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Tree mortality during long-term droughts is
lower in structurally complex forest stands

Qin Ma1,2,3, Yanjun Su 4,5,6 , Chunyue Niu4,5,6, Qin Ma4,5,6, Tianyu Hu4,5,6,
Xiangzhong Luo 7, Xiaonan Tai 8, Tong Qiu 9, Yao Zhang 10,
Roger C. Bales 11, Lingli Liu 4,5,6, Maggi Kelly12,13 & Qinghua Guo 14,15

Increasing drought frequency and severity in a warming climate threaten
forest ecosystems with widespread tree deaths. Canopy structure is important
in regulating tree mortality during drought, but how it functions remains
controversial. Here, we show that the interplay between tree size and forest
structure explains drought-induced tree mortality during the 2012-2016 Cali-
fornia drought. Through an analysis of over onemillion trees, we find that tree
mortality rate follows a “negative-positive-negative” piecewise relationship
with tree height, and maintains a consistent negative relationship with
neighborhood canopy structure (a measure of tree competition). Trees over-
shadowed by tall neighboring trees experienced lower mortality, likely due to
reduced exposure to solar radiation load and lower water demand from eva-
potranspiration. Our findings demonstrate the significance of neighborhood
canopy structure in influencing treemortality and suggest that re-establishing
heterogeneity in canopy structure could improve drought resiliency. Our
study also indicates the potential of advances in remote-sensing technologies
for silvicultural design, supporting the transition to multi-benefit forest
management.

Global climate change is increasing the frequency and severity of
droughts, and therefore threatening the health of forest ecosystems1–3.
Taking the 2012–2016 drought in California, USA as an example,
over 200million trees were killed in the Sierra Nevada, a mountainous
semi-arid region critical for California’s water supply and goal of car-
bon neutrality4,5. These dead trees can significantly impact forest
ecosystem processes, such as altering local hydrologic cycles through

reducing the amount of evapotranspiration (ET) and increasing wild-
fire severity by providing more dead fuel loads6,7. Therefore, under-
standing drivers and mechanisms underlying tree mortality during
drought has long been a research focus in forest ecology8,9.

Tree death from drought is a multi-step ecological process10.
Many factors can influence tree mortality during drought, and canopy
structure has been identified as an important one11,12. Its influence on
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drought-induced tree mortality can be analyzed from two aspects:
individual tree size and neighborhood canopy structure (Fig. 1). Indi-
vidual tree size (e.g., height, diameter at breast height, crown area) can
influence tree mortality by regulating water demands and supply13–16.
Despite extensive investigations into the influence of individual tree
size on tree mortality during drought, particularly using tree height as
an indicator, the results remain controversial.Many studies have found
that taller trees are more hydraulically susceptible to drought13,17, as
they often possess longer water-transport pathways that could lead to
accumulation of sapwood embolism and hydraulic failures18. More-
over, taller trees tend to exhibit disproportionately larger tree crowns
than shorter ones due to allometric relationships of tree height with
crown size and leaf area19, which may further exacerbate their water
demands during drought. However, allometric relationships of tree
height with crown size and leaf area are species-specific, which may
lead to distinct impacts on tree mortality during drought20,21. Addi-
tionally, larger trees may also have developed wider and deeper root
systems, especially in harsh and fragile habitats with rocky terrains22,23.
This enables them to access deeperwater, increasing their survival rate
during drought14,24. Therefore, a more comprehensive investigation of
the relationship between individual tree size and tree mortality during
drought among various tree species and environmental conditions
is still urgently needed to understand the mechanisms underlying
tree mortality.

As for the second aspect, neighborhood canopy structure can
influence tree mortality during drought by regulating stand-level
ecohydrological processes through resource competition and
partitioning15,25–27. Trees in dense forests, particularly inmonoculture
settings, may experience intense symmetric competition for water
during drought5,6,12, leading to higher vulnerability to drought. For
example, the mortality of ponderosa pine (Pinus ponderosa) trees

was found to have a positive exponential relationship with the stand-
level tree basal area in western USA28. Moreover, increased asym-
metric competition during drought in mixed-species forests may
lead to larger trees acquiring water at the expense of smaller-stature
trees, and therefore suppress the growth of smaller-stature trees29,30.
However, dense forests with heterogeneous canopy structures can
also create favorable microclimate and hydrologic conditions by
altering within-canopy light environments31,32. Many studies found
that tree mortality in denser forests, particularly the mortality of
smaller-stature trees, is lower than that in open forests33, and trees in
denser forests have less growth reduction during drought34. As these
mechanisms may vary with tree species and site conditions, the
influence of neighborhood canopy structure on treemortality during
drought remains a subject of ongoing debate14,35. Examining trees
over a large spatial scale may better inform how forests balance
resource competition through neighborhood canopy structure,
consequently influencing tree mortality during drought.

In this study, we explicitly examined the influence of canopy
structure on treemortality during drought. Twoquestionsmotivated
our research. First, howdoes individual tree size (represented by tree
height) relate to tree mortality across tree species during drought?
Second, how does neighborhood canopy structure (represented by
tree competition indices) influence tree mortality during drought?
To address these questions, we used the 2012–2016 California
drought as an example and delineated near 1.5 million individual
trees from airborne light detection and ranging (lidar) data collected
across a study area of approximately 150 km2 in the southern Sierra
Nevada. Tree species were recognized from pre-drought airborne
lidar data and high-resolution aerial imagery collected in 2012 using a
machine learning-based approach. Dead trees during the drought
period were identified from airborne lidar data and multi-temporal
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Fig. 1 | A conceptual diagram of the influence of canopy structure on tree
mortality during drought. The top panel illustrates the potential influence of
individual tree size on tree mortality during drought, and the bottom panel

illustrates the potential influence of neighborhood canopy structure on tree mor-
tality during drought. ET represents evapotranspiration.
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high-resolution aerial imagery collected in 2012, 2014, and 2016,
respectively. We found that tree mortality rate exhibited a “negative-
positive-negative” piecewise relationship with tree height while
consistently maintaining a negative relationship with neighborhood
canopy structure.

Results and discussion
Impact of individual tree size on tree mortality
A total of 1,405,237 trees were segmented from the pre-drought
airborne lidar data collected in the summer of 2012, and were clas-
sified into four genera (Abies, Pinus, Cedrus, and Quercus) with an
overall accuracy of 66% and a kappa coefficient of 0.5 (Supplemen-
tary Fig. 1 and Supplementary Table 1). Each genus had distinguished
habitats in the altitudinal spectrum, with Abies trees occupying the
highest altitude, followed by Cedrus, Pinus, and Quercus trees (Sup-
plementary Fig. 1c). During the 2012-2016 drought, the study area
experienced a 294mmdrop in annual precipitation and a 0.70 °C rise
in mean annual temperature compared to 1980–2019 averages
(Fig. 2a). There were 180,765 trees out of the 1,050,960 trees taller
than 5m classified as dead during the 2012–2016 drought (F-
score = 0.92), resulting in an average mortality rate of 4.3%/year
(Supplementary Fig. 2 and Supplementary Table 2). Pinus trees
exhibited the highest mortality rate at 5.3%/year (66,341 out of
312,930 trees), followed by Abies trees at 5.2%/year (78,069 out of
375,333 trees), Quercus trees at 2.7%/year (13,906 out of 128,764
trees), and Cedrus trees at 2.5%/year (23,393 out of 233,933 trees)
(Supplementary Table 3). The overall mortality rate increased from
0.09%/year during the early drought (2012-2014) to 8.6%/year during
the peak drought (2014-2016) (Supplementary Table 3). The tree

mortality rate for each genus generally decreased and then increased
with elevation, except for Quercus, where the tree mortality rate
decreased with elevation (Fig. 2c). It should be noted that dead trees
were identified as those having over 35% of their crowns classified as
dead17. Increase the threshold decreased the apparent mortality rate
(Supplementary Table 3). To improve the robustness of the results,
themortality rates in our study areawere calculated using thresholds
of 30% to 50%, at a 5% increment, to validate the relationships
between canopy structure and tree mortality rate.

To address the first question, we employed tree height as an
indicator of individual tree size and examined its relationshipwith tree
mortality rate. Mortality rate exhibited an overall “negative-positive-
negative” piecewise relationship with tree height (Fig. 3a). That is,
mortality rate decreased with height for trees under 14m tall (coeffi-
cient of determination/R2 = 0.98, p-value/P <0.001), then increased
with height for medium-sized (14–39m) trees (R2 = 0.96, P < 0.001),
and decreased with height for trees over 39m (R2 = 0.67, P < 0.001)
(Supplementary Table 4). The positive slope observed for medium-
sized trees aligns with previous studies17,36, suggesting that taller trees
within this medium-height range may have a higher likelihood of
experiencing hydraulic failure due to the accumulation of sapwood
embolism during drought10,19. The negative relationship observed for
smaller trees across all genera implies that they may be primarily
influenced by competition. Small trees are often in their early life
stage36. Young trees with relatively greater heights may possess more-
established root systems than their smaller counterparts, especially in
the rocky terrain of our study area. Consequently, they can effectively
draw more water from the soil to mitigate the risk of hydraulic failure
during drought24. Conversely, the negative relationship between tree
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patternof treemortality rate over 2012–2016 (100m× 100mcells) across the study
area. A tree was identified as dead if over 35% of its crown was classified as dead,
following the suggestion from Stovall et al. 17. Polygons with gray boundary lines
represent forest stands61. The mean stand size was 0.144 km2 with a coefficient of
variation of 86.6%. c Tree mortality rate by elevation for the four major genera in
the study area. The marker size is proportional to the number of trees in each
elevation gradient (100m) for each genus.
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height and mortality among larger trees likely arises because the lar-
gest trees tend to thrive in the most water-rich areas37 and typically
have developed wide and deep root systems with deeper zones of
root-accessible water14. In our study area, we noted significant positive
relationships between tree height and the topographic wetness index
(TWI), and the correlation slope for tree height >34m was over six
times larger than that for trees <34m tall (Supplementary Fig. 3 and
Supplementary Table 5).

This piecewise height-mortality relationship could be observed in
three out of the four genera (except for Quercus, which exhibited a
“negative-positive” piecewise relationship). However, the tree height
breakpoints between segments and their regression slopes varied by
genus (Supplementary Table 4). These differences were consistent
with site-level observations andmight be attributed to species-specific
physiologic traits and allometric relationships20. Quercus was the only
genus that didnotdisplay the decreasing trend in the tallest tree group
(Fig. 3a). This may reflect Quercus trees being water limited, growing
mainly at lower elevations characterized by low precipitation and high
temperatures, where water supply cannot support their growth to a
very large heights20,38 (Supplementary Fig. 1). Indeed, the highest
Quercus tree in our study area was 24m, lower than the breakpoints
observed for other genera (29–40m) (Supplementary Table 4). The
decreasing trends for largerAbies andCedrus treeswere less noticeable
than that of Pinus trees, likely because their soil and terrain conditions
could not support the growth of large-sized trees (such as the Abies
trees that dominant ridge tops and subalpine ecosystems) during
drought39 (Supplementary Fig. 1).

The observed piecewise tree height-mortality relationship
remained consistent across variations in statistical methods (beta
regression vs. linear regression; Supplementary Fig. 4a and Supple-
mentary Table 4), statistical units (forest stands vs. regular grids;
Supplementary Fig. 5a and Supplementary Table 6), and percentage
thresholds defining dead trees (from 30% to 50% with a 5% increment;
Supplementary Fig. 6a andSupplementary Table 7), demonstrating the
robustness of our results. It is worth noting that the observed piece-
wise relationship has been reported in modeling-based studies29,40,41.
Additionally, the negative tree height-mortality relationship for larger
trees was also observed in Stovall et al.’s study17, but was not reported
because all trees taller than 30m were grouped together in their
“large” height class. Our analysis of live/dead conditions, with species
information, andheightmeasurements of over 1million trees enables a
more-detailed segmentation of the tree height-mortality relationship,
underscoring the importance of big data in understanding the
mechanisms contributing to tree mortality and improving the accu-
racy of tree mortality modeling during drought.

Impact of neighborhood canopy structure on tree mortality
Considering that the influence of neighborhood canopy structure on
treemortality is primarilymediated through resource competition and
partitioning of space15,25,26, we selected three widely recognized com-
petition indices to address the second question. These indices inclu-
ded canopy cover taller than central tree height (CCTH), canopy cover
taller than 66% of central tree height (CC66), and coefficient of varia-
tion in tree height (CVTH) (Supplementary Fig. 8)42, which were
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Fig. 3 | Responses of tree mortality rate to tree height and canopy cover taller
than central tree height (CCTH) during the 2012-2016 drought. a Relationships
between mortality and height for all genera (represented by All) and each respec-
tive genus. Tree mortality rate within each forest stand was binned by tree height
with an interval of 2m (number of bins = 54, 54, 34, 51, 20 for all genera, Abies,
Cedrus, Pinus, and Quercus, respectively), and the stepwise linear regression
method weighted by the number of trees in each stand was used to fit their pie-
cewise linear relationships. b Relationships between tree mortality rate and CCTH
of all genera (represented by All) and each respective genus. Tree mortality rate
within each forest stand was binned by CCTH with an interval of 2% (number of
bins = 50), and the linear regression method weighted by the number of trees in

each stand was used to fit their linear relationships. Only half of the bins were
presented in the figure for visual clarity. Red dots in all subfigures represent the
average tree mortality rate within each tree height or CCTH bin, and gray lines
represent the range of tree mortality rate between the first and third quartiles of
each bin. The size of red dots is proportional to the number of trees in each bin.
Solid blue lines are fitted lines with a p-value (P) < 0.001. Results using different
statistical methods (beta regression vs. linear regression), statistical units (forest
stands vs. regular grids), percentage thresholds defining dead trees (from 30% to
50% with a 5% increment), and neighborhood sizes defining CCTH (15m, 30m,
50m, and 100m, respectively) are presented in Supplementary Figs. 4–7 and
Supplementary Tables 4, 6–11.

Article https://doi.org/10.1038/s41467-023-43083-8

Nature Communications |         (2023) 14:7467 4



calculated using a neighborhood size of 15m in radius. Given the
greater significance of CCTH in explaining tree mortality rate com-
pared to CC66 and CVTH (Supplementary Fig. 9), we employed CCTH
as a representation of neighborhood canopy structure to explore the
underlying mechanisms influencing tree mortality during drought.
Overall, tree mortality rate demonstrated a significant negative rela-
tionship with CCTH (R2 = 0.86, P < 0.001; Fig. 3b). A 10% increase in
CCTH led to an average 0.17%/year decrease in tree mortality rate
(Supplementary Table 8). Moreover, this negative relationship was
observed across all genera (R2 ranging from 0.31 to 0.76, P < 0.001),
though with varying slopes (Fig. 3b). Specifically, a 10% increase in
CCTH resulted in a 0.09%/year decrease in treemortality rate forAbies
trees, 0.07%/year for Cedrus trees, 0.18%/year for Pinus trees, and
0.10%/year for Quercus trees (Supplementary Table 8).

Growth among trees facing intense competition is often reported
to be limited in normal climate conditions42. During drought, however,
our results showed that higher CCTH benefits tree survival. We
hypothesized that this effect might be because higher CCTH indicates
more shading from nearby taller trees, resulting in lower leaf tem-
peratures and reduced water loss through transpiration43. To test this
hypothesis, we examined the relationships of CCTH and treemortality
with crown shadow ratio, defined as the average percentage of canopy
shadow cast by neighboring trees during the daytime, simulated using
a ray-tracing method. Figure 4a shows that CCTH exhibited a sig-
nificant positive relationship with crown shadow ratio during the
daytime (7:00 am to 6:30 pm) (R2 = 0.95, P <0.001). Each 10% increase
in CCTH led to an average 1.1% increase in crown shadow ratio for a
tree, thereby increasing the ratio of its shaded leaf area regardless of
the crown shape (conifer or sphere shape). Using a process-based
terrestrial biosphere model (i.e., Boreal Ecosystem Productivity
Simulator), we quantified that a 10% increase in crown shadow ratio
could lead to a 15% decrease in ET relative to trees without shadow in
our study area (Supplementary Fig. 10). A strong negative relation-
ship between crown shadow ratio and tree mortality during drought
was observed in our study area (R2 = 0.77, P < 0.001) (Fig. 4b). While
crown shading would limit tree growth, the ET reduction brought
about by crown shading could benefit survival of trees during
drought. The hypothesis that CCTH influences tree mortality during

drought by regulating crown shadow ratio was further validated
through a structural equation modeling (SEM) analysis (Supple-
mentary Fig. 11). Our findings emphasize that neither short nor tall
trees are absolutely more vulnerable to droughts. Instead, the co-
existence of short and tall trees might serve as a microclimate refu-
gium for trees to survive drought stress.

Similar to the analyses regarding the impact of individual tree
canopy structure on tree mortality during drought, we employed
various statistical methods (beta regression vs. linear regression;
Supplementary Fig. 4b and Supplementary Table 8), distinct statistical
units (forest stands vs. regular grids; Supplementary Fig. 5b and Sup-
plementary Table 9), varying percentage thresholds defining dead
trees (from 30% to 50% with a 5% increment; Supplementary Fig. 6b
and Supplementary Table 10), and different neighborhood sizes for
calculating CCTH (15m, 30m, 50m, and 100m, respectively; Supple-
mentary Fig. 7 and Supplementary Table 11) to conduct the afore-
mentioned analyses. The relationships between CCTH and tree
mortality ratewere consistently negative across all genera. Further, the
mixed linear modeling analyses incorporating both categorical and
continuous tree height as random effects did not yield alterations in
the observed relationships between CCTH and tree mortality (Sup-
plementary Table 12).

Nevertheless, it is worth noting that the distinct definitions of
different competition indices may lead to disparities in their relation-
ships with tree mortality. For example, while similar negative rela-
tionships were observed for both CCTH and CC66 in relation to tree
mortality rate, the relationships for CVTH varied for certain genera
(Abies and Quercus) (Supplementary Fig. 12). Instead of displaying a
negative relationship with tree mortality rate, CVTH exhibited a non-
linear relationship for Abies and a positive relationship for Quercus
(Supplementary Fig. 12). In comparison to CCTH and CC66, which
primarily focus on the central tree, CVTH encompasses height varia-
tions of all trees within a forest stand (Supplementary Fig. 8). Forest
stands with high CVTH may not necessarily exhibit high CCTH and
CC66. The unique environmental habitats and demographic char-
acteristics of Abies and Quercus trees may potentially increase the
likelihood of observing these mismatches. Specifically, a large pro-
portion of Abies trees were situated at seasonally cold-limited high
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altitudes (>2000m), characterized by abundant bedrock outcrops
with poor soil conditions, while the majority of Quercus trees grew in
water-limited low altitudes with hot and dry climates (Supplementary
Fig. 1). Abies andQuercus trees may adapt better to these harsh habitat
environments20,38,39, potentially making them taller than neighboring
trees of other genera. As CVTH increases, the chance for Abies and
Quercus trees to be taller than neighboring trees increases. The
absence of shadows from taller neighboring trees may therefore lead
to an increase in the mortality rate for Abies trees at high altitudes and
for Quercus trees. A more comprehensive investigation into how dif-
ferent competition indices influence treemortality rate, with the aid of
detailed environmental and tree physiology observations, may further
deepen our understanding of the mechanisms leading to tree death
during drought.

The synthesized effect of canopy structure and environmental
factors on tree mortality
To mitigate the coupled impact of canopy structure and environ-
mental conditions on tree mortality rate during drought, we incorpo-
rated tree height and CCTH, alongside environmental factors
(including elevation, TWI, and solar radiation), into random forest
regression analyses to quantify their impacts on tree mortality rate.
The random forest model, trained using both canopy structural attri-
butes and environmental factors, accounted for 64% of the variation in

treemortality ratewithin our study area during the 2012–2016drought
(Supplementary Table 13). The explanatory capacity of the model
varied among genera, with the highest being for Abies (R2 = 0.67), fol-
lowed by Pinus (R2 = 0.44), Quercus (R2 = 0.48), and Cedrus (R2 = 0.42)
(Supplementary Table 13). When compared to the random forest
models using only environmental factors (i.e., elevation, TWI, and solar
radiation), the incorporation of tree height and CCTH accounted for a
greater portion of the variation in tree mortality rate (R2 increased by
6% to 13% for different genera), thus further highlighting the influence
of canopy structure on tree mortality rate during drought (Supple-
mentary Table 13).

Through the aforementioned random forest analyses, we derived
the partial dependency values of tree mortality rate to each factor and
found similar patterns between canopy structure and tree mortality
rate, as reported above. The mortality rate for each tree genus
decreased with height for small-sized trees, then increasedwith height
for medium-sized trees, and finally decreased with height for large-
sized trees (except Quercus and Cedrus) (Fig. 5a). Tree mortality rate
consistently decreased with CCTH across all genera (Fig. 5b). In addi-
tion to the abovementioned canopy structural attributes, environ-
mental factors were also related to tree mortality rate. Elevation
showed a “U-shape” relationship with tree mortality rate (Fig. 5c),
similar to the results shown in Fig. 2c; TWI had an overall negative
relationship with tree morality rate (except Quercus trees) (Fig. 5d);
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Fig. 5 | Partial dependency values of tree mortality rate during the 2012-2016
drought to canopy structural attributes and environmental factors derived
from random forest regression analyses. a Responses of tree mortality rate to
tree height of all genera (represented by All) and each respective genus. Tree
mortality ratewithin each forest stand was binned by tree height with an interval of
5m. b Responses of tree mortality rate to CCTH of all genera and each respective
genus. Tree mortality rate within each forest stand was binned by CCTH with an
interval of 5%. c Responses of treemortality rate to elevation of all genera and each

respective genus. Tree mortality rate within each forest stand was binned by ele-
vation with an interval of 250m. d Responses of tree mortality rate to topographic
wetness index of all genera and each respective genus. Tree mortality rate within
each forest stand was binned by topographic wetness index with an interval of 0.5.
e Responses of tree mortality rate to solar radiation of all genera and each
respective genus. Tree mortality rate within each forest stand was binned by solar
radiation with an interval of 200Wh/m2.
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and solar radiation exhibited an overall positive relationship with
mortality rate (except Pinus and Quercus trees) (Fig. 5e).

Implications for forest management under a changing climate
Climate change is raising the frequency and intensity of chronic
stresses and disturbances, not only causing widespread tree mor-
tality in western USA, but also influencing forest health globally44.
Forest restoration strategies primarily focusing on protecting big
trees45 may not increase the overall sustainability of forest ecosys-
tems. The heterogeneity and diversity of tree sizes and age groups at
the forest-stand level are vital for the sustainability of forest eco-
systems, particularly in areas with frequent disturbance and drought
stress. Tree species diversity often shows a positive relationship
with canopy structural complexity26,34, and the higher hydraulic
diversity brought by high tree species diversity improves forest
resilience to drought46. Our findings suggest that adopting a forest
restoration strategy reestablishing heterogeneity in tree species
diversity and canopy structural complexity can enhance forest resi-
lience to extreme droughts47.

While canopy structure has significant impacts on tree mortality,
predicting tree mortality during drought must consider the com-
pounding effects of canopy structure, environmental conditions, and
interactions between biotic and abiotic factors14. This complexity may
explain why most tree mortality prediction models have low expla-
natory power14, and our study is no exception (Supplementary
Table 13). Further improvements may require the combination of
process-based modeling to simulate forests’ mechanical responses to
drought stresses and forest monitoring data over a wide range of
spatial and temporal scales9. Advances in remote sensing technologies
shed new light on forestmonitoring, such as lidar for canopy structure
monitoring, thermal remote sensing for canopy temperature mon-
itoring, solar-induced chlorophyll fluorescence remote sensing for
forest healthmonitoring, andmicrowave remote sensing for soil water
content monitoring48. Although uncertainties may still exist in indivi-
dual tree segmentation, species classification, dead tree detection, and
forest attribute retrieval49–51 (Supplementary Tables 1 and 2), integra-
tionwith observations of tree physiological and structural traits aswell
as environmental factors may provide solutions to enhance our cap-
ability to monitor and predict tree mortality during drought52. While
not yet deployed for designing silvicultural prescriptions, multi-
objective modeling driven by new remote-sensing data is poised to
offer added value for designing silvicultural prescriptions grounded in
more direct measures of physiological and ecological processes53.
Given the multi-billion-dollar challenge of restoring forests in the
Sierra Nevada and the adoption of multi-benefit management over
resource extraction54, it is now timely to bring these tools from
research to applications.

Methods
Study area
Our 151 km2 study area is located in the southern Sierra Nevada
mountainous forests (37°25′N, 119°36′W), ranging in elevation from
730m to 2650m (Fig. 2b, c). This area features a typical Mediterra-
nean climate characterized by dry and warm summers as well as wet
and cool winters. Between 2012 and 2016, the forests in this region
experienced an extreme drought4,5. The average annual total pre-
cipitation over the past three decades was 984mm, but decreased to
681mm during 2012–2016 (Fig. 2a). The extreme drought was
accompanied by significantly high temperatures (0.70 °C higher than
the mean annual temperature for 1980–2019; Fig. 2a)55, which
accelerated snowmelt and prolonged the dry season56. Sierra mixed-
conifer stands are the primary vegetation type in this region, with
dominant tree species including Calocedrus decurrens, Abies con-
color, Pinus ponderosa, Pinus lambertiana, Quercus kelloggii, and
Quercus virginiana57.

Field measurements
Within the study area, a total of 121 field plots were set up following a
stratified sampling approach aligned with established practices in
forest inventory (Supplementary Fig. 13)58. Each plot was circular in
shape with a radius of 12.62m and an area of 500m2. The first plot was
randomly chosen within the study area, and the remaining 120 plots
were then placed on a 500-m spacing grid. If any plot was within
12.62mof any landing, road, river, or otherwise physically inaccessible
area, it was randomly relocated by 25m along one of the four cardinal
directions. These plots were surveyed in the summers of 2007 and
2008, and their locations measured using a Trimble GeoXH Global
Positioning System (GPS) unit equipped with a Trimble Zephyr
antenna (positioned at a height of 3m). Continuously Operating
Reference Stations andUniversity NAVSTARConsortium stations were
availablewithin 20 kmof thedesignatedplots for differential GPSpost-
processing. Throughout the data-collection phase, stringent efforts
were devoted to ensuring a low positional dilution of precision (PDOP)
value, rigorously maintained below 5. In instances where the PDOP
value exceeded this threshold, immediate measures were taken to
relocate the GPS receiver to a more open forest canopy location,
typically up to 30m away. To further enhance the GPS positioning
accuracy, a minimum of 300 measurements were captured at one-
second intervals for every position. Notably, the majority of positions
encompassed over 1000 measurements. The culmination of these
measures yielded centimeter-level precision accuracy in determining
plot center locations. Once the precise coordinates of plot centers
were established, we employed an Impulse laser ranger finder and an
Impulse electronic compass to measure the distance and angle from
the plot center to each individual tree, thereby georeferencing all trees
with a diameter at breast height larger than 5 cm. In addition to the
location of each tree, we also recorded its species information and
measured its height using an Impulse laser ranger finder58.

Remote-sensing datasets
Two remote-sensing datasets covering the entire study area were
collected, including airborne lidar data and high-resolution aerial
imagery. The airborne lidar data were collected in the summer of 2012
using an Optech GEMINI airborne laser terrain mapper system, which
was flown at a height of 600–1000m above the ground. The lidar data
had an average point density of 10 points/m2 and were processed
through a standardized procedure, including outlier removal, filtering,
and normalization49. Outlier removal aims to mitigate the influence of
noise points arising from wind, high-flying objects, and the multi-path
effect. To achieve this, a distance-based method was employed, iden-
tifyingnoisepoints by assessingwhether the averagedistancebetween
a point and its ten closest neighboring points exceeds a threshold of
μ + 5σ (where μ and σ represent the mean and standard deviation
of point distances, respectively)59. Filtering, the subsequent step,
serves the purpose of separating ground points from non-ground
points, facilitating the generation of terrain elevation products. In this
study, we employed an enhanced progressive triangulated irregular
network densification filtering algorithm60. Normalization, the final
step, assumes the role of counteracting the influence of terrain ele-
vation on lidar height measurements, accomplished by subtracting
ground elevation from the elevation of a point. All preprocessing steps
were executed within the LiDAR360 software (GreenValley Interna-
tional Inc.), employing the default parameter settings.

The high-resolution aerial images were collected by the National
Agriculture Imagery Program (NAIP) in 2012, 2014, and 2016, respec-
tively. They had a spatial resolution of 0.6–1mand four spectral bands,
including blue (435–495 nm), green (525–585 nm), red (619–651 nm),
and near-infrared (808–882 nm). Here, we resampled all NAIP images
to a 1-m spatial resolution and geo-registered them to airborne lidar
data by manually collecting 69 road crossings as tie points (Supple-
mentary Fig 13).
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Auxiliary datasets
Two types of auxiliary datasets were used in this study: forest stand
boundaries and environmental factors. The boundary of 976 forest
stands was obtained from Su et al. 61, who delineated areas with
homogenous vegetation compositions and structures using the same
airborne lidar data and NAIP images as in the current study. The mean
forest stand size was 0.144 km2 with a coefficient of variation of 86.6%.
Five environmental factors—terrain elevation, slope, aspect, TWI, and
solar radiation—were calculated from a digital terrain model (DTM) at
10-m resolution. The DTM was interpolated from lidar ground points
using the ordinary kriging for interpolation. For this study, a typical
summer day in the study area (August 1st, 2016) was selected to
represent the solar radiation condition, which was calculated as the
sum of hourly solar radiations from 10 am to 2 pm. Hourly solar
radiation was calculated from the lidar-derived DTM using the Area
Solar Radiation tool in ArcGIS (ESRI)62. TWI, a function of slope and the
upstream contributing area per unit width orthogonal to the flow
direction63, was calculated from the lidar-derived DTM using the TWI
tool in SAGA-GIS.

Individual tree segmentation and tree species classification
Dead trees were detected at the individual level through the combi-
nation of field data, lidar data, and high-resolution aerial imagery. To
achieve this, we first delineated individual trees from lidar-derived
canopy height model using a marker-controlled watershed segmen-
tation algorithm42. Each detected tree was visually examined and
manually corrected if necessary (see Supplementary Methods for
details). A total of 1,405,237 trees were segmented within the study
area. Despite the substantial manual work invested, we acknowledge
that there still might be errors in the tree segmentation results, parti-
cularly for undercanopy small trees49. Given the potential segmenta-
tion errors of small trees and in identifying them from aerial imagery,
we removed trees with a height <5m in this study. Eventually,
1,050,960 trees were retained in subsequent analyses.

With the segmented individual trees, we implemented a random
forest-based classificationmodel to identify the species information of
each tree from nine features, including one vegetation index derived
from the pre-drought aerial imagery, four canopy structural features
derived from the airborne lidar data, and four terrain features (see
SupplementaryMethods for details). A total of 977 field-surveyed trees
were matched with the segmented trees through their geolocations
(see Supplementary Methods for details), and half of them were ran-
domly selected for training the classification model. Considering the
difficulty in identifying and classifying tree species, we aggregated
field-surveyed tree species into four genera, which are Abies, Cedrus,
Pinus, and Quercus. All species-wise analyses were conducted at the
genus level in this study. Using the trained classification model, we
predicted the genus of each segmented tree, and the classification
accuracy was evaluated by the remaining field-surveyed trees (Sup-
plementary Table 1).

Dead tree detection
To identify dead trees during drought from the segmented individual
trees, we implemented a random forest-based classification model to
predict six land-cover classes, which were dead tree, green tree, grass,
bare ground, artificial object, and water (see Supplementary Methods
for details). A total of 350 land patches with homogenous land cover,
encompassing 61,965 NAIP pixels, were randomly selected and visually
interpreted from the pre-drought (2012), early drought (2014) and
peak-drought (2016) aerial imagery. Half of these pixels were used as
the ground truth to train the classification model from five spectral
features derived from the aerial imagery. The classification results
were then overlaidwith the segmented individual tree boundaries, and
a tree was identified as dead if over 35% of its crown was classified as
dead, following Stovall et al. 17. If a tree was identified as dead in the

pre-drought aerial imagery, it was not considered a dead tree that
occurred during the drought and was subsequently removed from the
early drought and peak-drought dead tree detection results. To eval-
uate the accuracy of dead tree detection results, the remaining half of
the visually interpreted pixels were used to determine the dead/live
conditions of 635 trees using the same criterion as mentioned above.
The recall, precision, and F-score were calculated for the dead tree
detection results of each genus during each drought period. It is
important to note that the dead tree detection results may vary based
on the threshold used to determine dead trees. To ensure the
robustness of the subsequent statistical analyses, we repeated the
dead tree detection process by changing the threshold from 30% to
50% with a 5% increment. Each of the results was then used to evaluate
the relationship between canopy structure and tree mortality rate.

Canopy structural attribute extraction
To evaluate the influence of canopy structure on tree mortality during
drought, two types of canopy structural attributes were extracted
from the airborne lidar data, including individual tree size and neigh-
borhood canopy structure. Individual tree sizewas representedby tree
height, calculated as the maximum height above the ground within a
tree segment. Since the influence of neighborhood canopy structure
on tree mortality is primarily mediated through resource competition
and area partitioning15,25,26, it was represented by three widely recog-
nized competition indices, including CCTH, CC66, and CVTH. These
three indices can characterize the three-dimensional arrangement of
canopy elementswithin the neighborhoodof a targeted tree (a circular
buffer with a 15-m radius in this study)42. CCTH and CC66 were cal-
culated as the coverage of canopy elements within the neighborhood
taller than 100% and 66% of a targeted tree, respectively, while CVTH
was calculated as the coefficient of variation in tree height of all
neighboring trees (Supplementary Fig. 8). To mitigate the influence of
neighborhood size on the subsequent statistical analyses, we also
calculated these neighborhood canopy structural attributes using
different neighborhood sizes—15, 30, 50, and 100m—and investigated
their relationships with tree mortality rate during drought.

Statistical analyses
To quantify tree mortality rate, we used both the abovementioned
forest stands and regular grids (500m× 500m) as the basic statistical
units, and the tree mortality rate of a statistical unit was calculated as
the percentage increase of dead trees per year. To investigate the
relationships between canopy structural attributes and tree mortality
rate, either weighted linear regression analysis or weighted piecewise
linear regression analysis was employed, and the slope,R2, and P values
of each regression model were reported. The canopy structural attri-
butes were binned for each 2-m difference in tree height, each 2%
difference in CCTH, each 2% difference in CC66, and each 0.1 differ-
ence in CVTHwithin each statistical unit to simulate their responses to
treemortality rate; and the number of trees in each binwas used as the
weight in the weighted regression analyses. As tree mortality rate is a
value between 0 and 1, we also employed beta regression, a form of
regression that takes dependent variable values ranging from 0 to
164,65, to validate the relationships between canopy structural attributes
and tree mortality rate.

Considering the high relative importance of CCTH in explaining
tree mortality rate, as determined by the percent increase in mean
squared error derived from a random forest regression analysis66, it
was selected as an example to represent neighborhood canopy
structural attributes in the statistical analysis hereafter (Supple-
mentary Fig. 9). In analyzing variable importance, the tree mortality
rate was calculated for each unit binned by the three stand-level
canopy structural attributes (i.e., CCTH at a 5% interval, CC66 at a 5%
interval, and CVTH at a 0.2 interval), and the random forest regres-
sion model was built by setting the number of trees (ntree) and the
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number of features tried as each split (mtry) to 500 and 3, respec-
tively. To avoid the coupled influence of individual tree size and
neighborhood canopy structure on tree mortality rate, we further
assessed the correlations between tree mortality rate and CCTH
using mixed linear modeling, incorporating both categorical and
continuous tree height as random effects. For the categorical ran-
dom effect, tree height was divided into three groups, which were
<33rd percentile, 33rd percentile - 66th percentile, and >66th percentile.
To assess the significance of the random effect, we compared the
mixed linear effect model for all genera or each genus with its cor-
respondingmodel that did not account for tree height as the random
effect, using analysis of variance. The slope and significance of the
fixed effect (CCTH) and the significance of the random effect (tree
height) were reported.

The combined influence of environmental factors and canopy
structural attributes on tree mortality during drought was evaluated
using the random forest regression. In addition to tree height and
CCTH, we selected three environmental factors (i.e., elevation, TWI,
and solar radiation) that showed observable relationships with tree
mortality rate (Supplementary Fig. 15). While other environmental
factors, such as temperature, precipitation, and vapor pressure deficit,
were considered, they were not used in this study due to the lack of
high-resolutionproducts to represent individual tree-level variations67,
even though they may influence tree mortality during drought17. The
tree mortality rate was calculated for each unit binned by the two
canopy structural attributes (i.e., tree height at a 5-m interval and
CCTH at a 5% interval) and the three environmental factors (i.e., ele-
vation at a 250m interval, TWI at a 0.5 interval, and solar radiation at a
200Wh/m2 interval). In this study, we built two random forest
regression models for each genus and all genera combined, one using
only environmental factors and one using both environmental and
canopy structural factors. Each random forest regression model was
built withmtry set to 3 and ntree set to 500. The relative importance of
each factor was also quantified by the percent increase in mean
squared error (Supplementary Fig. 15). The simulated response of tree
mortality rate to each factor was presented using partial dependence
values.

To further investigate the mechanism behind the influence of
neighborhood canopy structureon treemortality duringdrought, we
simulated crown shadow ratio using the airborne lidar data. The
crown shadow ratio of a tree was calculated as the average percen-
tage of crown in the shadow cast by its neighboring trees within a 15-
m radius neighborhood during the daytime. In this study, the shaded
crown of each tree was simulated 23 times (simulated once every
30min from 7 am to 6:30 pm) for a typical summer day of the study
area (August 1st, 2016) using a ray tracing method68, and the average
percentage of shaded crownduring this periodwas used to represent
crown shadow ratio (see Supplementary Methods for details). A
similar weighted linear regression analysis, as mentioned above, was
used to investigate the influence of neighborhood canopy structure
(using CCTH as an example) on crown shadow ratio and the influence
of crown shadow ratio on tree mortality during drought. Moreover,
the SEM method, a multivariate modeling technique used to assess
the casual connections among variables69, was employed to validate
the pathways linking CCTH to tree mortality rate through the reg-
ulation of crown shadow ratio. Furthermore, we simulated how the
ET of a tree changed with crown shadow ratio using the Terrestrial
Biosphere Model-BEPS model70,71, and therefore explored the influ-
ence of changes in crown shadow ratio on tree-level water demand
(see Supplementary Methods for details). We used both a conifer-
shaped tree and a sphere-shaped tree as examples and simulated
their relative changes in ET under different crown shadow ratios to
that of a conifer-shaped or sphere-shaped tree without crown sha-
dow during the daytime. Here, crown shadow ratio was set in the
range from 73% to 92% with a step of 3%, corresponding to a ratio

between sunlit leaf area and the total amount of leaf area varying
from 0.17 to 0.05 with a step of 0.02.

It should be noted that the P values for all coefficients obtained
from linear regression were derived through a two-tailed t-test. All of
the aforementioned statistical analyses were conducted using R
through the packages Betareg, randomForest, randomForestExplainer,
pdp, and lavaan.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The generated individual tree data with attributes of spatial locations,
species, canopy structure, and live/dead conditions, as well as the
processed data, are accessible on Figshare (https://doi.org/10.6084/
m9.figshare.24278014).

Code availability
The complete R code used for the calculation and visualization of the
results is accessible on Figshare (https://doi.org/10.6084/m9.figshare.
24278014).
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