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Metabolomic differentiation of benign vs
malignant pulmonary nodules with high
specificity via high-resolution mass
spectrometry analysis of patient sera

Yao Yao 1,9, Xueping Wang2,9, Jian Guan3,9, Chuanbo Xie4, Hui Zhang4,5,
Jing Yang4, Yao Luo4, Lili Chen6, Mingyue Zhao4, Bitao Huo4,5, Tiantian Yu5,
Wenhua Lu4, Qiao Liu4, Hongli Du7, Yuying Liu4, Peng Huang 4,5,
Tiangang Luan 1,8 , Wanli Liu 2 & Yumin Hu 4,5

Differential diagnosis of pulmonary nodules detected by computed tomo-
graphy (CT) remains a challenge in clinical practice. Here, we characterize the
global metabolomes of 480 serum samples including healthy controls, benign
pulmonary nodules, and stage I lung adenocarcinoma. The adenocarcinoma
demonstrates a distinct metabolomic signature, whereas benign nodules and
healthy controls sharemajor similarities inmetabolomic profiles. A panel of 27
metabolites is identified in the discovery cohort (n = 306) to distinguish
between benign and malignant nodules. The discriminant model achieves an
AUC of 0.915 and 0.945 in the internal validation (n = 104) and external vali-
dation cohort (n = 111), respectively. Pathway analysis reveals elevation in
glycolytic metabolites associated with decreased tryptophan in serum of lung
adenocarcinoma vs benign nodules and healthy controls, and demonstrates
that uptake of tryptophan promotes glycolysis in lung cancer cells. Our study
highlights the value of the serummetabolite biomarkers in risk assessment of
pulmonary nodules detected by CT screening.

Early diagnosis is vital to improve the survival rate of cancer patients.
Results from the American National Lung Cancer Screening Trial
(NLST) and the European NELSON trial both demonstrated that
screening with low-dose computed tomography (LDCT) significantly
reduces lung cancer mortality in high-risk individuals1–3. After the

widespread use of LDCT for lung cancer screening, incidental radio-
graphic findings of asymptomatic pulmonary nodules have continued
to rise4. A lung nodule is defined as a focal opacity measuring up to
3 cm in diameter5.We are facing challenges in assessing the probability
of malignancy and managing a large number of pulmonary nodules
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incidentally found by LDCT. The limitation of CT may cause frequent
follow-up examinations and false-positive findings leading to unne-
cessary interventions and overtreatments6. Therefore, there is a need
for developing reliable and convenient biomarkers to correctly iden-
tify lung cancer at the early stage and distinguish a majority of benign
nodules at initial discovery7.

Comprehensive molecular analysis of the blood (serum, plasma,
peripheral bloodmononuclear cells), including genomics, proteomics,
or DNA methylation8–10, has attracted growing interest in discovering
biomarkers for lung cancer diagnosis. Meanwhile, the metabolomic
approach measures the cellular end products influenced by both
endogenous and exogenous activities and hence has been applied to
predict disease onset and outcome. Liquid chromatography-tandem
mass spectrometry (LC-MS) is a widely used approach for metabo-
lomic study because of its high sensitivity and large dynamic range to
cover metabolites with various physicochemical properties11–13.
Although the global metabolomic profiling of plasma/serum has been
applied to identify biomarkers associated with diagnosis14–17 and
therapeutic efficacy in lung cancer18, the serummetabolite classifier to
discriminate between benign and malignant lung nodules remains to
be investigated in a large-cohort study.

Adenocarcinoma and squamous cell carcinoma are two major
subtypes of non-small cell lung cancer (NSCLC). It has been shown that
adenocarcinomawas themost frequent histology of lung cancer found
in various CT screening trials1,19–21. In the current study, we perform
metabolomic analysis with ultra-performance liquid chromatography-
high resolution mass spectrometry (UPLC-HRMS) on a total of
695 serum samples including healthy controls, benign lung nodules
and stage I lung adenocarcinoma ≤3 cm detected by CT screening. We
identify a panel of serum metabolites that distinguish lung adeno-
carcinoma from benign nodules and healthy controls. Pathway
enrichment analysis shows that aberrant tryptophan and glucose
metabolism are common alterations in lung adenocarcinoma com-
pared with benign nodules and healthy controls. Finally, we establish
and validate a serum metabolic classifier with high specificity and
sensitivity in differentiating malignant and benign pulmonary nodules
detected by LDCT, which may facilitate differential diagnosis and risk
assessment at the early stage.

Results
Study populations and patient characteristics
In the current study, serum samplesmatched according to gender and
age, were collected retrospectively from 174 healthy controls,
292 subjects with benign pulmonary nodules, and 229 patients with
stage I lung adenocarcinoma. The demographic characteristics of the
695 subjects are shown in Supplementary Table 1.

As shown in Fig. 1a, a total of 480 serum samples collected from
Sun Yat-sen University Cancer Center, including 174 healthy controls
(HC), 170 benign nodules (BN) and 136 stage I lung adenocarcinoma
(LA) were used as the discovery cohort for untargeted metabolomic
analysis by ultra-performance liquid chromatography- high resolution
mass spectrometer (UPLC–HRMS). As the study workflow shown in
Supplementary Fig. 1, differential metabolites between LA and HC, LA
and BN were identified to build the classification model and further
studied for differential pathway analysis. 104 samples collected from
Sun Yat-sen University Cancer Center and 111 samples collected from
another two hospitals were assigned for internal and external valida-
tion, respectively.

Serum metabolomic profiling of healthy controls, benign pul-
monary nodules and lung adenocarcinoma
UPLC-HRMS analysis was conducted to profile the global serum
metabolomes of 174HC, 170BNand 136 LA in the discovery cohort.We
first showed that quality control (QC) sampleswere closely clustered in
the center of the unsupervised principal component analysis (PCA)

model, validating the performance stability of the current study
(Supplementary Fig. 2).

As demonstrated by the partial least squares discrimination ana-
lysis (PLS-DA) in Fig. 1b, we found a clear profile separation between LA
and BN, LA and HC, in both positive (+ESI) and negative (−ESI) elec-
trospray ionization mode. However, no significant discrimination was
found between BN and HC in either +ESI or −ESI mode.

We found 382 differential features in LA vs HC, and 231 in LA vs
BN, respectively, whereas 95 in BN vs HC (Wilcoxon rank test, FDR <
0.05 and fold change >1.2 or <0.83) (Fig. 1c–e). Peaks were further
annotated (Supplementary Data 3), based on database (mzCloud/
HMDB/Chemspider library) searching by m/z value, retention time,
and fragmentationmass spectrum (details described inMethods)22. 33
and 38 annotatedmetabolites with significantly differential abundance
were finally identified for LA vs BN (Fig. 1f and Supplementary Table 2)
and LA vs HC (Supplementary Fig. 3 and Supplementary Table 2),
respectively. In contrast, only 3 metabolites were identified with sig-
nificant differential abundance in BN vs HC (Supplementary Table 2),
which is in agreement with the overlap between BN and HC in PLS-DA.
These differential metabolites covered a wide range of biochemicals
(Supplementary Fig. 4). Taken together, these results demonstrate a
substantial alteration in the serum metabolome that reflects the
malignant transformation in the early-state lung cancer comparedwith
either benign pulmonary nodules or healthy subjects. Meanwhile, the
similarity in serum metabolomes of BN and HC indicates that benign
pulmonary nodules may share a number of common biological fea-
tures with healthy subjects. Considering that mutations in the epi-
dermalgrowth factor receptor (EGFR) gene are commonly found in the
subtype of lung adenocarcinoma23, we sought to determine the impact
of the driver mutation on serum metabolomes. We then analyzed the
global metabolomic profiles of 72 cases with available EGFR status in
the lung adenocarcinoma group. Interestingly, we found comparable
profiles between EGFR-mutant (n = 41) and EGFR-wild type (n = 31)
patients in the PCA analysis (Supplementary Fig. 5a). However, we
identified 7 metabolites with significantly altered abundance in EGFR-
mutant comparedwith EGFR-wild type (t-test, p < 0.05 and fold change
>1.2 or <0.83) (Supplementary Fig. 5b) patients. The majority of these
metabolites (5 out of 7) were acylcarnitines that play important roles in
the fatty acid oxidation pathway.

Establishing, tuning and validating the classificationmodel with
differential serum metabolites
As theworkflowshown in Fig. 2a, basedon the 33 identifieddifferential
metabolites in LA (n = 136) vs BN (n = 170), an optimal variable com-
bination of biomarkers for nodule classification were obtained by least
absolute shrinkage and selection operator (LASSO)- binary logistic
regression model. A ten-fold cross validation was used to test the
robustness of the model. Variable selection and parameter regular-
ization were adjusted by the penalization in likelihood maximization
through parameter λ24. The global metabolomic analysis was further
performed independently in an internal validation (n = 104) and an
external validation (n = 111) cohort to verify the classification perfor-
mance of the discriminantmodel. As a result, a panel of 27metabolites
was identified in the discovery set as the best discriminant model with
maximum of the mean AUC (Fig. 2b), including 9 upregulated and 18
downregulated in LA compared with BN (Fig. 2c).

A prediction model was created based on these 27 metabolites
weighted by their regression coefficient (Supplementary Table 3). The
ROCanalysis according to these27metabolites obtained an area under
the curve (AUC) value of 0.933, as well as 0.868 sensitivity and
0.859 specificity in the discovery set (Fig. 2d). Meanwhile, among the
38 annotateddifferentialmetabolites between LA andHC, a panel of 16
metabolites achieved an AUC of 0.902 in differentiating between LA
and HC with a sensitivity of 0.801 and a specificity of 0.856 (Supple-
mentary Fig. 6a–c). The AUC values based on different fold-change
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thresholds of differential metabolites were also compared. We found
that the classification model yielded the optimal performance to dis-
tinguish between LA and BN (HC) when fold change level was set at 1.2
compared with 1.5 or 2.0 (Supplementary Fig. 7a,b). The classification
model based on the 27-metabolite panel was further verified in an
internal and external cohort. The AUC was 0.915 (0.867 sensitivity,
0.811 specificity) in the internal validation and 0.945 (0.810 sensitivity,
0.979 specificity) in the external validation, respectively (Fig. 2e,f). To
evaluate the cross-laboratory performance, 40 samples from the
external cohort were analyzed in an outside lab as described in
Methods. The classification accuracy reached an AUC of 0.925 (Sup-
plementary Fig. 8). As lung squamous cell carcinoma (LUSC) is the
second most common subtype of non-small cell lung cancer (NSCLC)
after lung adenocarcinoma (LUAD), we also tested the potential
applicability of the verified metabolic signature in a cohort composed

of 74 cases of BN and 16 cases of LUSC. The AUC was 0.776 for dis-
crimination of LUSC vs BN (Supplementary Fig. 9), indicating less
powerful capacity compared with discrimination of LUAD vs BN.

Diagnostic capacity of the serum metabolic classifier for
nodules in the same size range
It has been shown that nodule size on CT image positively correlates
with probability of malignancy and remains a major determinant for
nodule management25–27. Data analysis from the large cohort of NEL-
SON screening trial have suggested that themalignancy risk in subjects
with nodules <5mm is even similar to subjects without nodules28.
Accordingly, the minimum size threshold for the need of routine CT
follow-up is 5mm recommended by the British Thoracic Society (BTS)
and 6mm recommended by the Fleischner Society29. However,
nodules greater than 6mm without clear benign features, termed
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Fig. 1 | Significant perturbation in the serum metabolome of lung adeno-
carcinoma compared with healthy controls and benign nodules. a The study
population of serum global metabolomic analysis by ultra-performance liquid
chromatography-high resolution mass spectrometry (UPLC-HRMS) in the dis-
covery cohort. b The partial least squares discrimination analysis (PLS-DA) of the
global metabolomes of 480 serum samples in the discovery cohort including
heathy controls (HC, n = 174), benign nodules (BN, n = 170), and stage I lung

adenocarcinoma (LA, n = 136). +ESI, positive electrospray ionization mode; −ESI,
negative electrospray ionization mode. c–e Significant differentially abundant
metabolites between two given groups (Two-sided Wilcoxon rank tests with the p
value adjusted by false discovery rate, FDR<0.05) are shown in red (fold
change > 1.2) and blue (fold change < 0.83) in the volcano plot. f A hierarchical
clustering heat map showing significantly differential abundance of annotated
metabolites between LA and BN. Source data are provided as a Source Data file.
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indeterminate pulmonary nodules (IPN), remain a major challenge for
evaluation andmanagement in clinical practice30,31. With the combined
samples frombothdiscovery and internal validation cohort, we further
investigated whether there is impact of nodule size on the metabo-
lomic profile. Focusing on the panel of 27 validated biomarkers, we
first compared the PCA of metabolomic profiles of HC and BN below
6mm. We found overlap of most data points from HC and BN,
demonstrating similarities in the serummetabolite contents from two
groups (Fig. 3a). The signature profiles remained conserved across
different size ranges in both BN and LA (Fig. 3b,c), whereas a separa-
tion was observed between malignant and benign nodules ranging
6–20mm (Fig. 3d). The cohort achieved an AUC of 0.927 with
0.868 specificity and 0.820 sensitivity in predicting malignancy of

nodules ranging from 6 to 20mm (Fig. 3e,f). Our results suggest that
the classifier may capture the metabolic alterations induced by the
malignant transformation at the early-stage, regardless of the
nodule size.

4 samples (aged 44-61) with pulmonary nodules that were similar
in size (7–9mm), were further selected to illustrate the performanceof
the proposedmodel formalignancyprediction (Fig. 4a,b). At the initial
screening, case 1 represents a solid nodulewith calcification, which is a
feature associated with benign nature, while case 2 represents an
indeterminate part-solid nodule without clear benign features. Three
rounds of follow-upCTdemonstrated that these cases remained stable
over a 4-year-period of time and therefore were considered benign
nodules (Fig. 4a). Compared with the clinical evaluation by serial CT
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Fig. 2 | Construction and validation of the serum metabolic classifier for dis-
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lishment workflow of the pulmonary nodule classifier, including selection of an
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binary logistic regression model, and evaluation of the prediction performance in
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optimalmodelwith 27 selectedbiomarkers. AUC, area under the receiver operating
characteristic (ROC) curve. c Fold change of 27 selected metabolites in LA group
compared with BN group in the discovery set. Red columns, upregulated. Blue
columns, downregulated. d–f The receiver operating characteristic (ROC) curves
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provided as a Source Data file.
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scans, a single analysis of serum metabolites by the current classifier
model rapidly and correctly identified these benign nodules based on
the probability cut-off value (Table 1). In Fig. 4b, case 3 presents a
nodule with a pleural retraction feature which is more commonly

associated with malignancy32. Case 4 presents an indeterminate part-
solid nodule without signs of benign causes. These cases were both
predicted to be malignant by the classifier model (Table 1). The eva-
luation of lung adenocarcinoma was proved by histopathological
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examination after lung resection surgery (Fig. 4b). For the external
validation set, two cases of indeterminate pulmonary nodules above
6mm were presented with accurate prediction by the metabolic
classifier (Supplementary Fig. 10).

Taken together, our findings suggest the potential value of the
serum metabolite biomarkers in differential diagnosis of pulmonary
nodules that may pose challenges for evaluation by CT screening.

Perturbation of tryptophan metabolism is associated with
active glycolysis in lung adenocarcinoma
Based on the verified panel of differential metabolites, we sought to
determine the biological relevance of the major metabolic alterations.
KEGG pathway enrichment analysis by MetaboAnalyst revealed 6
common significantly altered pathways between two given groups (LA
vs HC and LA vs BN, adj. p ≤0.001, impact > 0.01). These alterations
were characterized by perturbation of pyruvate metabolism, trypto-
phanmetabolism, nicotinate and nicotinamidemetabolism, glycolysis,
TCA cycle, and purine metabolism (Fig. 5a). We then further pursued
targeted metabolomics to verify the major alterations with absolute
quantification. The shared metabolites in the commonly altered
pathways were determined by triple quadrupole mass spectrometer
(QQQ) using authentic metabolite standards. The demographic char-
acteristics of the samples for targeted metabolomic study were
included in Supplementary Table 4. Consistent with our findings from
global metabolomics, the quantitative analysis confirmed elevation of
hypoxanthine and xanthine, pyruvate and lactate in LA compared with
BN and HC (Fig. 5b,c, p <0.05). Meanwhile, no significant difference of
these metabolites was detected between BN and HC.

Given the significant impact of tryptophan metabolism alteration
in the LA group, we also evaluated the serum level of tryptophan by
QQQ in HC, BN and LA groups. We found decreased abundance of
serum tryptophan in LA compared with either HC or BN (p <0.001,
Fig. 5d), which was in line with previous findings of lower circulating
tryptophan in lung cancer patients compared with healthy
controls33–35. Another study using a PET/CT tracer of 11C-methyl-L-
tryptophan demonstrated substantially prolonged retention of tryp-
tophan signal in the lung cancer tissue compared with the benign
lesion or normal tissue36. We reasoned that the decrease of tryptophan
in serum of LA may reflect the active uptake of tryptophan into the
lung cancer cells.

It is also known that the final product of kynurenine pathway in
tryptophan catabolism is NAD+37,38, which is an obligatory substrate for
the reaction of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate
in glycolysis39. While previous studies have focused on the role of
tryptophan catabolism in immune regulation40–42, we sought to eluci-
date the interaction between the dysregulated tryptophan and glyco-
lytic pathways observed in the current study. Solute Carrier Family 7
Member 5 (SLC7A5) has been known to be a tryptophan
transporter43–45. Quinolinate phosphoribosyltransferase (QPRT) is the
enzyme that converted quinolinic acid into NAMN in the downstream
of kynurenine pathway46. Examination of TCGA dataset of LUAD
revealed that SLC7A5 and QPRT are both significantly upregulated in
the tumor tissues compared with the normal tissues (Fig. 5e). Such
elevation was observed in both stage I&II and stage III&IV lung

adenocarcinoma (Supplementary Fig. 11), indicating early aberration in
tryptophan metabolism associated with tumorigenesis.

Furthermore, the LUAD-TCGA dataset showed a positive correla-
tion between SLC7A5 and GAPDH mRNA expression in the cancer
patient samples (r =0.45, p = 1.55E−26, Fig. 5f). In contrast, no sig-
nificant correlation was found between such gene signatures in the
normal lung tissues (r =0.25, p =0.06, Fig. 5f). Knockdown of SLC7A5
(Supplementary Fig. 12) in A549 cells significantly reduced cellular
levels of tryptophan and NAD(H) (Fig. 5g,h), leading to attenuation of
glycolytic activity which was measured by extracellular acidification
rate (ECAR) (Fig. 5i). Therefore, based on the serum metabolic altera-
tions and in vitro assays, we proposed that tryptophan metabolism
may play an important role in promoting glycolysis in lung cancer via
production of NAD+ by the kynurenine pathway.

It has been shown that a large number of indeterminate pul-
monary nodules detected by LDCT may cause additional evaluation
such as PET CT, lung biopsies and overtreatment due to false positive
diagnosis of malignancy31. As illustrated in Fig. 6, our study revealed a
panel of serummetabolites with potential diagnostic value, whichmay
improve risk stratification and follow-up management of pulmonary
nodules detected by CT screening.

Discussion
Evidence from the American NLST trial as well as the European NEL-
SON trial has demonstrated that screening with low-dose computed
tomography (LDCT) in high-risk individuals reduces mortality of lung
cancer1,3. However, risk assessment and subsequent clinical manage-
ment of the large number of incidental pulmonary nodules detected
by LDCT remain most challenging. A critical goal is to optimize the
proper classification of the current LDCT-based protocol by incor-
porating reliable biomarkers.

Certain molecular biomarkers such as blood-based metabolites
have been identified by comparing lung cancer with healthy
controls15,17. In the current study, we focused on the utility of serum
metabolomic profiling for discriminating between benign and malig-
nant pulmonary nodules incidentally detected by LDCT.We compared
the global serummetabolomes of samples from healthy controls (HC),
benign pulmonary nodules (BN) and stage I lung adenocarcinoma (LA)
by UPLC-HRMS analysis. We found that HC and BN share similarities in
metabolite features while LA displayed significant alterations com-
pared with HC and BN. We identified two panels of serummetabolites
to distinguish LA from HC and BN.

The current LDCT-based protocol of discrimination between
benign and malignant nodules is mainly based on the nodule size,
density, morphology and growth rate over time30. Previous studies
indicate that nodule size is strongly associatedwith probability of lung
cancer. The risk of malignancy is <1% in nodules <6mm even in
patients at high-risk. The risk ofmalignancy for nodules between6mm
and 20mm can range from 8 to 64%30. Therefore, a cut-off diameter of
6mm on CT imaging is recommended by the Fleischner society for
routine follow-up29. However, risk assessment and management of
indeterminate pulmonary nodules (IPN) over 6mmhavenot beenwell-
performed31. Current IPN management is usually based on watchful
waiting for frequent CT follow-ups.

Basedon the validatedmetabolite panel,we first demonstrated an
overlap of metabolomic profiles between healthy controls and benign
nodules <6mm. The biological similarities coincide with previous CT
findings that the risk of malignancy for nodules <6mm is as low as
those of subjects without nodules30. Notably, our results further
showed that benign nodules <6mm and ≥6mm shared major simila-
rities inmetabolomic profiles, indicating a uniform functional readout
of benign etiology regardless of nodule size. As such, the current
diagnostic panel of serummetabolites may provide a single analysis as
a rule-out test at initial discovery of nodule on CT and potentially
reduce serial surveillance. Meanwhile, the same metabolic biomarker

Table 1 | Prediction probability values and outcomes of the
four representative pulmonary nodules by the serum meta-
bolic classifier

Case 1 Case 2 Case 3 Case 4

Gender F M F M

Maximal diameter (mm) 7 7 8 9

Probability 0.330 0.003 0.492 0.887

Prediction BN BN LA LA
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(n = 59) from TCGA dataset. The gray area represents 95% CI. r, Pearson’s correla-
tion coefficient.gNormalized cellular levels of tryptophan inA549 cells transfected
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test was used in (b–h). In (g–i), error bars represent means ± S.D and each experi-
ment was performed three times independently with similar results. Source data
are provided as a Source Data file.
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panel separates malignant from benign nodules ≥6mm and provides
accurate prediction for IPNs with similar sizes and undetermined
indication of morphology on CT images. This serum metabolic clas-
sifier achieves awell-performedAUCof 0.927 in predictingmalignancy
of nodules ≥6mm. Collectively, our findings suggest that the distinct
serum metabolomic signature may specifically reflect the tumor-
derived metabolic alterations at the early stage and present the
potential value as a risk predictor independent of nodule size.

It should be noted that lung adenocarcinoma (LUAD) and squa-
mous cell carcinoma (LUSC) are predominant types of non-small cell
lung cancer (NSCLC). Considering that LUSC is highly associated with
tobacco use47, and LUAD is the most frequent histology of incidental
pulmonary nodules detected by CT screening48, our classifier model is
specifically established with samples of stage I adenocarcinoma. Wang
and colleagues have also focused on LUAD and identified nine lipid
features by lipidomics to differentiate early-stage lung cancer from
healthy controls17. We have tested the current classifier model with 16
cases of stage I LUSC and 74 cases of benign nodule and observed less
accuracy in predicting LUSC (AUC 0.776), suggesting that LUAD and
LUSC may have their own metabolomic characteristics. Indeed, it has
been shown that LUAD and LUSC are different in etiology, biologic
origins and genetic aberrations49. Therefore, other types of histology
shall be included in a trainingmodel for detection of lung cancer in the
general population of a screening program.

Here, we revealed six commonly altered pathways in lung ade-
nocarcinoma compared with healthy controls and benign nodules.
Xanthine and hypoxanthine were the shared metabolites in the purine
metabolism pathway. Consistent with our results, intermediates
associated with purine metabolism have been found to be markedly
increased in the serum or tissue of lung adenocarcinoma patients
compared with healthy controls or patient at pre-invasive stage15,50.
The increased abundance of serum xanthine and hypoxanthine may
reflect the anabolism required for building blocks of rapid proliferat-
ing cancer cells. Deregulation of glucose metabolism is a renown
hallmark of cancer metabolism51. Here we observed significant

increase of pyruvate and lactate in the LA group compared with HC
and BN, which is in line with previous findings of perturbation in gly-
colytic pathway in serum metabolome profiling of non-small cell lung
cancer (NSCLC) patients compared with healthy controls52,53.

Importantly, we observed inverse correlation between pyruvate
and tryptophan metabolism in serum of lung adenocarcinoma. Serum
tryptophan level was decreased in the LA group compared with HC or
BN. Interestingly, previous work using a large-scale study from pro-
spective cohorts suggests that low level of circulating tryptophan was
associated with increased risk of lung cancer54. Tryptophan is an
essential amino acid exclusively obtained from dietary uptake. We
reasoned that depletion of serum tryptophan in lung adenocarcinoma
likely reflects rapid consumption of this metabolite. It is known that
the end product of tryptophan catabolism through kynurenine path-
way is a source for de novo synthesis of NAD+. As NAD+ is mostly
produced by salvage pathway, the relevance of NAD+ from tryptophan
metabolism in health and disease remains to be established46. Our
analysis of TCGA database showed that expression of the tryptophan
transporter, solute carrier 7A5 (SLC7A5) is significantly upregulated in
lung adenocarcinoma compared with normal controls and positively
correlates with expression of glycolytic enzyme GAPDH. Previous
studies have focused on the role of tryptophan catabolism in sup-
pressing antitumor immune response40–42. Here, wedemonstrated that
inhibition of tryptophan uptake by knockdown of SLC7A5 in the lung
cancer cell caused subsequent decrease of cellular level of NAD, along
with attenuation of glycolytic activity. Therefore, our study provides a
biological basis for the serum metabolic alteration associated with
malignant transformation in lung adenocarcinoma.

EGFR mutations represent the most common actionable driver
mutations in patients with NSCLC. In our study, we found that EGFR-
mutant patients (n = 41) shared similar global metabolomic profiles
with EGFR-wild type patients (n = 31), although we identified a number
of acylcarnitines with decreased abundance in the serum of EGFR-
mutant patients. The established function of acylcarnitines is to
transport acyl groups from the cytosol to mitochondrial matrix,
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leading to fatty acid oxidation for energy production55. In line with our
findings, a recent study has also observed comparable metabolomic
profiles between EGFR-mutant and EGFR-wild type tumors by analyz-
ing global metabolomes of 102 samples of lung adenocarcinoma
tissues50. Interestingly, an acylcarnitine was also discovered with
decreased abundance in the EGFR-mutant group. Therefore, whether
the change of acylcarnitine levels reflects the EGFR-driven metabolic
alterations and the underlying molecular links may be worthy of fur-
ther investigation.

In summary, our study has established a serum metabolic classi-
fier for differential diagnosis of pulmonary nodules, and proposed a
workflow to potentially optimize the risk assessment and facilitate
clinical management based on computed tomography screening.

Methods
Collection of clinical samples
The study was approved by the Ethics Committee of Sun Yat-sen
University Cancer Center, The First Affiliated Hospital of Sun Yat-sen
University, and The Affiliated Cancer Hospital of Zhengzhou Uni-
versity. In the discovery and internal validation cohorts, serum of 174
cases of healthy controls and 244 cases of benign nodules were col-
lected from individuals undergoing annual physical examination at
Department of Cancer Prevention and Medical Examination, Sun Yat-
sen University Cancer Center, and 166 cases of stage I lung adeno-
carcinoma were collected at Sun Yat-sen University Cancer Center. In
the external validation cohorts, 48 cases of benign nodules and 39
cases of stage I lung adenocarcinoma were collected from The First
AffiliatedHospital of SunYat-senUniversity, and24 cases of state I lung
adenocarcinomawere collected fromThe Affiliated Cancer Hospital of
Zhengzhou University. 16 cases of stage I lung squamous cell carci-
noma were also collected from Sun Yat-sen University Cancer Center
to test the diagnostic capacity of the established metabolic classifier
(patient characteristics in Supplementary Table 5). Samples for the
discovery and internal validation cohorts were collected between
January 2018 andMay 2020. Samples for the external validation cohort
were collected between August 2021 and October 2022. To minimize
gender bias, an approximately equal number of male and female cases
were assigned to each group of the discovery and internal validation
cohorts. Gender of participants was determined based on self-report.
Informed consents were obtained from all participants and no com-
pensation was provided. Subjects of benign nodules were those with
stable evaluations by follow-up CT scans over 2–5 years at the time of
analysis, except that one case in the external validation set was col-
lected prior to surgery and diagnosis of chronic bronchitis was made
by histopathological examination. Lung adenocarcinoma cases were
collected prior to lung resection surgery and confirmed by patholo-
gical diagnosis. Fasting blood samples were collected with the serum
separator tube without any anticoagulants. The blood samples were
clotted at room temperaturewithin 1 h and then centrifuged at 2851 × g
for 10min at 4 °C to collect serum supernatant. The serum aliquots
were frozen at −80 °C until metabolite extraction. A serum pool was
collected from 100 healthy donors at Department of Cancer Preven-
tion and Medical Examination, Sun Yat-sen University Cancer Center,
with an equal number of men and women aged from 40 to 55. Equal
volumes of each donor samples weremixed and the resulting pool was
dispensed in aliquots and stored at −80 °C. The serum mixture was
used as a referencematerial for quality control anddata normalization.

Serum metabolite extraction
Reference serum and study samples were thawed and metabolites
were extracted using the combined extraction method (MTBE/
methanol/water)56. Briefly, 50μL serumwasmixedwith 225μL ice-cold
methanol and 750μL ice-cold methyl-tertbutyl ether (MTBE). The
mixture was vortexed and incubated on ice for 1 h. The samples were
then mixed with 188μL MS-grade water containing internal standards

(13C-lactate, 13C3-pyruvate,
13C-methionine and 13C6-isoleucine were

purchased from Cambridge Isotope Laboratories) and vortexed. The
mixture was then centrifuged at 15,000 × g at 4 °C for 10min and the
bottom phase was transferred to two tubes (125μL/each tube) for
positive and negative mode analysis of LC-MS. Finally, the samples
were evaporated to dryness under a speed vacuum concentrator.

Untargeted liquid chromatography-mass spectrometry analysis
Dried metabolites were reconstituted in 120μL 80% acetonitrile, vor-
texed for 5min, and centrifuged at 15,000× g at 4 °C for 10min. The
supernatant was transferred to a glass amber vial with micro-insert for
the metabolomic study. Untargeted metabolomic analysis was per-
formed on an ultra-performance liquid chromatography-high resolu-
tionmass spectrometry (UPLC–HRMS)platform.Themetaboliteswere
separated by Dionex Ultimate 3000 UPLC system with ACQUITY BEH
Amide column (2.1 × 100mm, 1.7μm, Waters). In positive mode, the
mobile phases were 95% (A) and 50% acetonitrile (B), with 10mmol/L
ammonium acetate and 0.1% formic acid in both phases. In negative
mode, mobile phase A and B were 95 and 50% acetonitrile, containing
10mmol/L ammonium acetate with pH=9 in both phases. The gra-
dient program was as follows: 0–0.5min, 2% B; 0.5–12min, 2–50% B;
12–14min, 50–98% B; 14–16min, 98% B; 16–16.1min, 98–2% B;
16.1–20min, 2% B. The column was maintained at 40 °C and the sam-
ples were kept in the autosampler at 10 °C. The flow rate was 0.3mL/
min, and the injection volume was 3μL. A Q-Exactive orbitrap mass
spectrometer (Thermo Fisher Scientific) with electrospray ionization
(ESI) source was operated in full scan mode combined with ddMS2
monitoring mode for mass data acquisition. The MS parameters were
set as follows: spray voltage +3.8 kV/− 3.2 kV; capillary temperature
320 °C; sheath gas 40 arb; auxiliary gas 10 arb; probe heater tem-
perature 350 °C; scan range 70–1050m/z; resolution 70,000. The data
were acquired using Xcalibur 4.1 (Thermo Fisher Scientific).

For data quality assessment, pooled quality control (QC) samples
were created by taking 10μL aliquot supernatant from each sample. Six
injections of QC samples were analyzed at the beginning of the analy-
tical sequence for assessing the stability of UPLC-MS system. Then QC
samples were injected periodically throughout the whole batch. All
serum samples were completed for LC-MS analysis in 11 batches in the
current study. Aliquots of serumpoolmixture from 100 healthy donors
were used as reference material in corresponding batch to monitor the
extraction process and correct the inter-batch effects. The untargeted
metabolomic analysis of discovery cohort, internal and external vali-
dation cohort were performed at Sun Yat-sen University Metabolomics
Center. 40 samples from the external cohort were also analyzed in an
outside lab at Analysis and Test Center, Guangdong University of
Technology to test the performance of the classifier model.

Targeted metabolomics
After extraction and reconstitution, the absolute quantitation of serum
metabolites was measured by ultra-performance liquid chromato-
graphy- tandem mass spectrometry (Agilent 6495 Triple Quadrupole)
with electrospray ionization (ESI) source operated inmultiple reaction
monitoring (MRM) mode. The ACQUITY BEH Amide column
(2.1 × 100mm, 1.7μm, Waters) was used to separate metabolites. The
mobile phases were consisted of 90% (A) and 5% acetonitrile (B) both
with 10mmol/L ammonium acetate and 0.1% ammonia solution. The
gradient programwasas follows: 0–1.5min, 0%B; 1.5–6.5min, 0–15%B;
6.5–8min, 15% B; 8–8.5min, 15%–0% B; 8.5–11.5min, 0% B. The column
wasmaintained at 40 °C and the samples were kept in the autosampler
at 10 °C. The flow rate was 0.3mL/min, and the injection volume was
1μL. The MS parameters were set as follows: capillary voltage ±3.5 kV;
nebulizer pressure 35 psi; sheath gas flow rate 12 L/min, sheath gas
temperature 350 °C, dry gas temperature 250 °C, and dry gas flow rate
14 L/min. The MRM transitions for tryptophan, pyruvate, lactate,
hypoxanthine, and xanthine were 205.0–187.9, 87.0–43.4, 89.0–43.3,
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135.0–92.3 and 151.0–107.9, respectively. The data were acquired by
Mass Hunter B.07.00 (Agilent Technologies). For serum samples,
tryptophan, pyruvate, lactate, hypoxanthine, and xanthine were
quantified by the calibration curves of standard mixture solution. For
cell samples, the abundance of tryptophan was normalized by the
internal standard and the protein mass of cells.

Metabolomic data processing
Peak extraction with m/z and retention time (RT) was performed by
Compound Discovery 3.1 and TraceFinder 4.0 (Thermo Fisher Scien-
tific). To remove potential inter-batch variations, each feature peak of
study samples was divided by that of referencematerial from the same
batch to obtain the relative abundance. Relative standard deviation of
internal standards before and after normalization was shown in Sup-
plementary Table 6. Differential features between two groups were
selected by the p value adjusted by false discovery rate (FDR <0.05,
Wilcoxon rank tests) and fold change (>1.2 or <0.83). The rawMS data
of extracted features and the corrected MS data by reference serum
were shown in Supplementary data 1 and Supplementary data 2,
respectively. Peak annotation was conducted according to the four
defined levels of identification, including identified metabolites,
putatively annotated compounds, putatively characterized compound
classes, and unknown compounds22. Based on database searching
(mzCloud, HMDB, Chemspider) inCompoundDiscovery 3.1, biological
compounds with MS/MS matched to authenticated standards, or
putatively annotated by full match in mzCloud (score > 85) or Chem-
spider were finally selected as differential metabolites between two
groups. The peak annotation of each feature is included in Supple-
mentary Data 3. MetaboAnalyst 5.0 was used for univariate analysis of
the metabolite abundance normalized by sum. KEGG pathway
enrichment analysis was also assessed byMetaboAnalyst 5.0 based on
significantly differential metabolites. The principal component analy-
sis (PCA) and partial least squares discrimination analysis (PLS-DA)
were analyzed by ropls package (v.1.26.4) with sum normalization and
auto scaling. The optimal metabolite biomarker model for predicting
nodulemalignancywasbuilt by binary logistic regressionwith the least
absolute shrinkage and selection operator (LASSO, R package v.4.1-3).
The performance of the discriminant model in both discovery and
validation set was characterized by estimating AUC according the ROC
analysis by pROC package (v.1.18.0.). The optimal probability cut-off
value was obtained according to the maximum Youden Index (sensi-
tivity +specificity-1) of the model. Samples with values less or greater
than cut-off value will be predicted as benign nodules and lung ade-
nocarcinoma, respectively.

Cell culture and knockdown of SLC7A5
A549 cells (#CCL-185, American Type Culture Collection) were grown
in F-12K medium with 10% FBS. Short hairpin RNA (shRNA) sequences
targeting SLC7A5 and non-targeting control (NC) were inserted into
the pLKO.1-puro lentiviral vector. Anti-sense sequences for shSLC7A5
were as follows: Sh1 (5′- GGAGAAACCTGATGAACAGTT −3′), Sh2 (5′-
GCCGTGGACTTCGGGAACTAT-3′). Antibody for SLC7A5 (#5347) and
tubulin (#2148) were purchased from Cell Signaling Technology. The
antibody dilution of SLC7A5 and tublin is 1:1000 for westernblot
analysis.

Glycolytic activity
Seahorse XF Glycolysis Stress Test was used to measure the extra-
cellular acidification rate (ECAR). In the assay, glucose, oligomycin A
and 2-DG were sequentially injected to test the cellular glycolytic
capacity measured by ECAR.

Measurement of cellular tryptophan and NAD(H)
A549 cells transfected with non-targeting control (NC) and shSLC7A5
(Sh1, Sh2) were plated into 10-cmdishes overnight. Cellularmetabolites

were extracted with 1ml iced-cold 80% methanol aqueous solution.
Cells in methanol solution were scratched, collected in a new tube, and
centrifuged at 15,000× g for 15min at 4 °C. 800μL supernatant was
collected and dried using a speed vacuum concentrator. The dried
metabolite pellets were then analyzed for tryptophan level by LC-MS/
MS as described above. Cellular NAD(H) levels of A549 cells (NC and
shSLC7A5) were measured by NAD+/NADH Quantification Colorimetric
Kit (#K337, BioVision) as instructed by the manufacturer. Protein levels
of each sample were measured to normalized the metabolite amount.

Statistics and reproducibility
No statistical method was used to predetermine sample size. Previous
metabolomic studies15,18 for biomarker discovery were considered as a
reference for size determination and our samples were adequate
compared with these reports. No samples were excluded in the study
cohorts. Serum samples were randomly allocated to the discovery
(306, 74.6%) and the internal validation cohorts (104, 25.4%) for
untargeted metabolomics study. 70 cases in each group were also
randomly selected from the discovery set for targeted metabolomic
study. The investigators were blinded to group allocation when per-
formed LC-MS data acquisition and data analysis. Statistical analysis of
metabolomics data and cellular experiments were described in the
corresponding Results, figure legends and Method sections. The
quantification of cellular tryptophan, NADt and glycolytic activity were
performed three times independently with similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawMS data of extracted features and the normalized MS data by
reference serum are shown in Supplementary data 1 and Supplemen-
tary data 2, respectively. Peak annotation of differential features is
provided in Supplementary data 3. The LUAD dataset from TCGA can
be downloaded from https://portal.gdc.cancer.gov/. Raw data of
plotting figures are provided in Source Data. Source data are provided
with this paper.
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