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Internal states as a source of subject-
dependent movement variability are repre-
sented by large-scale brain networks

Macauley Smith Breault 1,2 , Pierre Sacré 3, Zachary B. Fitzgerald4,
John T. Gale5, Kathleen E. Cullen 2, Jorge A. González-Martínez6 &
Sridevi V. Sarma2

Humans’ ability to adapt and learn relies on reflecting on past performance.
These experiences form latent representations called internal states that
induce movement variability that improves how we interact with our envir-
onment. Our study uncovered temporal dynamics and neural substrates of
two states from ten subjects implanted with intracranial depth electrodes
while they performed a goal-directed motor task with physical perturbations.
We identified two internal states using state-space models: one tracking past
errors and the other past perturbations. These states influenced reaction times
and speed errors, revealing how subjects strategize from trial history. Using
local field potentials from over 100 brain regions, we found large-scale brain
networks such as the dorsal attention and default mode network modulate
visuospatial attention based on recent performance and environmental feed-
back. Notably, these networks were more prominent in higher-performing
subjects, emphasizing their role in improving motor performance by reg-
ulating movement variability through internal states.

Professional athletes represent the pinnacle of motor control and
precision, but they too fall victim to slight variations in their move-
ment. Movement variability is traditionally viewed as a byproduct of
noise accumulated by the motor system1. However, there is emerging
evidence that this variability is purposefully orchestrated by the brain
to facilitate learning and adaptation2–5. For example, more movement
variability through exploration leads to faster learning and better
performance6,7. The decision to explore—as opposed to exploit—an
environment to gather information to inform future behavior through
learning lends itself naturally to movement variability. Not only does
this information depend on the present, but also on internalized fac-
tors that account for the accumulation of past experience. These fac-
tors are commonly represented as a methodological construct of
memory called internal states. For example, movement variability is

influenced by motivation8,9, confidence10,11, and emotion12–14. Future
behavior is therefore the culmination of current information and
internal states.

With their impact on behavior so apparent, it is surprising how
ambiguous internal states are in motor control compared to other
fields such as decision-making. To date, research into decision-making
has used statistical models to explore relationships between beha-
vioral variability and internal states15–18 with the aimof finding evidence
of the brain encoding states related to uncertainty19, bias20, trial
history21, and impulsivity22. Like decision-making, the goal of motor
control is to produce actions that optimize outcomes in the presence
of uncertainty23. Whether those actions are decisions or movements,
variability and internal states are inherent to both. Therefore, we
speculated that internal states are encoded in regions that are not
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specific to motor control (i.e., nonmotor regions). Indeed, decision-
making tasks that require movements find that regions involved with
sensorimotor integration encode their internal states as opposed to
motor regions20,21. In this context, an emerging consensus is that
movement variability originates from both the planning24 and execu-
tion phases25 of movement. However, the gap in our understanding of
motor control becomes apparent when one asks how internal states
evolve, where they are encoded in the brain, and how they affect
performance.

Two challenges need to be overcome to address these questions.
The first challenge is determining the internal states based on beha-
vior. To date, direct measures of the brain’s internal states have
remained elusive26. Internal states are not measurable biological phe-
nomena, such as temperature. Researchers have tried to capture
measures of such states using methods including self-reporting27,
galvanic skin conductance28, heart rate variability29,30, and pupil size31.
However, these measures are context-dependent32, vary between
individuals30, and can functionwith timescales on the order ofminutes
to compute28,30, whereas internal states can change within seconds33.
By comparison, decision-making studies rely on observable behavior
suchas reaction times, decisions, andoutcomes to derive their internal
states. Therefore, motor control studies would also be ideal for
deriving internal states due to their abundant movement-related data.
Even so, since these methods are all byproducts of the brain, the
question arises as to why not measure internal states directly from
the brain.

This leads to our second challenge, which is identifying where
internal states are encoded in the brain. As previously mentioned,
research on decision-making supports the view that internal states are
encoded by diverse brain regions involving multiple systems (e.g.,
sensory and memory)19–22. Whole-brain imaging with high temporal
resolution would be ideal for capturing diverse brain structures and
rapidly evolving internal states. Most work in humans has used non-
invasive neural imaging, such as functional Magnetic Resonance Ima-
ging (fMRI). These studies report the occurrence of co-varying beha-
vioral and neurological variability2,4,34. However, the limitations of the
temporal resolution of fMRI35, compounded by the limited space that
subjects must perform a natural movement, make it difficult to link
neural correlates of internal states to behavior34. What is needed is
millisecond resolution with whole-brain coverage.

To address these challenges, we combined high-quality mea-
surements of natural reaching movements with high-spatial and tem-
poral resolution neural StereoElectroEncephaloGraphy (SEEG)
recordings. Specifically, ten human subjects implanted with intracra-
nial depth electrodes performed a simple motor task that elicited
movement variability during planning and execution. We estimated
two internal states using state-space models trained on measurable
behavioral data: the error state accumulates based on past errors to
convey overall performance and the perturbed state accumulates

based on past perturbations to convey environmental uncertainty.
Adding these states improved our ability to estimate trial-by-trial
reaction times and speederrors over using stimuli alone.Our approach
also granted us access to latent terms that predicted subject perfor-
mance and provided insight into subject strategy. Remarkably, we
found neural evidence of the brain encoding each of the internal states
in relatively distinct large-scale brain networks. Specifically, large-scale
brain networks, such as the Dorsal Attention Network (DAN) and
DefaultNetwork (DN), were linked to the error andperturbed state.We
also have preliminary evidence linking the encoding strength and
functional connectivity of thesenetworks back to subjectperformance
and strategy.

Results
To investigate the coupling between motor variability and internal
states, we devised a goal-directed reaching task that elicited move-
ment variability both within and between human subjects. We first
characterized this variability for our population of subjects during
both planning and execution based on trial conditions. Then, to
account for this variability, we built a simple behavioral model that
incorporated dynamic internal states as accumulating trial history that
evolve over time.Using computationalmethods,weused thismodel to
explain differences in strategy across subjects by comparing their
session performance to how they used internal states to inform future
behavior. Finally, using recordings from intracranial depth electrodes
implanted in the same subjects, we investigated the relationship
between neural activity in large-scale brain networks and the encoding
of these internal states.

Motor task produced variability between and within subjects
Subjects performed a motor task using a robotic manipulandum for a
virtual monetary reward using their dominant hand (Table 1). The task
consisted of reaching movements towards a target at an instructed
speed despite the possibility of physical perturbations (Fig. 1a). This
task was designed to elicit movement variability both between- and
within-subjects. We quantified this variability for the planning and
execution phases of movement by calculating reaction time (RT) and
speed error (SE), respectively. An overlay of RT and SE for each subject
is shown in Fig. 1b, c. Group data comparisons confirmed the presence
of between-subject variability in both RT and SE. That is, there was a
main effect of subject on RT (three-way ANOVA: F(9, 27) = 7.24,
p = 2.85 × 10−3, partial η2 = 0.87) and SE (three-way ANOVA:
F(9, 45) = 13.17, p = 4.09 × 10−12, partial η2 = 0.62). We then used stan-
dard deviations (STD) to quantify the within-subject variability, where
the absence of variability would mean STD equal to 0. Indeed, within-
subject variability was consistently found across all subjects, meaning
no subject was able to exactly reproduce the same movement across
trials. All subjects had a non-zero STD for RT and SE, with subject 6
having the highest variability for RT and subject 2 having the highest

Table 1 | Subject handedness and clinically relevant information such as identified epileptogenic zone

Subject Handedness Age at surgery (years) Epileptogenic zone

1 right 41 Right hippocampus, Right entorhinal cortex, Right temporal pole

2 right 34 Right middle temporal gyrus, Right temporal pole, Right superior temporal sulcus

3 left 37 Left hippocampus

4 right 36 Right intraparietal sulcus, Right precuneus

5 right 32 Left insula (inconclusive)

6 left 29 Right hippocampus, Left superior temporal gyrus, Left orbitofrontal cortex

7 left 23 Left intraparietal sulcus, Left precuneus, Left supramarginal gyrus, Left angular gyrus, Left superior temporal gyrus

8 left 26 Left fusiform gyrus, Left hippocampus

9 right 60 Left temporal pole

10 right 24 Right hippocampus, Right fusiform gyrus
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variability for SE (Supplementary Tables 1–2). Combined, our motor
task successfully produced behavior that varied between- and within-
subjects.

We then investigatedwhether differences in trial conditions could
explain within-subject variability. Figure 1d, e shows the distributions
of the RT and SE for the population separated based on the trial con-
dition. Starting with the planning phase, the trial conditions that
influenced RT were speed and direction. We expected subjects to
change their RT basedon these speeds. Indeed, therewas amain effect
of speed on RT (three-way ANOVA: F(1, 9) = 9.74, p = 0.012, partial
η2 = 0.52), meaning subjects reacted more quickly for fast trials than
slow trials. We also found a main effect between the location of the
target and how quickly subjects reacted (three-way ANOVA:
F(3, 27) = 4.59, p =0.0012, partial η2 = 0.32). Specifically, they reacted
more slowly when the target was up compared to when the target was
down (post-hoc Tukey’s: p =0.0005) or right (post-hoc Tukey’s:
p =0.0022). However,we did not find a significant interaction between
speed and direction. For the execution phase, the trial conditions that
influenced SE were speed and perturbation. As a group, we found a
main effect between the type of perturbation and SE (three-way

ANOVA: F(5, 45) = 23.23, p = 9.56 × 10−12, partial η2 = 0.71), with the
exception of unperturbed compared to towards trials regardless of
speed (Supplementary Table 10). However, we did find that RT does
not significantly influence SE. Taken together, these results support a
model of planning and execution using RT and SE that is both subject-
specific and based on trial conditions. Supplementary Table 3 contains
the complete summary of the trial conditions each subject experi-
enced. See Supplementary Table 4–10 for the complete statistical test
results.

We also found that performancedifferentiates variability between
subjects. As previously described, variability was quantified using the
STD of each behavior, where a higher STD corresponds to higher
variable behavior. Session performance of each subject was quantified
as the percent of correct trials over all completed trials. Average ses-
sion performance was 51%. Figure 1f, g shows how subject’s variability
of RT and SE is related to their performance. Specifically, we found that
subjects with higher session performance had less variable SE (two-
tailed Pearson correlation: r = −0.88, p = 7.42 × 10−4).

In summary, even though all the subjects encountered the same
trial conditions, their behavior varied which, in turn, affected their
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Fig. 1 | Movement variability across subjects and trial conditions. Summary of
behavior during motor task shows variability within and between subjects that is
independent of trial conditions yet correlates with their session performance. a A
detailed timeline of epochs shown to subjects on a computer screen during an
example trial. The name of each epoch is labeled above and the time each epoch
was presented is displayed in the bottom right corner. The conditions (speed,
direction, perturbation) for this example of a correct trial are fast, up, and unper-
turbed. Epochs were grouped into movement phases (planning, execution, feed-
back). Time-series of the observed (b) reaction time (RT) and (c) speed error (SE)
across all trials and subjects. Subject 6 is colored black and the remainder of the
subjects are colored gray. Observed (d) RT and (e) SE for all trials and subjects
separated by trial conditions. Each marker represents the behavior of a subject
during a trial for the specified condition. The arrows indicate the interpretation of

the behavior relative to the average. Subject 6 is colored black and the remainder of
the subjects are colored gray. The gray dotted line in (d) indicates the average
population RT (0.80 s). The gray dotted lines in (e) indicate the tolerance of SE
between -0.13 and 0.13, wheremarkers between these lines represent correct trials.
Comparison of the variability of the observed (f) RT and (g) SE and performance
across subjects. Standard deviation (STD) was used to quantify variability. Each
marker is labeled by the subject it represents. Subject 6 is colored black and the
remainder of the subjects are colored gray. The least-squares line is marked as the
gray dashed line. Average session performance (51%) is marked by the vertical gray
dotted line. There is a correlation between SE variability and session performance
(two-tailed Pearson correlation: r = −0.88, p = 7.42 × 10−4), in which better perfor-
mers have fewer variable errors, but not between RT variability and session per-
formance. Source data are provided as a Source Data file.
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performance. Therefore, factors other than trial conditions must be
influencing their performance.

Internal states capture movement variability
Using computationalmethods, we then developed amodel to account
for the variability that we observed between subjects (see Methods).
Specifically, to account for variability not captured by trial conditions,
we added two internal states. Thefirst internal statewas the error state,
which accumulates the speed errors during past trials to keep track of
how well a subject was accomplishing the instructed speed. The sec-
ond internal state was the perturbed state, which accumulates the
presence of perturbations during past trials to convey environmental
uncertainty

To combine trial conditions and internal states, we used the state-
space model illustrated in Fig. 2a. Each behavior (Eqs. (1) and (2)) was

calculated as a linear combination of the trial conditions and internal
states (Eqs. (3) and (4)). These equations were then used to simulta-
neously estimate the behavior and internal states for all subjects. We
were interested in examining (i) if our estimates follow the observed
behavior, (ii) the characteristics that internal states and trial conditions
independently capture, and (iii) how their internal states uniquely
evolve to impact behavior. Themodel results of all subjects are shown
in Supplementary Figs. 1–5. All model weights are in Supplementary
Table 11.

Overall, we first found that the estimated behavior follows the
observed behavior. We found a significant positive correlation
between the estimated and observed behavior in 9 out of 10 subjects
for RT (range of two-tailed Pearson correlation values: 0.3 −0.78,
Supplementary Fig. 1) and in 10 out of 10 subjects for SE (range of two-
tailed Pearson correlation values: 0.42 −0.86, Supplementary Fig. 2).
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Fig. 2 | Influence of model variables for estimating behavioral model. a Block
diagram of our dynamical model—representing the brain—that models behavior to
capture movement variability. Internal states are outlined by the dotted line to
highlight its latent feedback structure in the model. b–d Examination of model
variables for subject 6 reveals underlying dynamics from the internal states that
lead to the improvement of estimated behavior from themodel observed across all
subjects. The black triangle marks trial 109. b Time-series of the observed (gray
solid line) and estimated (black solid line) reaction time (RT) ± the 95% confidence
interval (gray shaded area) over all trials for subject 6. The gray dotted linemarkers
their average RT (1.07 s). c Time-series of the conditions (orange solid line) and
states (purple solid line) over all trials for subject 6. The gray dotted line markers
their averageRT. Adding the conditions and states together yields the estimatedRT
in (b). d Time-series of the error state (blue solid line) and perturbed state (pink

solid line)over all trials for subject 6. For demonstrative purposes, the states arenot
weighted but are scaled by their standard deviation. The gray dotted line marks 0.
Adding theweighted combination of error and perturbed states together yields the
states in (c). Goodness-of-fit for the (e) RT and (f) speed error (SE)models across all
subjects measured using the coefficient of determination between the observed
and estimated behavior, which ranges between 0% (worst) and 100% (best). We
compared the behavioral models with internal states (With states) to a model with
the same trial conditions but without internal states (Without states). Each marker
is labeled by the subject it represents. Subject 6 is outlined in black. Adding internal
states significantly improved the goodness-of-fit of the RT (two-tailed paired-
sample t-test: t(9) = − 3.71, p =0.0048) and SE (two-tailed paired-sample t-test:
t(9) = − 5.62, p =0.00032) model for all subjects, as larger values are better. Source
data are provided as a Source Data file.
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Only subject 1’s RT was not statically significant (two-tailed Pearson
correlation: r = 0.19, p =0.065). To illustrate the relationship between
the estimated and observed behavior, for example, consider subject 6,
whose session performance was around the population average. Fig-
ure 2b shows subject 6’s RT across all their trials, with their observed
behavior in gray and their estimated behavior in black. Indeed, our
estimates followed key features from their observed behavior (two-
tailed Pearson correlation: r =0.73, p = 4.75 × 10−23), including trial-to-
trial changes and gradual changes such as between trials 100 and 125.
For example, the estimate on trial 109 (black triangle) matches what
was observed; subject 6 reacted faster than their average.

Next, we explored which parts of our model allowed the esti-
mates to follow the observed behavior. Within the model, trial
conditions accounted for the trial-by-trial changes and internal
states accounted for gradual changes across all subjects (Supple-
mentary Fig. 6a, b) for both RT (Supplementary Fig. 3) and SE
(Supplementary Fig. 4). As such, the states captured the accumu-
lation of subtle changes each subject exhibited. For example, the
states (purple) for RT monotonically increased over trials for sub-
jects 4, 5, 7, and 10 (Supplementary Fig. 3). This feature reproduced
subjects progressively reacting slower possibly due to fatigue
(Supplementary Fig. 1), which could not be replicated by the portion
of the model responsible for trial conditions (orange). As another
example, Fig. 2c shows the estimated RT of subject 6 separated into
the trial conditions (orange) and internal states (purple). On trial
109 (black triangle) with the conditions slow and up, subject
6 should have reacted slower than average. However, the states
outweighed the conditions, as demonstrated in subject 6 by their
faster reaction time. By incorporating both trial conditions and
internal states, our model captured features essential in realistic
behavior that neither would be able to convey independently.

To determine why subjects behaved the way they did despite trial
conditions, we next investigated the structure of the two internal
states to understand their dynamics. The monotonic nature of the
states observed in the population was carried over by one or both
states for most subjects (Supplementary Fig. 5). We found the per-
turbed state (pink) to be responsible for the monotonic structure of
the RT for subjects 4, 5, 7, and 10. This result suggests that these
subjects reacted slower out of hesitancy originating from the accu-
mulation of perturbations, making them less certain about their
environment. Even subjects with nonmonotonic states exhibited trials
with uncertainty. For example, Fig. 2d shows error state (blue) and
perturbed state (pink) across all trials for subject 6. Their error and
perturbed state on trial 109 (black triangle) are both positive, indi-
cating that they recently moved slower than instructed and were
perturbed. The perturbed state conveyed that recent successions of
perturbations caused subject 6 to react and move faster in an attempt
to counteract the uncertain environment. Overall, this data suggests
that the internal states grant access to latent information about
subjects.

Finally, we looked at our population of subjects to test whether
adding internal states improved our ability to explain movement
variability over using trial conditions alone, by comparing the coeffi-
cient of determination—a goodness-of-fit metric that measures the
proportion of the behavioral variability that can be explained by the
model variables—of the model with states to one without states. Fig-
ure 2e, f shows that adding the internal states to themodel significantly
improved the estimation two-tailed paired-sample t-test: t(9) = − 3.71,
p =0.0048of both RT (two-tailed paired-sample t-test: t(9) = − 3.71,
p =0.0048) and SE (two-tailed paired-sample t-test: t(9) = − 5.62,
p =0.00032) across all subjects. The higher percentagemeansmore of
the variability is accounted for by the model variables. For example,
the goodness-of-fit for subject 6 (black) improved by 16%. However,
the model structure fits some subjects better than others. Specifically,
subjects 1 through 4 had outlying model performance for RT (Fig. 2e)

compared to other subjects. This is notable because these subjects
also had the lowest session performance. Since their model perfor-
mancewas low prior to adding internal states, it indicates that their RT
varied by factors other than speed and direction as well as could
explain their low session performance. Despite this, adding internal
states also improved the deviance (Supplementary Fig. 6c, d) and 10-
fold cross-validation using the fitted internal states for RT (Supple-
mentary Fig. 6e). This, in addition to the fact that adding internal states
improved their model fit and the inlying goodness-of-fit of their SE
model, still merits the validity of interpreting their RT model.

In summary, internal states are essential for completely capturing
movement variability. They conveyed slow evolving characteristics in
the behavior, caused by retained trial history, that were not accounted
for by the trial conditions.

Learning from previous trials improves performance
The quantity of the weights on model variables reveals what each
subject prioritized when they varied their behavior. Thus, we
explored whether we could use our model to uncover different stra-
tegies used by subjects. Specifically, we hypothesized that subjects
with higher session performance learned selective information from
previous trials. Indeed, we found that they learned from the error state
but not the perturbed state. We tested this by considering the rela-
tionship between subjects’ weights on the internal states and session
performance as a population (see Supplementary Fig. 7 all for model
variables).

We found a negative correlation between the weights on the error
state and session performance for both RT in Fig. 3a (two-tailed
Pearson correlation: r = −0.63, p =0.05) and SE in Fig. 3b (two-tailed
Pearson correlation: r = −0.74, p =0.01). Hence, higher performance
corresponded to negative weights on the error state whereas lower
performance corresponded to positive weights. Positive weights
would cause high performing subjects to reduce their RT and SE after
accumulating positive errors bymoving slower than instructed. Under
the same circumstances, lower performing subjects would continue to
react and move more slowly than instructed due to the positive
weights on the error state, thereby accumulating more errors. These
results indicate that subjects with high performance adjusted their
behavior to improve outcomes while subjects with low performance
maintained their error tendencies. This finding suggests that higher
performers learn based on feedback.

Alternatively, we did not foresee subjects learning from per-
turbed trials to improve their session performance due to the
unpredictability of these trials. Indeed, Fig. 3c, d show that there
was no relationship between the weight of the perturbed state and
session performance on RT and SE, respectively. Instead, we found
that subjects responded by either hesitating (i.e., react slower or
move too slow) or counteracting (i.e., react faster or move too fast)
for subsequent trials when they perceived the environment to be
uncertain. More than half of the subjects positively weighted the
perturbed state on RT, indicating hesitation to react. In terms of SE,
we found half of the subjects moved slower (positive weight) in
response to perturbation history while the other half moved faster
(negative weight). We suggest that those who moved faster did so
because they were exerting more force in their future movement in
case they were perturbed.

In summary, our model could account for differences in the
strategies of related to session performance, where higher perfor-
mance corresponded to learning to counteract errors directly based
on previous feedback. Though we could not find a complementary
strategy against perturbations, we did find that subjects either hesi-
tated or hastened to react when they perceived the environment to be
uncertain. Another key strategywas speed,where largermagnitudes of
weights on speed correlated with high session performance (Supple-
mentary Fig. 7c).
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Large-scale brain networks encode internal states
Our combined experimental andmodeling results provide support for
the proposal that internal states can account for behavioral variability,
within- and between-subjects. We next asked whether it was possible
to gain insight into neural correlates of these internal states. More
specifically, we asked whether such states are encoded by large-scale
brain networks. To do this, we first assessed whether we could identify
a set of brain regions linked to each internal state, and then deter-
mined which regions preferentially map to distinct large-scale brain
networks related to session performance.

As a result of our unique experimental procedure, we had access
to neural recordings from intracranial depth electrodes from each
human subject simultaneously as they performed the motor task that
was used to derive their internal states. Subjects were implanted with
electrodes by clinicians to localize the epileptogenic zone for treat-
ment. Illustrated in Fig. 4a, this grantedus access to localfieldpotential
activity from a broad coverage of nonmotor regions, where we hypo-
thesized the brain encoded internal states. These regions were first
labeled anatomically using semi-automated electrode localization
before being mapped to large-scale brain networks (see Methods,
Supplementary Fig. 8a, b).

To identify the neural correlates amongst these regions with an
unsupervised and data-driven method, we used a non-parametric
cluster statistic36 (see Methods) between the spectral data of each

region and each internal state across the population (Fig. 4b, c). This
method finds windows of time (relative to epoch onset) and frequency
(between 1 and 200 Hz) in which the spectral power of a region sig-
nificantly correlates with the internal state across trials as demon-
strated in Fig. 4d. The statistics provided us with two sets of neural
correlates, one for each internal state.

Our modeling results showed that subjects weighed internal
states differently, primarily based on their session performance. We
suspected that this would be reflected in the brain for each subject by
how well these regions encoded the states through the strength of
their neural correlates. The degree to which a subject encodes an
internal state in a region, which we called the encoding strength, was
quantified by correlating the average power within the time-frequency
window (from the population statistic) to the state on a trial-by-trial
basis (see Methods). Figure 4e shows an example of how the encoding
strength is obtained for a channel in subject 6 using the neural cor-
relate from Fig. 4b–d.

Dorsal attention network encodes error state
First, we found that the error state was encodedprimarily by regions in
the DAN (see Table 2 for details and Fig. 5a for visualization). The
regions in DAN (dark blue) included the right intraparietal sulcus (IPS
R), right middle temporal gyrus (MTG R), left superior frontal gyrus
(SFG L), left superior parietal lobule (SPL L), and right superior

Fig. 3 | Weights on internal states show subjects use different motor strategies
based on session performance. A comparison between the internal state weights
and session performance reveals that higher performers learn from error and
becomemore vigilant after perturbations. The larger the magnitude of the weight,
the larger the impact the internal state has on behavior. The sign of the weight
determines the impact the internal state has on behavior. Eachmarker is labeled by
the subject. Average session performance (51%) is marked by the vertical gray
dotted line.Aweight of 0 (i.e., internal state does not impactbehavior) ismarkedby
the horizontal gray dotted line. The least-squares line is marked as the gray dashed
line. All relationships were quantified using a two-tailed Pearson correlation with-
out adjusting for multiple comparisons. a There is a significant relationship (two-
tailed Pearson correlation: r = −0.63, p =0.05) between session performance and
weight of error state on RT. Higher performers countered their error by reacting

faster than average (0> βSE) and lower performers maintained their error by
reacting slower than average (0< βSE) aftermoving too slow.b There is a significant
relationship (two-tailed Pearson correlation: r = −0.74, p =0.01) between session
performance and weight of error state on speed error (SE). Higher performers
tended to move too fast (0 > βSE) and lower performers tended to move too slow
(0< βSE) after moving too slow. c There is not a significant relationship between
session performance and weight of perturbed state on RT. Most subjects hesitated
after perturbation trials by reacting slower (0< βP). d There is not a significant
relationship between session performance and weight of perturbed state on SE.
Half of the subjects hesitated bymoving slower (0< βP) and the other half hastened
by moving faster (0 > βP) after perturbations trials. Refer to Supplementary Fig. 6
and Supplementary Table 11 for all the weights. Source data are provided as a
Source Data file.
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temporal sulcus (STS R). The secondmost prominent network was the
visual network (yellow), which included the right parieto-occipital
sulcus (POS R), left anterior transverse collateral sulcus (ATCS L), right
cuneus (Cu R), and right inferior temporal gyrus (ITGR). Some regions
from other networks also appeared, such as the right angular gyrus
(AG R) and right posterior-dorsal cingulate gyrus (dPCC R) in DN as
well as the right supramarginal gyrus (SMG R) from the Ventral
Attention Network (VAN). However, in the regions we recorded from,
themajority of the regions that encoded the error statewere located in
DAN. Seven of the 15 grouped clusters found to encode the error state
belonged to the DAN. We verified the primacy of DAN encoding the
error state over DN by comparing the distribution of themagnitude of
their cluster statistics, where higher values indicate stronger clusters.
Indeed, we found DAN to have a higher average cluster statistic than
DN (two-tailed two-sample t-test: t(53) = 2.32, p =0.024; Supplemen-
tary Fig. 8c).

Two groups of regions emerged based on (i) when during the trial
did their activity correlate with the error state and (ii) in what fre-
quency bands (see Methods). One-half of these regions encoded the
error state throughout the session as persistent activity—activity that
continues across all movement phases—in the frequency band hyper
gamma (100–200 Hz). This activity was negatively correlated with the
error state, meaning these regions exhibited higher deactivation when
a subject moved slower than instructed. The other half encoded the
error state as phasic activity—activity isolated to either planning,

execution, or feedback—in frequency bands <15Hz. This activity was
positively correlated with the error state for most regions. Overall,
these regions use both persistent and phasic activity to encode the
error state.

Recall our result above showing that subjects used opposing
strategies regarding how they used their error state to change how
they reacted in future trials based on their session performance
(Fig. 3a, b). We next investigated whether this relationship would be
reflectedbyhow strongly these regions encodes the state. Since higher
performance corresponded to subjects learning from their errors, we
expected a positive correlation between encoding strength and ses-
sion performance. We found this to be true (two-tailed Pearson cor-
relation: r = 0.66, p = 1.80× 10−8), as shown in Fig. 5b with DAN in dark
blue, DN in red, VAN in light blue, and the visual network in yellow. For
example, the SPL L—a key hub of DAN—modulates its neural activity
based on the error state for a subject with above average performance
(subject 9) but not for a subject with below average performance
(subject 4) (Fig. 5c).

Default and dorsal attention networks encode perturbed state
Second, we further found that the perturbed state was encoded pri-
marily by regions in the DN andDAN (see Table 3 for details and Fig. 5d
for visualization). The regions in DN (red) included the right angular
gyrus (AG R), left anterior cingulate gyrus (ACG L), right middle tem-
poral gyrus (MTG R), right posterior-dorsal cingulate gyrus (dPCC R),
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and right superior temporal sulcus (STS R). The regions in DAN (blue)
included IPS R and SPL L. As with the error state, regions in the visual
network (yellow) also encoded the perturbed state. They consisted of
the right cuneus (Cu R), right inferior temporal gyrus (ITG R), left
fusiform gyrus (FuG L), and right parieto-occipital sulcus (POS R).
Other networks that appeared included the VAN (SMGR) and even the
somatomotor network through the left subcentral gyrus (SubCG L).
The subcortical region right hippocampus (Hippo R) briefly encoded
the perturbed state after execution. However, since we were only
interested in large-scale brain networks of the neocortex, Hippo R was
not classified in this study. Although the majority of regions we found
to encode the perturbed state were in DN, we did not find a significant
difference between the magnitude of the cluster statistics in DN and
DAN (two-tailed two-sample t-test: t(22) = 0.16, p =0.87; Supplemen-
tary Fig. 8d).

The regions in DN and DAN that encoded the perturbed state did
sowith phasic activity in frequency bands under 15Hz (i.e., delta, theta,
alpha). Most regions had activity that was positively correlated with
the perturbed state; trials with a high perturbed state (associated with
recent perturbations) coincided with higher activation inDN andDAN.

Recall our earlier result in which subjects alter their behavior (i.e.,
hesitate or hasten) with regard to the perturbed state. Although there
was no consistent strategy based on session performance, we still
speculated whether there would be a neurological relationship
between session performance and how the perturbed state was
encoded. As with the error state, we expected subjects with above
average performance to have higher encoding strength because they

generally weighted the perturbed state with a higher magnitude than
those with below average performance (Fig. 3c–d). Indeed, Fig. 5e
shows the networks that modulate their neural activity with the per-
turbed state based on session performance (two-tailed Pearson cor-
relation: r =0.69, p = 2.71 × 10−14). This figure also shows regions from
other networks, which include the DAN in dark blue, VAN in light blue,
somatomotor network in green, and visual network in yellow. For
example, as a hub for the DN, the AG R would increase activity when
the perturbed state was high (i.e., after perturbation trials) for subjects
with high session performance (subject 10) but for subjects with low
session performance (subject 1) (Fig. 5f). Even though our models
could not find a consistent strategy based on session performance,
subjects with above-average performance still modulated their activity
to match the perturbed state.

Connectivity correlates with performance and strategy
Recall that the weight a subject puts on their internal states provides
insight into their learning strategies. Since subjects encode the internal
states in distinct networks, we hypothesized that these strategies
would further be reflected by the functional connectivity of the net-
works that we identified as encoding both the internal state and ses-
sion performance. Simply put, pairs of regions that are spatially
separate yet whose neural activity is correlated are functionally
connected37. We quantified functional connectivity by correlating the
average power within the time-frequency window used for
encoding strength on a trial-by-trial basis for each channel per subject
(Fig. 6a, b). Taking the average of these correlations resulted in a value
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Fig. 5 | Large-scale brain networks encode internal states and reflect session
performance. Summaryof regions found by our analysis that encodes the (a) error
state and (d) perturbed state. They are highlighted on an inflated template brain
called cvs_avg35_inMNI152 from Freesurfer94 based on the large-scale brain
network they belong to: dorsal attention (DAN) in dark blue, default (DN) in red,
somatomotor in green, ventral attention (VAN) in light blue, visual in yellow, and
none in black. The light gray represents the gyri and the dark gray represents the
sulci. The white represents regions included in our analysis but were not found to
encode the state based on performance. Subjects encoded the (b) error state (two-
tailed Pearson correlation: r =0.66, p = 1.80× 10−8) and (e) perturbed state (two-
tailed Pearson correlation: r =0.69, p = 2.71 × 10−14) in their neural activity based on
their session performance. Each marker represents the average encoding strength
of a region for a subject and is colored by the network the region belongs to. An
encoding strength of 1 means the state is strongly encoded by the activity of a

region whereas 0 means the state is not encoded. Average session performance
(51%) is marked by the vertical gray dotted line. The least-squares line is marked as
the gray dashed line. Subjects with higher performance had neural activity that
modulated significantly more with either internal states than subjects with lower
performance. Examples of subjects with high and low session performance for the
(c) error state and (f) perturbed state. The left superior parietal lobule (SPL L)
between subject 9 and subject 4 in the DAN and the right angular gyrus (AG R)
between subject 10 and subject 1. Each marker represents a trial, with the corre-
sponding neural activity of the cluster for a channel in the region and normalized
state value. The gray dashed line represents the least-square line. The two-tailed
Spearman’s correlation (r) and p-value (p) are included in each panel, where the
correlation magnitude was used as the encoding strength. Source data are pro-
vided as a Source Data file.
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that summarizes the functional connectivity between a pair of regions
called subject connectivity strength. Population connectivity strength,
found by averaging subject connectivity strength across all pairs, is
summarized in Supplementary Fig. 9.

Unfortunately, we were not able to observe all possible pairs of
regions because either the pair was not represented in the data set, or
we did not have enough subjects with the pair (n ≥ 3) to make any
remarks. Based on behavioral results, we were interested in the varia-
bility of connectivity between subjects. Specifically, since connectivity
strength is subject-specific, we expected it to vary based on how
subjects performed related to different strategies we observed earlier.
For example, subjects with high performance will exhibit higher sub-
ject connectivity strength between key regions in distinctive net-
works (Fig. 6c).

Our results above demonstrated that high session performance
was accompanied by subjects compensating their behavior in
response to the error state. Using the set of regions that encode the
error state, Fig. 6d further shows that subjects with high performance

favored connectivity between regions in theDN (red),DAN (darkblue),
VAN (light blue), and visual network (yellow). We found that regions
that encoded with persistent activity connected to regions that enco-
ded with phasic activity. Specifically, the persistent activity from DAN
(IPS R and SPL L) and VAN (SMG R) projected namely to regions in the
visual network during key phases during the trial (i.e., planning,
execution, feedback). This result suggests that the error state is held
and distributed by the attention networks to modulate visual atten-
tion. An increase in such attention could account for the counteracting
behavior observed by top performers, such as reacting faster after
moving slower than instructed (Fig. 3a). We also observed a significant
correlation between the persistent activity and phasic activity during
feedback for the SPL L, which is a key hub of DAN. This relationship
implicates persistent and phasic activity having different roles when
encoding the error state. Perhaps the phasic activity represents the
various sensory processes (depending on the phase) used to extra-
polate information about the error state and the persistent activity
holds this information in memory for accessibility by other regions.

Performance connectivity strength
1>0.5

DAN

DN

Visual

VAN

e
 

 

 

 
 

 

             Planning  
 

 

 
 

   
   

   
    

    
    

    
     

     
Feedback

Perturbed stated Error state

Subject 6

-0.5

0.0

0.5

1.0
Av

er
ag

e 
no

rm
. p

ow
er

IP
S 

R

P6 P5 X4 B7

1 66 132
Trial

-1.0

1.0

3.0

M
TG

 R

B10 B9 B8

1

4 6

20 40 60
Session performance (%)

0.0

0.2

0.4

0.6

0.8

1.0

Su
bj

ec
t c

on
ne

ct
iv

ity
 s

tre
ng

th r=0.96
p=1.72e-1

ca

0 0.5 1
Channel connectivity strength

b

P6 P5 X4 B7

IPS R

B10

B9

B8

M
TG

 R

Performance
connectivity
strength

Subject 6 Population

                                 Execution                          Planning                                                                
 Working mem

ory
  

 

 
   

   
   

   
   

   
    

    
    

    
     

      
Feedback

AG R

IPS R

SP
L L

ST
S 

R

SM
G

 R

Cu R

MTG R

C
u 

R

SPL L

ITG R

AG R

ITG R

ITG R

IP
S 

R

ST
S 

R

SM
G

 R

Cu R

MTG R

dPCC R

POS R

SMG R

M
TG

 R

STS RITG
 R

STS R

Fig. 6 | Performance-based network connectivity supports learning strategy.
a Average normalized power for channels in the right intraparietal sulcus (IPS R)
and right middle temporal gyrus (MTG R) of subject 6 across trials. The value for
each trial comes from averaging the normalized power in the time-frequency
windows identified by the non-parametric cluster statistic (Table 2 and Table 3).
This figure uses the results of the error state. b Matrix of channel connectivity
strengths found by taking the magnitude of two-tailed Spearman’s correlation
value between the average normalized power of channels in IPS R and MTG R.
Values close to 1 (red) indicate high correlations and values close to 0 (yellow)
indicate low correlations. c Comparison between subject connectivity strength
(found by taking the average of the channel connectivity strength) and session
performance reveals high-performing subjects engaged in stronger connectivity
between IPS R and MTG R (two-tailed Pearson correlation: r =0.96, p =0.17). The

correlation value represents the performance connectivity strength. Directed
graph depicting performance connectivity strength across regions for (d) error
state and (e) perturbed state. The regions are colored by the large-scale brain
network they belong to: dorsal attention (DAN) in dark blue, default (DN) in red,
ventral attention (VAN) in light blue, and visual in yellow. Only pairs with positive
relationships between connectivity strength and session performance are shown
(i.e., higher performance with higher subject connectivity). The magnitude of the
correlation between connectivity strength and session performance is depicted by
the thickness of the edge; the higher the correlation, the thicker the edge. Values
below0.5 were truncated. The regions are ordered by when they encode each state
and its phase is labeled along the circumference, demonstrating synchrony across
time. See Supplementary Fig. 9 for full performance connectivity. Source data are
provided as a Source Data file.
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Then, the connection between SPL L could be an example of updating
between integration and memory. Overall, subjects with high session
performance favored connections between DAN and visual networks
to encode the error state. These connections could account for how
these subjects learned from their errors, specifically by updating their
memory based on visual feedback to modulate attention in future
trials.

These results also revealed that subjects with high session per-
formancealtered how they reacted (i.e., hesitate or hasten) in response
to the perturbed state. Figure 6e further shows the connectivity
between the perturbed state encoding regions favored towards higher
session performance. Notable, we found more connections for the
perturbed state than compared to the error state. This can be inter-
preted as the perturbed state being more disruptive to their behavior
and requiring the integration of sensorimotor pathways for inter-
pretation during planning and feedback. In general, most of the con-
nections we found were between DN and visual network. This
relationship could allow for the communication of visual information
from feedback to be available for the DN during planning, such as to
update their expectation about the environment of the motor task.
This information could then be projected to regions in the visual
network and VAN to plan their future behavior. For example, dPCC R
(hub of DN) during early planning projects to SMG R (hub of VAN)
during late planning and early execution. Taken together, these results
suggest that the DN could be modulating bottom-up visual attention
based on the perturbed state. There are also notable connections
between DN and DAN: IPS R and dPCC during planning as well as IPS R
from planning to MTG R during feedback. These junctions suggest
points when DN and DAN communicate task-relevant information that
could also aid in modulating visual attention. Overall, high session
performance favored connectivity between DN to other relevant net-
works whose activity modulates based on the perturbed state during
planning and feedback, which they could have used to adapt their
responsiveness based on perturbations we observed from their
behavior.

Discussion
In the present study, we first identified two internal states—based on
error and environmental history—that induce movement variability in
humans. The degree to which states contribute to an individual’s
variability reveals different strategies based on session performance
regarding how they used their states to inform future behavior.
Remarkably, we then found that these internal states were linked to
encoding in large-scale brain networks, DAN and DN. Taken together
our findings reveal that differences in large-scale brain networks that
can distinguish subjects by their session performance: (i) high per-
formers modulate network activity on a trial-by-trial basis with respect
to their internal states and (ii) their learning strategy is supported by
explicit connections within and between networks during phases of
movement.

The general effect of error and the environment on movement
variability are well documented in motor control. Traditionally, the
goal of optimal feedback control is to minimize error during move-
ment, where larger errors require more variability to correct the
movement38,39. By accounting for the accumulation of errors from trial-
to-trial, we also found that variability scaled based on error history for
those with above average session performance. In everyday life, we
adapt our behavior to fit the environment based on prior experience.
However, it is difficult to adapt when disturbances are rare and
unpredictable. Fine and Thoroughman found that it is difficult for
subjects to learn how to respond to these disturbances that occur for
<20% of trials40. They proposed an adaptive switch strategy that
depends on the environmental dynamics: ignore performance from
trials with rare disturbances and learn when they are common41.
Complimentary, we found that subjects responded in trials after

perturbations by either reacting hesitantly or vigorously. Nevertheless,
their strategy was not a predictor of how well they performed our
reaching task, which can be further explored in future studies.

To learn our speed-instructed motor task, subjects needed to
keep track of errors using workingmemory. Some of their errors were
self-inflicted (e.g., forgetting the speed instruction) while others were
caused by unexpected perturbations. In either case, we found that our
subjects learned the task by monitoring their history of errors to
decide when to allocate attention using the DAN. Our findings are in
agreement with our current knowledge about DAN, specifically for its
control of visuospatial attention42. Other studies have found that it
activates before and during expected (top-down) as well as after
unexpected (bottom-up) visual stimuli43. Therefore, DAN appears to
combine bottom-up information (i.e., unexpected perturbations) with
top-down information (i.e., self-inflicted errors) when deciding how
much attention to allocate for future trials.

More specifically, we found DAN encoded using two frequency
patterns: activating below 15Hz and deactivating in frequencies above
100 Hz. The former was found when subjects either recently moved
faster than instructed—to which they responded by slowing down—or
after recently perturbed trials. This finding is reminiscent of the speed-
accuracy trade-off phenomenon. Speed-accuracy trade-off is observed
during motor learning as a form of behavioral variability where sub-
jects must balance moving faster at the cost of making more errors to
optimize performance44. This phenomenon innately requires tracking
history45. This suggests that DAN is not only tracking history but
is modulating it for learning. Other fMRI studies also corroborate our
observation. Increases in Blood-Oxygen-Level-Dependent (BOLD) sig-
nal relative to baseline in DAN have been reported when subjects were
instructed to prioritize speed (instructed as fast or slow) over accuracy
during a response interference speed-accuracy trade-off task46.
Another study using an anti-saccade task found DAN activation
through BOLD signal positively correlated with RT (i.e., more activa-
tion when slowing down) and being the least activated on trials with
large errors (which compares to our taskwhen the error statewouldbe
close to zero)47. In a visually guidedmotor sequence learning task, DAN
activated—through BOLD signal—to large errors during early learning,
which they related to active visuospatial attention when first learning
the sequence48. Taken together, our results directly implicate DAN as a
network for encoding tracking history.

The persistent activity of DAN in frequencies above 100 Hz when
found are characteristic of working memory49–51. During motor plan-
ning in tasks with working memory, DAN has been shown to maintain
task-relevant information, suchas target location, duringdelay periods
using persistent activity in both whole-brain and single unit
recordings52,53. DAN has also been linked to working memory closely
tied to visual attenuation related to memory load and top-down
memory attention control during visual working memory tasks54.
Though our task does not explicitly study working memory, given the
evidence, our results suggest that DAN is tracking the accumulation of
past errors in working memory. This would also support our con-
nectivity results as information held in working memory can be easily
accessed by multiple systems, such as for sensorimotor integration or
visual processing, for recalling and updating55–57.

Finally, we found that the encoding strength of regions in theDAN
and functional connectivity between these regions, along with the
visual network, scaled based on the subject’s overall performance.
Though these results are preliminary, we linked this with observations
that subjects have different strategies. Those with above average ses-
sion performancemore strongly encoded error history in and between
the regions in theDAN. Hence, theyweremore engaged in the task and
modulated their attention based on the error state. This led to them
slowing down after theymoved tooquickly and vice versa as predicted
by their model weights. Meanwhile, below average performers have
poor attentional control and memory capacity and thus did not learn
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from their mistakes. Studies have shown that poor overall behavioral
performance is related to decreased activity in DAN58–62 (called out of
the zone63), fluctuations in attention and working memory known as a
lapse in attention64–66, and poor connectivity in DAN67,68. Clinically,
studies of Attention Deficit Hyperactivity Disorder (ADHD) found
compromised performanceduring workingmemory tasks is related to
poor attentional control in DAN-related regions69,70, similar to what we
observed in our poor performers.

The random perturbations made our task more difficult by
creating uncertainty in the environment. Our models show that sub-
jects also kept track of past perturbations suggesting possible
attempts to learn the environment. We found that regions whose
activity correlated with the perturbed state were in DN and DAN. They
did so primarily in the frequency bands theta and alpha (<15Hz). The
involvement of DAN and the perturbed state was discussed with the
error state for its connection to allocating attention. As for DN, it
encoded the perturbed state by increasing activity when the environ-
ment was perceived to be more uncertain. This function of the DN is
similar to a recent study by Brandman et al.71 in which they found that
the DN activated immediately following unexpected stimuli in the
form of surprising events during movie clips. They suggested that the
DN could be involved in prediction-error representation, which our
results also support. Furthermore, they also found thatDN coactivated
with the hippocampus during unexpected stimuli. This finding paral-
lels a previous report from our dataset which demonstrated activation
of the hippocampus in response to motor uncertainty72. A proposed
process model of reinforcement learning incorporates regions in the
DN and hippocampus that predict and evaluate the semantic knowl-
edge about the environment to inform future behavior73. Taken toge-
ther, our findings suggest that we captured the DN responding to the
unexpected stimuli by updating semantic knowledge about the
environment which informs future behavior based on the
perturbed state.

Behaviorally, our model did not establish a link between subjects’
performance and how they handled past perturbations but our ana-
lysis of neural activity revealed that subjects with high session per-
formance demonstrated increased activation of regions in DN in
response to the history of perturbations as well as correlated activity
across regions between trials. Since subjects have no control over the
perturbations, we speculate that they attempted to learn how to react
in a way that optimizes their performance. Although they are applied
to random trials and in random directions, perturbations were only
applied during the beginning of the movement. Therefore, subjects
can learn to prepare themselves in a way they see fit. Our preliminary
findings suggest that high performers effectively implement their new
semantic knowledge about the environment to explore different
approaches to prepare for the possibility of future perturbations. DN
becomes more activated during early learning48, particularly when
motor imaginary is used74. In fact, athletes (i.e., experts or high per-
formers) have been shown to activate the DN when employing stra-
tegies that decrease variability, resulting in stable performance during
movement68. The phenomenon, known as in the zone63, has been
linked to the DN activation with consistent performance associated
with preparedness75,76 and vigilance77. Hence, activation of DN indi-
cates those subjects are prepared for the chance of a perturbation.
Taken together, these findings suggest that high performers react to
uncertainty by heightening vigilance through activation and con-
nectivity in DN in conjunction with the VAN and the visual network.

Observing movement variability in the form of motor error is
common in motor control, with paradigms typically focused on
aspects of motor learning. Numerous motor control studies have
found—directly or indirectly—the involvement of regions in DAN and
working memory53,56,78. In fact, our results align with classic motor
control reports when considering their results in terms of networks.
For example, Diedrichsen et al.79 identified neural correlates of error in

DAN and visual networks, represented by SPL and POS respectively,
identical to ours. Gnadt & Anderson52 observed persistent activity in
IPS (hub for DAN) in relation to target location during the delay in
motor planning, connecting their results to memory. In a study
directed towards large-scale brain networks, DAN activation during
early learning was correlated with decreased error rate, which they
related to active visuospatial attention when first learning the
sequence48.

This study highlights the complexity of behavioral andneural data
aswell as howchallenging it is to disentangle internal states fromother
processes, nevertheless, we acknowledge several limitations inherent
to our approach. First, it is possible that some of our neural data
include results from epileptic brain regions in which activity could
differ from comparable regions in healthy humans, despite precau-
tions we took tominimize this possibility as discussed inMethods. The
effects of anti-epileptic medications are another confounding variable
that could have influenced the magnitude of the results, though sub-
jects ceased their medications during clinical investigation. At this
time, the only ethical method to record from the brain necessary for
our study using SEEG depth electrodes in humans is while they are
implanted for clinical purposes. Second, our behavioral data was lim-
ited by the design of themotor task and trial conditions, including two
speeds, four directions, and few perturbation trials. Since internal
states rely on the accumulation of history across trials, the validity of a
state such as the perturbed state does not depend on the number of
perturbed trials but rather the overall number of trials. For example, if
no trials were perturbed, then the perturbed state would remain 0.
Future experiments could explore other trial conditions, like intro-
ducing obstacles into the task space or other stimuli such as audio, or
varying the probability of perturbations. One could also imagine
designing a study that picks trial conditions to produce the desired
variability from a subject based on model inferences about their
internal states. Third, we focused on using a simple modeling
approach, which raises the possibility that a key factor in a subject’s
behavioral variability may be absent from our model. Contrarily, this
simplicity allows for other variables, such as other trial conditions or
internal states, to be easily designed and integrated to create a model
for a variety of behavioral tasks. Finally, we want to emphasize that the
performance-related results should be taken as preliminary as the
sample sizes for these statistics were limited to the number of subjects
implanted in the same regions. Hence, studies with larger sample sizes
are needed to make any conclusive statements.

In conclusion, our findings provide a fresh viewpoint for motor
control research. Behaviors are readily measured every day from
devices such as smartphones. Our results raise the possibility that the
underlying history of measured behaviors could be used to make
inferences about a person’s brain state without needing to collect
electrophysiological data, saving time andmoney in the health field for
personalized medicine80 or business ventures such as sports81. Future
studies in motor control should consider the effect of these networks
on motor control and should account for the effects of internal states
as we found that they play a significant role in governing behavior and
its variability.

Methods
Recording neural data from humans
Ten human subjects (seven females and three males; mean age of
34 years) were implanted with intracranial SEEG depth electrodes and
performed our motor task at the Cleveland Clinic. These subjects
elected to undergo a surgical procedure for clinical treatment of their
epilepsy to identify an Epileptogenic Zone (EZ) for possible resection.
Details of the handedness and clinical information of each subject are
listed in Table 1. The study protocol, including experimental para-
digms and collection of relevant clinical and demographic data, was
approved by the Cleveland Clinic Institutional Review Board. Subject
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criteria required volunteering individuals to be over the age of 18 with
the ability to provide informed consent and able to perform themotor
task. A data-sharing agreement between theClevelandClinic and Johns
Hopkins University was approved by the legal teams of both institu-
tions. Other than the experiment, no alterations were made to their
clinical care. We excluded two additional subjects who attempted to
perform the task but failed to complete it.

Each subject was implanted with 8–14 stereotactically-placed
depth electrodes (PMT® Corporation, USA). Each electrode had
between 8–16 electrode channels (henceforth referred to as channels)
spaced 1.5mm apart. Each channel was 2mm long with a diameter of
0.8mm. Depth electrodes were inserted using a robotic surgical
implantation platform, (ROSA®,Medtech®, France) in either an oblique
or orthogonal orientation. This procedure granted access to broad
intracranial recordings in a three-dimensional arrangement, which
included lateral, intermediate, and/or deep cortical as well as sub-
cortical structures82. The day prior to surgery, volumetric preoperative
Magnetic Resonance Imaging (MRI) scans (T1-weighted, contrasted
withMultiHance®, 0.1mmol kg−1 of bodyweight)wereobtained toplan
safe electrodes trajectories that avoided vascular structures pre-
operatively. Postoperative Computed Tomography (CT) scans were
obtained and coregistered with preoperative MRI scans to verify
electrode placement postoperatively following implantation82. Elec-
trophysiological data in the form of Local Field Potential (LFP) activity
were collected onsite in the Epilepsy Monitoring Unit (EMU) at the
Cleveland Clinic using the clinical electrophysiology acquiring system
(Neurofax EEG-1200, Nihon Kohden, USA) with a sampling rate of
2 kHz referencing an exterior channel affixed to the skull. Each
recording session was also determined to be free of any ictal activity.

Inducing movement variability using our motor task
Our motor task was a center-out delay arm reach where subjects won
virtualmoney by controlling a cursor on a screen to reach a target with
an instructed speed despite a chance of encountering a random phy-
sical perturbation72,83–85. Subjects performed this task in the EMU using
a behavioral control system, which consisted of three elements: a
computer screen, an InMotion2 robotic manipulandum (Interactive
Motion Technologies, USA), and a Windows-based laptop computer83.
The computer screen (640 × 480 px) was used to display the visual
stimuli to the subject. Subjects were seated ~60 cm in front of the
screen. The robotic manipulandum allowed for precise tracking of the
arm position in a horizontal two-dimensional plane relative to the
subject. The subject used the robotic manipulandum to control the
position of a cursor on the computer screen during the motor task
restricted to a horizontal two-dimensional plane relative to them-
selves. The laptop computer ran themotor task using aMATLAB-based
software tool called MonkeyLogic (version 2.72)86.

During the session, subjectswould complete asmany trials as they
could in 30 min. A complete trial consisted of eight epochs, each dis-
tinguishablewith unique visual stimuli shown in Fig. 1a. Subjects began
each trial with an instructed speed, indicating whether they were
supposed to move fast or slow (Speed Instruction). Next, subjects
moved their cursor to a target in the center of the screen (Fixation).
Once centered, subjectswere presentedwith a target in one of the four
possible directions (Show Target). A random delay was applied here in
which subjects couldnotmove their cursorout of the center until cued
to do so. This cue was signaled as the target changing color from gray
to green (GoCue). After their cursor left the center (MovementOnset),
there was a chance that a constant perturbation would interrupt their
movement. Subjects were still expected to reach the target with the
correct speeddespite theperturbation.Once they reached (Hit Target)
and held their cursor in the target, subjects were immediately pre-
sented with feedback on their trial speed compared to the instructed
speed (Speed Feedback). The reward they were shown depended on
whether they matched the instructed speed or not (Show Outcome).

An image of an American $5 bill was presented for correct trials while
the same image overlaid by a redXwaspresented for incorrect trials. It
should be noted that subjects did not receive anymonetary reward for
participating in this task. Epochs are structured into traditional phases
of motor control based on the design of the experiment. Planning
includes Speed Instruction, Fixation, Show Target and Go Cue,
Execution includes Movement Onset and Hit Target, and Feedback
includes Speed Feedback and Show Outcome.

Subjects could fail a trial for any of the following reasons: not
acquiring the center during Fixation, leaving the center beforeGoCue,
failing to leave the center after Go Cue, or inability to reach the target
during Movement Onset. Regardless of the reason, the rest of the trial
was aborted and subjects were presented with a red X before moving
to the next trial.

We only used completed trials (i.e., trials in which the Speed
Feedback was reached) for our study. Subjects were aware that per-
turbations would be applied. Additionally, subjects were allowed as
much time as they wanted to practice the motor task before the ses-
sion began, which included the speeds, directions, and perturbations.

At the end of each session, the session performance of each
subject was calculated as 100*(Number of completed trials with cor-
rect speed)/(Number of completed trials). Session performance of 0%
means the subject achieved the correct speed on none of their trials
and session performance of 100% means the subject achieved the
correct speed on all of their trials. To differentiate the performance of
a trial (i.e., correct or incorrect) from the session (i.e., percent of cor-
rect trials), we refer to the former as trial performance.

There are three trial conditions that varied from trial-to-trial: the
instructed speed, the instructed target direction, and the type of
perturbation. Speed refers to the binary condition categorizing the
instructed speed (fast, slow). Either speed was equally likely for each
trial. In actuality, the categorical representation of speed translates to a
range of values based on the percent of a subject-specific maximum
speed measured during calibration; when they were told to move the
cursor as quickly as possible from the center to a right target over five
trials just before starting the experiment. Fast trials accepted
66.67 ± 13.33% and slow trials accepted 33.33 ± 13.33% of their calibra-
tion speed. Direction refers to the four possible locations of the target
relative to the center of the computer screen (down, right, up, left).
The probability of each location was equally like for each trial. Per-
turbation refers to the type of perturbation, if any, that was experi-
enced during the trial (unperturbed, towards, away). Each trial had a
20% probability of a perturbation being applied with a random force
between 2.5 to 15 N at a random angle, both selected from a uniform
distribution. The perturbation was physically applied to the subject
using the robotic manipulandum and would persist until the subject
was shown their feedback. Perturbations can be categorized based on
the angle it was applied relative to the target direction: towards or
away. All other trials are unperturbed. The summary of the trial con-
ditions experienced by each subject are listed in Supplementary
Table 3.

In addition to trial conditions, we also tracked two continuous
values that incurred movement variability from trial-to-trial: Reaction
Time (RT) and Speed Error (SE). The RT (in seconds) was quantified as
the time it took for a subject to move their cursor out of the center
after Go Cue. The SE was quantified as the difference between the
middle of the range of the instructed speed (0.33 or 0.67) and their
trial speed. The trial speedwas foundby dividing the constant distance
between the center and the target (in pixels) with the total time
between Go Cue and Hold Target (in seconds), then scaling it by their
calibration speed. The SE can take on a value between −0.67 to 0.67,
where a positive SE means the subject moved slower than instructed
(i.e., too slow), a negative SE means the subject moved faster than
instructed (i.e., too fast), and a SE between −0.13 and 0.13 means the
subject was within the acceptable range for the trial to be correct. The
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summary of the RT and SE for each subject are listed in Supplementary
Tables 1 and 2.

To test the main effects and interactions that subjects and trial
conditions had on RT and SE, we constructed a multi-way ANOVA
for each. For RT, we used a three-way ANOVA using subject (n = 10),
speed (n = 2), and direction (n = 4) as the independent factors. For
SE, we used a three-way ANOVA using subject (n = 10), the combi-
nation of speed and perturbation called type of perturbation (n = 6),
and RT as the independent factors. Subjects were treated as a ran-
dom variable for both tests and the RT factor in SE was treated as a
continuous variable. Any initial results that indicated significant
differences were followed up by a post-hoc Tukey’s comparisons.
The results of these tests are reported in Results and shown in
Supplementary Tables 4–10.

Estimating internal states to capture movement variability
We sought to construct a behavioral model to capture movement
variability based on data collected during our goal-directed center-out
delay arm reach motor task. The behavioral data consisted of any
quantifiable measurements from the motor task, namely the trial
conditions, RTs, and, SEs.

Our system follows the framework outlined in Fig. 2a. It takes
on the structure of a state-space representation and consists of
three basic elements for each trial t: outputs, inputs, and internal
states. Based on the design of our motor task, we assume that a
movement on every trial goes through two phases: planning and
execution. This is represented by two boxes seen in Fig. 2a. The
inputs of planning are speed and direction while the output is RT.
The input of execution is perturbation as well as the RT from
planning while the output is SE. Internal states are drawn as a black
dashed line for illustrative purposes. They provide feedback for
both planning and execution. This is because the internal states
update is based on trial history (such as past performance or trial
conditions). This information then flows through our system to
affect the outputs. Though it is not labeled, the dotted line from
planning to execution also carries the inputs from the planning
system (speed and direction) to be available for the downstream
system. Therefore speed and direction are also available for mod-
eling SE. However, perturbation is not available for RT because
perturbations happen after RT. However, the history of the trial
conditions from previous trials is available through the internal
states.

The outputs, RT and SE, are denoted yRTt 2 R and ySEt 2 R
respectively. They are directly measured from the behavioral data
during themotor task. The RTwas normalized using the z-score before
any modeling was performed so each subject followed a standard
normal distribution (i.e.,Nð0,1Þ). The SE innately followed a continuous
uniformdistribution (i.e.,U ½�0:67,0:67�) andwasnot normalized. Refer to
Supplementary Tables 1 and 2 for the summary of outputs. The inputs
are the trial conditions of the motor task: speed, direction, and per-
turbation. They are also directly measured. They are described as
categorical variables, denoting speed as uS

t 2 f fast ,slow g, direction as
uD
t 2 fdown ,right ,up ,left g, and perturbation as

uP
t 2 funperturbed ,towards ,away g. The internal states we defined

are the error state and perturbed state, denoted xSEt 2 R and xP
t 2 R

respectively.
Our system is broken down into the phases of planning and

execution (Fig. 2a). The behavioral outputs of planning and execution
are RT87 and SE25, respectively. They are separated by a delay for
maximal separation88. It is important to note that the states remain
constant between planning to execution since neither state has infor-
mation to update until after a movement is complete. Each phase is
associatedwith its ownmathematical function relating theoutputs as a
linear combination of states and inputs available on trial t. The task

begins with the planning phase, written as:

yRTt = βRT
0|{z}

Constant

+ βSE
RTx

SE
t|fflfflffl{zfflfflffl}

Error state

+ βP
RTx

P
t|fflffl{zfflffl}

Perturbed state

+
X

s2ffast,slowg
βs1ðuxt = sÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Speed

+
X

d2fdown,right,up,leftg
βd1ðuD

t =dÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Direction

+ ϵRTt|{z}
Noise

,

ð1Þ

where ϵRTt is an independent normal random variable with zero mean
and variance σ2

RT 2 R≥0. In other words, it defines the output of
planning on trial t as RT and is the linear combination of a constant,
error state, perturbed state, speed, and direction on trial t, scaled by
their respective weights (β’s). This is followed by the execution phase
written as:

ySEt = βSE
0|{z}

Constant

+ βSE
SEx

SE
t|fflfflffl{zfflfflffl}

Error state

+ βP
SEx

P
t|fflffl{zfflffl}

Perturbed state

+ βRT
SE y

RT
t|fflfflffl{zfflfflffl}

RT

+
X

s2ffast,slowg

X

p2funpert:,towards,awayg
βs,p1ðuxt = sÞ1ðuP

t =pÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Typeof perturbation

+ ϵSEt|{z}
Noise

, ð2Þ

where ϵSEt is an independent normal random variable with zero mean
and variance σ2

SE 2 R≥0. It defines the output of execution on trial t as
SE and is the linear combination of a constant, error state, perturbed
state, RT, and the combination of speed and perturbation on trial t,
scaled by their respective weights (β’s). By our definition, RT will
always be available as an input for SE. Though speed is not a direct
input to execution (Fig. 2a), it also carries over from planning. We
found the combination of speed and perturbation captured SE well as
compared to any other linear combination of trial conditions. This
combination is supported by intuition as well as in literature89. On one
hand, a slow trialwith an awayperturbation couldhelp subjects reduce
the magnitude of their SE by forcing them to move slower. On the
other hand, a fast trial with an away perturbation could make it harder
to match the speed, making a negative SE (too slow) more believable.

To capture the history of their performance of speed error during
the task, we used SE to update the error state:

xSE
t =αSE xSE

t�1|{z}
Errormemory

+ ySEt�1|{z}
Speederror

: ð3Þ

The degree to which the previous state weighs into the current state is
scaled by αSE, which ranges between 0 and 1. An αSE closer to 0 means
the error state will quickly decay to 0 on subsequent trials while a αSE

closer to 1means the error statewill retain its value, suchas the case for
subjects who carry information over from trial-to-trial. The input is the
SE from the previous trial. It ranges in value between −0.67 and 0.67,
where a positive SE (ySE > 0) means they moved slower than instructed
and a negative SE (ySE < 0) means they moved faster than instructed.
Therefore, a positive error state indicates the accumulation of trials
that were slower than instructed whereas a negative error state
indicates the accumulation of trials that were faster than instructed.
The sign of the weights βSE in Eqs. (1) and (2) depicts how the behavior
of a subject would respond to the error state. Take the case when the
error state is positive (i.e., moving slower than instructed). A positive
βSE
RT would increase the RT, thus subjects would react slower after trials

inwhich theymoved slower than instructed.Conversely, a negativeβSE
RT

would decrease their RT and subjects would react faster after trials in
which they moved slower than instructed. For SE, a positive βSE

SE would
increase the SE,meaning subjects would continue tomove slower than
instructed on subsequent trials. A negative βSE

SE would decrease the SE,
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meaning subjects would move faster than instructed on subsequent
trials.

To capture the effect of perturbations on their behavior, we used
an indicator on whether the perturbation input detected a perturba-
tion either towards or away to update the perturbed state:

xPt =α
P xP

t�1|{z}
Perturbmemory

+
X

p2ftowards,awayg
1 uP

t�1 =p
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Perturbation

:
ð4Þ

The perturbed state receives a positive pulse when perturbation was
applied, regardless of the type of perturbation that was applied.
Therefore, the state only deviated from 0 when a perturbation was
introduced. In the absence of a perturbation, the system would decay
with a rate constant of αP, which ranges between 0 and 1 whereas a αP

closer to 0 indicates that the state will decay back to 0 by the next trial.
AαP closer to 1means that subjectswouldcarry overperturbations into
subsequent trials through theperturbed state if it has not fully decayed
to 0. Because of its structure, the perturbed state can only be positive
or 0, where 0 means that perturbations do not affect behavior. The
perturbed state affects behavior based on the sign of βP in Eqs. (1) and
(2), so long as the perturbed state is not 0. In termsof RT, a positive βP

RT

will increase the RT after a perturbation. Therefore, subjects with a
positive weight will react slower than average after perturbation trials.
Aperturbationwill also affect the SEbasedon the signofβP

SE. A positive
βP
SE will increase SE after perturbation trials, i.e., subjects will move

slower than instructed after perturbations. Subjects where both
weights are positive suggest that they hesitated in response to recent
perturbations captured by their perturbed state.

Unlike theother elements inour system, the internal states cannot
be directly measured because they are subjective. They are an internal
representation of the environment that an individual defines which
evolves given new information. Instead, internal states are dynamically
updated on a trial-by-trial basis by weighing their past states. Both
must be estimated using a first-order state evolution equation, whose
function is controlled by what is added to it in addition to their past
states. The general solution is:

x̂t = αðt�1Þx̂1|fflfflfflffl{zfflfflfflffl}
Initial state

+
Xt�1

i= 1

αðt�i�1Þui

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Cumulative state

: ð5Þ

Therefore, the states are not simply a weight of the previous trial but
capture the accumulation of history from previous trials.

Thus, Equations (3)–(2)make up our system. But the system is not
complete untilfitting themodels.Modelfitting consistedoffinding the
combination of weights (α’s and β’s) that minimized the root-mean-
squared error between the observed and estimated outputs for each
subject using all complete trials. First, the α’s were found using a grid
search between 0.01 and 0.99 at an interval of 0.01 with the initial
conditions xSE1 = xP

1 =0 to estimate the internal states. Additionally, the
internal states were normalized using the z-score so their weights
could be compared across subjects. Then, the weights were found
using methods of generalized linear model, which solves for the
maximum likelihood estimation. The resulting states andweights were
applied to estimate the outputs. The combination of weights with the
largest two-tailed Pearson correlation value between observed and
estimated outputs was selected as the final model. This process was
repeated for each subject to create their custom model fitting, com-
plete with their own individual evolution of internal states. Supple-
mentary Table 11 contains the weights of the final model for each
subject.

To show the adequacy of our model, we also built a subject-
specific linear model that relied only on trial conditions. The linear

model was a simple linear regression between the outputs (i.e., RT and
SE) and inputs (i.e., speed, direction and RT, speed, perturbation). All
models were evaluated using the coefficient of determination,
deviance, and 10-fold cross-validation for comparison. The coefficient
of determination was used to quantify howmuch the variability of the
outputs can be explained by the inputs. It ranges in value between 0
and 1, where 1 means that the estimated outputs completely accounts
for all the variability of the observed outputs (Fig. 2e). The deviance
was used to compare the error of eachmodel. This can be helpful as an
absolute measurement of goodness-of-fit to compare models by
measuring the trade-off between model complexity and goodness-of-
fit. Deviance can be any positive value, where a deviance of 0 means
that the model describes the observed outputs perfectly (Supple-
mentary Fig. 6c, d). Cross-validating our internal state models proved
difficult, as the internal states are history-dependent. Since the focus of
our paper was on how internal states influence behavior as opposed to
trying to predict behavior, our final models were fitted using all data.
We implemented a 10-fold cross-validation using the internal states
fitted using all data (Supplementary Fig. 6e, f) to show that adding
internal states improved model performance.

Neural data preprocessing
We used spectral analysis to preprocess the LFP activity from each
channel. First, a notch filter was applied to the raw voltage data using
notches located at the fundamental frequency of 60Hz and its higher
harmonics with the bandwidth at the -1 dB point set to 3Hz. Next, the
oscillatory powerwas calculated using a continuouswavelet transform
with a logarithmic scale vector ranging 1–200Hz and complex Morlet
wavelet with a default radian frequency of ω0 = 6. The resulting
instantaneous power spectral density was divided into overlapping
time bins using a window of 100ms every 50ms. All overlapping time
bins were averaged together and labeled with the last time index
corresponding to that window. Finally, the averaged power spectral
density was normalized to equally weigh all frequency bins by taking
the z-score of the natural logarithmof the power in each frequency bin
over the entire recording session time. All channel recordings were
visually inspected for artifacts before and after preprocessing. Exam-
ples of artifacts include broadband effects, abnormal bursts of power,
and faulty recordings. Any channelswith artifacts were disregarded for
the entire session. Figure 4d shows the result of the spectral analysis
for a channel as a spectrogram, where the color of each pixel repre-
sents the normalized power between -3 and 3 indexed by the color bar
at a specified frequency and time.

The results of our analysis depend heavily on how channels are
aggregated using their anatomical labels. Therefore, it was important
to ensure that their labels were unbiased across subjects. We applied a
semi-automated electrode localization protocol to determine the
coordinates of each channels per subject by fusing their preoperative
MRIwith postoperative CT90,91. This protocol also labeled each channel
using an anatomical atlas92 and a large-scale functional brain network
atlas93 based on their coordinates onto a subject-specific cortical
parcellation94. The anatomical labels were validated by a clinician. To
visualize the coverage of channels across the populations, their coor-
dinates were warped from the subject’s native space to the standard
Montreal Neurological Institute (MNI) atlas space95. Figure 4a shows
the all channels of all subjects projected onto the template brain called
cvs_avg35_inMNI152 from Freesurfer94.

Identifying brain regions that encode internal states
After neural data preprocessing, we used an unsupervised paradigm to
identify where internal states are encoded in the brain of the popula-
tion.We accomplished this using a non-parametric cluster statistic36. A
description of how this method was applied to similar data has been
detailed by our group previously20. Here, we used a two-tailed per-
mutation test withN = 1000 and a significance threshold of α =0.05. In
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short, the procedure statistically identifies windows of time and fre-
quency where the LFP (measured as power in the spectrogram) of a
region significantly correlates with an internal state across trials in the
population (Fig. 4d). These regions were formed by aggregating the
anatomical labels of the channels from all subjects. The result is win-
dows of time and frequency, known as clusters, across brain regions.
Each cluster also has a cluster statistic, where higher magnitudes are
favored as having a stronger cluster36.

Clusters that were too small (i.e., had windows <250ms in time,
one octave in frequency, or window area was smaller than the mini-
mum time and frequency windows specified) were discarded. We also
discarded regions that had less than two subjects contributing to the
cluster. A false discovery rate of q =0.015 was then applied to the
cluster statistic to correct for multiple comparisons between regions
and epochs. Clusters are confined to predefined windows of time set
by the epoch it was recorded from for the analysis. However, since
neural activity is continuous, information it may be encoding could
carry over from one epoch to the next. Therefore, clusters in the same
region with overlapping frequency bins across epochs were grouped
for further analysis. This also meant that a region could come up
multiple times, such as the case if separate clusters were found in
different frequency bins in the same epoch.

Each group of clusters spans across multiple frequency bins. For
example, Fig. 4d shows the outline of a cluster that includes frequency
bins between 60–200 Hz over the statistical map. Therefore, each
group of clusters was mapped to frequency bands as commonly
defined in literature based on their frequency bins: delta (1–4Hz)96,
theta (4–8Hz)96, alpha (8–15 Hz)96, beta (15–30Hz)96, low gamma
(30–60Hz)97, high gamma (60–100Hz)97, and hyper gamma
(100–200Hz)98. If the group of clusters spanned multiple frequency
bands, then the band that made up the majority of the area of the
group of clusters was prioritized.

Further, we observed two distinct temporal patterns of activity
that described each group of clusters; persistent or phasic. Persistent
activity refers to a group of clusters whose activity stretched across all
epochs during a trial. Phasic activity refers to a group of clusters whose
activity only appeared during specific epochs of a trial related to the
movement phase (i.e., planning, execution, feedback).

Calculating encoding strength
We hypothesized that neural activity in encoding networks of subjects
will modulate with internal states based on session performance. To
test this, we quantified how well a region covaries with the internal
state using encoding strength and compared it to sessionperformance
across subjects. We calculated the encoding strength of group of
clusters for each subject by replicating the procedure from the non-
parametric cluster statistic. For each group of clusters, we first aver-
aged the neural activity in its time-frequency window across the
epochs it spans for each channel, trial, and subject (Fig. 4b, c). Next, we
found the magnitude of the two-tailed Spearman’s correlation value
between this averaged neural activity and the internal state across all
trials for each channel and subject (Fig. 4e). Finally, we averaged these
correlation magnitudes across channels in a subject with the same
group of clusters. This value is the encoding strength of the group of
clusters for a subject of a region. Because it is derived from the mag-
nitude of the correlation, it takes on a value between 0 and 1, where 1
means the averaged neural activity in the cluster exactly follows the
internal state across trials.

To identify regions that encode internal states and performance,
we correlated the encoding strength of each group of clusters to the
session performance across subjects. This allowed us to identify the
regions that not only encoded the internal states but also related to
session performance (i.e., subject variability). These performance-
related regions were those whose two-tailed Pearson correlation value
exceeded 0.75 or p-value was significant (p < 0.05). We did not rely

solely on significant p-values because the largest possible sample size
(i.e., n ≤ 10) was small. Further, we used the magnitude of correlation
value because we were interested in the relationship between encod-
ing strength and session performance, not the direction of encoding
(i.e., positive or negative), aggregated in Fig. 5b, e. Because we were
focused on session performance, we rejected regions that did not have
at least two subjects whose performance was either above and below
average performance (51%).

A table of these regions, and the large-scale brain network they
belong to, canbe found inTables 2 and 3 for error andperturbed state,
respectively. They are also displayed on an inflated brain template in
Fig. 5a, d, where gyri and sulci can be visualized together.

Calculating connectivity strength
Wehypothesized thatdifferences in functional connectivitywithin and
between networks that encode internal states account for learning
strategies across the spectrumof varying session performance. To test
this, we compared functional connectivity with session performance
across subjects. Functional connectivity is defined as dynamic con-
nections between neuronal populations through oscillatory activity99.
There are many ways to calculate functional connectivity99. We chose
to use cross-correlation using a lag of 0, which essentially is the two-
tailed Pearson correlation value37. This value is what we call the con-
nectivity strength. We calculated connectivity strength within each
internal state at three levels between pairs: channel, subject, and
population. Pairs refer to the fact that connectivity strength measures
the interaction of two regions.

To calculate connectivity strength, we began by averaging the
neural activity of eachgroup of clusters using the results from the non-
parametric cluster statistic for each channel, trial, and subject (Fig. 6a)
to get the signal of average normalized power across trials. Then, we
calculated the magnitude of the two-tailed Spearman’s correlation
value between all these signals within each subject (Fig. 6b). This is
channel connectivity strength.

To calculate subject connectivity strength, the channel con-
nectivity strengths of unique pairs were averaged within each subject.
For example, to find the subject connectivity strength of IPS R and
MTGR for subject 6, wewould average the values from Fig. 6b to get a
scalar value shown on the y-axis in Fig. 6c. Because it is derived from
the magnitude of the correlation, the subject connectivity strength
takes on a value between 0 and 1, where 1means the activity of the pair
is perfectly correlated across trials.

To identify preliminary pairs of regions whose connectivity
encodes the internal states and performance, we related the subject
connectivity strength to session performance for each pair across
subjects the two-tailed Pearson correlation value (Fig. 6c). Any pair
that did not include both a subject with above and below average
session performance was excluded. We also excluded pairs that were
not represented by at least three subjects. We refer to this as perfor-
mance connectivity strength, which varied between -1 and 1 (Supple-
mentary Fig. 9a, d). Supplementary Fig. 9b, e, c and f show the p-values
and sample sizes used when calculating the performance connectivity
strength. However, we were only interested in examining pairs of
regions whose performance connectivity strength was strongly posi-
tive (i.e., higher performance with higher subject connectivity), which
we defined as values that were >0.5. Pairs with values <0.5 were trun-
cated in the main figure. These pairs are represented in Fig. 6d, e for
error state and perturbed state, respectively, using directed graphs.

For population analysis, we first transformed the subject con-
nectivity strength using Fischer’s z transformation100 before aver-
aging pairs across subjects. After averaging, the values were
transformed back into correlation magnitudes using Fischer’s z
transformation100 due to our small sample size101. These values
represent the population connectivity strength. Any pairs that had
fewer than two subjects were excluded. Likewise, connectivity

Article https://doi.org/10.1038/s41467-023-43257-4

Nature Communications |         (2023) 14:7837 17



strength on the diagonal (i.e., autocorrelations) was ignored for
both subject and population connectivity strengths before aver-
aging. See Supplementary Fig. 10 for a summary of the population
connectivity strength across all encoding regions, including the
sample sizes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw SEEG data are protected and are not available due to restric-
tions on data sharing from Cleveland Clinic. The processed data that
support the findings of this study are available on Johns Hopkins
Research Data Repository with the identifier doi:10.7281/T1/PIVKJ7102.
The data generated in this study are also provided in the Source Data
file. Source data are provided with this paper.

Code availability
The code used to generate figures for this paper is available on Johns
Hopkins Research Data Repository with the identifier https://doi.org/
10.7281/T1/PIVKJ7 by running the function MAIN.m102. The code for the
nonparametric cluster statistic and semi-automated electrode locali-
zation is publicly available through FieldTrip (version 20191008) the
identifier https://doi.org/10.1155/2011/15686990. The code for cortical
surface extraction is publicly available through Freesurfer software
suite (v.6.0.0) using the identifier https://doi.org/10.1016/j.
neuroimage.2012.01.02194.
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