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Genome-wide enhancer-gene regulatory
maps link causal variants to target genes
underlying human cancer risk

Pingting Ying1,2,3,12, Can Chen1,2,3,12, Zequn Lu1,2,3,12, Shuoni Chen1, Ming Zhang1,
Yimin Cai 1, Fuwei Zhang1, Jinyu Huang1, Linyun Fan1, Caibo Ning1, Yanmin Li1,
Wenzhuo Wang1, Hui Geng1, Yizhuo Liu1, Wen Tian1, Zhiyong Yang4, Jiuyang Liu5,
Chaoqun Huang5, Xiaojun Yang5, Bin Xu6, Heng Li7, Xu Zhu8, Ni Li 9, Bin Li1,
Yongchang Wei10, Ying Zhu1, Jianbo Tian 1,2,3 & Xiaoping Miao 1,2,3,11

Genome-wide association studies have identified numerous variants associated
with human complex traits,most of which reside in the non-coding regions, but
biologicalmechanisms remain unclear. However, assigning function to the non-
coding elements is still challenging. Here we apply Activity-by-Contact (ABC)
model to evaluate enhancer-gene regulation effect by integrating multi-omics
data and identified 544,849 connections across 20 cancer types. ABC model
outperforms previous approaches in linking regulatory variants to target genes.
Furthermore, we identify over 30,000 enhancer-gene connections in colorectal
cancer (CRC) tissues. By integrating large-scale population cohorts (23,813
cases and 29,973 controls) and multipronged functional assays, we demon-
strate an ABC regulatory variant rs4810856 associated with CRC risk (Odds
Ratio = 1.11, 95%CI = 1.05–1.16, P = 4.02 × 10−5) by acting as an allele-specific
enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which
synergistically activate p-AKT signaling. Our study provides comprehensive
regulation maps and illuminates a single variant regulating multiple genes,
providing insights into cancer etiology.

Genome-wide association studies (GWAS) have identified thousands of
loci associated with human traits and diseases1–3. Approximately 90%
of the variants identified by GWAS fall in non-coding regions such as
enhancers and promoters4. Fueled by the advanced biochemical

investigation of human genome, we are aware that such non-coding
variants could affect expression of key genes through regulatory
mechanisms, thereby contributing to cancer susceptibility5. However,
assigning function to the non-coding elements is notoriously difficult,
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whichneeds to distinguish the truly functional enhancers amongmany
transcriptional regulatory sequences and determine the target genes
that they variably affect.

Although recent advances in fine-mapping techniques have
improved our ability to nominate causal variants, assigning the
underlying target genes remains a critical challenge6,7. One default
approach has been to assign variants to the closest gene at each locus,
while predictions based solely on physical proximity alone can be
misleading as causal variants are predominantly regulatory variants
that can influence gene expression over long genomic ranges8. Large
gene expression quantitative trait loci (eQTL) data sets have been
instrumental for GWAS target genes identification, which add the
evidence that majority of the causal genes at GWAS loci are not the
closest8. However, previously published eQTL datasets could explain
only a small fraction (9–13%) of GWAS heritability of cancers9, sug-
gesting increasingly diverse functional genomic data beyond gene
transcription are required to interpret disease mechanisms.

To date, there has been tremendous effort to dissect the
machinery of gene regulation including the map of cis-regulatory
elements (CREs) from ENCODE project and genome-scale chromo-
some conformation capture (Hi-C) technology10–13. Traditionally, pre-
dicting enhancers based on histone ChIP-seq data with H3K27ac
enrichment and estimating 3D genome interactions according to Hi-C
peaks have been widely utilized respectively. Therefore, integration of
multi-omics datasets across a wide range of cell types and tissues is
expected to strengthen the signal for pinpointing causal variants and
their probable target gene, such as epigenomics data, chromatin
accessibility and chromatin interaction datasets. More importantly,
comparedwith the overlapping results of thesemulti-omics datasets, a
computational approach Activity-by-Contact (ABC) model that is
developed to link regulatory elements to their target genes with a
quantitative combination of enhancer activity and 3D contact fre-
quencies helps to distinguish significant enhancer-gene pairs, further
identifying the causal non-coding GWAS variants residing in ABC
enhancers and their potential target genes14,15. Researchers have cre-
ated genome-wide maps of more than six million ABC enhancer-gene
connections among 74 distinct primary cell types or tissues15. How-
ever, the systematic landscape for regulatory maps linking enhancers
to their potential target genes and those regulatory mechanisms in
human cancers have not been fully elucidated.

In this work, we systematically build genome-wide enhancer-gene
maps across 20 human cancer types by integrating the multi-omics
data using the ABC model. We totally identify 544,849 enhancer-gene
connections involving 266,956 enhancers and 216,268 target genes,
providing a comprehensive resource of regulatory maps in human
cancers. We further characterize functional features both of variants
harboring in enhancers and target genes, increasing the understanding
for the potential regulatory mechanism of ABC enhancers. It is worth
mentioning that ABC model performs better at prediction of reg-
ulatory elements and target genes compared with previous known
methods. Additionally, we also apply the ABC framework and identify
over 30,000 enhancer-gene connections from our CRC tissues. Fur-
thermore, we systematically screen ABC regulatory variants associated
with CRC risk in 17,789 cases and 19,951 control and independently
validate in a large-scale population consistingof 6024cases and 10,022
controls. We identify an ABC regulatory variant rs4810856 that acts as
an allele-specific enhancer to distally provoke the expression of PREX1,
CSE1L and STAU1 by ZEB1 mediating long-range chromatin interaction
loops, which synergistically activate p-AKT signaling and facilitate CRC
cells proliferation in vitro and in vivo, thus contributing to an increased
risk of CRC (Odds Ratio (OR) = 1.11, 95%CI = 1.05–1.16, P = 4.02 × 10−5).
In summary, we have provided comprehensive insights into genome-
wide enhancer-gene connections, linking risk variants to disease genes
acrossmultiple cancer types and elucidate a functionalmodel in which
a non-coding variant could facilitate long-range chromatin

interactions to regulate expression of multiple genes. These findings
present a promising approach for distinguishing the causal variants
among numerous candidates and predicting target genes, and provide
valuable clues for holistic comprehension of the genetic architecture
of cancers.

Results
Landscapes of genome-wide enhancer-gene maps across 20
cancer types
To map the connections between enhancer and target genes at a
genome-wide scale across different cancer types. We predicted the
enhancer-gene maps across 20 cancer cell types using ABC model,
which combines the enhancer accessibility (ATAC-seq or DNase-seq)
and activity (H3K27ac ChIP-seq) with the normalized contact fre-
quency (Hi-C) (Fig. 1a). The data sources for each cancer type were
listed in SupplementaryData 1.We totally identified 544,849 enhancer-
gene connections for 266,956 enhancers and 216,268 potential effec-
tor genes (Fig. 1b–d). The number of identified enhancer-gene con-
nections averaged 27,243, ranging from 20,134 in Uterine corpus
endometrial carcinoma (UCEC) to 37,053 in acute myeloid leukemia
(LAML). On average, each ABC enhancer was predicted to regulate 2.0
genes, each gene was predicted to be regulated by 2.5 ABC enhancers,
and the median genomic distances between each enhancer-gene
connection was 28,266 bp (Fig. 1e-g). Notably, we found only 0.5% of
enhancer-gene connections were shared among pairs of cancer types,
indicating that most regulatory landscapes were highly cancer-type-
specific (Fig. 1h), which is consistent with the previous study16. To
evaluate the prediction ability of ABC enhancers, we quantified the
enrichment of variants that functionally validated from a high-
throughput reporter assay among multiple cancer types in ABC
enhancers17. We found that these functionally validated variants were
more enriched in ABC enhancers compared with other regulatory
elements, such as ATAC peaks, H3K27ac peaks, FANTOM5 enhancers,
HiC signal and eQTLs (Fig. 1i). Overall, we demonstrated a promising
approach based on multi-omics data to build regulatory maps in
multiple cancers.

Functional characterization of cancer enhancer-gene
connections
Accumulating evidence has supported that gene expressions are
typically regulated by transcription factors binding genetic variants
among enhancers8,18. To characterize features of variants resided in the
ABC enhancers (ABC variants), we generated the control variants set
(non-ABC variants) using a web tool vSampler with the allele fre-
quencies, number of variants in LD, as well as genomic distribution
matched to ABC variants for each cancer type. Compared with non-
ABC variants, ABC variants were significantly enriched within non-
coding regions in human genome, such as TF binding region, 5’UTR
and gene upstream region (Fig. 2a). To further demonstrate the
potential regulatory function of ABC variants, we analyzed whether
these variants were enriched within genomic regions marked by his-
tone modification and TF binding sites. The ChIP-seq data of histone
modification and TFs across various cancer cells were downloaded
from ENCODE and TFs with at least 50,000 peaks in the ChIP-seq data
were finally selected. As expected, we observed significant enrich-
ments of ABC variants within active chromatin regions, including
H3K27ac, H3K4me2, H3K9ac, H3K4me1, H3K4me3, H3K36me3 and TF
binding sites, rather than repressive epigenetic regions including
H3K27me3 (Fig. 2b). Intriguingly, abundant cancer-associated TFs
were identified preferentially binding to ABC variants (Fig. 2c), for
instance, TEAD4 have been extensively reported that plays important
roles in gene expression regulation among cancers19. Meanwhile, we
analyzed the enrichment of ABC variants among the chromatin state,
and found ABC variants were enriched in active chromatin state,
including enhancers and active TSS (Fig. S1). Collectively, these
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findings provide strong evidence supporting the regulatory properties
of ABC variants, which are mediated by TFs.

We further assessed whether ABC variants were enriched for
susceptible variants associated with cancers. As a result, ABC var-
iants significantly enriched in GWAS loci among most cancer types,
particularly in esophageal cancer (ESCA, P = 1.43 × 10−13), indicating
that ABC variants could provide additional insight into cancer her-
itability (Fig. 2d). Therefore, we performed in-depth analysis using

LD score regression (LDSC) to assess the proportion of ABC variants
associated with heritability for each cancer type, and observed that
ABC variants could explain a significant fraction of cancer herit-
ability, ranging from 0.5% in thyroid carcinoma (THCA) to 12% in
prostate adenocarcinoma (PRAD, Fig. 2e). Additionally, ABC variants
presented more significant population-associated P values com-
pared to genome-wide variants in the cancer types, such as CRC and
PRAD (Figs. 2f and S2). Taken together, our findings suggest that
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ABC variants might make a significant contribution to the herit-
ability of multiple cancers.

To further dissert the potential function of the genes regulated by
ABC enhancers (ABC genes), we characterized functional roles of the
target genes in terms of gene pathway enrichment, tumor mutation
burden, drug response and immune infiltration. GSEA analysis
revealed that ABC geneswere enriched for TNFA signaling pathway via
NFKB among most of cancer types (Fig. 2g), which is reported play a
critical role in cancer development20. Moreover, emerging evidence
has demonstrated that genes within somatic mutation and copy-
number alterations (SCNAs) burden can act as key oncogenic drivers
and serve as an effective approach for target therapy21,22. We observed
significantly enrichment of ABC genes in somatically mutated genes
set comparedwith non-ABC genes, and found frequently amplification
and deletion alterations among ABC genes (Fig. 2h, i). These high
frequencies of alterations indicated genes tend to contain regionswith
driver events associated with cancer development. Interesting, we
found that drugs targeting ERK/MAPK signaling were broadly asso-
ciated with more ABC genes in the drug response analyses based on
Genomics of Drug Sensitivity in Cancer database (GDSC) (Fig. S3).
Given that growing evidence demonstrates that immune response
could greatly influence cancer development23, we next assessed the
association between ABC genes expression and immune cell infiltra-
tion. Unsurprisingly, ABCgeneswere closely related to high infiltration
by immune cells among most of cancer types, especially in PRAD.
(Figs. 2j and S4a). Furthermore, these genes significantly enriched in
immune-related pathways as well, such as EGFR1 pathway, which was
much important for cell growth and differentiate (Fig. S4b). Collec-
tively, these integrated analyses indicate that ABC genes could play an
important role in tumorigenesis, and act as effective biomarkers or
promising therapeutic targets for cancers.

The ABC model performs better at linking enhancer variants to
genes in our CRC tissues
A number of studies have illustrated that variations located enhancer
regions can facilitate enhancer-promoter interactions, thus resulting in
an increased risk of CRC8,24,25, To created enhancer-gene maps to
determine causal variant of CRC risk, we performed multi-omics ana-
lyses of ATAC-seq, H3K27ac ChIP-seq and RNA-seq with high quality
from our 10 CRC tissues (Fig. 3a and Fig. S5) and the clinical char-
acteristics of the 10 CRC patients were provided in Supplementary
Table 1. By computationally integrating these multi-omics data, we
identified 34,130 enhancer-gene connections involving 15,121 unique
enhancers and 12,351 expressed genes.On average, eachABCenhancer
was predicted to regulate 2.8 genes, each gene was predicted to be
regulated by 2.3 ABC enhancers, and the median genomic distances
between each enhancer-gene connection was 48,375 bp (Fig. 3b–d).
Additionally, the identified ABC enhancers contained 26,877 non-
coding variants with underlying regulatory effect (Fig. 3a).

To evaluate the performance of ABC predictions for assigning
target genes to regulatory variants. We tested a credible set consisting
of 27 variant-gene connections which were validated by functional
experiments from previous CRC studies (Supplementary Table 2).
Notably, ABCmodel that identified 16 variant-gene connections out of
19 cases (70% recall and 84% precision), had higher precision than
other approaches, including predictions based on genomic position,
eQTLs, three-dimensional contacts or other enhancer-gene predic-
tions (Fig. 3e). This analysis demonstrates that ABC regulatory maps
could accurately connect fine-mapped variants to target genes, high-
lighting the performance for regulatory function annotations by
ABC model.

We further annotated the position distribution of ABC variants in
genome, and observed that about 90% of variants lied in non-coding
regions, such as intron and intergenic regions (Fig. 3f). Moreover, we
found ABC enhancers exerted higher chromatin activity, and were
closer to the closest TSS compared with other accessible regions
(Fig. 3g). In parallel with the results of CRC cell line, ABC variants
recognized in our tumor tissues were enriched among TF binding sites
and active epigenetic makers such as H3K27ac, H3K4me1, ATAC peaks
and DNaseI hypersensitive sites (DHSs) (all of P <0.05, Fig. 3h and
Fig. S6). These observations suggest that the central role for ABC
variants among the transcriptional regulation in CRC development.

To elaborate the potential contribution of ABC genes to CRC
development and clinical relevance, we detected 5377 significant dif-
ferently expressed genes in colorectal cancer tissues and paired nor-
mal tissues (Fig. S7a). Subsequently, a series of functional analyses
were conducted to characterized these genes. The results showed that
ABC genes were closely relevant to cancer signaling pathways, high
mutation burden and pharmaceutical targets, which will be helpful for
clinical application, which were consisted with the results analyzed in
cell lines (Fig. S7b–f). Together, these findings highlight the strength of
ABC model in predicting enhancer-gene connections which play cri-
tical roles in aberrant regulation of CRC tumorigenesis.

ABC variants can explain a significant proportion of CRC
heritability
To determine the potential role of ABC variants identified from our
CRC samples contributing to CRC risk, we performed enrichment
analyses using the published GWAS data. Intriguingly, we found that
69 of the 149 CRC GWAS loci were identified by ABC framework and
linked to 111genes. It is noteworthy that ABC model enables the iden-
tification of putative risk genes outside previously reported CRC loci
(Fig. S8a). Correspondingly, a significant enrichment of ABC variants
was obviously observed among CRC risk loci compared with non-ABC
variants (Fig. 3i). Additionally, we found GWAS signals were most sig-
nificantly enriched among ABC enhancers compared with other cis-
regulatory elements that predicted from ATAC peaks, H3K27ac peaks,
FANTOM5 enhancers or eQTLs in CRC (Fig. 3j). Moreover, we

Fig. 1 | Landscapes of genome-wide enhancer-gene maps across 20 cancer
types. a Overview of ABC enhancer-gene maps across 20 cancer types, which was
created with BioRender.com. The multi-omics data that were used to build ABC
model includingDNase-seq, ATAC-seq, H3K27acChIP-seq andHiC-seq of 20 cancer
types frommultiple datasets were indicated at the left. Enhancer-gene connections
were identified by the calculation of ABC score for investigating the different gene
regulatory modules. ABC variants and target genes were characterized based on
functional enrichment compared to non-ABC variants or genes. Summary of the
enhancer-genemaps across 20 cancer types. Bar charts represented the number of
enhancer-gene connections (b), ABC enhancers (c) and ABC genes (d) in each
cancer type. e Cumulative fractions of the number of enhancers predicted to reg-
ulate each gene across 20 cancer types (black line; mean = 2.5) and the mean
number of enhancers predicted to regulate each gene within each cancer type (red
line;median= 2.5). fCumulative fractions of the numberof genes regulated by each
ABCenhancer across 20 cancer types (black line;mean = 2.0) and themeannumber

of genes regulated by each ABC enhancer within each cancer type (red line; med-
ian = 2.1). g Cumulative fractions of the genomic distances between the enhancer
and the gene for each predicted enhancer–gene connection across 20 cancer types
(black line; median = 26,755 bp) and the median genomic distance between each
enhancer-gene connection within each cancer type (red line; median= 28,266 bp).
hReplicability of enhancer-gene pairs across cancer types. The color represents the
replication ratio of enhancer-gene pairs of one cancer (y-axis) in another cancer
type (x-axis). Two connections are considered overlapping if the predicted genes
were the same and the enhancer elements overlapped. i Enrichment analyses for
variants detected from different approaches (ABC model, ATAC peaks, H3K27ac
peaks, FANTOM enhancers, HiC signals or eQTL) within the functionally validated
genetic variants set tested by Biallelic Targeted STARR-seq (BiT-STARR-seq) from
multiple cancers. The percentages of variants deemed to have genotype-
dependent enhancer activity at different FDR thresholds were shown for each set.
Source data are provided with this paper.
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performed in-depth analysis using LDSC to assess the proportion of
ABC variants associated with heritability for CRC, and found that ABC
variants could explain a significant fraction (1.66%) of cancer herit-
ability (Fig. S8b). We further observed that variants with the higher
ABC score were more enriched in the eQTL datasets with different P
value cutoffs, highlighting the ability of ABC model in dissecting
potential functional regulatory variants (Fig. S9). Similarly, these ABC
variants also exhibitedmore significant population-associated P values

than genome-wide variants (Fig. 3k). These in-depth analyses provide
solid evidence that ABC variants could explain a considerable pro-
portion of CRC heritability.

The ABC variant rs4810856 at 20q13.13 is associated with
CRC risk
To link the regulatory variants located in ABC enhancers to CRC sus-
ceptibility, we performed joint analysis of ABC variants with GECCO

 *P < 0.05
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GWAS data, which included 17,789 CRC cases and 19,951 healthy
controls (Supplementary Table 3). We totally identified 4847 variants
showing evidence of association with CRC risk (P < 0.05) (Fig. 4a). Of
those, the regulatory variant rs4810856 at 20q13.13 prioritized the
most potential with the highest ABC score, which was connected to
three target genes:PREX1,CSE1Land STAU1 amongABCenhancer-gene
regulatory maps (Fig. 4b). To validate the association between
rs4810856 and CRC risk, we tested the risk effect of rs4810856 in
multiple CRC European population cohorts, including the meta data
(OR = 1.03, P = 3.02 × 10−2), BioBank Japan Project (BBJ) (OR = 1.08,
P = 1.18 × 10-4), UK Biobank (OR = 1.06, P = 1.02 × 10−2) and GECCO
(OR= 1.04, P = 5.59 × 10−3) (Supplementary Data 2 and 3). Furthermore,
we conducted a two-stage case-control study consisting of 6024 cases
and 10,022 controls in Chinese population and the demographic
characteristics were detailed in our previous research24. The ABC var-
iant rs4810856-C allele conferred a consistent genetic predisposition
toCRC in both stages, with adjustment for gender, age group, smoking
status and drinking status, respectively. In coherence with the results
frompublic datasets, we combined the results from the two stages and
observed that the rs4810856-C allele carriers contribute to an
increased risk of CRC compared with T allele carriers (OR = 1.11, 95%
CI = 1.04–1,16, P = 4.02 × 10−5) in additive model (Table 1).

The ABC variant rs4810856 acts as an allele-specific enhancer to
promote PREX1, CSE1L and STAU1 expression
To determine the ABC variant rs4810856 might function as the causal
SNP with a regulatory effect in CRC, we performed functional anno-
tation of this variant rs4810856 by interrogating Cistrome epigenome
functional data alongside our ATAC-seq and ChIP-seq data. We
observed that the target region harboring rs4810856 was enriched
within active histonemodification peaks (H3K4me1 and H3K27ac) and
open chromatin accessibility (DNase-seq and ATAC-seq peaks, sug-
gesting this region presented the active enhancer property (Fig. S10a).
Interestingly, the rs4810856 have significant eQTLs with PREX1, CSE1L
and STAU1 in our own CRC samples, as C-allele carriers present higher
expression of three target genes, compared to T-allele carriers
(Fig. 4c). To testwhether therewere long-range chromatin interactions
between enhancer containing rs4810856 and three target gene pro-
moters, we plotted the TAD structure in rs4810856-centered window
from Hi-C data of HCT116 cells. The results showed that rs4810856
harboring enhancer and promoters of three target genes were present
in the same TAD, indicating that the chromatin interactions between
enhancer and promoters might occur to distally affect target genes
expression (Fig. 4d).Moreover, the dual-luciferase reporter assays also
showed that rs4810856-C allele had higher enhancer activity than that
with T allele in both SW480 and HCT116 cells (Fig. 4e, f). Taken toge-
ther, these results reveal that the ABC variant rs4810856 C-allele could
elevate the enhancer activity to promote PREX1, CSE1L and STAU1
expression.

ZEB1 preferentially binds to the risk allele of rs4810856 to affect
target genes expression
Transcription factors (TFs) are involved in the precise regulation of
gene expression and implicated in cancer pathogenesis24,25. Given that
allele-specific activity of variants in enhancers can be triggered by
binding to specific TFs19, we first performed TF motif analysis using
JASPAR and identified ZEB1 as a candidate factor that preferentially
binds to the C allele of rs4810856 (Fig. 4g). Moreover, ChIP-seq data
from the Cistrome database also indicated that ZEB1 maps within the
region surrounding variant rs4810856 in CRC RKO cell line (Fig. S10a).
In addition, we further experimentally validated the binding of ZEB1 to
this region by electrophoretic mobility shift assays (EMSA) and
observed that the rs4810856[C] allele exhibited a preferential binding
to nuclear extracts compared with the rs4810856[T] allele in CRC
SW480 and HCT116 cells (Figs. 4h and S10b). Intriguingly, super-shift
EMSA also indicated that the binding signals at rs4810856-C allele is
gradually reduced with the increasing amount of ZEB1 antibody in a
dose-response manner (Figs. 4i and S10c). Meanwhile, the ChIP-qPCR
results also showed that the binding peaks of ZEB1 overlapped the
enhancer region containing rs4810856, and the binding of ZEB1 to this
region was more statistically significant in SW480 cells carrying
rs4810856[CC] than in HCT116 cells carrying rs4810856[CT] (Figs. 4j
and S10d).Moreover, whenwe knockdownZEB1 in SW480andHCT116
cells at an increasing dose, the differences in luciferase activity
between both alleles of rs4810856 was significantly attenuated in a
dose-dependent manner (Figs. 4k and S10e). In contrast, the differ-
ences in luciferase activity between both alleles of rs4810856 was
enhanced in a dose-dependent manner when we overexpressed ZEB1
at an increasing dose, suggesting that ZEB1 preferentially bound to the
risk allele of rs4810856 in an allele-specific manner (Figs. 4l and S10f).
Notably, the expression of ZEB1 was found to be positively correlated
with the expression of PREX1, CSE1L and STAU1 in both TCGA CRC
samples and our CRC tissues, and the positive correlations were more
significant in carrierswith rs4810856-Callele, compared to carrieswith
T allele (Fig. S11). Altogether, these findings demonstrated that ZEB1
preferentially binds to the risk allele of rs4810856 to promote the
expression of PREX1, CSE1L and STAU1.

ZEB1 as a prime element of a network of TFs, plays an essential
role in tumorigenesis26. The expression of ZEB1 altered predominantly
in various cancer types (Fig. S12a). Particularly, we found ZEB1 was
highly expressed in CRC tumor tissues comparedwith adjacent normal
tissues in two independent datasets fromGEO database (Fig. S12b). To
investigate the biological roles of ZEB1 in CRC progression, we per-
formed CCK-8 assays in SW480 and HCT116 cells and found that
knocking down of ZEB1 markedly inhibited the proliferation in both
cells (Fig. S12c). This findings were consistent with the data from
genome-wide CRISPR/Cas9-based loss-of-function screens of CRC
cells, indicating that ZEB1 might play an essential role in cell pro-
liferation (Fig. S12d).

Fig. 2 | Functional characterization of ABC variants and target genes.
a Enrichment analyses of ABC variants in each functional category of genomic
distribution compared with control variants (non-ABC variants). P-values were
calculated by two-tailed Fisher’s exact test. b Enrichment analyses of ABC variants
in regulatory elements including H3K27ac, H3K4me2, H3K9ac, H3K4me1,
H3K4me3, H3K27me3, H3K36me3, TF-binding sites compared with non-ABC var-
iants. P-values were calculated by two-tailed Fisher’s exact test. c Heatmap of
enrichment analyses for ABC variants within TF-binding sites fromChIP-seq data of
ENCODE portal. P-values were calculated by two-tailed Fisher’s exact test.
d Enrichment analyses of ABC variants in cancer-related GWAS variants (LD ≥0.2)
compared with non-ABC variants. P-values were calculated by two-tailed Fisher’s
exact test and bars indicate 95% CIs. e Proportion of GWAS trait heritability
explained by ABC variants. The error bars represented standard error. f Quantile-
quantile (QQ) plots of P values from GWAS of selected traits. ABC variants were

shown in comparison with genome wide variants. GWAS variants were binary
annotated using ABC variants with P <0.05. g GSEA enrichment analyses of ABC
genes in MsigDB hallmark gene sets. The circle color represents the significance of
enrichment, and the circle size denotes the number of ABC genes within each gene
set. h Enrichment analyses of ABC genes in somatically mutated genes from COS-
MIC database compared with non-ABC genes. P-values were calculated by two-
tailed Fisher’s exact test and bars indicate 95% CIs. i The frequencies of amplifica-
tion anddeletion (red indicated amplifications andblue indicated deletions) inABC
genes. Genes recurrently mutated among 20 cancer types were shown. j The
number of ABC genes associated with immune cell infiltration estimated by TIMER
in each cancer type (left y-axis). The right y-axis shows the proportion of these
immune-related ABC genes. The cell symbols were created with BioRender.com.
Source data are provided with this paper.
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Direct effects of the ABC variant rs4810856 on ZEB1 affinity,
target genes expression and cell proliferation
To further investigate whether rs4810856 is directly involved in ZEB1
binding and the expressionof target genesPREX1,CSE1L and STAU1, we
applied CRISPR/Cas9-mediated genome editing approach27, to pre-
cisely edit the genotype of rs4810856, where the genotype was suc-
cessfully converted fromCC toCT inSW480cells, and fromCT toTT in
HCT116 cells (Fig. 5a, b). We performed ChIP-qPCR assays to validate

the activator role of ZEB1 in vivo, and found that the binding affinity of
ZEB1 to the enhancer region harboring rs4810856 is attenuated in
mutated cells (SW480[CT] and HCT116[TT]), compared with the par-
ental cells (SW480[CC] and HCT116[CT], Fig. 5c). Additionally, the
expression levels of PREX1, CSE1L and STAU1 were predominantly
decreased in both mutated cells, compared to the parental cells in
both SW480 and HCT116 cells (Fig. 5d). Noticeably, the expression
differences between both alleles were significantly attenuated upon
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ZEB1 knockdown (Fig. 5e), while the expression differences were sig-
nificantly increased upon ZEB1 overexpression (Fig. S13a), indicating
that rs4810856 acts as an allele-specific enhancer mediated by ZEB1 to
directly regulate the expression of three target genes.

Considering that the permissible physical interactions in chro-
matin are essential for enhancers in regulating gene expression, we
then conducted chromosome conformation capture (3 C) assays to
examine the existence of chromatin interactions between rs4810856
enhancer and its target genes promoters. When anchored at the
enhancer region containing rs4810856, three target genes PREX1,
CSE1L and STAU1 promoters all showed a stronger interaction with the
risk variant region than any of other neighboring BssKI sites tested.
Notably, the interaction frequencies were decreased in mutated cells
compared to the parental cells in both CRC cell lines (Fig. 5f), sug-
gesting that rs4810856 could establish allele-specific long-range
chromatin loops with PREX1, CSE1Lor STAU1 promoters. Moreover, we
further evaluated the direct effect of the risk variant on cell pro-
liferation phenotypes and found that the C >T change of rs4810856
markedly suppressed the proliferation rate and colony formation
capacity of CRC cells (Fig. 5g, h). Meanwhile, we observed a significant
attenuation of the differences in cell proliferation between both alleles
upon ZEB1 knockdown, whereas these differences were significantly
increased upon ZEB1 overexpression (Fig. S13b and S13c). Collectively,
these series of results provided strong anddirect evidence that the risk
C allele of rs4810856 functions as an allele-specific enhancer to pro-
voke the expression of PREX1, CSE1L or STAU1 through ZEB1-mediated
long-range enhancer-promoter interactions, ultimately contributing to
the proliferation of CRC cells.

PREX1, CSE1L and STAU1 play synergistic effects in activating
p-AKT signaling to provoke CRC cells proliferation
To investigate the potential roles of PREX1, CSE1L and STAU1 in CRC
pathogenesis,wefirst compared the expressionof these three genes in
tumor and adjacent normal tissues in GEO and our own CRC tissues.
Results showed that PREX1, CSE1L and STAU1 were significantly over-
expressed in tumor tissues than in normal tissues in both cohorts (Fig.
S14). We next examined the effects of these three genes on cell phe-
notypes and found that the overexpression of PREX1, CSE1L and STAU1
substantially increase the cell proliferation of SW480 andHCT116 cells,
respectively (Figs. 6a and S15a). Expectedly, these results were further
validated in colony formation assays (Figs. 6b and S15b). In accordance
with these results, the data from genome-wide CRISPR/Cas9-based
loss-of-function screens also indicated that PREX1, CSE1L and STAU1
areessential for cell proliferation inCRCCOLO678 cell line (Fig. 6c). To
assess the synergistic effect in vivo, we established cohorts of mice-
bearing tumor xenografts driven by CRC cells. In accordance with
results in cell lines, the results showed that the growth of xenograft
tumors with PREX1, CSE1L or STAU1 overexpression is substantially
increased, compared with that of control tumors. Interestingly, the
group within overexpression of three genes PREX1, CSE1L and STAU1

presented a largest tumor volume among all tested groups (Figs. 6d
and S15c). Similarly, H&E staining and immunohistochemical analysis
(Ki67, PREX1, CSE1L and STAU1) also support the synergistic effect of
three genes on tumor growth (Figs. 6d and S15c). Altogether, these
findings further support that PREX1, CSE1L or STAU1 can function as
potential oncogenes involved in CRC tumorigenesis.

We next sought to dissert the biological pathways underlying the
synergistic effects of these three target genes. Previous studies have
indicated PREX1 belongs to a family of Rac guanine nucleotide
exchange factors (RacGEFs), which is associated with many oncogenic
processes including MAPK and AKT pathways28. In addition, CSE1L has
been suggested function as a keymediator in cellular proliferation and
apoptosis, while PI3K/AKT signaling pathway was documented to
closely involve in CSE1L-induced tumor progression29. For STAU1,
which serves as a double-stranded RNA-binding protein, has been
widely reported to participate in mRNA degradation via STAU1-
mediated mRNA decay (SMD) progress30. To recognize the targets of
STAU1, we first performed RNA-immunoprecipitation followed by
sequencing (RIP-seq) with anti-STAU1 antibody in SW480 cells, and
successfully identified 1,341 candidate target mRNAs (Supplementary
Data 4). Of these, STAU1 showed stronger binding affinity to PTEN
mRNA (Fig. 6e, f).We then conductedRIP-coupled qRT-PCR assays and
further validated that STAU1 predominantly bind with PTEN mRNA in
both cancer cells (Fig. 6g). Besides, the overexpression of STAU1 also
greatly decreased the expression level of PTENmRNA in bothCRCcells
(Fig. 6h). Consistent with this, a negative correlation between the
expression of PTEN and STAU1 was observed in both our CRC tissues
and GSE9348 dataset (Fig. S16). These results suggested the binding
preference of STAU1 to PTEN mRNA and induced its mRNA decay.

PTEN is generally known as a dual-specificity protein phosphatase
that antagonizes the PI3K/AKT signaling pathway31, thus it was rea-
sonable to hypothesize that STAU1 might mediate the AKT activation
through downregulating the expression of PTEN. Given that PREX1,
CSE1L, STAU1 were all involved in the AKT signaling pathway, we
assumed that those genes might exert synergistic effects to activate
AKT. To examine this, we constructed PREX1, CSE1L and STAU1 over-
expressed independently and simultaneously in SW480 and HCT116
cells. The results revealed that cells with PREX1, CSE1L or STAU1 over-
expression exhibited a higher level of phosphorylated AKT (p-AKT)
compared to the control (Fig. 6i). Interestingly, the group with simul-
taneously overexpression of all three genes presented the highest level
of p-AKT among all groups (Fig. 6i). Collectively, these findings
demonstrate that PREX1, CSE1L and STAU1 exhibit synergistic effects
to facilitate CRC cells proliferation via pathological activation of p-AKT
signaling pathway.

Discussion
Large-scale GWAS have identified thousands of genetic variants asso-
ciated with human traits and diseases, but over 90% of them locate in
non-coding regions, such as enhancers, indicating that they might

Fig. 3 | Identifying enhancer-gene regulatory connections inour CRC tissuesby
ABC model. a The flowchart of ABC model predicting functional variant in CRC
tissues, which was created with BioRender.com. b Cumulative fractions of the
number of enhancers predicted to regulate each gene (mean= 2.8). c Cumulative
fractions of the number of genes regulated by each ABC enhancer (mean = 2.3).
d Cumulative fractions of the genomic distances between the enhancer and the
gene for each predicted enhancer-gene connection (median=48,375 bp).
e Precision-recall plot of the accuracy for assigning genes to regulatory variants
that predicted by ABCmodel or other previous predictions, considering a credible
set consisting of 27 variant-gene connections which were validated by functional
experiments. Recall indicated fraction of the variants identified, and precision
indicated fraction of the target genes that was predicted. f Genomic annotation of
ABC enhancers. Pie chart indicates the proportions of ABC enhancers annotated
with each positional category. Upset plot displays the number of ABC enhancers

betweengroups for each intersection.g Summary of ABCenhancers in CRC tissues.
Plot included 124,474 non-promoter candidate elements in terms of ATAC peaks.
The coloring of the heat map represented the fraction of elements in the corre-
sponding distance and activity bins that are ABC enhancers. h Enrichment analyses
of ABC variants in regulatory elements compared with non-ABC variants in CRC
tissues. P-values were calculated by two-tailed Fisher’s exact test and bars indicate
95% confidence intervals (CIs). i Enrichment analyses of ABC variants in CRC GWAS
signals (LD ≥0.2).P-values were calculated by two-tailed Fisher’s exact test and bars
indicate 95% confidence intervals (CIs). j Enrichment analyses of CRCGWAS signals
in ABC enhancers and other regulatory elements. Results were calculated by two-
tailed Fisher’s exact test. Error bars represented the 95%CIs. k Quantile–quantile
plot of CRC GWAS P values. ABC variants are shown in comparison with genome-
wide variants. GWAS variants were binarily annotated using ABC variants. Source
data are provided with this paper.
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involve in gene expression regulation in proximal or long distances1,32.
However,mapping non-coding variants to their target genes remains a
significant challenge. In this study, we leveraged ABC model to
establish genome-wide regulatory maps by integrating large-scale
multi-omics data, identifying 544,849 enhancer-gene connections
associating 266,956 enhancers and 216,268 target genes across 20
cancer types. Notably, we found only 0.5% of enhancer-gene connec-
tions were shared among pairs of cancer types, indicating that most

regulatory landscapes were highly cancer-type-specific, which is con-
sistent with the findings reported by Lijin et al. 33. This cancer-type
specificity canbe attributed to the fact that cis-regulatory elements are
often cell-type-specific and exhibit activity only in certain cell types.
Furthermore, the distinct genetic alterations and signaling pathways in
different cancer types also contribute to the cancer-type-specific reg-
ulatory landscape34. Meanwhile, the systematic characterizations of
enhancer-gene pairs emphasize the significance of the ABC mapping
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strategy in prioritizing functional variants and target genes, providing
valuable insights into the molecular mechanisms of cancer develop-
ment. Moreover, ABC model enable link the causal variants to target
genes with higher precision than other alternatives, such as distance
threshold, eQTL method and other single epigenetic annotation. Fur-
thermore,we identifiedmore than 30,000enhancer-gene connections
in our CRC tissues using ABC approach. Then, we systematically
screened ABC variants associated with CRC risk in 17,789 cases and
19,951 controls using chip data in European population and indepen-
dently validated in a large-scale population consisting of 6024 cases
and 10,022 controls in Chinese population. We identified a regulatory
variant rs4810856 that is associated with an increased risk of CRC
(OR = 1.11, 95%CI = 1.05–1.16, P = 4.02 × 10−5). Mechanistically, the ABC
variant acted as an allele-specific enhancer to distally facilitate
expression of PREX1, CSE1L and STAU1, which synergistically activated
p-AKT signaling to drive CRC tumorigenesis (Fig. 7).

Genetic risk factors can contribute to thedevelopment of cancers,
some of which were potentially modifiable35. Therefore, it is crucial to
understand the molecular targets of known carcinogens in order to
design effective therapeutic interventions. we found that the target
genes affected by ABC enhancers were closely related to cancer sig-
naling pathways, high mutation burden, immune infiltration, and
pharmaceutical targets. These results indicated the importance of the
ABC genes which might have significant clinical applications. Numer-
ous studies have demonstrated the critical role of the immune system
in cancer development and progression. For instance, immune infil-
trates have been identified as an integral component of the tumor
microenvironment, and have been shown to play a critical role in
tumor progression, responses to immunotherapy and clinical
outcomes36. In our study, the immune infiltration-associated genes
identified by the ABC approach may provide promising therapeutic
strategies for cancers. Furthermore, our discovery of target genes
involved in cancer signaling pathways, high mutation frequency, and
pharmaceutical targets might enable more precise therapeutic tar-
geting of cancers.

So far, a number of approaches have been developed to connect
non-coding variants to their target genes. Themethod simply assigned
the closest gene to each variant is widely used to annotate GWAS loci37.
However, fueled by the advances in 3D genomics, regulatory elements
in many cases were found located at great genomic distances from
their target genes, or even bypass the closest genes to interactwith the
distant genes38. In addition, eQTL is a common approach to interpret
genetic architecture of gene expression39. Encouraged by the inter-
national projects such as TCGA and GTEx, maps of eQTLs are being
built in increasingly large-scale studies in tumor or normal tissues
linking regulatory variants to target genes13,40. Nevertheless, eQTL is
unable open the “black box” between the variants and gene expression
as it is analyzed based on statistical algorithms, explaining a limited
proportion of disease SNP heritability41. With the continuous devel-
opment of emerging technologies, researchers have begun to

decipher the mechanism of gene expression regulation from an epi-
genetic perspective, by correlating the activity of enhancers with gene
expression or basing on chromatin interaction frequency to predict
the target genes of candidate regulatory elements11,42. However, its
warranted to be noted that both chromatin activity and interaction
frequency could cooperatively contribute to gene expression.

The ABC model systematically integrated the enhancer activity
fromATAC-seq/DNase-seq andH3K27ac ChIP-seq data, as well as Hi-C-
derived contact frequencies to create genome-wide enhancer-gene
connections that might enhance the comprehension of linking gene
expression regulation to function. Recent study demonstrated that
ABC model performed well at classifying regulatory connections and
outperformed other methods using a subset of the CRISPR data15. In
this study, we found that ABC enhancers were more significantly
enriched in functionally validated variants compared with other cis-
regulatory elements predicted from ATAC peaks, H3K27ac peaks,
FANTOM5 enhancers or eQTLs. Meanwhile, ABC model performed
better among a credible set consisting of 27 variant-gene pairs that
were successfully validated by functional experiments in CRC, with the
highest precision in assigning target gene to those variants compared
with other approaches such as distance thresholds, eQTL, gene
expression correlation, enhancer activity or chromatin interaction
frequency. Altogether, our findings highlight the enormous advan-
tages of ABC model linking enhancer variants to target genes strate-
gies, improving the identification of connection between functional
variants and target genes in human cancers.

Traditionally, studies often focus on the gene regulation whose
variant is only involved a single gene (one-to-one). But recently,
increasing evidence have demonstrated that one variant might reg-
ulate the expression of multiple target genes (one-to-many), and one
genemight also be affectedbymultiple variants (many toone)43–45. The
enhancer-genemaps created in this study detected that each enhancer
was predicted to affect 2.0 genes, while each gene was predicted to be
regulated by 2.5 enhancers, indicating that this one-to-many or many-
to-one are prevalent in a genome-wide scale. A salient example of one-
to-many regulation pattern is rs72725854-harboring enhancer is
observed to regulate the transcription process of PCAT1, PVT1 and
c-MYC in prostate tumors46. Interestingly, consistent with this obser-
vation, our study identified a functional non-coding variant rs4810856
could simultaneously regulate PREX1, CSE1L and STAU1 in CRC, which
is supported with high-confidence evidence of bioinformatics analysis
and biological experiments. Additionally, the CRISPR/Cas9-mediated
genome editing technology further directly verified rs4810856-C allele
could increase the expression level of the three genes, and thus pro-
voke the proliferation rate of CRC cells. Importantly, our findings
revealed the underlying biological mechanism that is mediated by
ZEB1, which facilitated the folding of the 3D genome and bring
rs4810856-harboring enhancer and promoters of three genes into
proximity. Taken together, our study elucidates that the risk variant
rs4810856, as an allele-specific enhancer, facilitates long-range

Fig. 4 | ABC variant rs4810856 acts as an allele-specific enhancer to promote
PREX1, CSE1L and STAU1 expression. a Manhattan plot for the associations
between ABC variants and CRC risk in GECCO cohort. The P values (-log10) of the
variants (y-axis) are presented according to chromosomal positions (x-axis, NCBI
build 38). P <0.05 was considered statistically significant (denoted by red line).
bThe ABC score of the variant-gene pairs associatedwith CRC risk. c eQTL analyses
for the correlation between rs4810856 and the expression of target genes in our
ownCRC tissues (NCC = 63;NCT = 48;NTT = 19). Thegene expressionwas normalized
relative toGAPDH. The association between the genotype and gene expression was
assessedusing linear regressionmodel. Data are shown as themedian (minimum to
maximum).dTAD overlaid with gene annotations surrounding rs4810856 from the
Hi-C in HCT116 cells. e, f The relative luciferase activity in SW480 and HCT116 cells.
Data were shown as the median (minimum to maximum), from three independent
experiments with three technical replicates. ***P <0.0001, **P <0.001 were

calculated by a two-sided Student’s t-test. g The rs4810856 [C] resides within ZEB1
binding motif predicted by JASPAR. h EMSAs of rs4810856 in SW480 cells. i ZEB1
super-shift EMSAs in SW480 cells. 1×, 2× and 4× represented 0.1μg, 0.2μg and
0.4μg of ZEB1 antibody. j Chromatin enrichment of ZEB1 at the rs4810856 in
SW480 cells. Data were presented as the median (minimum to maximum) and
normalized to the input from three repeated experiments with three replicates.
***P <0.0001 were calculated by a two-sided Student’s t-test. The effect of ZEB1
knockdown (k) or overexpression (l) on relative luciferase activity of vectors con-
taining rs4810856 [C] or rs4810856 [T] allele in SW480 cells. The center line of the
boxpresentation as themedian, box limits indicatedupper and lower quartiles, and
whiskers indicated the maximum and minimum. ***P <0.0001, **P <0.001, *P <0.01
were calculated by a two-sided Student’s t-test, from three independent experi-
ments with three technical replicates. Source data are provided with this paper.
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enhancer-promoter interactions mediated by ZEB1 to regulate
expression of multiple genes, which reveals a mechanism wherein a
single variant regulates multiple tumorigenesis-related genes in CRC.

Our study implicates PREX1, CSE1L and STAU1 as the target genes
for the nominated causal variant rs4810856. PREX1 and CSE1L have
been well demonstrated to involve in phosphoinositide AKT signaling
pathway and promote cancer progression28,29. It is reported that p-AKT
signaling pathway is crucial to many aspects of cell growth, survival
and metastasis and is frequently activated to facilitate CRC cells
proliferation47,48. Furthermore, our study validated that PREX1 and
CSE1L are upregulated in CRC tissues and the overexpression of PREX1
and CSE1L significantly promote the p-AKT. In term of another target
gene STAU1, which was recognized as a dsRNA-binding protein, has
been reported to affect mRNA degradation through SMD progress30.
We explored that PTEN which antagonizes the PI3K/AKT signaling
pathway is identified as the target mRNA of STAU1. We further pro-
posed that STAU1 might activate p-AKT signaling pathway by pro-
moting mRNA degradation of PTEN in CRC cells. Interestingly, we
found that PREX1, CSE1L and STAU1 are not only individually promote
AKT phosphorylation but also exert synergistic effect to activate
p-AKT pathway further contribute CRC cell proliferation. Collectively,
these findings provided strong evidence that PREX1, CSE1L and STAU1
play crucial roles in CRC tumorigenesis via synergistically activating
p-AKT signaling pathways, implying that a complex network of multi-
ple causative genes is responsible for tumorigenesis of CRC and
hopeful to server as targets with therapeutic potential in future.

There are still some limitations in this study. First, cis-regulatory
elements are commonly cell-type-specific, and to fully understand
the molecular mechanisms underlying cancer risk, it is desirable to
dissect enhancer-gene connections at the cell-type-specific level
using single-cell technology. However, due to the current limitations
in resources for single-cell omics-data, it is challenging to construct
comprehensive regulatory maps at the single-cell level. In addition,
the ABC approach was based on computational predictions to
identify enhancer-gene connections, and the functional relevance of
these connections remains to be experimentally validated. CRISPR-
Cas9 genome editing system could be further employed to assess
the effect of enhancers on gene expression and support the reg-
ulatory connections identified by ABC model. Furthermore, ABC
model mainly assess the effect active enhancers on gene expression,
and does not capture other cis-regulatory elements such as pro-
moters and silencers, which also play an important role in gene
expression. Finally, more environmental and lifestyle factors such as
physical activity, dietary factors, the regular use of aspirin or other
anti-inflammatory drugs should be adjusted to further improve the
association determination.

In summary, this study comprehensively creates genome-wide
enhancer-gene regulatory maps across multiple cancer types by inte-
grating multi-omics data that correspond to the activity of candidate
regulatory elements and chromatin interaction frequency. These reg-
ulatory maps provide a foundational reference for identifying reg-
ulatory variants and prioritizing disease genes. It is worth mentioning
that ABC model performed better at linking functional regulatory
elements to target genes compared with the previous knownmethods
such as distance threshold, eQTL, and other single epigenetic anno-
tation. In addition, we applied ABC strategy to construct enhancer-
gene regulatory maps in CRC tissues and identified an ABC variant
rs4810856 could contribute to CRC risk by facilitating a long-range
chromatin interaction to promote the expression levels of PREX1,
CSE1L and STAU1, which synergistically activate p-AKT signaling path-
way to drive CRC tumorigenesis. The ABC enhancers-genes maps
across multiple cancers not only provide an essential resource for
understanding gene regulation and the genetic basis of human can-
cers, but also might shed light on the biological basis for cancer
etiology and provide insight into clinic therapy.Ta
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Methods
Our study adheres to the Guidelines of the Ministry of Science and
Technology (MOST) for the Review and Approval of Human Genetic
Resources. This study was approved by the Ethics Committee of
Cancer Institute and Hospital and the Ethics Committee of Tongji
Hospital, Tongji Medical College of Huazhong University of Science
and Technology (HUST).Written informed consent was obtained from

each subject, and clinical information was collected from medical
records.

Epigenomic profiling of 20 cancer types
To predict enhancer-gene connections in human cancers, we curated
the published epigenomic data including DNase-seq, ATAC-seq,
H3K27acChIP-seq andHiC fromENCODE, RoadmapandGEOdatasets.
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The data sources for each cancer type were listed in Supplementary
Data 1. In summary, we downloaded BAM files for DNase-seq, ATAC-
seq, H3K27ac ChIP-seq from ENCODE10 and Roadmap datasets (http://
egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/),
and FASTQ files from GEO dataset and processed them using custom
pipelines. We aligned reads using BWA49 removed PCR duplicates
usingMarkDuplicates function fromPicard (http://picard.sourceforge.
net), and filtered to uniquely aligning reads using Samtools (https://
github.com/samtools/samtools). The FASTQ files of Hi-C was down-
loaded from GEO dataset and processed them using Juicer tool
(https://github.com/aidenlab/juicer). It was previously reported that
an averagedHi-Cmatrix of several cell lines performed similarly to cell-
typematchedHi-C data14,15. Thus, we also applied the average Hi-C into
analyses for some cells lacking cell-type specific Hi-C and downloaded
from website (ftp://ftp.broadinstitute.org/outgoing/lincRNA/average_
hic/average_hic.v2.191020.tar.gz). The average Hi-C maps at 5 kb
resolutionwere generated from 10humancell types andwere found to
show a strong correlation with cell-type-specific Hi-C maps.

ABC model construction
We utilized the ABC model (https://github.com/broadinstitute/
ABCEnhancer-Gene-Prediction) to predict enhancer-gene connections
in each cancer type by integrating multi-omics including chromatin
accessibility (ATAC-seq or DNase-seq), histone modifications (H3K27ac
ChIP-seq), and chromatin conformation (Hi-C) as previously published
described14,15. Briefly, the construction of the ABC model involved the
following steps using Python (v3.7.0): (1) Identification of peaks on the
chromatin accessibility dataset (ATAC-seq or DNase-seq) using MACS2
(v2.1.3) with P <0.1; (2) Counted chromatin accessibility reads in each
peak and retained the top 150,000peakswith themost read counts.We
then resized each of these peaks to be 500bp centered on the peak
summit after removing any peaks overlapping blacklisted regions and
500bp regions centered on all gene TSS (promoters). The resulting set
of regions were candidate elements; (3) The element activity was cal-
culated by first counting reads in each candidate element in chromatin
accessibility and H3K27ac ChIP-seq experiments, followed by comput-
ing the geometricmean of the two assays; (4) By combining activity and
Hi-C data, the ABC model computed an ABC score which indicated the
regulatory effect of the candidate element for each element-gene pair
that is normalized by the product of activity and contact for all other
elements within 5Mb of that gene. A threshold of ABC score ≥0.02 was
applied to determine significant gene expression regulatory effects.

CRC tissues acquisition
In this study, we carried out ATAC-seq, H3K27ac ChIP-seq and RNA-seq
in 10 patients with CRC. The clinical characteristics of the 10 CRC
patients were provided in Supplementary Table 1. All patients were
unrelatedHanChinese hospitalized in hospitals inWuhan, China during
2020 to 2021. CRC was confirmed by histopathological examination of

surgically removed tumors or biopsy specimens. All patients were not
treated with chemotherapy or radiotherapy before tumor resection.
Fresh CRC tissues were collected at the time of surgery and analyzed as
detailed below. This study was approved by the Ethics Committee of
Tongji Hospital, Tongji Medical College of Huazhong University of
Science and Technology (HUST). Informed consent was obtained from
each patient, the clinical information was collected from medical
records. Indirect identifiers (age and gender) have been consented for
publication, and the term Gender (indicated in Supplementary Table 1
as Male and Female) was used to indicate the biological attribute.

ATAC-seq
ATAC assay was performed on CRC tissues by SeqHealth (Wuhan,
China). In brief, 500mg tissue was treated with cell lysis buffer and
nucleus was collected by centrifuging for 10min at 500 g at 4 °C.
Transposition and high-throughput DNA sequencing library was car-
ried out by TruePrep DNA Library Prep Kit V2 for Illumina kit (Vazyme,
China). The library products were enriched, quantified and finally
sequenced on Novaseq 6000 sequencer (Illumina) with PE150 model.
Raw sequencing data was first filtered by Trimmomatic (v.0.36), and
low-quality reads were discarded and the reads contaminated with
adaptor sequences were trimmed. Clean Reads were further treated
with FastUniq (v.1.1) to eliminate duplication. Deduplicated reads were
then mapped to the human reference genome using bowtie2 (v.2.2.6)
with default parameters. Afterwards, we processed the data to gen-
erate BAM files with samtools (v.1.12) and made intersect between 10
CRC biosamples with bedtools (v.2.27.1).

H3K27ac ChIP-seq
ChIP-seq assays were performed with Magna ChIP™ G Tissue Kit (Mil-
lipore, USA). The tissue was fixed in 1% formaldehyde for 10min at
room temperature, after which 0.125M glycine was added and the
mixture was sat for 5min to terminate the crosslinking reaction. The
tissue was then treated with cell lysis buffer and nucleus was collected
by centrifuging at 800 g for 5min at 4 °C. Next, nucleus was treated
with nucleus lysis buffer and sonicated to fragment chromatin DNA.
Antibodies against H3K27ac (10μg, Abcam, USA) were incubated
overnight with the crosslinked protein and DNA for immunoprecipi-
tation reactionswithproteinA/Gmagneticbeads. DNA fragmentswere
purified and collected by aDr.GenTLE Precipitation Carrier kit (Takara,
Japan). The purified DNA library was then sequenced on Novaseq
6000 sequencer (Illumina) with PE150 model by SeqHealth (Wuhan,
China). We filtered, aligned and processed the data to generate BAM
files as described in ATAC-seq.

RNA-seq
Total RNAs were extracted from CRC tissue using TRIzol (Invitrogen,
USA) following the manufacturer’s instruction. 2μg total RNAs were
used for stranded RNA sequencing library preparation using Ribo-off

Fig. 5 | Direct effects of the ABC variant rs4810856 on ZEB1 affinity, target
genes expression and cell proliferation. CRISPR/Cas9 mediated single variant
mutation of rs4810856 in SW480 andHCT116 cells. The genotypeof rs4810856was
converted from CC to CT in SW480 cells (a), and fromCT to TT in HCT116 cells (b).
c Chromatin enrichment of ZEB1 at the rs4810856 in parental (SW480[CC] and
HCT116[CT]) andmutated cells (SW480[CT] andHCT116[TT]). Datawerepresented
as the median (minimum to maximum) and normalized to the input from three
repeated experiments, each with three replicates. IgG served as negative control.
***P <0.0001 were calculated by a two-sided Student’s t-test. d Expression of target
genes in parental and mutated cells. Data were presented as the mean± SEM of
triplicate experiments, each with 3 technical replicates. ***P <0.0001, **P <0.001
were calculated by a two-sided Student’s t-test. eThe effects of ZEB1 knockdownon
target genes expression in parental and mutated cells. The center line of the box
presentation as the median, box limits indicated upper and lower quartiles, and
whiskers indicated the maximum and minimum. ***P <0.0001, **P <0.001 were

calculated by a two-sided Student’s t-test, from three independent experiments
with three technical replicates. f Enrichment quantification of allele-specific 3 C
profiles in CRISPR/Cas9 editing cell lineswith different rs4810856genotypesdepict
the relative interaction frequencies between DNA fragment containing rs4810856
as the anchor and representative BssKI enzyme cutting sites indicated by dot plot.
Data were shown as the mean± SD of triplicate experiments. **P <0.001, *P <0.01
were calculated by a two-sided Student’s t-test. g The direct effect of rs4810856
genotype on cell proliferation. Results were shown as the means ± SEM from tri-
plicate experiments. ***P <0.0001, **P <0.001 were calculated by a two-sided Stu-
dent’s t-test.hThe direct effect of rs4810856 genotypeon colony formation ability.
The results presented colony formation ability relative to control cells (set to
100%). Data were shown as the median (minimum to maximum) from triplicate
experiments. ***P <0.0001 were calculated by a two-sided Student’s t-test. Source
data are provided with this paper.
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rRNA Depletion Kit (Ribobio, China) and KCTM Stranded mRNA
Library Prep Kit for Illumina® (Seqhealth, China). The library products
corresponding to 200-500bps were enriched, quantified and finally
sequenced on NovaSeq 6000 sequencer (Illumina) with PE150 model
by SeqHealth (Wuhan, China). We filtered, aligned and processed the
data to calculate RPKM. Finally, we calculated average gene expression
across 10 CRC biosamples.

Study subjects in association analysis
To study association between ABC variants and CRC risk, we first
conducted a GWAS array analysis consisting of 17,789 CRC cases and
19,951 healthy controls. The genotype data was downloaded from the
Genetics and Epidemiology of CRC Consortium and Colon Cancer
Family Registry (GECCO) program, including phs001078.v1.p1,
phs001315.v1.p1 and phs001415.v1.p1. Demographic characteristics
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were obtained from the previously published study (Supplementary
Table 3).

We further conducted a two-stage case-control study to evalu-
ate the associations between candidate variant and CRC risk in
Chinese population. The phase I recruited 1524 CRC cases and 1522
controls from cancer hospital of Chinese Academy of Medical Sci-
ences in Beijing, China. The phase II consisted of 4500 cases and
8500 controls from Tongji Hospital of Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China. All controls were
cancer-free individuals selected from a community nutritional sur-
vey when patients were recruited and matched to the cases by
gender and age (±5 years). The characteristics of the study subjects
were described in our previous research8. The phase I of case-
control study was approved by the Ethics Committee of Cancer
Institute and Hospital. The phase II of case-control study was
approved by the Ethics Committee of Tongji Hospital, Tongji Med-
ical College of Huazhong University of Science and Technology
(HUST). Written informed consent was obtained from each subject
and the studywas conducted under the approval of the participating
hospitals.

Imputation and quality control for genotype data from GECCO
Imputation was performed using Michigan Imputation Server50, with
Haplotype Reference Consortium r1.1.2016 (HRC) as a reference
panel51. We merged all batches into a single set after imputation and
exclude SNPs according to following criteria52: (1) imputation quality
<0.4; (2) minor allele frequency (MAF) < 1%; (3) deviating from the
Hardy-Weinberg equilibrium (P < 1 × 10−6); (4) missing call frequencies
>0.02. (5) mapping to locations on sex chromosome. A total of 37,740
individualswith 2,446,560 SNPswerefinally included inGECCOGWAS.

SNP genotyping for our own CRC samples
Genomic DNA was extracted from peripheral blood samples using the
Relax Gene Blood DNA System Kit (Tiangen, China) according to the
protocol. SNP genotyping was performed using a TaqMan real-time
polymerase chain reaction (PCR) assay (Applied Biosystems, CA)
without knowledge of the case or control status of the subjects in both
stages. Quality control was implemented as previously described24.

Cell lines and culture
SW480 and HCT116 cells were obtained from the China Center for
Type Culture Collection (Wuhan, China). Cells were cultivated in Dul-
becco’s modified eagle’s medium (DMEM; Gibco, USA) supplemented
with 10% fetal bovine serum (FBS; Gibco, USA) and 1% antibiotics
(100U/mL penicillin and 0.1mg/mL streptomycin) in a humidified
atmosphere of 5% CO2 at 37 °C. The SW480 and HCT116 cell lines used
in this study were authenticated by short tandem repeat profiling
(Applied Biosystems, USA) and tested for the absence of mycoplasma
contamination (MycoAlert, USA); the latest date of test was
March 1, 2021.

Construction of plasmids and RNA interference
A total of 1000bp DNA fragments surrounding the SNP rs4810856
were downloaded from the NCBI database and synthesized by Tsingke
Biological Technology (Wuhan, China). The sequence was cloned into
the pGL3-promoter vector (Promega, USA). The mutation transcript
was generated by site-specific mutagenesis at the rs4810856 site
(C > T) and cloned along the same strategy as used for the wide type
sequence. The full-length cDNAs of PREX1, CSE1L, STAU1 was sub-
cloned into the pcDNA3.1 (+) vector (Invitrogen, USA) by Genewiz
Biological Technology (Shuzhou, China). All plasmids then were ver-
ified for sequence. For RNA interference, the siRNA oligonucleotides
targeting ZEB1 and non-targeting siRNA were purchased from RiboBio
(Guangzhou, China). The target sequences of siRNA are shown in
Supplementary Data 5.

Transient transfections and dual-luciferase reporter assays
For transient transfection assays, cells were seeded in 96 well plates
and simultaneously co-transfected with constructed luciferase vector
containing either the rs4810856 [C] or [T] allele and the pRL-SV40
Renilla luciferase plasmid (Promega, USA) by using Lipofectamine
3000 (Invitrogen, USA). Luciferase activity was assessed at 36h post-
transfection using the dual-luciferase assay system (Promega, USA).
Renilla luciferase and firefly luciferase activities were detected and the
relative luciferase activity was calculated to compare the discrepancy
between different alleles.

Electrophoretic mobility shift assays and super-shift EMSA
Complementary DNA oligonucleotides (25 bp) centered on variant
rs4810856 alleles were synthesized by Takara (Japan) and labeled with
biotin at the 3’ end (SupplementaryData 5). Nuclear extracts of SW480
and HCT116 cells were prepared using Nuclear and Cytoplasmic Pro-
tein Extraction Kit (Beyotime, Shanghai, China). EMSA was performed
with an EMSA/Gel-Shift Kit (Beyotime, China) under the manu-
facturer’s instructions. Additionally, for the competitive binding assay,
unlabeled probes were added to the reaction mixtures at a 10-fold or
100-fold excess compared to that of the labeled probes and incubated
for 20min prior to the addition of labeled probes. For super-shift
EMSA, 0.1μg, 0.2μg and 0.4μg of ZEB1 antibody (Abcam, ab155249)
was added and incubated with the reactionmixtures for 20min before
the addition of labeled probes. The binding products were detected by
streptavidin-horseradish peroxidase conjugate according to a Super-
Signal West Femto Trial Kit (Thermo Fisher Scientific, USA).

Lentivirus production and infection
For lentivirus production and transfection, the full-length cDNA of
PREX1, CSE1L and STAU1 were subcloned into pLVX-EF1a-P2A-Bsd
vector by Viraltherapy technologies (Wuhan, China). The pLVX-EF1a-
P2A-Bsd empty vector was used as control. Lentivirus was produced in
293 T cells by transfecting target plasmids with X-tremeGENE9 trans-
fection reagent (Roche, USA). Lentivirus-containing supernatant was

Fig. 6 | PREX1, CSE1L and STAU1 exert synergistic effects to drive CRC devel-
opment by activating p-AKT signaling pathway. a The effects of target genes on
cell proliferation in SW480 cells. Data were presented as mean values ± SEM from
triplicate experiments. ***P <0.0001, **P <0.001 were calculated by a two-sided
Student’s t-test. b The effects of target genes on colony formation ability in SW480
cells. The results presented colony formation ability relative to control cells (set to
100%). Data were shown as the median (minimum to maximum) from triplicate
experiments. ***P <0.0001 were calculated by a two-sided Student’s t-test. c The
potential effects of target genes on proliferationofCOLO678 cell line fromCRISPR/
Cas9-based loss-of-function screens. d The effects of target genes on growth of
xenograft tumors in nudemice. Representative images, growth curves of xenograft
tumors, H&E staining and immunohistochemical analysis derived from lentivirus-
mediated SW480 cells were shown. The results were shown as the means ± SD for
fivemice per group. ***P <0.0001, *P <0.01 were calculated by a two-sided Student’s

t-test. e Schematic of the RIP depicting the identification of target mRNAs binding
with STAU1. f The target mRNAs binding selectively with STAU1 in SW480 cells.
MACS2 were used for peak calling to obtain the enrichment fold change and P
values for themRNAassociatedwith STAU1binding.g STAU1RIP coupledwithqRT-
PCR for PTEN mRNA in SW480 and HCT116 cells. Data were presented as the
median (minimum tomaximum) and normalized to the input from three repeated
experiments with three replicates. ***P <0.0001 were calculated by a two-sided
Student’s t-test. h The effect of STAU1 overexpression on PTEN expression in
SW480 and HCT116 cells. The center line of the box presentation as the median,
box limits indicated upper and lower quartiles, and whiskers indicated the max-
imum and minimum. ***P <0.0001 were calculated by a two-sided Student’s t-test,
from three independent experiments with three technical replicates. i The effects
of target gene on p-AKT signaling in both CRC cell lines by western blot. Source
data are provided with this paper.
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Fig. 7 | Graphical representation of the regulation mechanism underlying ABC
variant rs4810856 and CRC risk. Firstly, we leveraged ABC model to establish
genome-wide regulatory maps genes across 20 cancer types by integrating large-
scale multi-omics data including chromatin accessibility (ATAC-seq or DNase-seq),
histone modifications (H3K27ac ChIP-seq), and chromatin interaction (Hi-C). We
further characterized the functional characteristics of ABC variants based on
genomic distribution, functional annotation and GWAS enrichment. Meanwhile,
pathway analysis, mutation landscape, immune infiltration and drug response were
integrated to the effects of ABC genes in tumorigenesis and clinical application.

Mechanistically, we systematically screened ABC variants associated with CRC risk
in 17,789 cases and 19,951 controls using GWAS chip data and independently vali-
dated in a large-scale population consisting of 6024 cases and 10,022 controls. We
identified an ABC regulatory variant rs4810856 that is significantly associated with
an increased risk of CRC (OR = 1.11, 95%CI = 1.05–1.16, P = 4.02×10-5). Mechan-
istically, the ABCvariant acted as anallele-specific enhancermediatedbyTFZEB1 to
distally facilitate expression of PREX1, CSE1L and STAU1, which synergistically
activated p-AKT signaling to drive CRC cell proliferation. The graph was created
with BioRender.com.
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harvested 48 h after infection and filtered through a 0.45mm PVDF
filter. Finally, lentivirus-containing plasmids were transfected into
SW480 and HCT116 cells and ampicillin (100μg/ml) was added for
antibiotic selection. The transfection effect wasmeasured by qRT-PCR
(Fig. S17).

CRISPR/Cas9 mediated single nucleotide mutation
CRISPR/Cas9 mediated single variant mutation at rs4810856 was per-
formed by Genewiz (Suzhou, China). The sgRNAs were designed by
using well-established CRISPR design tool (http://crispor.tefor.net/
crispor.py). The dsDonor sequence containing the variant rs4810856
(C > T) were designed according to highly efficient sgRNAs. All the
oligonucleotides mentioned above are shown in Supplementary
Data 5. The sgRNAs was subcloned downstream of the human U6
promoter through BbsI restriction sites in plasmid pSpCas9(BB)-2A-
GFP (PX458) (Cat# 48138, Addgene plasmid) and the positive clones
were confirmed by sanger sequencing. Transfection was performed in
SW480 andHCT116 cellswith 80% confluency. 2.5μg of indicatedCas9
plasmid (PX458-sgRNA) and 1 ug of dsDonor were co-transfected into
cells using Lipofectamine 3000. Then 0.8mg/ml puromycin was
added after at 48h transfection. The remaining live transfected cells
were trypsinized and seeded into 96-well plates using fluorescence
activated cell sorting (FACS) to establish single cell clone. Finally, the
single clones were picked up for subculture and confirmed by sanger
sequencing during 14–21 days.

Quantitative reverse transcription PCR (qRT-PCR)
RNA was extracted from cells using TRIzol reagent (Thermo Fisher
Scientific, USA). Reverse transcription was performed by using
PrimeScriptTM RT-PCR Kit (Takara, Japan) and qPCR was performed in
QuantStudio 5 qPCR systems (Applied Biosystems, Thermo Fisher)
using SYBRTM Green PCR Master Mix (Takara, Japan). Gene expression
was normalized to that of GAPDH, which was used as an internal con-
trol. All specific primers are listed in Supplementary Data 5.

Quantitative analysis of chromosome conformation capture
assays (3C-qPCR)
3C assays were performed as described in previous study53 in CRC cell
lines carrying different genotypes of rs4810856 that edited by CRISPR/
Cas9 system. Cells were fixed with 2% formaldehyde for 10min and
stopped with glycine for 5min. Next, cells were lysed in lysis buffer and
digested with BssKI enzyme (New England Biolabs) at 37 °C overnight.
T4 ligase (ThermoFisher)was added to stop ligation at 16 °C for 5 h. The
cross-linked DNA fragments were extracted by phenol/chloroform and
precipitated with ethanol. The concentration of 3C DNA samples was
measured by qPCR. Additionally, GAPDH was used to normalize cell
background differences. All 3C-qPCR primers (Supplementary Data 5)
were synthesized by Tsingke Biological technology (Wuhan, China).

Chromatin immunoprecipitation qPCR (ChIP-qPCR)
ChIPassayswere performedwithChIP assaykit (Cat# 10086,Millipore,
USA). Cells cultured in 15 cm plate were crosslinked with 1% for-
maldehyde and stopped with glycine. Genomic DNA was extracted
from the fixed-chromatin cells and sheared by sonication. 10μg of
antibodies against ZEB1 (Abcam, ab155249) or nonspecific rabbit IgG
(Santa Cruz, sc-66931) were incubated overnight with the crosslinked
protein/DNA for immunoprecipitation using protein A/G magnetic
beads. DNA fragments were purified and collected by a Dr.GenTLE
Precipitation Carrier kit (Takara, Japan). The purified DNA library was
then detected by qPCR and the primers used in ChIP-qPCR are shown
in Supplementary Data 5.

Cell proliferation assays and colony formation assays
Cell viability was measured using Cell Counting kit-8 (Dojindo, Japan).
Cellswere seeded in 96-well plateswith eachwell containing 2500cells

in 100μl of single cell suspension. After a certain time in culture, cells
were incubated with 10 µl CCK-8 for a 2 h at 37 °C, and the absorbance
was measured at 450nm using a scanning microplate reader. For
colony formation assays, cells were seeded at a density of 5000 cells
per well in 6-well cell culture plates. The DMEM with 10% FBS medium
was changed every 3 days. After incubation for 12 days, cells werefixed
with 100% methanol and then stained with crystal violet solution
(Solarbio, Beijing, China) for 20min. The colonies were then captured
and manually counted.

Western blot
Total protein was harvested from cells using RIPA lysis buffer (Beyo-
time, China) supplemented with protease inhibitors PMSF (Beyotime,
China), cOmplete cocktail (Sigma, USA) and PhosSTOP (Sigma, USA).
Protein was quantified using BCA reaction (Beyotime, China) and
denaturated at 99 °C for 5min. Equal amount of protein was separated
by electrophoresis in 8% SDS-PAGE gels and transferred onto 0.45mm
PVDF. Protein was incubated with antibodies against PREX1(1:1000,
CST, Cat# 13168), CSE1L (1:1000, Proteintech, Cat# 22219-1-AP), STAU1
(1:1000, Proteintech, Cat# 14225-1-AP), p-AKT (Ser473, 1:1000, Pro-
teintech, Cat# 66444-1-lg), AKT (1:1000, Proteintech, Cat# 10176-1-AP)
and GAPDH (1:1,000, Proteintech, Cat# 60004-1-lg) at 4 °C overnight.
HRP-conjugated anti-mouse IgG or anti-rabbit IgG (1:5,000, Pro-
teintech, Cat# SA00001-1, Cat# SA00001-2, respectively) was used as
secondary antibody. Chemiluminescence signal was developed with
SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo
Fisher Scientific,USA) by Image Labsoftware. Thedetail informationof
antibodies was provided in the Reporting summary.

RNA immunoprecipitation assays (RIP)
RIP assays were performed using RNA Immunoprecipitation Kit (Cat#
P0102, Geneseed, China) according to the manufacturer’s recom-
mendations. 5μg of STAU1 antibody (Proteintech, Cat# 14225-1-AP) or
IgG (Santa Cruz, sc-66931) was incubated with magnetic beads at 4 °C
for 2 h with rotation. Additionally, cells cultured in 15 cm plate were
washed twice with cold PBS and harvested by scraping into 10mL PBS.
Cells were then lysed and collected by centrifuging at 1000 g for 5min
at 4 °C. Lysate was incubated with magnetic beads binding with anti-
bodies at 4 °C for 2 h with rotation. After incubation, the beads were
washed twice with wash buffer and RNA was purified by using pur-
ification columns. In addition, total RNA (input control) was assayed
simultaneously. Finally, the coprecipitated RNAs were sequenced by
Novogene (Beijing, China) and target RNA was detected by qRT-PCR.

Xenograft growth of CRC cells in nude mice
Female BALB/c nude mice, aged 4-5 weeks, were purchased from the
Vital River Laboratory Animal Technology (Beijing, China), and were
allowed to acclimate to local conditions for one week. All mice main-
tained in the specific pathogen-free (SPF) room under controlled
temperature (23 ± 3 °C), and humidity (40–60%) conditions with 12/
12 h light/ dark cycle with food and water provided ad libitum. For the
xenograft tumor growth assay, nude mice (five per group) were
injected subcutaneously in the rear flank with 0.1ml of cell suspension
containing 1 × 107 cells. When a tumor was palpable, it was measured
every five days and its volume was calculated according to the fol-
lowing formula volume =0.5 × length ×width2. Tumor tissuewasfixed
with paraformaldehyde and was then subjected to hematoxylin and
eosin (H&E) staining and immunohistochemical analysis of Ki67,
PREX1, CSE1L and STAU1 protein. All experimental procedures were
performed in accordance with the relevant institutional and national
guidelines and approved by the experimental animal center of Wuhan
university. The humane endpoints for mouse experiments encompass
a rapid weight loss exceeding 20%, inability to eat and drink, loss of
consciousness, severe dehydration, and tumor diameter exceeding
15mm. None of the tumor sizes in our experiments exceeded 15mm.
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Statistical analysis
The demographic characteristics between cases and controls were
appraised by two-sided χ2 test or the Student’s t- test. The associations
between variants and CRC risk were estimated as the odds ratios (ORs)
and 95% confidence intervals (CIs) by the unconditional multivariate
logistic regression with adjustments for gender, age group, smoking
status, and drinking status. Multiple genetic models, such as allelic,
dominant, recessive and additive genetic model, were applied to
assess the genetic susceptibility of variants to CRC, respectively. For
functional assays, figure legends denoted the statistical details of
experiments including the statistical tests used, the numbers of repli-
cates, and the data presentation type in relevant figures. All statistical
analyses were performed by R (v.3.5.3) or PLINK (v.1.9) software.
P <0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data relevant to the study are included in the article or uploaded as
online Supplementary information. The sequencing data, including
ATAC-seq, H3K27ac-seq, and RNA-seq data from 10 CRC tissues that
used in this study have been deposited in the Gene Expression
Omnibus under accession number GSE222770, which contains RAW
sequencing data. The DNase-seq, ATAC-seq, H3K27ac ChIP-seq and Hi-
C for 20 cancer type were obtained from ENCODE, Roadmap and GEO
datasets, and thedata sourceswere listed in SupplementaryData 1. The
summary GWAS statistics for each cancer type are downloaded from
the GWAS catalog [https://www.ebi.ac.uk/gwas/docs/file-downloads].
The data that used for association analysis of this study are available by
application from the participating consortia, including GECCO
[https://www.ncbi.nlm.nih.gov/gap/] andUKBiobank [https://biobank.
ctsu.ox.ac.uk/], and the dbGaP accession for GECCO program includes
phs001078.v1.p1 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001078.v1.p1], phs001315.v1.p1 [https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001315.
v1.p1] and phs001415.v1.p1 [https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs001415.v1.p1]. The summary
GWAS statistics of the BioBank Japan Project (BBJ) was available from
[http://jenger.riken.jp/result]. The summary GWAS statistics for the
meta-analysis in CORECT, CFR1, MECC1, and GECCO can be obtained
from the published research54. The Chinese population for association
analysis were described in our previous research8. Source data are
provided with this paper Source data are provided with this paper.

Code availability
Only publicly available tools were used in data analysis and the para-
meters have been described wherever relevant in Methods and
Reporting Summary.

References
1. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of

SNP-trait associations. Nucl. Acids Res. 42, D1001–D1006 (2014).
2. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M.

Linking disease associations with regulatory information in the
human genome. Genome Res. 22, 1748–1759 (2012).

3. Chang, J. et al. Exome-wide analyses identify low-frequency variant
in CYP26B1 and additional coding variants associated with eso-
phageal squamous cell carcinoma.Nat. Genet. 50, 338–343 (2018).

4. Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive
catalogue of validated and target-linked human enhancers. Nat.
Rev. Genet. 21, 292–310 (2020).

5. Khurana, E. et al. Role of non-coding sequence variants in cancer.
Nat. Rev. Genet. 17, 93–108 (2016).

6. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide asso-
ciations to candidate causal variants by statistical fine-mapping.
Nat. Rev. Genet. 19, 491–504 (2018).

7. Weissbrod, O. et al. Functionally informed fine-mapping and poly-
genic localization of complex trait heritability. Nat. Genet. 52,
1355–1363 (2020).

8. Tian, J. et al. Risk SNP-Mediated Enhancer-Promoter Interaction
Drives Colorectal Cancer through Both FADS2 and AP002754.2.
Cancer Res. 80, 1804–1818 (2020).

9. Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying
genetic effects on disease mediated by assayed gene expression
levels. Nat. Genet. 52, 626–633 (2020).

10. Consortium, E. P. An integrated encyclopedia of DNA elements in
the human genome. Nature 489, 57–74 (2012).

11. Jung, I. et al. A compendium of promoter-centered long-range
chromatin interactions in the human genome. Nat. Genet. 51,
1442–1449 (2019).

12. Satterlee, J. S. et al. TheNIHCommon Fund/RoadmapEpigenomics
Program: Successes of a comprehensive consortium. Sci. Adv. 5,
eaaw6507 (2019).

13. Mifsud, B. et al. Mapping long-range promoter contacts in human
cells with high-resolution capture Hi-C. Nat. Genet. 47,
598–606 (2015).

14. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter
regulation from thousands of CRISPR perturbations.Nat. Genet. 51,
1664–1669 (2019).

15. Nasser, J. et al. Genome-wide enhancer maps link risk variants to
disease genes. Nature 593, 238–243 (2021).

16. Arnesen, E., Thelle, D. S., Førde, O. H. &Mjøs, O. D. Serum lipids and
glucose concentrations in subjects using antihypertensive drugs:
Finnmark 1977. J. Epidemiol. Community Health 37, 141–144 (1983).

17. Kalita, C. A. et al. High-throughput characterization of genetic
effects on DNA-protein binding and gene transcription. Genome
Res. 28, 1701–1708 (2018).

18. Consortium, G. T. The GTEx Consortium atlas of genetic regulatory
effects across human tissues. Science 369, 1318–1330 (2020).

19. Shuai, Y. et al. TEAD4 modulated LncRNA MNX1-AS1 contributes to
gastric cancer progression partly through suppressing BTG2 and
activating BCL2. Mol. Cancer 19, 6 (2020).

20. Luo, J. L.,Maeda, S., Hsu, L. C., Yagita, H. & Karin,M. Inhibition ofNF-
kappaB in cancer cells converts inflammation- induced tumor
growthmediatedby TNFalpha to TRAIL-mediated tumor regression.
Cancer Cell 6, 297–305 (2004).

21. Despierre, E. et al. Somatic copy number alterations predict
response to platinum therapy in epithelial ovarian cancer.Gynecol.
Oncol. 135, 415–422 (2014).

22. Chan, T. A. et al. Development of tumor mutation burden as an
immunotherapy biomarker: utility for the oncology clinic. Ann.
Oncol. 30, 44–56 (2019).

23. Lakshmi Narendra, B., Eshvendar Reddy, K., Shantikumar, S. &
Ramakrishna, S. Immune system: a double-edged sword in cancer.
Inflamm. Res. 62, 823–834 (2013).

24. Tian, J. et al. Systematic Functional Interrogation of Genes in GWAS
Loci Identified ATF1 as a Key Driver in Colorectal Cancer Modulated
by a Promoter-Enhancer Interaction. Am. J. Hum. Genet. 105,
29–47 (2019).

25. Gong, J. et al. A polymorphic MYC response element in KBTBD11
influences colorectal cancer risk, especially in interaction with an
MYC-regulated SNP rs6983267. Ann. Oncol.: Off. J. Eur. Soc. Med.
Oncol. 29, 632–639 (2018).

26. Caramel, J., Ligier, M. & Puisieux, A. Pleiotropic Roles for ZEB1 in
Cancer. Cancer Res. 78, 30–35 (2018).

27. Hryhorowicz, M., Lipiński, D., Zeyland, J. & Słomski, R. CRISPR/Cas9
Immune System as a Tool for Genome Engineering. Archivum
Immunol. Ther. Exp. 65, 233–240 (2017).

Article https://doi.org/10.1038/s41467-023-41690-z

Nature Communications |         (2023) 14:5958 18

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE222770
https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ncbi.nlm.nih.gov/gap/
https://biobank.ctsu.ox.ac.uk/
https://biobank.ctsu.ox.ac.uk/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001078.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001078.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001315.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001315.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001315.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001415.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001415.v1.p1
http://jenger.riken.jp/result


28. Srijakotre, N. et al. P-Rex1 and P-Rex2 RacGEFs and cancer. Bio-
chem. Soc. Trans. 45, 963–977 (2017).

29. Li, Y. et al. CSE1L silence inhibits the growth and metastasis in
gastric cancer by repressing GPNMB via positively regulating
transcription factor MITF. J. Cell. Physiol. 235, 2071–2079
(2020).

30. Park, E. & Maquat, L. E. Staufen-mediated mRNA decay. Wiley
Interdiscip. Rev. RNA 4, 423–435 (2013).

31. Tian, J. et al. N(6)-methyladenosine mRNA methylation of PIK3CB
regulates AKT signalling to promote PTEN-deficient pancreatic
cancer progression. Gut 69, 2180–2192 (2020).

32. Albert, F. W. & Kruglyak, L. The role of regulatory variation in com-
plex traits and disease. Nat. Rev. Genet. 16, 197–212 (2015).

33. Gopi, L. K. & Kidder, B. L. Integrative pan cancer analysis reveals
epigenomic variation in cancer type and cell specific chromatin
domains. Nat. Commun. 12, 1419 (2021).

34. Kundaje, A. et al. Integrative analysis of 111 reference human epi-
genomes. Nature 518, 317–330 (2015).

35. Wu, S., Powers, S., Zhu, W. & Hannun, Y. A. Substantial contribution
of extrinsic risk factors to cancer development. Nature 529,
43–47 (2016).

36. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The
immune contexture in human tumours: impact on clinical outcome.
Nat. Rev. Cancer 12, 298–306 (2012).

37. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary
statistics 2019. Nucl. Acids Res. 47, D1005–d1012 (2019).

38. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter con-
tacts in gene expression control. Nat. Rev. Genet. 20,
437–455 (2019).

39. Pickrell, J. K. et al. Understanding mechanisms underlying human
gene expression variation with RNA sequencing. Nature 464,
768–772 (2010).

40. Gong, J. et al. PancanQTL: systematic identification of cis-eQTLs
and trans-eQTLs in 33 cancer types. Nucl. Acids Res. 46,
D971–d976 (2018).

41. Li, Q. et al. Integrative eQTL-based analyses reveal the biology of
breast cancer risk loci. Cell 152, 633–641 (2013).

42. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M.
Regulatory genomic circuitry of human disease loci by integrative
epigenomics. Nature 590, 300–307 (2021).

43. Trynka, G. Enhancers looping to target genes. Nat. Genet. 49,
1564–1565 (2017).

44. Karnuta, J. M. & Scacheri, P. C. Enhancers: bridging the gap
between gene control and human disease. Hum. Mol. Genet. 27,
R219–r227 (2018).

45. Tian, J. et al. CancerSplicingQTL: a database for genome-wide
identification of splicingQTLs in humancancer.Nucl. Acids Res.47,
D909–d916 (2019).

46. Walavalkar, K. et al. A rare variant of African ancestry activates 8q24
lncRNA hub by modulating cancer associated enhancer. Nat.
Commun. 11, 3598 (2020).

47. Jiang, T. et al. CircIL4R activates the PI3K/AKT signaling pathway via
the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and
metastasis in colorectal cancer. Mol. Cancer 20, 167 (2021).

48. Duan, S. et al. IMPDH2 promotes colorectal cancer progression
through activation of the PI3K/AKT/mTOR and PI3K/AKT/
FOXO1 signaling pathways. J. Exp. Clin. cancer Res.: CR 37,
304 (2018).

49. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinforma. (Oxf., Engl.) 25,
1754–1760 (2009).

50. Das, S. et al. Next-generation genotype imputation service and
methods. Nat. Genet. 48, 1284–1287 (2016).

51. McCarthy, S. et al. A reference panel of 64,976 haplotypes for
genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

52. Schmit, S. L. et al. Novel Common Genetic Susceptibility Loci for
Colorectal Cancer. J. Natl Cancer Inst. 111, 146–157 (2019).

53. Hagège, H. et al. Quantitative analysis of chromosome con-
formation capture assays (3C-qPCR). Nat. Protoc. 2, 1722–1733
(2007).

54. Schumacher, F. R. et al. Genome-wide association study of color-
ectal cancer identifies six new susceptibility loci. Nat. Commun. 6,
7138 (2015).

Acknowledgements
We are grateful to all the study participants, research staff, and stu-
dents who participated in this work, especially the blood sample
donors. This work was supported by Distinguished Young Scholars of
China (NSFC-81925032), Key Program of National Natural Science
Foundation of China (NSFC-82130098), the Fundamental Research
Funds for the Central Universities (2042022rc0026, 2042023kf1005)
and Knowledge Innovation Program of Wuhan (2023020201010060)
for X.M. The National Science Fund for Excellent Young Scholars
(NSFC-82322058), Programof National Natural Science Foundation of
China (NSFC-82103929, NSFC-82273713), Young Elite Scientists
Sponsorship Program by CAST (2022QNRC001), National Science
Fund for Distinguished Young Scholars of Hubei Province of China
(2023AFA046), Fundamental Research Funds for the Central Uni-
versities (WHU:2042022kf1205) and Knowledge Innovation Program
of Wuhan (whkxjsj011, 2023020201010073) for J.T. Youth Program of
National Natural Science Foundation of China (NSFC-82003547),
Program of Health Commission of Hubei Province (WJ2023M045) and
Fundamental Research Funds for the Central Universities (WHU:
2042022kf1031) for Y.Z.

Author contributions
J.T. and X.M. were the overall principal investigators in this study who
conceived the study and obtained financial support. Y.Z., J.T. and X.M.
were responsible for the study design and supervised the entire study.
P.Y., C.C. and Z.L. performed statistical analyses, interpreted the results
and drafted the initial manuscript. B.L., S.C., M.Z., Y.C., F.Z., J.H., L.F.,
C.N., Y. Li., W.W., H.G., Y.Liu and W.T. performed laboratory experi-
ments. Z.Y., J.L., C.H., X.Y., B.X., H.L., X.Z., N.L. and Y.W. performed data
curation and investigation. J.T. and X.M. were responsible for patient
recruitment and sample preparation. All authors approved the final
report for publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41690-z.

Correspondence and requests for materials should be addressed to
Jianbo Tian or Xiaoping Miao.

Peer review information Nature Communications thanks Guangfu Jin
and the other anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-41690-z

Nature Communications |         (2023) 14:5958 19

https://doi.org/10.1038/s41467-023-41690-z
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41690-z

Nature Communications |         (2023) 14:5958 20

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk
	Results
	Landscapes of genome-wide enhancer-gene maps across 20 cancer types
	Functional characterization of cancer enhancer-gene connections
	The ABC model performs better at linking enhancer variants to genes in our CRC tissues
	ABC variants can explain a significant proportion of CRC heritability
	The ABC variant rs4810856 at 20q13.13 is associated with CRC risk
	The ABC variant rs4810856 acts as an allele-specific enhancer to promote PREX1, CSE1L and STAU1 expression
	ZEB1 preferentially binds to the risk allele of rs4810856 to affect target genes expression
	Direct effects of the ABC variant rs4810856 on ZEB1 affinity, target genes expression and cell proliferation
	PREX1, CSE1L and STAU1 play synergistic effects in activating p-AKT signaling to provoke CRC cells proliferation

	Discussion
	Methods
	Epigenomic profiling of 20 cancer types
	ABC model construction
	CRC tissues acquisition
	ATAC-seq
	H3K27ac ChIP-seq
	RNA-seq
	Study subjects in association analysis
	Imputation and quality control for genotype data from GECCO
	SNP genotyping for our own CRC samples
	Cell lines and culture
	Construction of plasmids and RNA interference
	Transient transfections and dual-luciferase reporter assays
	Electrophoretic mobility shift assays and super-shift EMSA
	Lentivirus production and infection
	CRISPR/Cas9 mediated single nucleotide mutation
	Quantitative reverse transcription PCR (qRT-PCR)
	Quantitative analysis of chromosome conformation capture assays (3C-qPCR)
	Chromatin immunoprecipitation qPCR (ChIP-qPCR)
	Cell proliferation assays and colony formation assays
	Western blot
	RNA immunoprecipitation assays (RIP)
	Xenograft growth of CRC cells in nude mice
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




