BCC-ESM1 and IPSL-CM6A-LR, satisfy
both of our observational constraints for TCR and for solar cycle
response. We obtained essentially the same estimate without using
CMIP6 models in a Process-Based Estimate. Our central estimate is

within AR6’s9 “very likely range” of 1.2 °C–2.4 °C. Our narrowing of the
“very likely” range is mainly from a lifting, by more than 60%, of the
low-end estimate.

Having an independent line of evidence in addition to the existing
constraint based on historical warming potentially allows further
reduction of the uncertainty by combining them. We leave this task to
a future project.

Just as successive Assessment Reports yield more and more
accurate estimates of the TCR as observational datasets improve, we
expect that future estimates of TCR using the solar-cycle approach
may need to be revised as surface temperature datasets change.
We already saw changes whenHadCRUT4was replaced byHadCRUT5,
which widened the uncertainty range and lowered slightly the mean.
Also, as future generations of CMIP models include more solar
cycles in the satellite era, accuracy of the extracted solar-cycle
response is expected to improve; at this time we have to stop the
comparison with observation at 2014. What we report here is our
current best estimate.

Methods
Linear regression
Given two time-dependent datasets x tð Þ and y tð Þ, we construct a linear
regression model as: y tð Þ=a x tð Þ+ residue. The linear regression
coefficient a is obtained from

a= y tð Þjx tð Þ� �
=

R
x tð Þ � �x½ � y tð Þ � �y½ �dtR

x tð Þ � �x½ �2dt
=

Pn
i= 1 xi � �x

� �
yi � �y
� �

Pn
i = 1 xi � �x

� �2 ð16Þ

which may be also viewed as the functional derivative ∂y tð Þ
∂x tð Þ. The bars

denote the temporal averages. The integration is over the length of the
record. For sinusoidal forcing (e.g., the solar-cycle forcing), the
integration is over a full period. For the TCR experiment it is over
the 70 years of the experiment.

Climate sensitivity and its uncertainties
The TCR is commonly defined by the difference between year 70 and
year 1 global mean surface temperature. We use Δ to denote differ-
ence. So the normalized TCR is defined as the ratio of differences of
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Fig. 10 | Sensitivity to including more CMIP6 models. Same as Fig. 7 except
adding 7 models. These are models that do not satisfy the CMIP6 protocol of
running the ocean spin up for over 500 years. CMIP6 model’s normalized TCR
(defined as TCR=F2 ×CO2

) vs 11-year global-mean solar-cycle response μSOLAR in 2-m
temperature regressed against the radiative forcing; both in units of °C/Wm–2. The
shadedblue region indicates the spreadof theobservations. The regressed lines are
drawn ingreen (only 50are shown). The solidmaroon line indicates themeanof the

fit. The dashed maroon curves bound the 5–95% interval of the fit and should be
interpreted as the prediction limits of themean normalized TCR given an observed
value of the solar response. The box and whisker represent the 17–83% and 5–95%
“likely” and “very likely” intervals, respectively, obtained using 10,000 bootstrap
samples of the 200 HadCRUT ensembles (each sample has 200 points with repla-
cement), plus a Gaussian noise of b, which is the “error in variable”. The super and
subscripts indicate “very likely” interval of the estimated parameter.
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response temperature to forcing:

TCR=
ΔT
ΔF

:

Note that ΔT and ΔF are not functions of t.
For transient climate sensitivity, the forcing is time-dependent,

and so it is not appropriate to use the ratio of response to the forcing
to define this sensitivity metric. A more appropriate measure of sen-
sitivity to external forcing should be given as the regression of
the response against the forcing. In the case of climate sensitivity, the
response is taken to be the global mean surface temperature change
(T) (after the removal of unforced variability), and the forcing is taken
to be the global mean radiative forcing (F): μ= T tð ÞjF tð Þ� �

, where μ is
the climate sensitivity of interest. To obtain μSOLAR, we constructed
another regression coefficient: κSOLAR = TSOLAR tð ÞjTSI tð Þ� �

, where
κSOLAR is the solar-cycle response we obtained using LDA (supple-
mentary materials). We then obtained μSOLAR through the relation
μSOLAR =b κSOLAR, where b�1 = FSOLAR tð ÞjTSI tð Þ� �

= 0:72 1�αð Þ
4 and α is the

planetary albedo.
It is difficult, though not impossible, to determine the equilibrium

climate sensitivity from instrumental measurements because
the current climate is far from equilibrium. The situation is different
for TCR. Previously, the historical record of global warming change
(ΔT) in response to the change in radiative forcing (ΔF) from the
beginning of the industrial period to recent decades has been used,
which is referred to as historical warming method or the Otto et al.
method6,8:

μ=μHIST ∼
ΔT
ΔF

:

This ratio of differences is strictly speaking not a regression of
response against forcing—perhaps we should have used a different
symbol for it—but is close since the forcing and response are both
approximately linear. The difference used inOtto et al. is the decade of
2000s minus 1860–1879. The best estimate for TCR is 1.3 °C, with a
5–95% range [0.9 °C to 2.0 °C]. Lewis and Curry7, using the same
method but different periods, also obtain 1.33 °C as the best estimate,
but a wider spread of 0.9 °C to 2.5 °C, 120% of its central value, due
mostly to their adoptingAR5’sΔF with awider uncertainty range. Their
best estimate falls below the multi-model means of CMIP5, suggesting
seemingly that some models overestimate future warming. This has
generated much debate.

There are four major uncertainties in the historical warming
method:
(i) As pointed out by Richardson et al.8, “the single largest con-

tribution to formal error in calculated TCR is, however, due to
uncertainty in ΔF”. And the largest component of the uncertainty
is due to aerosol forcing:7 “Without a reduction in aerosol ERF
uncertainty, additional observational data and extended time
series may not lead to a major reduction in ECS and TCR esti-
mation uncertainty”. The spread of Otto et al.’s TCR estimates
was mainly due to this large uncertainty in radiative forcing.
Richardson et al.’s TCR has a spread of 1.0 °C to 3.3 °C, or 139% of
its central value. This spread is even larger than thatofOtto et al.’s
TCR, not because of uncertainties in surface temperature records
stated in (ii) below, but mostly because an updated, larger
uncertainty for ΔF was used. This is where using the solar-cycle
data has a marked advantage, as its forcing is much better
measured and does not involve aerosol forcing.

(ii) A second source of error is in the historical data of surface tem-
perature over such a long time span required in Otto et al.’s
method, when earlier data are geographically less complete, and
that data involved the blending of air temperature and sea

surface temperature, whilemodels use surface air temperature in
their TCR calculation. The adjustment in temperature record by
Richardson et al. led to 24% higher warming: 15 of the 24 per-
centage points arise from masking models to HadCRUT4.4 geo-
graphical coverage and 9 from water-to-air adjustment in the
model. This model-derived scaling factor was responsible for
moving the “best estimate” from 1.33 °C to 1.66 °C, nowwithin the
CMIP5 model mean. For the solar cycle, we use only the modern
record since 1950, aided also by the recent availability of a
geographically complete dataset, GISTEMP Version 4, based on
NOAA Global Historical Climatology Network (GHCN) Version 4
(meteorological stations) and ERSSTv5 (ocean)44. These geogra-
phically complete datasets yield a solar-cycle response very close
to the central value of HadCRUT5.
For an assessment of the water-to-air temperature difference we
use the 2-m temperature from European Center for Medium-
Range Weather Forecasts (ECMWF) Re-Analysis (ERA). The 2-m
temperature is obtained by interpolating the air temperature at
the lowest level of the model (~10m) and the skin temperature
(SST), which in recent decades is remotely sensed. The latest ERA
version 5 (ERA5) starts from 197945. To extend the data before
1979, we combine the previous version, ERA-40, from 1960 to
1978 with ERA5 from 1979 to 200446. The water-to-air tempera-
ture difference obtained from ERA is –10%. ERA uses a model to
assimilate observed data, and so this adjustment can also be
criticized as beingmodel dependent. However, since this error is
within the range of HadCRUT5’s spread, we chose not to let it
affect our reported result on TCR. In NCEP reanalysis the 2m-
temperature is not a standard analyzed product.

(iii) A third source of uncertainty is related to the fact that the
observed warming is the sum of forced response and unforced
response. The latter includes the Atlantic Multidecadal Oscilla-
tion (AMO), believed to be caused by the Atlantic Meridional
Overturning Circulation (AMOC)47. Tung et al.48 and Chen and
Tung49 found that the large multidecadal variation in the
observed global-mean surface temperature ismostly contributed
by the AMO, and it can double the observed warming during its
positive phase. Hu et al.50 found that while AMO does not affect
ECS, a weaker AMOC enhances surface warming and increases
TCR (and vice versa). van der Werf and Dolman51 found that the
calculated TCR are affected substantially with different choice of
AMO indices. Recent studies using post-1975 observed warming
to constrain TCR10,11 is even more prone to AMO contamination
than using the centennial warming in Otto et al.’s method. In our
analysis method, spatial-temporal information is used to extract
the forced solar-cycle response, which greatly reduces the
influence of AMO, which has a different spatial structure and
much longer period.

Sensitivity to aerosols from volcano eruptions
Volcanic aerosols tend to cool the surface and could affect our
extracted solar-cycle signal, especially when the two large eruptions
were spaced a decade apart. Two large volcanic eruptions, El Chi-
chón in March 1982 and Pinatubo in June 1991, coincidentally erup-
ted during solar max. So the response to the solar-cycle forcing
could possibly be underestimated. However, the effect should be
temporary and lasted two to three years. We tested the sensitivity of
ourmethod to the volcanic aerosols by excluding the two years after
the El Chichón and also after Pinatubo eruptions. The resulting
observedmean response and the 5–95% range are only 0.003 higher:
0.087 [0.073 to 0.100] respectively, in units of °C/W m–2. The dif-
ference is well within the uncertainty of the HadCRUT5 data. The
distribution of the HadCRUT5 ensemble responses with the L-block
resampling test shown in Fig. 3 shows that themean responses is still
99% confident.
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Extraction of solar-cycle signal
We use a spatial-time filter to extract the solar-cycle signal from the
surface temperature dataset to minimize the contamination of the
signal by other climate noises, such as El Niño. The same method is
applied to both model and observations. The spatial part is the Linear
Discriminant Analysis (LDA). The surface temperaturedata at each grid
point is first linearly detrended before the application of LDA, to
eliminate the possibility of global warming contaminating the solar
signal, although this effect is small. We define a solar plus (minus) year
as the yearwhen the TSI is above (below) the local mean for the period
under consideration. The local mean is found using the method of
Empirical Mode Decomposition. Collectively the solar plus years are
referred to as belonging to the “solar max group”, and the solar minus
years as belonging in the “solarmin group”. As described inmoredetail
in the Supplementary Information, LDA finds the spatial pattern that
best separates the solar plus years from the solarminus years given the
criterion for defining these two groups. We do not use a threshold in
defining the two groups and therefore no data are excluded for this
purpose. The observed (or modeled) temperature field is projected
onto this LDApattern toproducea timeseries, denotedby TLDA tð Þ. The
second step of the procedure is to regress this time series onto the TSI,
denoted by S tð Þ. This step further ensures that global warming signal is
eliminated. It is the regressed solar-cycle response that is required in
the definition of climate sensitivity, μSOLAR.

ERF for solar radiative forcing and its uncertainties
AR6 uses ERF (Effective Radiative Forcing) while earlier assessment
reports used RF (Radiative Forcing). RF is defined as the radiative
forcing at the tropopause after stratospheric ozone and circulation
have adjusted, while ERF including fast tropospheric adjustment
except surface temperature. The intent is tomeasure the effectiveness
of radiative forcing in its effect in warming the surface in the same
way as CO2. ERF for solar radiative forcing is the TSI variation from
solar min to solar max, divided by 4 (so that it is per unit area of a
spherical earth), multiplied by the ratio ξ of the downward radiation
at the tropopause vs that at the top of the atmosphere, andmultiplied
by 1� albedoð Þ. The simulated value of ξ is sensitive to the spectral
resolution of the input solar spectrum due to the stratospheric
O3 absorption in the UV range. Gray et al.39 estimated the adjusted RF
for the 11-year solar cycle based on fixed dynamical heating approach
and obtained a value of ξ to be 0.78 using a solar UV spectrum with
1-nm resolution. ~0.15 of the reduction from 1.00 is due to the strato-
spheric O3 absorption of the solar variation at wavelength below
300nm; the rest of the reduction is due to the combination of stra-
tospheric O3 absorption of the solar variation above 300nm and the
stratospheric temperature adjustment40. Earlier studies using coarser
spectral UV resolutions obtained higher values: Larkin et al.41 first
obtained a value of 0.88 using a two-stream model with six spectral
bands; Hansen et al.42 reduced a value to 0.83 using a solar spectrum at
5-nm resolution. We adopt Gray et al’s39 value with 1-nm resolution.
AR6 also adopted this value for Stratosphere-adjusted RF, to which it
added –0.06 for tropospheric adjustment to yield ξ =0:72 for use
with ERF.

By imposing 5 satellite-observed solar-induced O3 changes and
using 2 radiative transfer schemes, Isaksen et al.43 showed that the O3

solar radiative forcing varied from –0.005Wm–2 to 0.008Wm–2 rela-
tive to the mean. These values are close to zero due to the fact that an
increase in ozone in the stratosphere absorbs more of the ultraviolet
part of the solar radiation, but the increase in ozone heating emits
more downward long-wave radiation that almost compensates the
decrease in short-wave radiation. Larkin et al.41 also tested their solar
radiative forcing by replacing the simulated O3 solar response with the
observed, and the values remain the same as 0.23Wm–2 in both cases
due to the above-mentioned compensation. Because of their broad-
band calculations, they reported the resulting solar radiative forcing to

only the second decimal place. We adopt Isaksen et al.’s values for the
uncertainty in ξ . The standard deviation of the 10 net O3 solar radiative
forcings listed in Isaksen et al.’s43 Table 1 is 0.0047. For a mean radia-
tive forcing of 0:26×0:72 =0:187Wm�2, we estimate a percentage
uncertainty in ξ to be 0:0047=0:187× 1:65, which is ±4.1%
(5–95% range).

The planetary albedo has been measured very accurately by
satellites, with an accuracy of ±1% for the 2.5–97.5% range or, equiva-
lently, ±0.86 for the 5–95% range, with very little interannual variability
and has a symmetry between the two hemispheres38. Gray et al.39

performed a wavelength dependent calculation of the albedo for the
solar-cycle specific irradiation and concluded that it is almost the same
as thewavelength-averagedplanetary albedo. In contrast, themodeled
planetary albedo is more variable, and perhaps overtly sensitive to the
surface temperature. This explains some of the scatter of the slope in
Figs. 6, 7.

Thus, for observational data analysis we use:

F̂SOLAR =
1
4

1� αð Þ ξ=0:127 ±4:2% ð17Þ

where ξ =0:72 ±4:1% (5–95% range), α =0:29 ð±0:86%Þ (5–95% range),

and the total uncertainty for F̂SOLAR is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:1%ð Þ2 + 0:86%ð Þ2

q
=4:2%

(5–95% range). The reciprocal is used in Eq. (5):
b= 1

0:127 ± 4:2%=7:87±0:33 (5–95% range).

Uncertainty in TSI reconstructions
Reconstruction of long-term variation of TSI is based on proxies of
solar magnetic activity, mostly sunspot records and chromospheric
indices on centennial time scale. A commonly accepted reconstruction
is that by Naval Research Laboratory (NRL)52. Most CMIP6 used the
recommendation by Mattes et al.53. It is difficult to provide an overall
estimated of the uncertainties of these two reconstructions. We have
decided to estimate the overall uncertainty of the TSI reconstruction
by calculating the difference of the two datasets. The raw data are
shown in Fig. 9a, giving a mean absolute difference of 0.075Wm–2 for
the period 1950–2004 and 0.087Wm–2 for the period 1950–2014.
Much of the uncertainty is related to the secular trend, while our cal-
culation uses only the difference between the solar max and solar min
years. In Fig. 9b we show the mean absolute difference of the detren-
ded time series. Because the trend is nonlinear, linear detrending is not
appropriate. We use the EmpiricalMode Decomposition18,19. Themean
uncertainty is 0.055Wm–2 for the period 1950–2004. The mean dif-
ference is even smaller, at 0.049Wm–2 for the period ending
1950–2014 because there are satellite measurements for the added 10
years. Since the TSI varies by about 1Wm–2 from solar min to solar
max, the uncertainty of 0.049Wm–2 is about 5%. As can be seen in
Fig. 9b, the grouping of the solar plus years and solar minus years are
identical with either of the solar reconstructions after nonlinear
detrending, yielding identical solar temperature response using the
LDA method.

Uncertainty in method
The LDA spatial filter is very efficient in the sense that the projected
time series TLDA tð Þ after the first step is already very close to the TSI
time series22, with a small residue of 0.02 °C–0.04 °C. This small resi-
due is eliminated by the second, regression step. This residue in the
intermediate step is not counted as an error in our two-stepprocedure.

The major uncertainty in the LDA method is related to the
determination of the truncation parameter r for the data regulariza-
tion. r should be large enough to include the target signal (the solar
response in our case) but small enough to prevent overfitting with
noise to generate an artificially high separation of the two groups. For
HadCRUT5 over 1956–2014, the value of κ reaches a plateau when
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r = 30, implying thatmostof the solar response is includedwhen r≥ 30.
Further increasing r leads to overfitting (Supplementary Information).
Based on two different values of r (30 and 38), we estimate an addi-
tional 1% to the overall uncertainty in rTCR in Eq. (13) for the 5–95%
range for κ.

Sensitivity to period considered
Solar forcing is not sinusoidal. Its TSI has variable amplitudes
and slightly variable period. Different response to different forcing
period is to be expected. This makes it more important that models
and observations are analyzed using the same period when we want
to use observations to constrain the models. When there is a secular
trend in TSI, the nonlinear trend needs to be first removed. Here we
use the Empirical Mode Decomposition19,54 for that purpose. For the
period 1950–2004, the secular solar trend is small; multi-cycle
mean can be used instead. This is not always the case. Solar Cycle
24, fromDecember 2008 to December 2019, is highly unusual. It is the
lowest on record since Solar Cycles 12–15 during 1878–1923, leading
many to speculate about the possibility of a “Grand Solar Minimum”.
We do not expect that our conclusion about model’s TCR would be
affected if both models and observations cover the same period,
since we extract the response regressed against the forcing. However,
including this extra cycle would include a secular trend, complicating
the methods for defining solar plus years or solar minus years. This
problem is solved using EMD to remove the nonlinear trend, and the
two groups are defined relative to that nonlinear trend locally.

Amdur et al.55 considered the period 1959–2019, including
Solar Cycle 24, without removing the nonlinear trend. The year 1959
is a solar max and 2019 a min, which by themselves include an
imbedded trend from solar max to solar min. They obtained
κSOLAR =0:07±0:12

�C=Wm�2 (2.5–97.5% range) for HadCRUT4 when
using the same LDA method as ours. (There may be a typo in their
text, where they listed 0.10 ±0.12, while their Table listed 0.07 ± 0.12).
Their central value of 0.07 is very close to our 0.08, but their uncer-
tainty range is more than twice that of their central value and includes
0, partly due to the secular trend in the solar forcing, and partly due
to their phase randomization test, which likely led to an overestimated
uncertainty, as discussed in Camp and Tung25. They further obtained
different values when they slide the 60-year window to include dif-
ferent periods with unequal number of solar plus years and solar
minus years. Having unequal number of the two solar groups intro-
duces biaswhenwe do not have sufficiently long record to average out
the bias of having toomany solarmaxes or toomany solar mins. There
was also an error in their code when they were supposed to have used
the Composite Mean Difference method to extract the solar cycle
response: They actually used Composite “Sum” Difference, which
amplifies the problem related to unequal number of samples in
each group.

The signal extracted by other authors using purely time series
analysis, such asmultiple linear regression56, tended to be smaller than
what we found using space-time methods20,57. One should always use
the most discriminating method known at the time. The difference
between a more discriminating method and a less discriminating
method should not be counted as an uncertainty in the method and
has not been included in our uncertainty quantification. If this were
counted, the uncertainty range can be arbitrarily large because there is
always a worse method.

A method easier to implement than LDA is the Composite Mean
Difference (CMD) method of Camp and Tung25, and the associated
statistical tests as described in detail in Zhou andTung20. CMDuses the
difference in spatial structure between the mean of solar plus years
and solar minus years and projecting the space-time data onto that
spatial pattern. CMD is more intuitive and yields the solar cycle signal
that is very close to that obtained by LDA but has a larger uncertainty.
For this reason, CMD is not employed in this study.

Uncertainty in RF for CO2

Myhre et al.58, obtained by fitting to the results of a broadbandmodel,
the following canonical formula for the RF of 2×CO2:

F2 ×CO2
= 5:35 ln

C
C0

� 	
Wm�2,

where C is the atmospheric concentration of CO2 and C0 is its initial
value. For doubling CO2, this formula yields F2 ×CO2

= 3.71Wm–2. The
constant coefficient has an uncertainty of 1%. The broadband model
has a reported error of –2.4% compared to the line-by-line model.
Updating the line-by-line radiative transfer calculations and after
reviewing the uncertainties involved, Etminan et al.59 concluded that
the total uncertainty for F2 ×CO2

is ±10% (5–95% range), retaining what
was previously adopted by IPCC AR5. IPCC AR6 found ERF to be
0.2Wm–2 higher than Stratosphere adjusted RF, with a ±12%
uncertainty. We suggest that this uncertainty in model diagnosed
ERF, which is not an observable quantity, can be avoided by
constraining the normalized TCR. In climate model runs, this ERF
does not need to be specified. The doubling CO2 atmospheric
concentration can be specified without uncertainty.

Uncertainty in surface temperature data
HadCRUT517 is a combination of a global land-surface temperature
dataset, CRUTEM5, and the global SST dataset, HadSST4. There is no
interpolation (in-filling) performed and so there are some coverage
gaps. Although poor in the 1850–1880 period, the data coverage is
good after 1950, at over 75%. We use only the data after 1950. Two
hundred ensemble members, an increase from the 100 ensemble
members in the previous version, are used to provide an assessment of
observational uncertainties, such as those arising from changing
instrumental and observational practices, changes in station locations,
and changes in local land use. These uncertainties are shared by other
datasets. We apply the LDA method to each ensemble member to
extract a solar-cycle response. The larger number of ensemble mem-
bers yields a larger uncertainty range (about twice) compared from
that obtained from the previous version, HadCRUT4.6. The central
value is obtained as the ensemble mean.

Richardson et al8. pointed out the importance of using a geo-
graphically complete dataset. They found a significant 15% difference
in the inferredTCRbetween amasked version and the completemodel
dataset and adjusted their mean value of TCR by this modeled ratio to
account for the effect if the dataset were complete. However, this
adjustment is model dependent. Currently one geographically com-
plete observational dataset is available, provided by GISTEMP, which
builds upon the latest NOAA Merged Land–Ocean Global Surface
Temperature Analysis. The NOAA sea-surface temperature (ERSSTv5)
is complete, based on satellite observations since 1979, but some
missing data exist over land. Unlike HadCRUT5, GISTEMP does not
provide a way for us to assess their uncertainty. Its solar-cycle
responses however fall within the uncertainty range of HadCRUT5
(see Fig. 1).

In 2008, because geographically complete datasets were not
available, Tung et al.22 included two reanalyses, ERA-40 and NCEP.
Solar-cycle response from ERA-40 and NCEP differ significantly. While
ERA-40’s solar-cycle response is 0.12 °C, NCEP is an outlier at 0.17 °C.
While ERA-40 produced 2-m temperature by interpolating from SST,
NCEP’s “surface” temperature (at 0.995 sigma level) was produced by
the model using upper air observations and surface pressure. It does
not assimilate the observed 2-m temperature over land60. Tung and
Camp61 found the solar signal obtained from NCEP’s “surface” tem-
perature to be the same as that found from its 925-hPa temperature,
which tends to be higher in magnitude than that from the surface
temperature. NCEP’s interannual variance is generally higher than
ERA’s61. It should be pointed out that the NCEP’s higher value was not
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used in constraining the TCR in Tung et al.22. At the time, the linear
relationship in Eq. (12) wasnot available because the reported radiative
transfer calculations available (from the top of the atmosphere to the
tropopause) were to us ambiguous. That study resorted to an
inequality that the TCR should be larger than a minimum value cor-
responding to the lowest solar-cycle response. NCEP’s higher valuewas
therefore not used as a constraint. It was used only to indicate the
uncertainty of this lower bound and did not affect the conclusion.
HadCRUT3 used then has now been updated to HadCRUT5 and GISS
has gone through a major update incorporating NOAA’s ERSSTv5. The
newer datasets are geographically more complete, and lead to lower
solar-cycle responses in surface temperature.

CMIP6 models
Previously, it was thought that climatemodels either cannot generate
solar-cycle signals at the surface or, if they could, the amplitude
would be too small to be detected over climate noise62. Conse-
quently, the solar-cycle response has not been used to constrain
model climate sensitivities. Some still think the surface response to
the small radiative forcing is too small as calculated from a back-of-
envelope estimate, without realizing that, like greenhouse gas
warming, the response should be amplified by the various climate
feedbacks in the troposphere. It was also argued by some studies that
exoticmechanisms not included in CMIPmodels, such as cosmic rays
forming condensation nuclei for clouds, need to be invoked. Solar-
cycle responses from the climate models are extracted from each
model’s surface temperature using the method of LDA61,63, which
utilizes the spatial-temporal information of the phenomenon. The
models studied here include some with interactive ozone chemistry
and some without, and yet there is no systematic difference between
them in their solar-cycle response. This is noteworthy as one of the
proposed mechanisms, the so-called “stratospheric pathway”64,
involves interactive ozone in the stratosphere: The UV portion of the
solar irradiance produces ozone in the stratosphere, and the addi-
tional ozone heating generates a stratosphere temperature signal.
Although it is known that very little of the ultraviolet portion of the
11-year solar cycle forcing gets through the stratosphere into the
troposphere because of the effective ozone absorption in the stra-
tosphere, there havebeen someproposals for an indirect influence of
the stratosphere on the troposphere64. The proposed pathway may
affect regional variability for which an interactive ozone model is
important. Here we study the global surface signal.

There have been proposals of the galactic cosmic rays (GCR)
affecting the troposphere via their forming condensation nuclei for
clouds. In fact, it was suggested that the early twentieth century global
warmingwas caused by the cosmic rays. The second author, Tung, was
in a National Academy of Sciences team that examined this issue in
201262 and found no evidence supporting the proposal and evidence
contradicting it. Later in 2017 a satellite called “CLOUD” was launched
to study this issue. The results were that the cosmic rays are “unlikely
to be comparable to the effect of large variations in natural primary
aerosol emissions”.

Fluxes of energetic particles consisting of coronamass ejection of
energetic particles (mostly ionized hydrogen) and the effect of solar
wind on cosmic rays can potentially affect atmospheric composition,
butmostly in the upper atmosphere.MostCMIP6models are unable to
account for these particle fluxes with the exception of a few, such as
WACCM. Notable recent studies focusing on the impacts of GCRs,
solar proton events and energetic electron precipitation on chemical
composition of the atmosphere include Calisto et al.65 and Rozanov
et al.66. They showed using the SOCOL model that the GCR induced
changes in the chemical species, such as NOx, HOx, O3, are largest as
measured in percentage (~10%) in the middle troposphere. However,
since these chemical tracers are most abundant in the stratosphere
and less abundant in the troposphere by at least an order of

magnitude, the contribution of the tropospheric change to the total
NOx abundance is very small.

In our recent publications67,68 we estimated the solar-cycle
induced changes in NO2 using ground-based observations, WACCM,
and our own 1-D photochemical model. The changes are largely in the
stratosphere, near the 1-hPa level, with an exception during rare non-
linear events such as tropopause folding in the mid-latitude68. Thus,
the overall solar-cycle (or GCR) induced changes in the tropospheric
NOx is much less than other variabilities, e.g. anthropogenic pollution,
and therefore we do not focus on its climate impact in the
current study.

The aforementioned studies also suggested that the GCR-induced
changes of stratospheric species could lead to a reduction in strato-
spheric O3, which in turn could strengthen the polar night jets and
potentially indirectly impact surface climate [e.g. in northern Europe].
Matthes et al.53 used one of the CMIP6 model, WACCM and obtained a
weakened polar night jet in the solar maximum, consistent with those
studies, potentially impacting regional climate. We are interested
however in globally averaged surface response.

In summary, these and the studies mentioned earlier suggest that
while these particle fluxes may affect chemical composition in the
upper atmosphere, their impact on surface global temperature
response is likely small. Furthermore, even if the effect is not small, it
does not affect our results as long as these variations follow the time
variation of the TSI tð Þ, though some may be anticorrelated. This is
because we extract the total solar cycle response from all solar forcing
and regressed against the TSI tð Þ for both models and observation. In
observation, obviously the effect is included. In the few models which
include particle flux forcing and SSI, the response should include it.
Though if such particle forcing and or SSI is important, the denomi-
nator of the regression could be larger or smaller. But since both the
models and observations used the same regression, the relationship
between them does not change.

CMIP6 models and their TCR
Model TCRs were taken from Meehl et al.1 for CMIP6. Uncertainty in
how TCR is calculated is usually not adequately included in previous
uncertainty analyses of climate sensitivity. As pointed out in our pre-
vious work69, one major uncertainty is the internal variability in the
control run affecting the baseline temperature which was subtracted
from the 70th year temperature to calculate TCR. This variability yields
TCR values that could be 30% different for the samemodel depending
on which year is chosen for the baseline. We previously recommended
taking a 100-yearmeanof the preindustrial control run for the baseline
value, and that the control run be at least 1,000 years long. We also
showed that the subtraction of the climate drift of a parallel control
run is no substitute for adequately long control runs. These protocols
are partially adopted for the CMIP6 protocol: The control runs were
recommended to be at least 500 years, and the ESMValTool in Meehl
et al. calculated TCR using 20-year averaging of the 60th–79th years of
the run minus the Pre-Industrial baseline value. For some models the
control runs are still too short, and substantial uncertainty may
remain69,70. In AR4, the model with the highest TCR was MIROC(hires),
at 2.6 °C. It had only 109 years of coupled spin-up. MIROC6 now has
1000 years of ocean spin up. The MIROC-ES2L model has 3,000 years
of ocean spin-up and 1000 years of coupling to the atmosphere. Their
TCR of 1.6 is now among the lowest in CMIP6. The uncertainty asso-
ciated with inadequate time for the spin-up and control runs remains
unquantified andunquantifiableby us. Therefore, we exclude fromour
study models with such problems (See Supplementary Table S1).

Solar responses simulated in all ensemble members of the same
model are averaged to give a single value that is listed in Supplemen-
tary Table S1, except for MIROC6. MIROC6 has 50 ensemble members
starting with different branch-off times of the pre-industrial simula-
tion. Some members branched off too early, not giving adequate
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spin-up time before branching. The average solar response ofMIROC6
is here obtained using the 20 ensemble members that have branch-off
times of at least 600 years.

Lag in solar-cycle response relative to forcing
The lag extracted from observations is close to zero. Since we used
annualmean data to avoid the rather large seasonal variability, a lag of
a fewmonths cannot be ruled out, but such a lag cannot bemore than
six months. We assign an uncertainty in this slope using the two
extreme values of lag, 0 and 6 months.

Data availability
All data used in this study are publicly available. The CMIP6 data were
downloaded from https://esgf-node.llnl.gov/. The ERA-40 and ERA5
data were downloaded from https://www.ecmwf.int/. The HadCRUT5
data were downloaded from https://www.metoffice.gov.uk/hadobs/
hadcrut5/. The GISTEMP4 data were downloaded from https://data.
giss.nasa.gov/gistemp/. The solar flux used in CMIP6 models can be
obtained at https://solarisheppa.geomar.de/cmip6. This is also the
solar forcing used here in our analyses. For comparison purposes we
also used the Naval Research Lab’s solar forcing: https://data.giss.nasa.
gov/modelforce/solar.irradiance/

Code availability
The algorithm of the linear discriminant analysis (LDA) used to extract
the solar signal in this study is contained in the Supplementary Infor-
mation. The work presented in the main text was obtained using the
LDA algorithm implemented in IDL.
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